河海大学高等数学下习题3-6解答 -

合集下载

大学高等数学下考试题库及答案

大学高等数学下考试题库及答案

"高等数学"试卷6〔下〕一.选择题〔3分⨯10〕1.点1M ()1,3,2到点()4,7,22M 的距离=21M M 〔 〕.A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,那么有〔 〕.A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3. 设有直线1158:121x y z L --+==-和26:23x y L y z -=⎧⎨+=⎩,那么1L 与2L 的夹角为〔 〕 〔A 〕6π; 〔B 〕4π; 〔C 〕3π; 〔D 〕2π. 4.两个向量a 与b垂直的充要条件是〔 〕.A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是〔 〕.A.2B.2-C.1D.1- 6.设y x z sin =,那么⎪⎭⎫ ⎝⎛∂∂4,1πyz =〔 〕.A.22B.22-C.2D.2-7. 级数1(1)(1cos ) (0)n n n αα∞=-->∑是〔 〕 〔A 〕发散; 〔B 〕条件收敛; 〔C 〕绝对收敛; 〔D 〕敛散性与α有关.8.幂级数∑∞=1n nn x 的收敛域为〔 〕.A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域的和函数是〔 〕.A.x -11 B.x -22 C.x -12 D.x -21 二.填空题〔4分⨯5〕1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,那么此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,那么=∂∂∂yx z2_____________________________. 4. 设L 为取正向的圆周:221x y +=,那么曲线积分2(22)d (4)d Lxy y x x x y -+-=⎰____________.5. .级数1(2)nn x n ∞=-∑的收敛区间为____________.三.计算题〔5分⨯6〕1.设v e z usin =,而y x v xy u +==,,求.,yzx z ∂∂∂∂ 2.隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4..计算10d d y xy x x⎰ .试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe e y 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y ="高数"试卷7〔下〕一.选择题〔3分⨯10〕1.点()1,3,41M ,()2,1,72M 的距离=21M M 〔 〕. A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,那么两平面的夹角为〔 〕. A.6π B.4π C.3π D.2π 3.点()1,2,1--P 到平面0522=--+z y x 的距离为〔 〕. A.3 B.4 C.5 D.6 4.假设几何级数∑∞=0n nar是收敛的,那么〔 〕.A.1≤rB.1≥rC.1<rD.1≤r 8.幂级数()nn xn ∑∞=+01的收敛域为〔 〕.A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是〔 〕. A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10. .考虑二元函数(,)f x y 的以下四条性质:〔1〕(,)f x y 在点00(,)x y 连续; 〔2〕(,),(,)x y f x y f x y 在点00(,)x y 连续 〔3〕(,)f x y 在点00(,)x y 可微分; 〔4〕0000(,),(,)x y f x y f x y 存在. 假设用"P Q ⇒〞表示有性质P 推出性质Q ,那么有〔 〕 〔A 〕(2)(3)(1)⇒⇒; 〔B 〕(3)(2)(1)⇒⇒ 〔C 〕(3)(4)(1)⇒⇒; 〔D 〕(3)(1)(4)⇒⇒ 二.填空题〔4分⨯5〕1. 级数1(3)nn x n ∞=-∑的收敛区间为____________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题〔5分⨯6〕1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ∂∂∂∂ 3.隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4. 设∑是锥面1)z z =≤≤下侧,计算y z 2d d 3(1)d d xd d y z x z x y ∑++-⎰⎰四.应用题〔10分⨯2〕 试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x y z y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x xe C e C y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=. "高等数学"试卷3〔下〕一、选择题〔此题共10小题,每题3分,共30分〕 1、二阶行列式 2 -3 的值为〔 〕4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,那么a 与b 的向量积为〔 〕 A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P 〔-1、-2、1〕到平面x+2y-2z-5=0的距离为〔 〕 A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点〔1,4π〕处的两个偏导数分别为〔 〕 A 、,22,22 B 、,2222- C 、22-22- D 、22-,225、设x 2+y 2+z 2=2Rx ,那么yzx z ∂∂∂∂,分别为〔 〕 A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为〔 〕〔面积A=2R π〕A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为〔 〕A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为〔 〕A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是〔 〕 A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为〔 〕 A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题〔此题共5小题,每题4分,共20分〕 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

[理学]河海大学高等数学高等数学下册1-15考试试卷及解答

[理学]河海大学高等数学高等数学下册1-15考试试卷及解答

高等数学(下册)考试试卷(一)参考答案一、1、当10<<a 时,1022≤+<y x ;当1>a 时,122≥+y x ;2、负号;3、23;110⎰⎰⎰⎰-+=Dy e eydx dy d σ; 4、dt t t )()(22ψϕ'+'; 5、180π; 6、Cx xy=sin; 7、xxe C e C x C x C y 2423212sin 2cos -+++=; 8、1;二、1、D ; 2、D ; 3、C ; 4、B ; 5、D ; 6、B ; 7、A ; 8、C ; 三、1、21f y f x u '+'=∂∂;)(xy x g x yu +'=∂∂; 2、)()(t x f t x f x u --+=∂∂;)()(t x f t x f t u -++=∂∂; 四、1、)1(21420200220222-----===⎰⎰⎰⎰⎰e dy ye dx e dy dy e dx y y y x y ;2、⎰⎰⎰⎰⎰⎰=+=πππθθ2020212022132233142rdz r dr d dz r dr d I柱面坐标; 五、令2222,y x xQ y x y P +=+-=则xQy x x y y P ∂∂=+-=∂∂22222)(,)0,0(),(≠y x ; 于是①当L 所围成的区域D 中不含O (0,0)时,xQy P ∂∂∂∂,在D 内连续。

所以由Green 公式得:I=0;②当L 所围成的区域D 中含O (0,0)时,xQy P ∂∂∂∂,在D 内除O (0,0)外都连续,此时作曲线+l 为)10(222<<=+εεy x ,逆时针方向,并假设*D 为+L 及-l 所围成区域,则πε2)(222*=+∂∂-∂∂+=+-=⎰⎰⎰⎰⎰⎰⎰⎰=+++-++++y x D ll L llL dxdy y Px Q Green I 公式六、由所给条件易得: 0)0()0(1)0(2)0(2=⇒-=f f f f又xx f x x f x f x ∆-∆+='→∆)()(lim )(0 =x x f x f x f x f x f x ∆-∆-∆+→∆)()()(1)()(lim 0xf x f x f x f x f x ∆-∆⋅∆-+=→∆)0()()()(1)(1lim 20 )](1)[0(2x f f +'= 即)0()(1)(2f x f x f '=+' c x f x f +⋅'=∴)0()(a r c t a n 即 ])0(tan[)(c x f x f +'= 又 0)0(=f 即Z k k c ∈=,π ))0(t a n ()(x f x f '=∴七、令t x =-2,考虑级数∑∞=++-11212)1(n n nn t212321232l i m t n t n t n n n =++++∞→ ∴当12<t 即1<t 时,亦即31<<x 时所给级数绝对收敛;当1<t 即3>x 或1<x 时,原级数发散;当1-=t 即1=x 时,级数∑∞=++-11121)1(n n n 收敛; 当1=t 即3=x 时,级数∑∞=+-1121)1(n nn 收敛; ∴级数的半径为R=1,收敛区间为[1,3]。

河海大学 高等数学 高等数学(下册)1-15考试试卷及解答

河海大学 高等数学 高等数学(下册)1-15考试试卷及解答

高等数学(下册)考试试卷(一)参考答案一、1、当10<<a 时,1022≤+<y x ;当1>a 时,122≥+y x ;2、负号;3、23;110⎰⎰⎰⎰-+=Dy e eydx dy d σ; 4、dt t t )()(22ψϕ'+';5、180π;6、Cx xy =sin ;7、xxeC eC x C x C y 2423212sin 2cos-+++=; 8、1;二、1、D ; 2、D ; 3、C ; 4、B ; 5、D ; 6、B ; 7、A ; 8、C ; 三、1、21f y f x u '+'=∂∂;)(xy x g x yu +'=∂∂;2、)()(t x f t x f xu --+=∂∂;)()(t x f t x f tu -++=∂∂;四、1、)1(2142020220222-----===⎰⎰⎰⎰⎰edy yedx edy dy edx yyyxy;2、⎰⎰⎰⎰⎰⎰=+=πππθθ202212022132233142rdz r dr d dz r dr d I 柱面坐标;五、令2222,yx x Q yx y P +=+-=则xQ y x xy yP ∂∂=+-=∂∂22222)(,)0,0(),(≠y x ;于是①当L 所围成的区域D 中不含O (0,0)时,xQy P ∂∂∂∂,在D 内连续。

所以由Green公式得:I=0;②当L 所围成的区域D 中含O (0,0)时,xQy P ∂∂∂∂,在D 内除O (0,0)外都连续,此时作曲线+l 为)10(222<<=+εεy x ,逆时针方向,并假设*D 为+L 及-l 所围成区域,则 πε2)(222*=+∂∂-∂∂+=+-=⎰⎰⎰⎰⎰⎰⎰⎰=+++-++++y x DllL llLdxdy yP xQ Green I 公式六、由所给条件易得: 0)0()0(1)0(2)0(2=⇒-=f f f f又xx f x x f x f x ∆-∆+='→∆)()(lim)(0=xx f x f x f x f x f x ∆-∆-∆+→∆)()()(1)()(limxf x f x f x f x f x ∆-∆⋅∆-+=→∆)0()()()(1)(1lim2)](1)[0(2x f f +'=即)0()(1)(2f x f x f '=+'c x f x f +⋅'=∴)0()(a r c t a n 即 ])0(tan[)(c x f x f +'= 又 0)0(=f 即Z k k c ∈=,π ))0(t a n ()(x f x f '=∴七、令t x =-2,考虑级数∑∞=++-11212)1(n n nn t212321232lim t n t n tn n n =++++∞→ ∴当12<t 即1<t 时,亦即31<<x 时所给级数绝对收敛;当1<t 即3>x 或1<x 时,原级数发散;当1-=t 即1=x 时,级数∑∞=++-11121)1(n n n 收敛;当1=t 即3=x 时,级数∑∞=+-1121)1(n nn 收敛;∴级数的半径为R=1,收敛区间为[1,3]。

高等数学(下)典型习题及参考答案

高等数学(下)典型习题及参考答案

第八章典型习题一、 填空题、选择题1、点)3,1,4(M -到y 轴的距离是2、平行于向量}1,2,1{a -=的单位向量为 3、().0431,2,0垂直的直线为且与平面过点=--+-z y x4、.xoz y z y x :面上的投影柱面方程是在曲线⎩⎨⎧==++Γ2102225、()==-=+=+=-δλδλ则平行与设直线,z y x :l z y x :l 1111212121()23A ()12B ()2C ()21D6、已知k 2j i 2a+-=,k 5j 4i 3b -+=,则与b a 3 -平行的单位向量为 ( )(A )}11,7,3{(B )}11,7,3{- (C )}11,7,3{1291-±(D )}11,7,3{1791-± 7、曲线⎩⎨⎧==++2z 9z y x 222在xoy 平面上投影曲线的方程为( )(A )⎩⎨⎧==+2z 5y x 22 (B )⎩⎨⎧==++0z 9z y x 222(C )⎩⎨⎧==+0z 5y x 22 (D )5y x 22=+8、设平面的一般式方程为0A =+++D Cz By x ,当0==D A 时,该平面必( ) (A)平行于y 轴 (B) 垂直于z 轴 (C) 垂直于y 轴 (D) 通过x 轴 9、设空间三直线的方程分别为251214:1+=+=+z y x L ,67313:2+=+=z y x L ,41312:3-=+=z y x L 则必有 ( ) (A) 31//L L (B) 21L L ⊥ (C) 32L L ⊥ (D) 21//L L10、设平面的一般式方程为0=+++D Cz By Ax ,当0==B A 时,该平面必 ( ) (A) 垂直于x 轴 (B) 垂直于y 轴 (C) 垂直于xoy 面 (D) 平行于xoy 面11、方程05z 3y 3x 222=-+所表示的曲面是( )(A )椭圆抛物面 (B )椭球面 (C )旋转曲面 (D )单叶双曲面二、解答题1、设一平面垂直于平面0=z ,并通过从点)1,1,1(-P 到直线⎩⎨⎧=+-=010z y x 的垂线,求该平面方程。

高等数学(下)课后习题答案

高等数学(下)课后习题答案

高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。

高数下课后题答案

高数下课后题答案

13. 试证明以三点 A(4,1,9), B(10, −1,6),C(2, 4,3) 为顶点的三角形是等腰直角三角形。
解 因为

| AB|= (10−4)2 +(−1−1)2 +(6−9)2 =7 ,

| AC|= (2−4)2 +(4−1)2 +(3−9)2 =7 ,

|BC|= (2−10)2 +(4+1)2 +(3−6)2 =7 2 ,
解 (1) 点 (a,b,c) 关于 xOy 面的对称点为 (a,b, −c) ;关于 yOz 面的对称点为 (−a,b, c) ;关
于 zOx 面的对称点为 (a, −b, c) 。
(2) 点 (a,b,c) 关于 x 轴的对称点为 (a, −b, −c) ;关于 y 轴的对称点为 (−a,b, −c) ;关于



→→
所以 |BC |2=| AB|2 +| AC |2 , | AB|=| AC| 。
14. 已知两点 P(2,0,3) 和 Q(1, 2, 4) ,计算向量 PQ 的模、方向余弦和方向角。
⎯⎯→
解 PQ = (1− 2, 2 − 0, 4 − 3) = (−1, 2, 1)
⎯⎯→
| PQ |= (−1)2 + ( 2)2 +12 = 2
点的坐标为 (x, 0, z) 。
在 x 轴上的点的坐标为 (x, 0, 0) ;在 y 轴上的点的坐标为 (0, y, 0) ;在 z 轴上的点的坐标为
(0, 0, z) 。
A 在 xOy 面上, B 在 yOz 面上, C 在 x 轴上, D 在 y 轴上。
7.求点 (a,b,c) 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。

高等数学A(下)习题册答案

高等数学A(下)习题册答案

高等数学A (下)习题册第六章参考答案习题6.11.3333(32)45-=+---+=-r n a b c a b +c a c .2.23(0,1,0)2(1,2,3)3(2,0,1)(4,3,3)+--+-=-a b c =.3.点(,,)a b c 到x 轴、y 轴、z4.||cos ,2cos 6u u π=<>==r r r 5. 设起点坐标为(,,)x y z ,则向量r =(2,3,0)(2,1,4)x y z ----=,解得(,,)(4,2,4)x y z =--.习题6.21.(1)(3)(2)6()61106(1,1,4)131i j k-⨯=-⨯=--=--a b a b . (2)cos ,||||⋅<>===a b a b a b 2.(1)12;(2)10k =-. 3.Prj cos ,1||⋅<>==b a ba =|a |ab b . 4.()()344(0,1,1)233ijk⨯=-=---a +b b +c .习题6.3 1.1313x y z ++=-;该平面在x 轴、y 轴、z 轴上的截距分别为3、1、3-. 2.3540x y z +++=. 3.11110121x y z+=-,即3220x y z -+++=. 4.210220240x y z x y z x y z ++-=⎧⎪++-=⎨⎪++-=⎩,解得交点坐标,319(,,)(,,)444x y z =-.5.2d ==.习题6.41.43040x y x z +-=⎧⎨--=⎩ 2.111(4,1,3)213i j ks ==---,所以对称式方程为:12413x y z -+==--、参数方程为:4132x t y t z t =+⎧⎪=-⎨⎪=--⎩. 3.325431x y z +--==. 4.111(1,1,2)110i j ks =-=----,所以12112x y z -+==. 5.如图,从直线上找个点1P ,连接向量10PP ,它与方向向量r 的夹角为θ,则所求的距离101010||||sin ||||sin ||||PP r PP r d PP r r θθ⨯===,本题结果为63. 习题6.51.垂直平分面:26270x y z -+-=.2.222(6)(2)(3)49x y z -+++-=.3.(1)2221233x y z ++=(2)2221232x y z -+=(3)2224x y z ++=(4)223x z y +=.习题6.61.(1)xOy 面上一点(1,3)-;空间中一条直线. (2)yOz 面上一点(0,2);空间中一条直线.2. (1)222100x y y z ⎧+--=⎨=⎩,2223100x z z y ⎧+-+=⎨=⎩,100y z x -+=⎧⎨=⎩(线段);(2)222390x y z ⎧+=⎨=⎩,22390z x y ⎧-=⎨=⎩,22290y z x ⎧+=⎨=⎩.3.先求题中两曲面交线在xOy 面上的投影曲线,投影曲线所围成的区域即为所求,2210x y z ⎧+≤⎨=⎩.高等数学A (下)习题册第七章参考答案习题7.11. 1、1、0、1.2.(1)在抛物线220y x +=处间断;(2)在直线y x =-处间断.3.(1)000lim lim 111xy t x t y xy te e →→→==--;(2)00012x t y →→+→==; (3)()xyy x y x 220sin 1lim +→→()2212sin 20sin 00lim 1sin 1x y xy x y x y x y e →→=+==.4.取路径(1)y kx k =≠,001lim 1x y x y kx y k →→++=--,结果与k 有关,故极限不存在. 习题7.21. (1)3/2cos(/)z y y x x x ∂=∂,z y ∂=∂, (2)/1y z u y x x z -∂=∂,/1ln y z u x x y z ∂=∂,/2ln y z u yx x z z∂=-∂.2. '''11(1,2,0)1,(1,2,0),(1,2,0).22x y z f f f ===3. 22222222212126,126,6z z z x xy y xy x x x y x y∂∂∂=-+=-=∂∂∂∂.4. 证明 因为1111()()2211,x y x y z z e e x x x y-+-+∂∂==∂∂,所以222z z x y z x y ∂∂+=∂∂. 习题7.31.(1)sin sin cos y y dz e dx x ye dy =+;(2))du xdx ydy zdz =++2.222222x y df dx dy x y x y =+++,()422,155df dx dy =+. 3.证明: (1)因为22000)0(0,0)x x y y x y f →→→→+===,所以(,)f x y 在(0,0)点处连续; (2)根据偏导数的定义,极限00(,0)(0,0)00limlim 0x x f x f xx ∆→∆→∆--==∆∆,所以对x 的偏导数存在,且'(0,0)0x f =;同理,'(0,0)0y f =. (3)因为2200)000limlimx y x y z dzρρρρ→+→+∆+∆--∆-∆∆-=00limlimz dzρρρ→+→∆-==,而这个极限不存在,所以(,)f x y 在(0,0)点处不可微.习题7.41.()()()()sin cos ,sin cos xy xy xy xy z zye x y e x y xe x y e x y x y∂∂=+++=+++∂∂. 2.()()222333223cos sin cos sin ,cos sin 2cos sin 2sin cos z z r r r θθθθθθθθθθθ∂∂=-=+--∂∂ 3.(1)12122,2xy xy u ux f ye f y f xe f x x ∂∂''''=⋅+⋅=-⋅+⋅∂∂;(2)11222211,,u u x u y f f f f x y y z z y z∂∂-∂''''=⋅=⋅+⋅=-⋅∂∂∂. 4.dy x y dx x y+=-.5.zz x y ∂∂==∂∂. 6.证明:令23x y z u +-=,则2sin u u =,此方程有解0u ,即023x y z u +-=,故12,33z z x y ∂∂==∂∂,1z zx y∂∂+=∂∂. 7.每个方程都对x 求导,222460dy dz x y dx dx dy dz x y z dx dx ⎧+=⎪⎪⎨⎪++=⎪⎩,解得626226dy x xz dx y yz dz x dx z+⎧=-⎪+⎪⎨⎪=⎪+⎩.习题7.5 1.()1,2zl∂=∂. 2.(1)()1,1z l∂=∂(2)()0,1,023u l ∂=∂. 3.()1,1,1(6,3,0)gradf =.习题7.61.(1) 1B =;(2) 2,6m n ==;(3) 2,2A B =-=-.2.(1)切线方程11101x y z --==-,法平面方程1z x -=. 3.()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 4.切平面方程24x y +=,法线方程21120x y z--==. 习题7.71.(1)()1,12f -=-为极小值;(2)11,122f e ⎛⎫-=- ⎪⎝⎭为极小值.2.区域内部:(0,0)为驻点,(0,0)0f =;区域边界上,相当于求条件极值,构造拉格朗日函数22(,,)(1)L x y xy x y λλ=++-,解得x y ==,1(2f f ==,1(2f f ==-, 所以最大值为12,最小值为12-.3.构造拉格朗日函数22(,,)(22)L x y x y x y λλ=+++-,解得42,55x y ==,424,555f ⎛⎫= ⎪⎝⎭ 为极小值.4.构造拉格朗日函数(,,,)()L x y z xyz x y z a λλ=+++-,解得3ax y z ===,即三个正数均为3a时,乘积最大. 5.构造拉格朗日函数222222(,,,)(1)(1)(1)(2)(3)(4)(32)L x y z x y z x y z x z λλ=-+-+-+-+-+-+-, 解得点2163,2,1326⎛⎫⎪⎝⎭. 6.构造拉格朗日函数222(,,,)(12)L x y z xyz x y z λλ=+++-,解得,2x y z ===.高等数学A (下)习题册第八章参考答案习题8.1 1、(1)8π(2)8(3)2(4)1 2、(1)23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰ (2)2()Dx y d σ+≤⎰⎰3()Dx y d σ+⎰⎰3、(1)02I ≤≤ (2)1827I ππ≤≤4、(1)因为积分区域关于x 轴对称,而函数(,)sin f x y x y =-关于y 为奇函数(或理解为积分区域关于y 轴对称,而函数(,)sin f x y x y =-关于x 为奇函数),所以原二重积分(sin )0Dx y dxdy -=⎰⎰.(2)因为积分区域关于y 轴对称,而函数22arcsin (,)1x y f x y x y =++关于x 为奇函数,所以原二重积分22arcsin 01Dx y dxdy x y=++⎰⎰.习题8.2 1、(1)22122001(,)(,)y y y dy f x y dx dy f x y dx -+⎰⎰⎰⎰(2)23 02(,)xxdx f x y dy -⎰⎰ (3)2602(,)yy dy f x y dx -⎰⎰2、(1)2cos 22(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰(2)22321cos d d πθρθρ⎰⎰(3)sec tan 240d d πθθθρρ⋅⎰⎰3、图如下所示.(1) (2) (3) (4)(1)解:原式2237111424000226()3355x xx x Dx ydxdy xdx ydy x y dx x x dx ==⋅=-=⎰⎰⎰⎰⎰⎰. (2)解:原式0111012121111101()()x x x y x y x y x x x x De d e dx e dy e dx e dy e dx e e dx eσ+-+++------=+=-+-⎰⎰⎰⎰⎰⎰⎰⎰1e e=-.(3)解:原式221112000sin sin sin sin [][()]yy Dy yyyy ydxdy dy dx x dy y y dy yy y y==⋅=-⎰⎰⎰⎰⎰⎰ 11111(sin sin )sin sin cos (cos sin )1sin1y y y dy ydy y ydy y y y y =-=-=-+-=-⎰⎰⎰.(4)解:原式122222222(2)(2)DD D x y dxdy x y dxdy x y dxdy +-=--++-⎰⎰⎰⎰⎰⎰1222cos ,sin (2)(2)D D x y d d d d ρθρθρρρθρρρθ==-+-⎰⎰⎰⎰令22233302(2)(2)d d d d ππθρρρθρρρ=-+-⎰⎰⎰⎰442322252[]2[]442ρρπρπρπ=⋅-+⋅-=. 4、(1)解:如左图所示. 在极坐标系中,积分区域为{(,)|0cos ,}22D R ππρθρθθ=≤≤-≤≤,故原式22222DDR x y dxdy R d d ρρρθ--=-⋅⎰⎰⎰⎰3cos cos 2222222221[()]3R R d R d R d ππθθππθρρρρθ--=-⋅=--⎰⎰⎰33320 24(1sin )()333R R d πθθπ=-=-⎰.(2)解:如左图所示. 在极坐标系中,积分区域为{(,)|12,0}4D πρθρθ=≤≤≤≤,则arctan yx θ=.故原式240 1arctan D Dydxdy d d d d x πθρρθθθρρ==⎰⎰⎰⎰⎰⎰222113()(21)24264ππ=⋅⋅-=. (3)解:如左图所示.在极坐标系中,积分区域为{(,)|12,02}D ρθρθπ=≤≤≤≤, 故原式222220 1ln()ln()2ln DDx y dxdy d d d d πρρρθθρρρ+=⋅=⎰⎰⎰⎰⎰⎰222222 1112ln 2[ln ln ]d d πρρπρρρρ=⋅=⋅-⎰⎰22132[4ln 2]2[4ln 2]8ln 2322ρππππ=⋅-=⋅-=-. 5、提示:积分区域{(,)|0,0}{(,)|,0}D x y x y y a x y x y a x a =≤≤≤≤=≤≤≤≤,交换积分次序得()()()0()()()()ayaaam a x m a x m a x xdy e f x dx dx e f x dy a x e f x dx ---==-⎰⎰⎰⎰⎰.习题8.31、(1)解:如左图所示.利用直角坐标计算.因为222{(,,)|01,01,01}x y z z x y y x x Ω=≤≤--≤≤-≤≤, 所以原式22211100x x y I xyzdxdydz xdx ydy zdz ---Ω==⎰⎰⎰⎰⎰⎰222224111120011[(1)]2224x x x y y y xdx y dy x x dx ----=⋅=--⎰⎰⎰122011(1)848x x dx =-=⎰. (2)解:如下图所示【解法一】由22z x y =+与1z =消去z 得:221x y +=. 故Ω在xoy 面上的投影区域为22{(,)|1}xy D x y x y =+≤. 所以22{(,,)|1,(,)}xy x y z x y z x y D Ω=+≤≤∈. 故原式221221[1()]2xyxyx yD D I zdxdydz dxdy zdz dxdy x y +Ω===-+⎰⎰⎰⎰⎰⎰⎰⎰ 2123002211111()12222xy xy D D dxdy dxdy d d x y ππθρρ=-=⋅⋅-+⎰⎰⎰⎰⎰⎰ 244πππ=-=.【解法二】用过点(0,0,)z 、平行于xoy 面的平面截Ω得平面圆域z D ,其半径为22x y z +=,面积为2z π.所以{(,,)|(,),01}z x y z x y D z Ω=∈≤≤.故原式4111200044zD z I zdxdydz zdz dxdy z z dz πππΩ===⋅=⋅=⎰⎰⎰⎰⎰⎰⎰.2、(1)解:如下图所示.由2243()z x y =-+与22z x y =+消去z 得:221x y +=. 故Ω在xoy 面上的投影区域为22{(,)|1}xy D x y x y =+≤. 所以Ω的柱面坐标表示为:2243,01,02z ρρρθπ≤≤-≤≤≤≤.故原式2221430I zdxdydz z d d dz d d zdz πρρρρθθρρ-ΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰22243113500132[43]212z d d ρρπρρπρρρρπ-=⋅⋅=⋅--=⎰⎰. (2)解:如下图所示.由222425()z x y =+与5z =消去z 得:224x y +=. 故Ω在xoy 面上的投影区域为22{(,)|4}xy D x y x y =+≤. 所以Ω的柱面坐标表示为:55,02,022z ρρθπ≤≤≤≤≤≤. 故原式22522235002()I x y dxdydz d d dz d d dz πρρρρθθρρΩΩ=+=⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰2223450551(5)2[]8242d d πθρρρπρρπ=-=-=⎰⎰.3、解:如下图所示.【解法一】利用直角坐标计算.由22222222x y z Rx y z Rz⎧++=⎪⎨++=⎪⎩解得2R z =,于是用平面2R z =把Ω分成1Ω和2Ω两部分,其中2221{(,,)|2,0}2Rx y z x y Rz z z Ω=+≤-≤≤; 22222{(,,)|,}2Rx y z x y R z z R Ω=+≤-≤≤. 于是原式12222z dxdydz z dxdydz z dxdydz ΩΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰2222222222022R RR x y Rz zx y R zz dzdxdy z dzdxdy +≤-+≤-=+⎰⎰⎰⎰⎰⎰22222202(2)()R RR Rz z z dz R z z dz ππ=-⋅+-⋅⎰⎰5551475940480480R R R πππ=+=. 【解法二】利用球面坐标计算.作圆锥面1arccos 23πϕ==,将Ω分成1'Ω和2'Ω两部分:1{(,,)|0,0,02}3R πρϕθρϕθπ'Ω=≤≤≤≤≤≤; 2{(,,)|02cos ,,02}32R ππρϕθρϕϕθπ'Ω=≤≤≤≤≤≤.于是原式12222z dxdydz z dxdydz z dxdydz Ω''ΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰222cos 24242303cos sin cos sin RR d d d d d d ππππϕπθϕϕϕρρθϕϕϕρρ=+⎰⎰⎰⎰⎰⎰555715960160480R R R πππ=+=. 习题8.4 1、(1)解:由2222262z x yz x y⎧=+⎪⎨=--⎪⎩消去z 得:222x y +=. 故所求立体在xoy 面上的投影区域为22{(,)|2}D x y x y =+≤.所以222222[62(2)]3[2()]DDV x y x y dxdy x y dxdy =---+=-+⎰⎰⎰⎰22230cos ,sin 3(2)3(2)Dx y d d d d πρθρθρρρθθρρρ==-=-⎰⎰⎰⎰令4226[]64ρπρπ=⋅-=.(2)解:由22140z x y z ⎧=--⎨=⎩消去z 得:221114x y +=.故所求立体在xoy 面上的投影区域为22{(,)|1}114x y D x y =+≤.所以22(14)DV x y dxdy =--⎰⎰24121230 001cos ,sin 2111(1)()2[]222244Dx y d d d d πρθρθρρπρρρθθρρρπ==-=-=⋅⋅-=⎰⎰⎰⎰令.2、(1)解:如左图所示.上半球面的方程为222z a x y =--.有222zx xa x y∂-=∂--,222z y ya x y∂-=∂--,所以222221()()z z ax y a x y∂∂++=∂∂--. 故由曲面的对称性可知所求的曲面面积为2222241()()4DDz z aA dxdy dxdyx y a x y ∂∂=++=∂∂--⎰⎰⎰⎰22cos ,sin 14Dx y a d d a ρθρθρρθρ==-⎰⎰令cos 2224a a d d a πθρθρρ=-⎰⎰22204(1sin )2(2)ad a πθθπ=-=-⎰.(2)解:如左图所示. 由2222z x yz x⎧=+⎪⎨=⎪⎩消去z 解得222x y x +=,即22(1)1x y -+=.所以所求曲面在xoy 面上的投影区域为22{(,)|(1)1}D x y x y =-+≤.又因为被割曲面的方程为22z x y =+,且2222221()()12z z x y x y x y ∂∂+++=+=∂∂+,所以所求曲面的面积为2cos 22200212242cos 42222DA dxdy d d d ππθππθρρθθπ-====⋅⋅=⎰⎰⎰⎰⎰.3、解:设矩形另一边的长度为l 并建立如左图所示的坐标系,则质心的纵坐标为 22322222()32R R x R RlRDyd R l R dx ydyR x l dxy AAAAσ-------====⎰⎰⎰⎰⎰, 由题设可知0y =即可算得 23l R = .4、解:在球面坐标系中,Ω可表示为:02cos ,0,022R πρϕϕθπ≤≤≤≤≤≤.球体内任意一点(,,)x y z 处的密度大小为2222x y z μρ=++=.由于球体的几何形状及质量分布均关于z 轴对称,故可知其质心位于z 轴上,因此0x y ==. 则22cos 22555223232sin 2cos sin 515R M dv d d d R d R πππϕμθϕρρϕρπϕϕϕπΩ==⋅==⎰⎰⎰⎰⎰⎰⎰; 所以 22cos 226722012645cos sin cos sin 64R zdvz d d d R d R MMMπππϕμπθϕρρϕρϕρϕϕϕΩ==⋅⋅==⎰⎰⎰⎰⎰⎰⎰, 故球体的质心为5(0,0,)4R . 5、解:22222222222224b a x aa a a by aa a x aDb b I x dxdy x dx dy x a x dx x a x dx a a ρρρρ-----===⋅-=-⎰⎰⎰⎰⎰⎰ 32324222000sin 4sin cos cos 4[sin sin ]x a t b a t t a tdt a b tdt tdt a πππρρ=⋅=-⎰⎰⎰令 3313114[]224224a b a b ππρπρ=⋅-⋅⋅=.6、解:如左图所示.(1)由Ω的对称性可知: 2234222000844()4()33aax y aaaa a V dx dy dz dx x y dy ax dx +==+=+=⎰⎰⎰⎰⎰⎰. (2)由对称性可知,质心位于z 轴上,故0x y ==.224224001441(2)2a ax y aa z zdv dx dy zdz dx x x y y dy MV V ρ+Ω===++⎰⎰⎰⎰⎰⎰⎰⎰ 4325202217()3515a ax a x a dx a V =++=⎰.(3)2222220()4()aax y z I x y dv dx dy x y dz ρρ+Ω=⋅+=+⎰⎰⎰⎰⎰⎰422461124(2)45a adx x x y y dy a ρρ=++=⎰⎰.高等数学A (下)习题册第九章参考答案习题9.11.⑴2π; ⑵258π; ⑶32a π; ⑷2 注意(4)的做法,此圆的参数方程为,1cos ,sin x y θθ-==,:0θπ→,所以0(cos 1)sin 2Lxy ds d πθθθ=+=⎰⎰.如果有同学用1sin ,cos x y θθ-==,θ的范围就不再是0π→. 2.(1)由于连接(1,0)及(0,1)的直线段方程为1x y +=(如图), 所以()12LLy ds ds x +==⎰⎰.(2)分三段来做(如图), 在x 轴上, 2211ay x a L x eds e dx e +==-⎰⎰;在圆弧上,222404y a a L x eds ae dx ae ππ+==⎰⎰;在y x =上,223222021a y xa L x e ds edx e +==-⎰⎰;所以22y Lx eds +⎰224a e a π⎛⎫=+- ⎪⎝⎭.(3)直接按照对弧长的曲线积分公式求即可,答案为23(1)2e --. 3.如图,此圆的参数方程为,cos ,sin x y θθ==,:02πθ→,所以201sin cos 2L xyds d πθθθ==⎰⎰.4.根据对弧长的曲线积分的物理意义,即求曲线积分Lyds ⎰.此圆的参数方程为,cos ,sin x a y a θθ==,:0θπ→,Lyds ⎰20sin 2a ad a πθθ==⎰.习题9.21.(1)把参数方程21,1x t y t =+=+代入得,1202(2)2(1)(1)23LI ydx x dy t t tdt =+-=++-=⎰⎰.(2)把参数方程3∑代入得,33232222220[sin cos ]3k x dx zdy ydz k a a d a ππθθθθπΓ+-=--=-⎰⎰.2.从(1,1,1)(2,3,4)A B 到的直线段的参数方程为1,21,31x t y t z t =+=+=+,:01t →代入得,1[(1)2(21)3(31)]13xdx ydy zdz t t t dt Γ++=+++++=⎰⎰.3.(1)把2,,:01x y y y y ==→代入得,132017()(2)30Lydx y x dy y y y y dy x +-=⋅+-=⎰⎰.(2)把,,:01x y y y y ==→代入得,1201()3Lydx y x dy y dy x +-==⎰⎰.(3)分两段积分,1L :,0,:01x x y x ==→代入得,1()0L ydx y x dy x +-=⎰;2L :1,,:01x y y y ==→代入得,2101()(1)2L ydx y x dy y dy x +-=-=-⎰⎰; 所以,1()2L ydx y x dy x +-=-⎰.4.曲线的参数方程为2,,:11x x y x x ==-→,曲线的方向向量为(1,2)x ,从而2212cos ,cos 1414x xxαβ==++,所以2L x ydx xdy -⎰22(2)14Ly x ds x-=+⎰.5.根据对坐标的曲线积分的物理意义,所求的功为2L x dy -=⎰815-.习题9.3 1.(1)10;(2)2m n ==;(3)1,1a b =-=.2.只需证明Q x∂=∂Py ∂∂即可. 3.(1)如图,1[(1cos )(sin )](1)5x x LDe dx y y dy e ydxdy e y π---=-=--⎰⎰⎰.(2)因为Q x∂=∂P y ∂∂,由格林公式,所以202yy L x e dx e dy x +=⎰. 4.(1)如图,2222()(),x y x y P Q x y x y +--==++,Q x∂=∂222222()P x y xyy x y ∂--=∂+,又由于积分范围不包括原点,由格林公式,所以22()()0C x y dx x y dyx y +--=+⎰;(2)如图,由于积分范围包括原点,所以不能直接利用格林公式,曲线的参数方程为: cos ,sin x a y a θθ==,:02θπ→,代入得,22()()2C x y dx x y dyx y π+--=-+⎰.(3)如图,由于积分范围包括原点,所以不能直接利用格林公式,在C 包围的内部区域增加一条圆形曲线1C :222x y a +=,方向为顺时针,所以11222222()()()()()()022CC C C x y dx x y dyx y dx x y dy x y dx x y dyx y x y x y ππ++--+--+--=-+++=-=-⎰⎰⎰5.只需证明Q x∂=∂Py ∂∂即可. 习题9.41.(1)10a ;(2)221()()x x y z ∂∂++∂∂;(3)42a π;(4)11110π;(5)122π+. 2.(1)22111122xyD dS dxdy zx yπ∑=+=+⎰⎰⎰⎰(积分区域如图)(2)根据对称性(也可以化成二重积分之后,根据对称性), 可知:0xdS ∑=⎰⎰,0ydS ∑=⎰⎰;所以,原式2222220222xya h D a zdS a x y dxdy d a d a x yπθρρ-∑==--⋅==--⎰⎰⎰⎰⎰⎰22()a a h π-.3.根据对称性,0,0x y ==,32221zdSa az a dSππ∑∑===⎰⎰⎰⎰(分子的求法同上题),所以曲面的重心坐标为(0,0,)2a.习题9.5 1.(1)0;(2)第二类曲面积分Pdydz Qdzdx Rdxdy ∑++⎰⎰化成第一类曲面积分是(cos cos cos )P Q R dS αβγ∑++⎰⎰,其中,,αβγ为有向曲面∑上点(,,)x y z 处的法向量的方向角.2.积分曲面如图所示,阴影部分为右侧,记为1∑,关于Ozx 面对称的为左侧,由于该曲面在Oxy 面上的投影为曲线,故(1)0z dxdy ∑+=⎰⎰,因此,()I y dzdx ∑=-⎰⎰,由对称性可知12()2()24zxD I y dzdx y dzdx x dzdx ∑∑=-=-=--⎰⎰⎰⎰⎰⎰,zx D 如图所示. 所以,222222222222224242(2)444848zxxD I x dzdx dx x dz x x dxx dx x dx π----=--=--=---=--=--=-⎰⎰⎰⎰⎰⎰⎰3.利用两类曲面积分之间的联系来做. 由于∑为平面1x y z -+=在第四卦限部分的上侧,所以,单位法向量为1(1,1,1)3-,从而I =[][][](,,)2(,,)(,,)f x y z x dydz f x y z y dzdx f x y z z dxdy ∑+++++⎰⎰[][][]1(,,)2(,,)(1)(,,)3f x y z x f x y z y f x y z z dS ∑=+++-++⎰⎰111()233x y z dS dS ∑∑=-+==⎰⎰⎰⎰. 4.利用两类曲面积分之间的联系来做. 由于∑为曲面221z x y =--在第一卦限的部分取上侧,所以,单位法向量为221(2,2,1)144x y x y ++,从而222222221(2)144144144xy I xy zdS x yx yx y∑=++++++++⎰⎰22222211221442144144xyD dS x y dxdy x yx yπ∑==++=++++⎰⎰⎰⎰.习题9.61.(1)直接利用高斯公式,3xdydz ydzdx zdxdy dv Ω∑++==⎰⎰⎰⎰⎰81π.(2)如图,增加一个“盖子”1:2z ∑=,取上侧,则2(2)-2zx dydz zdxdy ∑+=⎰⎰1122(2)2(2)2z x dydz zdxdy z x dydz zdxdy ∑+∑∑+--+-⎰⎰⎰⎰前一个积分使用高斯公式,结果为0;而12(2)20416xyD z x dydz zdxdy dxdy π∑+-=-=-⎰⎰⎰⎰,从而,原积分16π=.2.(1)由于曲线L 上2z =,故20L yz dz =⎰,所以233LLydx xzdy yz dz ydx xzdy -+=-⎰⎰,利用斯托克斯公式,得233(3)5xyLLD ydx xzdy yz dz ydx xzdy z dxdy dxdy ∑-+=-=--=-=⎰⎰⎰⎰⎰⎰20π-.(2)可求出交线L 的方程是222,3z x y =+=,故()0Lx y z dz ++=⎰,所以222()()Lx ydx x y dy x y z dz +++++⎰222()Lx ydx x y dy =++⎰,利用斯托克斯公式,得,22222()(2)(2)xyLD x ydx x y dy x x dxdy x xdxdy ∑++=-=-⎰⎰⎰⎰⎰,利用对称性,20xyD xdxdy =⎰⎰,22xy xyD D x dxdy y dxdy =⎰⎰⎰⎰,所以2222220011()22xyxy D D x dxdy x y dxdy d d πθρρρπ=+==⎰⎰⎰⎰⎰⎰, 原积分π=-.高等数学A (下)习题册第十章参考答案习题10.1 1、(1)收敛 ; (提示:∵1111()(2)22n u n n n n ==-++,又∵111lim lim()1324(2)n n n S n n →∞→∞=+++⋅⋅+11111113113lim (1)lim ()2324222124n n nn n n →∞→∞=-+-++-=--=+++,∴原级数收敛.) (2)发散 . (提示:∵1n n ∞∞===∑,又∵lim n n n S →∞→∞=++(1n ++=∞,∴原级数发散.)2、(1)发散 ;(提示:级数为1111133n n nn ∞∞===∑∑,发散.)(2)收敛 .(提示:级数为112435nnn n ∞∞==⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑,收敛.)3、0x >或2x <-.(提示:1111(1)lim lim 11(1)n n n n nnu x u x x ρ++→∞→∞+===++,当1ρ<即111x <+时,解得0x >或2x <-,此时级数11(1)nn x ∞=+∑收敛,则原级数绝对收敛.)习题10.21、(1)收敛;(提示:∵3cos 433n n n nu +=<,而级数1141433n nn n ∞∞===∑∑收敛,∴原级数收敛.) (2)发散.(提示:∵1n n n→∞==,而级数11n n∞=∑发散,∴原级数发散.)2、(1)发散;(提示:∵111333(1)lim lim lim 113n n n n n n n nn u n n e u n e e n e ρ+++→∞→∞→∞+⋅===⋅=>+⋅,∴原级数发散.) (2)发散.(提示:∵11(1)!12lim lim lim !22n n n n n nnn u n n u ρ++→∞→∞→∞++====∞,∴原级数发散.)3、(1)收敛 ;(提示:1112(1)112222n n n n n n n ∞∞∞===+-⎛⎫=+- ⎪⎝⎭∑∑∑,∵由于1112n ρ==<,∴级数112n n ∞=∑收敛;又∵2112n ρ==-<,∴级数112nn ∞=⎛⎫- ⎪⎝⎭∑也收敛.故原级数收敛.)(2)发散 .(提示:∵ln 2lim 3n n n n nρ→∞===,又因为由洛必达法则得1ln ln lim lim 1lim 333n n n n n nnn →∞→∞→∞==031==,∴ln 22lim2113n n nρ→∞===>,故原级数发散.) 4、(1)绝对收敛 ; (提示:12211(1)111n n n n n -∞∞==-=++∑∑,因为22111n n <+,而级数211n n∞=∑收敛,所以级数121(1)1n n n -∞=-+∑收敛,故原级数绝对收敛.)(2)条件收敛 .(提示:显然1111(1)(1)n n n n n u ∞∞--==-=-∑∑为交错级数,其中n u =11nn u u -==<即1n n u u -<;②lim n n u →∞=0n n →∞==,故该交错级数收敛.又因为11(1)n n ∞-=-=∑1n ∞=∑,有lim lim (1n nn S n →∞→∞⎡⎤=++++⎣⎦1)n →∞==∞ ,则级数11(1)n n ∞-=-∑发散,故原级数条件收敛.)5、(1)提示:222n n n n a b a b +≤;(2)提示:22112n n n a a n a n n +=⋅≤.6、证明:只需证明正项级数1!nn a n ∞=∑(0a >)收敛,根据比值审敛法有11!lim lim[]lim 01(1)!1n n n n n n nu a n au n n a ρ++→∞→∞→∞==⋅==<++,因此正项级数1!n n a n ∞=∑(0a >)收敛,再由级数收敛的必要条件得lim 0n n u →∞=,即lim 0!nn a n →∞=,得证.习题10.3 1、(1)1R =,收敛域为[]1,1- . (提示:因为12211limlim1(1)n n n na n n a ρ+→∞→∞===+,所以收敛半径11R ρ==.当1x =时,原级数为211n n∞=∑,该级数收敛.当1x =-时,原级数为21(1)n n n ∞=-∑,该级数也收敛.因而该级数的收敛域为 [1,1]-.)(2)2R =,收敛域为()0,4 .(提示:令2(2)t x =-,则1,44n n nn n t u a n n ==⋅⋅,因为11111(1)4lim lim 144n n n n nn a n a n ρ++→∞→∞+⋅===⋅,所以收敛半径1114R ρ==,故原级数的收敛半径为12R R ==.则有 22x -<,即04x <<.当0x =时,原级数为11n n ∞=∑,该级数发散;当4x =时,原级数为11n n∞=∑,该级数也发散.因而原级数的收敛域为 (0,4).)2、1111211114()(),(2,2)222(2)12nn n n n n n n n nnx x S x x x x x x x x x x ∞∞∞----==='⎛⎫'=====∈- ⎪-⎝⎭-∑∑∑ 11111114(1)()()22222542n n n n n n n n S ∞∞-==-=-=-=-∑∑. 3、100111112(2)()(1)22(2)222212nn n n n n x x x x x ∞∞+==--==⋅=-=--+-+∑∑,((0,4))x ∈.习题10.4 1、解: 如左图所示,由狄利克雷充分条件可知,()f x 的 傅里叶级数在间断点(21)x k π=+(0,1,2,)k =±±处收 敛于()()2222f f πππππ-++--+==.在连续点(21),(0,1,2,)x k k π≠+=±±处()f x 的傅里叶级数收敛于()f x ,其中傅里叶系数为:00111()22a f x dx xdx xdx ππππππππ--==+=⎰⎰⎰, 001111()cos cos 2cos cos n a f x nxdx x nxdx x nxdx x nxdx πππππππππ--==+=⎰⎰⎰⎰2011sin ((1)1)(1,2)n xd nx n n n πππ==--=⎰ 001113()sin sin 2sin sin n b f x nxdx x nxdx x nxdx x nxdx πππππππππ--==+=⎰⎰⎰⎰10333cos cos (1)(1,2)n xd nx n n n n nπππππ+=-=-⋅=-=⎰所以()f x 的傅里叶级数为121(1)13()cos (1)sin 4n n n f x nx nx n n ππ∞+=⎛⎫--=++- ⎪⎝⎭∑ ((21),0,1,2,)x k k π≠+=±±2、31,23、解:(1)展开成正弦级数.对()f x 作奇延拓,得 ,(0,]2()0,0,(,0)2xx F x x x x ππππ-⎧∈⎪⎪==⎨⎪+⎪-∈-⎩.再周期延拓()F x 到(,)-∞+∞.易见0x =是一个间断点,在0x =处级数收敛于()2202ππ+-=. 函数()f x 在(0,]π处连续,傅里叶级数收敛于()f x ,且傅里叶系数为:0(0,1,2)n a n ==;0001211()sin sin sin sin (1,2)2n x b f x nxdx nxdx nxdx x nxdx n nπππππππππ--==⋅=-==⎰⎰⎰⎰故()(0)2xf x x ππ-=≤≤展开的正弦级数为: 11sin (0)2n x nx x nππ∞=-=<≤∑.(2)展开成余弦级数.对()f x 作偶延拓,得 ,[0,]2(),(,0)2xx F x x x ππππ-⎧∈⎪⎪=⎨+⎪∈-⎪⎩.再周期延拓()F x 到(,)-∞+∞.则()F x 在(,)-∞+∞内处处连续,且()(),[0,]F x f x x π≡∈. 则傅里叶系数为:0(1,2)n b n ==;0012()22x a f x dx dx πππππππ--===⎰⎰;000121()cos cos cos cos 2n x a f x nxdx nxdx nxdx x nxdx πππππππππ--===-⎰⎰⎰⎰21(1(1))(1,2)n n n π=--=; 故()(0)2xf x x ππ-=≤≤展开的余弦级数为: 211(1)cos (0)24nn xnx x n ππππ∞=---=+≤≤∑.。

高等数学XX大学第三版下册课后习题及答案

高等数学XX大学第三版下册课后习题及答案
故 s0 42 (3)2 52 5 2
sz 42 (3)2 (5 5)2 5 .
6.在 z 轴上,求与两点 A(-4,1,7)和 B(3,5,-2)等距离的点. 解:设此点为 M(0,0,z),则
解得 z 14 9 14
即所求点为 M(0,0, ).
9
7.试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.
(1)| (a b) (a b) | a a a b b a b b || 2(a b) |
(2)| (3a b) (a 2b) || 3a a 6a b b a 2b b || 7(b a) |
27.求垂直于向量 3i-4j-k 和 2i-j+k 的单位向量,并求上述两向量夹角的正弦.
由①及②可得: a b a b 1 (a b)2 1 | a |2 | b |2 2 | a |2| b |2 4
又 a b 1 | b |2 0 ,所以 cos a b 1 ,
2
| a || b | 2
故 arccos 1 π . 23
解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k
在 x 轴上的投影 ax=13,在 y 轴上分向量为 7j.
17.解:设 a {ax , ay , az} 则有
求得
ax

1 2
.


设 a 在 xoy 面上的投影向量为 b 则有 b {ax , ay , 0}
15.求出向量 a=i+j+k,b=2i-3j+5k 和 c=-2i-j+2k 的模,并分别用单位向量 ea , eb , ec 来表达向量 a,b,c.

河海大学习题答案 三十六 全微分方程、可降阶方程

河海大学习题答案   三十六 全微分方程、可降阶方程

习题三十六 全微分方程、可降阶方程一、(1)、()()y e x xxye x y y e x y y y 636332322+=∂+∂=∂+∂,()2030223033xy e x dy dx y e x u y yxy +=++=⎰⎰ ,通解为:c xy e x y =+233 。

(2)、()x x x x x x x x y x y xy x xy 121ln 1212222-++=∂-++∂=∂⎪⎪⎭⎫⎝⎛-++∂。

()()⎰⎰-++=-+++=xy x x x y dy x x xdx u 12222ln 1ln 10 ,通解为:()c x x x y =-++ln 122。

二、 (1)、()0222=-+dy dy x xydx y ,()0222=-+dy dy x ydxy, 积分因子 2-=yμ,⇒ ()012=+-dyy x d ,()012=+-y y x d ,通解为:c y y x =+-12。

(2)、()()024232=+++++dy xy y dx xy x xdy ydx ,()()032243=⎪⎪⎭⎫ ⎝⎛++++y x d xy xy d ,积分因子 21+=xy μ , ⇒ ()032243=⎪⎪⎭⎫ ⎝⎛++++y x d xy xy d ,032ln 43=⎪⎪⎭⎫ ⎝⎛+++y x xy d , 通解为:c y x xy =+++4332ln三、1、()12cos 2sin C x x dx x x y +-=+='⎰ ,dx C x x y ⎰⎪⎪⎭⎫ ⎝⎛+-=12cos 2 , 213sin 6C x C x x y ++-= 。

2、令:p y =',x p p =-',()⎰⎰--+=⎪⎭⎫ ⎝⎛⎰+⎰=dx xe C e xe C e p xx dx dx 11 ,()111--=--=-x e C e xe C e p x x xx, 11--='x e C y x ,()221121C x x e C dx x e C y xx+--=--=⎰ 。

高数下课本详解答案(合工大版)

高数下课本详解答案(合工大版)

习题8-11.自点(),,P a b c 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解在,,xoy yoz zox 坐标面上的垂足坐标分别为(),,0a b 、()0,,b c 、(),0,a c ,在x 轴、y 轴、z 轴上垂足的坐标分别为(),0,0a 、()0,,0b 、()0,0,c .2.已知三角形个的三个顶点的坐标分别为()4,1,9A 、()10,1,6B -、()2,4,3C ,求该三角形的三边长度,此三角形由何特点?解7AB ==,7AC ==,BC =由于AB AC =,且222AB ACBC +=,故此三角形为等腰直角三角形.3.在z 轴上求与点()4,1,7P -和点()3,5,2Q -等距离的点的坐标.解设z 轴上的点为()0,0,M z,则MP MQ=即=,解得149z =,故点为140,0,9M ⎛⎫ ⎪⎝⎭.4.求到两定点()1,2,1A -和()2,1,2B -等距离的点(),,M x y z 的轨迹.解由于MA MB =,从而有=解得26630x y z +--=.5.设平行四边形的两条对角线向量为a 和b,求其四条边向量.解如意8-1所示,由向量加减法的平行四边形法则有,,c d a c d b ⎧+=⎪⎨-=⎪⎩ 故2a b c += ,2a b d -=,即平行四边形的四条边向量为2a b + 、2a b + 、2a b - 、2a b- .(图8-1)(图8-2)6.设A 、B 、C 、D 是一个四面体的顶点,M 、N 分别是边AB 、CD 的中点,证明:()12MN AD BC =+.证如图8-2所示,AD DN AN +=,BC CN BN += ,AN AM MN -= ,BN BM MN -= ,又DN CN =- ,AM BM =- ,于是22AN BN AD BC MN ++==.7.已知两点()A 和()3,0,2B ,计算向量AB 的模、方向余弦、方向角及与AB平行的单位向量.解由于{}1,AB =-,则有2AB = ,1cos 2α=-,cos 2β-,1cos 2γ=-,方向角为23πα=,34πβ=,3πγ=,与AB 平行的单位向量为121,,222⎧⎫⎪⎪±--⎨⎬⎪⎪⎩⎭.8.设358a i j k =++,27b i j k =--,求向量23c a b =+在x 轴上的投影及在z 轴上的分向量.解23945c a b i j k =+=+-,故c 在x 轴上的投影为9,在z 轴上的分向量为5k - .9.一向量的终点在点()2,1,7B -,它在x 轴、y 轴及z 轴上的投影依次为4,4-和7,求这向量的起点A 的坐标.解设起点(),,A x y z ,由{}{}2,1,74,4,7AB x y z =----=-解得()2,3,0A -.10.设{}3,5,1a =- ,{}2,2,3b = ,{}4,1,3c =-- ,求与a b c +-平行的单位向量.解{}1,8,5a b c +-=,故与a b c +-平行的单位向量为±.11.设5AB a b =+ ,618BC a b =-+ ,()8CD a b =-,试证A 、B 、D 三点共线.证因为()()6188210BD BC CD a b a b a b=+=-++-=+()252a b AB=+=所以AB平行BD ,即A 、B 、D 三点共线.12.已知向量AB 的模为10,与x 轴正向夹角为4π,与y 轴正向夹角为3π,求向量AB .解设向量AB的方向余弦为cos α、cos β、cos γ,由于4πα=,3πβ=,222cos cos cos 1αβγ++=,得1cos 2γ=±于是向量{}211cos ,cos ,cos 10,,222AB AB αβγ⎫⎪==±⎨⎬⎪⎪⎩⎭.习题8-21.设4a i j k =+-,22b i j k =-+ ,求(1)()()22a b a b +⋅-;(2)()()22a b a b +⨯- ;(3)a 与b 夹角.解(1)a =,3b =,4a b ⋅=-()()222223230a b a b a a b b +⋅-=-⋅-=;(2)114794221i j k a b i j k⨯=-=----()()225354520a b a b a b i j k +⨯-=-⨯=++;(3)设a 与b夹角为θ,则cos9a ba bθ⋅===-arccos9θ⎛⎫=-⎪⎪⎝⎭.2.已知向量a 和b相互垂直,且1a=,b=,求(1)()()a b a b+⋅-;(2)()()a b a b+⨯-;(3)()a b+与()a b-夹角.解(1)()()22222a b a b a b a a b b a b+⋅-=+⋅-⋅-=-=-;(2)()()2a b a b a a b a a b b b a b+⨯-=⨯+⨯-⨯+⨯=-⨯=(3)()a b+与()a b-夹角为θ,则()()()()21cos42a b a ba b a bθ+⋅--===-+-,故23πθ=.3.已知13a=,19b=,24a b+=,求a b-.解()()2222a b a b a b a a b b+=+⋅+=+⋅+()()2222a b a b a b a a b b-=-⋅-=-⋅+两式相加,得()22222a b a b a b-=+-+()2222131924484=+-=,22a b-=.4.已知()1,1,2A-、()5,6,2B-、()1,3,1C-,求:(1)同时与AB及AC垂直的单位向量;(2)三角形ABC的面积ABCS∆;(3)B点到边AC的距离d.解(1){}4,5,0AB=-,{}0,4,3AC=-,450151216043i j kAB AC i j k⨯=-=++-故同时与AB 及AC 垂直的单位向量为{}115,12,1625AB AC AB AC⨯±=±⨯;(2)12522ABC S AB AC ∆=⨯=;(3)由于1122ABC S AB AC AC d ∆=⨯=⋅,且5AC = ,则5d =.5.设平行四边形的对角线2c a b =+ ,34d a b =- ,其中1a =,2b = ,且a b ⊥ ,求平行四边形的面积.解设平行四边形的两邻边分别为m 、n,则c m n =+ ,d m n =-,从而()()1142222m c d a b a b =+=-=-,()()1126322n c d a b a b =-=-+=-+ ,55sin 102S m n a b a b π=⨯=⨯== .6.已知向量a 、b 、c两两垂直,且1a = ,2b = ,3c = ,求向量s a b c =++ 的长度,以及s 分别与a 、b 、c的夹角.解()()222214s a b c a b c a b c =++⋅++=++=,于是s =cos ,s a s a s a⎛⎫⋅===⎪⎝⎭cos ,s b s b s b ⎛⎫⋅== ⎪ ⎪⎝⎭cos ,s c s c s c ⎛⎫⋅== ⎪⎝⎭所以,s a arc ⎛⎫= ⎪⎝⎭,s b arc ⎛⎫= ⎪ ⎪⎝⎭,,s c arc ⎛⎫= ⎪⎝⎭7.试用向量证明直径上的圆周角是直角.证取圆心为原点建立坐标系如图8-3所示,则圆周方程为222x y R +=,在圆周上任取一点(),A x y ,直径BC ,(),0B R -,(),0C R ,().AB R x y =--- ,().AC R x y =--则()()22220AB AC R x R x y R x y ⋅=---+=-++=故AB AC ⊥,即直径BC 所对应的圆周角为直角,由圆周关于任意一条直径都对称的性质知,直径所对应的圆周角是直角.(图8-3)8.判断下列两组向量a 、b 、c是否共面:(1){}2,1,3a =- ,{}1,0,5b =- ,{}1,1,4c =-;(2){}4,2,1a =- ,{}2,6,3b =- ,{}1,4,1c =-.解(1)21310540114abc -⎡⎤=-=≠⎣⎦- ,故a 、b 、c 不共面;(2)4212630141abc -⎡⎤=-=⎣⎦-,故a 、b 、c共面.9.计算顶点()2,1,1A -、()5,5,4B 、()3,2,1C -、()4,1,3D 的四面体的体积.解{}3,6,3AB = ,{}1,3,1AC =- ,{}2,2,2AD =,则四面体的体积为36311132366222V ABAC AD ⎡⎤==-=⎣⎦ .10.如果存在向量c同时满足11a c b ⨯= ,22a c b ⨯= ,证明:12210a b a b ⋅+⋅= .证由于()()12211221a b a b a a c a a c ⋅+⋅=⋅⨯+⋅⨯ ()()2112a c a a c a =⨯⋅+⨯⋅ [][]2112a ca a ca =+ [][]21210a ca a ca =-=习题8-3.1.求出满足下列条件的各平面方程:(1)过点()2,1,1-且与平面32120x y z -+-=平行;(2)过三点()1,1,1-、()2,2,2--、()1,1,2-;(3)过点()2,1,2,且分别垂直于平面32x y z ++=和平面3241x y z +-=;(4)平行x 轴且过两点()1,0,1和()1,1,0;(5)通过z 轴和点()3,1,2-.解(1)设所求平面的法向量n ,可取平面的法向量为{}3,2,1n =-故过点()2,1,1-平面方程为()()()322110x y z ---++=,即3230x y z -+-=;(2)由三点式平面方程知,所求平面方程为1113330023x y z --+--=-即320x y z --=;(3)设所求平面的法向量n ,{}11,3,1n = ,{}23,2,4n =-{}1213114,7,7324i j kn n n =⨯==---,则所求平面方程为()()()14271720x y z --+---=,即250x y z -+-=;(4)设平面的一般式方程为0Ax By Cz D +++=,由于平面平行x 轴,且点()1,0,1、()1,1,0在平面上,从而有000A A C D A B D =⎧⎪++=⎨⎪++=⎩解得0A =,B D =-,C D =-,且0D ≠,故平面方程为10y z +-=;(5)设过z 轴的平面为0Ax By +=,且点()3,1,2-在平面上,则由30A B -=,得3B A =,且0A ≠所以平面方程为30x y +=.2.求平面2260x y z -++=与各坐标面的夹角的余弦.解平面的法向量{}2,2,1n =- ,取xoy 坐标面的法向量{}10,0,1n =,yoz 坐标面的法向量{}21,0,0n = ,zox 坐标面的法向量{}30,1,0n =,则平面与xoy 、yoz 、zox 各坐标面的夹角余弦分别为1cos 3α=,2cos 3β=,22cos 33γ-==.3.求过点()0,1,0-和()0,0,1,且与xoy 坐标面成3π角的平面.解设平面的一般式方程为0Ax By Cz D +++=,从而有0,0,cos ,3B D C D π⎧⎪-+=⎪⎪+=⎨⎪⎪=⎪⎩得,A B D C D ⎧=⎪=⎨⎪=-⎩于是,所求平面方程为10y z +-+=.4.在z 轴上求一点P ,使它到点()1,2,0M -与到平面:32690x y z π-+-=有相等的距离.解设z 轴上点()0,0,P z,则PM =又()1,2,0M -到:3269x y z π-+-=的距离为697z d -=则有697z -=,即2131081640z z ++=,解得2z =-或8213z =-,故所求点为()0,0,2-或820,0,13⎛⎫-⎪⎝⎭.5.试求平面270x y z -+-=与平面2110x y z ++-=的夹角平分面的方程.解设(),,M x y z 为该平面上任取的一点,那么M到两平面的距离相等,即有于是有()27211x y z x y z -+-=±++-故所求平面方程为240x y z --+=或60x z +-=.6.设从原点到平面1x y za b c++=的距离为ρ,试证明:22221111a b c ρ++=,并由此求点(),,a b c 到该平面的距离.证由点到平面的距离公式知ρ=1ρ=,即22221111a b c ρ++=.点(),,a b c到平面的距离2d ρ=.7.判别平面:3210x y z π+-+=与下列各平面之间的位置关系:(1)1:3210x y z π+--=;(2)2:520x y z π-++=;(3)3:2310x y z π-+-=.解(1)取平面π法向量{}1,3,2n =- ,1π法向量{}11,3,2n =-,由于n与1n 的坐标成比例,故n 与1n平行,且d ==;(2)取平面2π法向量{}25,1,1n =-,由于20n n ⋅= ,故2n n ⊥,即两平面相互垂直;(3)取平面3π法向量{}32,3,1n =-,两平面夹角余弦339cos 14n n n n θ⋅==所以两平面斜交,夹角9arccos14θ=.习题8-4.1.求满足下列条件的各直线方程:(1)过两点()13,2,1M -和()21,0,2M -;(2)过点()4,2,1-且平行于直线230,510,x y y z --=⎧⎨--=⎩平行;(3)过点()1,2,2-且垂直于平面3210x y z +-+=.解(1)直线的方向向量可取{}124,2,1s M M ==-于是直线方程为321421x y z -+-==-,(2)直线的方向向量可取{}1202,1,5051i j k s =-=-则直线方程为421215x y z -+-==;(3)平面法向量{}3,2,1n =- ,直线的方向向量可取{}3,2,1sn ==-于是直线方程为122321x y z -+-==-.2.用对称式方程和参数方程表示下列直线10,2340.x y z x y z +++=⎧⎨-++=⎩解直线的方向向量{}1114,1,3213ij k s ==---,可在直线上取一点()1,0,2A -,则直线的对称式方程和参数方程分别为12413x y z -+==--,14,4,2 3.x t y z t =+⎧⎪=-⎨⎪=--⎩3.求过点()0,1,2M 且与直线11112x y z --==-垂直相交的直线方程.解过点()0,1,2M 且垂直直线L 的平面方程为()()()01220x y z ---+-=即230x y z -+-=解方程组230,11,112x y z x y z -+-=⎧⎪⎨--==⎪⎩-,得直线与平面的交点为131,,122M ⎛⎫⎪⎝⎭由此可得121,,122s MM ⎧⎫==--⎨⎬⎩⎭,故所求直线方程为12312x y z --==--.4.求直线240,3290.x y z x y z -+=⎧⎨---=⎩在平面41x y z -+=上的投影直线的方程.解设过直线240,3290.x y z x y z -+=⎧⎨---=⎩的平面束方程为()()243290x y z x y z λ-++---=,(λ为非零常数)即()()()2341290x y z λλλλ+-++--=,上述平面法向量为{}23,4,12n λλλ=+--- ,已知平面法向量为{}14,1,1n =-选择λ使1n n ⊥,即()()()()234411210λλλ+⋅-+⋅-+-⋅=,解得1311λ=-故得与已知平面垂直的平面为1731371170x y z +--=则所求投影直线为1731371170,4 1.x y z x y z +--=⎧⎨-+=⎩5.求过点()3,1,2M -且通过直线43521x y z-+==的平面方程.解()4,3,0P -为直线上的一点,直线的方向向量为{}5,2,1s =,则平面的法向量{}1428,9,22521i j kn MP s =⨯=-=- 故所求平面方程为()()()83912220x y z --+-++=即8922590x y z ---=.6.已知平面220x y z +--=及平面外一点()2,1,4M -,求点M 关于已知平面的对称点N .解过点()2,1,4M -且垂直于平面220x y z +--=的直线方程为214121x y z +--==-设M 关于已知平面的对称点(),,N x y z ,则有214,121x y z +--⎧==⎪-⎪=解得0,5,2,x y z =⎧⎪=⎨⎪=⎩即对称点()0,5,2N .7.设0M 是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为0d ⨯=MM s s.证设向量0MM 与直线L 的方向向量s 的夹角为θ,则00000sin MM s MM s MM MM MM ssd θ⨯⨯==⋅=.8.求点()03,1,2M -到直线10,240,x y z x y z +-+=⎧⎨-+-=⎩的距离.解直线的方向向量{}1110,3,3211=-=---ij ks ,在直线上取一点()1,2,0M -,则{}02,1,2=---MM ,{}02123,6,6033⨯=---=----i j kMM s 所以0322d ⨯===MM s s.习题8-51.指出下列方程在平面解析几何中和空间解析几何中分别表示什么图形:(1)1x y +=;(2)22y x =;(3)222x y R +=;(4)22149x y -=.解(1)在平面解析几何表示直线,空间解析几何中表示平面;(2)在平面解析几何表示抛物线,空间解析几何中表示抛物柱面;(3)在平面解析几何表示圆,空间解析几何中表示圆柱面;(4)在平面解析几何表示双曲线,空间解析几何中表示双曲柱面.2.说明下列旋转曲面是怎样形成的:(1)2221x y z --=;(2)()222z a x y -=+.解(1)将xoy 平面上双曲线221x y -=绕x 轴旋转一周;(2)将yoz 平面上直线z y a =+绕z 轴旋转一周.3.根据常数k 的不同取值,分别讨论下列方程所表示的曲面是什么曲面.(1)22x ky z +=;(2)222x y z k +-=.解(1)当0k >时,为椭圆抛物面,特别地当1k =时为旋转抛物面,当0k =时,为抛物柱面,当0k <时,为双曲面;(2)当0k >时,为旋转单叶双曲面,当0k =时,为圆锥面,当0k <时,为旋转双叶双曲面.4.作出下列曲面所围成的图形:(1)22,1z x y z =+=;(2)z =,z ;(3)0x =,0y =,0z =,1x y +=,226x y z +=-;(4)2y x =,1x y z ++=,0z =.解(1)见图8-4;(2)见图8-5(图8-4)(图8-5)(3)见图8-6;(4)见图8-7(图8-6)(图8-7)习题8-61.将空间曲线222,:1,z x y x z ⎧=+Γ⎨+=⎩转换成母线平行于坐标轴的柱面的交线方程.解曲线Γ等价于212,1,y x x z ⎧=-⎨+=⎩,表示母线平行于z 轴的柱面212y x =-与母线平行于y 轴的柱面1x z +=的交线,或等价于221,1,y z x z ⎧=-⎨+=⎩,表示母线平行于x 轴的柱面221y z =-与母线平行于y 轴的柱面1x z +=的交线.2.将下列曲线的一般方程转化为参数式方程:(1)()22221,11,z x y x y ⎧=--⎪⎨-+=⎪⎩(2)2229,,x y z y x ⎧++=⎨=⎩.解(1)曲线的参数方程为1cos ,sin ,2sin ,2x t y t t z ⎧⎪=+⎪=⎨⎪⎪=⎩(02t π≤≤);(2)曲线的参数方程为,,3sin ,2x t y t t z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(02t π≤≤).3.试分别确定常数,,B C D 的各组值,使得平面0By Cz D ++=与圆锥面222z x y =+的截痕为:(1)一点;(2)一条直线;(3)两条相交直线(4)圆;(5)双曲线.解(1)取0B D ==,1C =,则平面0z =与圆锥面的截痕为一点()0,0,0;(2)取1B C ==,0D =,则平面0y z +=与圆锥面的截痕为一条直线0,0;y z x +=⎧⎨=⎩(3)取1B =,0C D ==,则平面0y =与圆锥面的截痕为为两条直线0,,y z x =⎧⎨=⎩和0,;y z x =⎧⎨=-⎩(4)取0B =,1C =,1D =-,则平面1z =与圆锥面的截痕为圆221,1;x y z ⎧+=⎨=⎩(5)取1B =,0C =,1D =-,则平面1y =与圆锥面的截痕为为双曲线221,1;z x y ⎧-=⎨=⎩4.求下列曲线在三个坐标面上的投影曲线方程:(1)22,1;z x y z x ⎧=+⎨=+⎩(2)cos ,sin ,2.x y z θθθ=⎧⎪=⎨⎪=⎩解(1)消去z 得曲线在xoy 面投影曲线方程:2210,0;y y x z ⎧+--=⎨=⎩消去x 得曲线在yoz 面投影曲线方程:22310,0;y z z x ⎧+-+=⎨=⎩消去y 得曲线在zox 面投影曲线方程:1,0;x z y +=⎧⎨=⎩(2)消去z 得曲线在xoy 面投影曲线方程:221,0;x y z ⎧+=⎨=⎩消去x 得曲线在yoz 面投影曲线方程:sin20;z y x ⎧=⎪⎨⎪=⎩消去y 得曲线在zox 面投影曲线方程:cos ,20.z x y ⎧=⎪⎨⎪=⎩5.求由旋转抛物面22z x y =+与222z x y =--围成的立体在三个坐标面上的投影区域.解立体在xoy 面投影区域(){}22,1xy D x y xy =+≤,立体在yoz 面投影区域(){}22,2,11yz D y z yz y y =≤≤--≤≤,立体在zox 面投影区域(){}22,2,11zx D x z xz x x =≤≤--≤≤总复习题八1.填空题(1)设()2a b c ⨯⋅= ,则()()()a b b c c a ⎡⎤+⨯+⋅+=⎣⎦;(2)设{}2,1,2a = ,{}4,1,10b =- ,c b a λ=- ,且a c ⊥,则λ=;(3)yoz 平面的圆()222,0,y b z a x ⎧-+=⎪⎨=⎪⎩(0b a >>)绕z 轴旋转一周所得环面的方程为;(4)点()2,1,0M 到平面3450x y z ++=的距离d=;(5)设有直线1158:121x y z L --+==-与26,:23,x y L y z -=⎧⎨+=⎩则1L 与2L 的夹角为.(1)答案“4”.解()()()()24a b b c c a a b c ⎡⎤+⨯+⋅+=⨯⋅=⎣⎦;(2)答案“3”.解{}42,1,102c b a λλλλ=-=---- ,由a c ⊥ ,()()()2421121020λλλ⋅-+⋅--+⋅-=,解得3λ=;(3)答案“()()2222222224x y z b a b x y +++-=+”.解绕z轴旋转环面的方程为()222b z a -+=,即222222x y b z a +±++=所以()()2222222224x y z b a b x y +++-=+(4)答案解d ;(5)答案“3π”.解1L 和2L 的方向向量分别为{}11,2,1s =-和{}21,1,2s =-- 则12121cos 2s s s s θ⋅== ,3πθ=.2.选择题(1)直线11:213x y z L +-==-与平面:1x y z π--=的关系为();(A )L 在π上(B )L 平行π但L 不在π上(C )L π⊥(D )一般斜交(2)两条直线111:201x y z L --==-与22:112x y z L +==的关系为();(A )平行(B )相交但不垂直(C )垂直相交(D )异面直线(3)直线方程23,1,x y z x y z --=⎧⎨+-=⎩可化为();(A )21213x y z -+==-(B )114213x y z +++==-(C )12213x y z ++==(D )122213x y z -+-==-(4)旋转曲面22z x y =+不是由平面曲线()旋转而成的.(A )2,0,z y x ⎧=⎨=⎩绕z 轴(B )2,0,z x y ⎧=⎨=⎩绕z 轴(C )2,,z xy x y =⎧⎨=⎩绕z 轴(D ),,z xy x y =⎧⎨=⎩绕z 轴.(1)答案选(B ).解直线L 的方向向量{}2,1,3s =-,()1,0,1M -为直线L 上一点,平面π的法向量为{}1,1,1n =--,显然0s n ⋅=,且点()1,0,1M -不在平面π上,故L 平行π但L 不在π上;(2)答案“C ”.解1L 、2L 的方向向量分别为{}12,0,1s =- 、{}21,1,2s = ,则120s s ⋅=,直线1L 与2L 垂直,又()11,1,0M 、()20,0,2M -分别为1L 、2L 上的点,且12122011120112s s M M -⎡⎤==⎣⎦---,即1L 、2L 在同一平面上;(3)答案选(C ).解直线的方向向量{}2112,1,3111i j k s =--=-,()0,1,2--为直线上一点,故选(C );(4)答案选(D ).解在曲线,:,z xy L x y =⎧⎨=⎩上任取一点()0000,,M x y z ,设(),,M x y z 是0M 绕z 轴旋转轨迹上任一点,则有20000,z z x y x ⎧===⎪==故得旋转曲面方程为()2212z x y =+.3.已知2c a b =+ ,d a b λ=+ ,2a = ,1b = ,且a b ⊥,求:(1)λ为何值时,c d ⊥;(2)λ为何值时,以,c d为邻边所围成的平行四边形的面积为6.解(1)由于c d ⊥ ,则0c d ⋅=,即()()22220a b a b a b λλ+⋅+=+= 解得2λ=-;(2)由题设条件知6c d ⨯=而()()()22c d a b a b a bλλ⨯=+⨯+=-⨯则有()22sin 222c d a b a b πλλλ⨯=-⨯=-=- 所以226λ-=,5λ=或1λ=-.4.设一平面通过从点()1,1,1-到直线10,0,y z x -+=⎧⎨=⎩的垂线,且与平面0z =垂直,求此平面方程.解过点()1,1,1M -且与直线10,:0,y z L x -+=⎧⎨=⎩垂直的平面1π的方程为()()()0111110x y z ⋅-+⋅++⋅-=,即y z +=解方程组10,0,0,y z x y z -+=⎧⎪=⎨⎪+=⎩得直线L 与平面1π的交点1110,,22M ⎛⎫ ⎪⎝⎭,平面0z =的法向量{}10,0,1n = ,则所求平面的法向量可取为111001,1,0211122ij kn n M M ⎧⎫=⨯==⎨⎬⎩⎭-所以所求平面方程为()()11102x y -++=,即210x y ++=.5.求通过直线3220,260,x y x y z -+=⎧⎨--+=⎩且与点()1,2,1的距离为1的平面方程.解设过直线3220,260,x y x y z -+=⎧⎨--+=⎩的平面束方程为()()322260x y x y z λ-++--+=(λ为非零常数)即()()321260x y z λλλλ+-+-++=,由点()1,2,1到平面的距离为1,即1d =解得2λ=-或3λ=-,所以所求平面方程为22100x y z ++-=或43160y z +-=.6.在xoy 面上求过原点,且与直线x y z ==的夹角为3π的直线方程.解设所求直线L 方程为,0,y Ax z =⎧⎨=⎩即10x y zA ==,直线L 的方向向量{}1,,0s A= 由题意知1cos32π==,得4A =-于是,所求直线方程为(40,0,xy z ⎧+=⎪⎨=⎪⎩或(40,0.x y z ⎧+=⎪⎨=⎪⎩7.求通过点()1,2,3--,平行于平面62350x y z --+=,且又与直线13x -=1325y z +-=-相交的直线方程.解过点()1,2,3M--作已知平面的平行平面,此平面方程为()()()6122330x y z +---+=即62310x y z --+=求此平面与已知直线的交点,由62310,113,325x y z x y z t --+=⎧⎪-+-⎨===⎪-⎩解得0t =,交点为()01,1,3M -,故所求直线的法向量为{}02,3,6s MM ==-所求直线方程为123236x y z +-+==-.8.确定常数k 的值,使得平面y kz =与椭球面222241xy z ++=的交线为圆.解平面与椭球面的交线222241,:,x y z y kz ⎧++=Γ⎨=⎩等价于方程组()22222241,:,x y k z y kz ⎧++-=⎪Γ⎨=⎪⎩要使交线为圆,只须242k-=,即k =,交线为2221,2.x y z y ⎧++=⎪⎨⎪=⎩9.求曲面2221x y z ++=和()()222111x y z -+-+=的交线在yoz 平面上的投影曲线方程.解由题设两曲面的方程消去x ,得交线在yoz 平面上的投影柱面方程22220y y z -+=所求投影曲线方程为22220,0.y y z x ⎧-+=⎨=⎩10.求两曲面22z x =与z =所围立体在三个坐标面上的投影区域.解两曲面的交线在xoy 面上的投影柱面为()2211x y -+=,则投影区域为()(){}22,11xy D x y x y =-+≤,两曲面的交线在yoz 面上的投影柱面为222112z y ⎛⎫-+=⎪⎝⎭,则投影区域为()222,112yz z D y z y ⎧⎫⎛⎫⎪⎪=-+≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,两曲面的交线在zox 面上的投影柱面为z 和z x =,则投影区域为(){,zx D x z x z =≤≤.11.画出下列曲面所围立体的图形:(1)22z xy =+,1x =,1y =,0z =;(2)z xy =,0z =,1x y +=;(3)22z xy =+,2y x =,1y =,0z =;(4)2y x =,212y x =,1x z +=,0z =.解(1)见图8-8;(2)见图8-9;(图8-8)(图8-9)(3)见图8-10;(4)见图8-11.(图8-10)(图8-11)习题9-11指出下列平面点集中,那些是开集、闭集、有界集、连通集、开区域以及闭区域?并分别求其聚点和边界点:(1)22{(,)|0<1}x y x +y <;(2){(,)|}x y y x >;(3){(,)|2,2,2}x y x y x y ≤≤+≥;(4)2222{(,)|1}{(,)|(1)1}x y x y x y x y +>⋂+-≤.解(1)为有界开区域;聚点为集合22{(,)|1}x y x +y ≤,边界点为集合22{(,)|=1}{(0,0)}x y x +y ⋃;(2)为无界的开区域;聚点为集合{(,)|}x y y x ≥,边界点为集合{(,)|,}x y y x x =-∞<<+∞;(3)为有界闭区域;聚点集合为该区域上所有点,边界点集合为三个直线段{(,)|2,02}x y x y =≤≤与{(,)|2,02}x y y x =≤≤及{(,)|2,02}x y x y x +=≤≤的并集;(4)为有界连通集合;聚点为2222{(,)|1}{(,)|(1)1}x y x y x y x y +≥⋂+-≤,边界点为圆弧221{(,)|1,2x y x y y +=≥及圆弧221{(,)|(1)1,}2x y x y y +-=≥的并集.2.证明:点0P 为点集E 的聚点的充分必要条件是点0P 的任意邻域内都至少含有一个点集E 中异于0P 的点.证明:“⇒”由聚点的定义即可得;“⇐”取101(,){|01}U P P P P δδ=<<=(其中0P P 表示点0P 与点P 的距离),则111(,)P U P E δ∃∈⋂,记20112P P δ=,则202(,)P U P E δ∃∈⋂ ,依此类推,由数学归纳法可知对于每个正整数n ,均可取到点01101111(,),22n n n n n P U P E P P δδ----∈⋂=≤ ,由此可得一个两两均不相同的点列{}n P ,若0δ>,因lim 0n n δ→∞=,则k δ∃使得k δδ<,那么当n k ≥时必有0(,)n P U P δ∈,即在0(,)U P δ中比含有集合E 的无穷多个点,因此点0P 为点集E 的聚点.3.求下列各函数值:(1)设22(,)2x y f x y xy-=,求(,1)x f y ;(2)设22(,)y xf x y x y xye =+-,求(,)f tx ty ;(3)设(,)3f x y x y =+,求(,(,))f x f x y ;(4)设(,,)v u v f u v w u w +=+,求(,,)f x y x y xy +-;(5)设22(,)y f x y x y x+=-,求(,)f x y .解(1)2221(,1)(,)22x y x x y f f x y x y xy y⎛⎫- ⎪-⎝⎭===;(2)222222(,)(,)yxf tx ty t x t y t xye t f x y =+-=;(3)(,(,))3(3)49f x f x y x x y x y =++=+;(4)2(,,)()()x y x f x y x y xy x y xy -+-=++;(5)设,,,11y u uv u x y v x y x v v =+===++,222(1)(,)111u uv u v f u v v v v -⎛⎫⎛⎫=-=⎪ ⎪+++⎝⎭⎝⎭,2(1)(,)1x y f x y y-=+.4.设1)z f =+-,若当1y =时,z x =,求函数()f u 及(,)z z x y =的表达式.解由题设有11),1)1x f f x =+=-,令1u =,则2(1)x u =+,所以有2()2f u u u =+,相应的有(,)1z z x y x ==-.5.求下列函数的定义域:(1)(,)f x y =;(2)(,)ln()f x y y x =-+;(3)22221(,)arcsin 4x y f x y x y+=+-;(4)(,,)f x y z =解(1){(,)|}D x y y x y =-<<;(2)22{(,)|0,,1}D x y x y x x y =≥>+<;(3)22{(,)|4,}D x y x y y x =+≤≠;(4)222{(,,)|1,D x y z x y z z =++<>.习题9-21.证明:2222001lim()sin0x y x y x y →→+=+.证明0ε∀>,因为2222221()sinx y x y x y+≤++,取δ=当0δ<<时,则有2222221()sin 0x y x y x y ε+-≤+<+,因此有2222001lim()sin 0x y x y x y →→+=+.2.求下列极限:(1)201ln()lim 2x x y e y x y →→++;(2)220x y →→(3)100lim(1sin )xyx y xy →→-;(4)22()lim ()x y x y x y e-+→+∞→+∞+解(1)原式0ln(1)ln 21e +==;(2)原式220220lim 21()2x y x y x y →→+==--+;(3)原式sin 11sin 00lim (1sin )xyxyxyx y xy e ---→→⎡⎤=-=⎢⎥⎢⎥⎣⎦;(4)原式222()()lim (2),lim lim 0,lim lim 0u x y x y x y x y u x y x x x x y y y x y x y x y u x ye e e e e e e =+++→+∞→+∞→+∞→+∞→+∞→+∞→+∞++=-⋅======,原式0=.3.证明下列极限不存在:(1)22400lim x y xy x y →→+;(2)2222200lim ()x y x y x y x y →→+-.解(1)当取点(,)P x y 沿曲线2:C y kx =趋于点(0,0)O 时则有222422000lim lim 1x x y xy kx k x y x kx k →→→==+++,k 取值不同,则该极限值不同,因此该极限不存在;(2)当取点(,)P x y 沿直线y x =趋于点(0,0)O 时则有2222200lim 1()x y x y x y x y →→=+-,而当取点(,)P x y 沿直线0y =趋于点(0,0)O 时则有2222200lim 0()x y x y x y x y →→=+-,因沿不同方向取极限,则该极限值不同,故该极限不存在.4.讨论下列函数的连续性:(1)22(,)y xf x y y x+=-;(2)22,(,)(0,0),(,)0,(,)(0,0);xyx y x yf x y x y ⎧≠⎪+=⎨⎪≠⎩(3),)(0,0),(,)0,(,)(0,0);x y f x y x y ≠=≠⎩(4)(,,)f x y z =.解(1)函数的定义域为2{(,)|}D x y y x =≠,它在D 内处处连续,抛物线2:C y x =上的点均为它的间断点;(2)函数在全平面内处处有定义,它在区域{(,)|(,)(0,0)}D x y x y =≠内处处连续,由于00lim (,)x y f x y →→不存在,故(0,0)O 是它的间断点;(3)当(,)(0,0)x y ≠时,函数显然是连续的,又00lim0(0,0)x y f →→==,所以它在(0,0)O 处也连续,因此该函数在全平面内处处连续;(4)函数(,,)f x y z 的定义域为222{(,,)|14}x y z x y z Ω=<++<,在定义域内(,,)f x y z处处连续,在球面2221x y z ++=及2224x y z ++=上函数间断.5.设二元函数(,)f x y 在有界闭区域E 上连续,点(,),1,2,,i i x y E i n ∈=⋅⋅⋅,证明至少存在一点(,)E ξη∈,使得1122(,)(,)(,)(,)n n f x y f x y f x y f nξη++⋅⋅⋅+=.证明令112211(,)min{(,)},(,)max{(,)}i i i i i i i i i ni nm f x y f x y M f x y f x y ≤≤≤≤====,则有(,),1,2,,i i m f x y M i n≤≤=⋅⋅⋅,由此可得1(,)ni i i mn f x y Mn=≤≤∑,即1(,)niii f x y m M n=≤≤∑.(1)若m M =,则1122(,)(,)(,)n n f x y f x y f x y ==⋅⋅⋅=,取11(,)(,)x y ξη=即可;(2)若m M <,则有1(,)niii f x y m M n=<<∑,由连续函数介值定理知至少存在一点(,)E ξη∈,使得1122(,)(,)(,)(,)n n f x y f x y f x y f nξη++⋅⋅⋅+=.习题9-31.求下列函数的一阶偏导数:(1)2tan()cos ()z x y xy =++;(2)arctanx yz x y+=-;(3)ln(z x =+;(4)(1)yz xy =+.解(1)22sec ()2cos()sin()sec ()sin(2)zx y y xy xy x y y xy x∂=+-=+-∂,由对称性可知2sec ()sin(2)zx y x xy y ∂=+-∂;(2)22222212,()1zy y z xxx y x y y x yx y x y ∂--∂=⋅==∂-+∂+⎛⎫++ ⎪-⎝⎭;(3)z z xy ∂∂==∂∂;(4)21(1),(1)[ln(1)]1y y z z xyy xy xy xy x y xy-∂∂=+=+++∂∂+.2.求下列函数在指定点的偏导数:(1)(,)sin(2)xf x y ex y -=+,求(0,)4x f π'及(0,)4y f π';(2)22(,)(2)arccos f x y x y x =++-,求(2,)y f y '.解(1)(0,)4(0,)[(cos(2)sin(2)]1,(0,)044x x y f e x y x y f πππ-''=+-+=-=;(2)()2(2,)42y f y yy ''=+=.3.求下列函数的二阶偏导数:(1)2cos ()z ax by =+;(2)z =;(3)arctan 1x yz xy+=-;(4)z yu x =,求2ux z ∂∂∂及22u y ∂∂.解(1)2cos()sin()sin 2(),sin 2()z za ax by ax by a ax byb ax by x y∂∂=-++=-+=-+∂∂,22222222cos 2(),2cos(),2cos 2()z z z a ax by ab ax by b ax by x x y y ∂∂∂=-+=-+=-+∂∂∂∂.(2)2222222222222222,,,()()z x z y z y x z xy x x y x x y x x y x y x y ∂∂∂-∂-====∂+∂+∂+∂∂+,2222222()z x y y x y ∂-=∂+;(3)22211()1(1)111z xy y x y xxy x x y xy ∂-++=⋅=∂-+⎛⎫++ ⎪-⎝⎭,由对称性可知211z y y ∂=∂+,22222222222,0,(1)(1)z x z z yx x x y y y ∂-∂∂-===∂+∂∂∂+;(4)2222112224ln ln 2ln ln ,,,zzzzy y y yu z u y z x u z x u yz x z x x x x x x y x z y y y y y --∂∂+∂∂+===-=∂∂∂∂∂.4.求下列函数的指定高阶偏导数:(1)ln()z x xy =,求32z x y ∂∂∂及32z x y ∂∂∂;(2)u x y z αβγ=,求3ux y z∂∂∂∂.解(1)23232222111ln()1,,0,,z z z z z xy x x x x y x y y x y y∂∂∂∂∂=+====-∂∂∂∂∂∂∂∂;(2)23111111,,u u u x y z x y z x y z x x y x y zαβγαβγαβγααβαβγ------∂∂∂===∂∂∂∂∂∂.5.设322,(,)(0,0),(,)20,(,)(0,0),xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩求(0,0)xyf ''及(0,0)yx f ''.解(,0)(0,0)(0,0)lim0,0x x f x f f y x →-'==≠时,0(,)(0,)1(0,)lim 2x x f x y f y f y y x →-'==,(0,)(0,0)1(0,0)lim 2x x xyy f y f f y →''-''==,0(0,)(0,0)(0,0)lim 0,0y x f y f f x y→-'==≠时,0(,)(,0)(,0)lim 0y y f x y f x f x y →-'==,0(,0)(0,0)(0,0)lim 0y y yx x f x f f x→''-''==.6.已知二元函数(,)z z x y =在区域{(,)|0}D x y x =>内有定义,且满足3,(1,)cos z x y z y y x x∂+==∂,试求(,)z x y .解由3z x yx x∂+=∂可得31(,)ln ()3z x y x y x C y =++,由(1,)cos z y y =可得1()cos 3C y y =-,因而31(,)(1)ln cos 3z x y x y x y =-++.7.分别讨论下列函数在点的连续性和可偏导性:(1)222,(,)(0,0),(,)0,(,)(0,0);xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩(2)(,)f x y =(3)2222,(,)(0,0),(,)1,(,)(0,0).x y x y f x y x yx y ⎧-≠⎪=+⎨⎪=⎩解(1)因为22212xy y x y ≤+,所以22200lim 0x y xy x y →→=+,因此该函数在点(0,0)处连续,又[][]0(0,0)(,0)0,(0,0)(0,)0x y x x f f x f f y ==''''====,因而该函数在(0,0)处存在偏导数;(2)因00(0,0)x y f →→==,因而该函数在点(0,0)处连续,而0(0,0)limx x x f x→'=不存在,同理(0,0)y f '也不存在,因而该函数在(0,0)处不存在偏导数;(3)当取点(,)P x y 沿直线y kx =趋于点(0,0)O 时,则有222222001lim 1x y x y k x y k →→--=++,由于k 取不同值时,上述极限不一样,故222200lim x y x y x y →→-+不存在,因而该函数点(0,0)处不连续,(,0)(0,0)(0,)(0,0)(0,0)lim0,(0,0)limx y x y f x f f y f f f xy→→--''===∞,故在点(0,0)处偏导数(0,0)x f '存在,而偏导数(0,0)y f '不存在.8.考察函数2244,(,)(0,0),(,)0,(,)(0,0),x y x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩并回答下列问题:(1)(,)f x y 在点(0,0)处是否有二阶偏导数;(2)(,)x f x y '与(,)y f x y '在点(0,0)处是否连续.解(1)2444422(3),(,)(0,0),(,)()0,(,)(0,0),x xy x y x y f x y x y x y ⎧-≠⎪'=+⎨⎪≠⎩2444422(3),(,)(0,0),(,)()0,(,)(0,0),y x y y x x y f x y x y x y ⎧-≠⎪'=+⎨⎪≠⎩0(,0)(0,0)(0,0)lim 0x x xx y f x f f x →''-''==0(0,)(0,0)(0,0)lim 0y yyy f y f f y→''-''==,0(0,)(0,0)(0,0)lim 0x x xyy f y f f y→''-''==.(2)当取点(,)P x y沿直线(y kx k =≠趋于点(0,0)O 时则有2442444242000002(3)2(13)lim (,)lim lim ()(1)x x x x y y xy x y k k f x y x y x k →→→→→--'===∞++,故(,)x f x y '在点(0,0)处不连续,同理可证(,)y f x y '点(0,0)处也不连续.9.设arctan y u z x =,证明2222220u u ux y z∂∂∂++=∂∂∂.证明222221,1uy yz z y xx x y x∂--=⋅⋅=∂++222222()u xyz x x y ∂=∂+,同理有222222()u xyzy x y ∂-=∂+,22arctan ,0u y uz x z∂∂==∂∂,所以有2222222222222200()()u u u xyz xyz x y z x y x y ∂∂∂++=-+=∂∂∂++.10.证明:如果(,)f x y 在区域D 内偏导数(,)x f x y '与(,)y f x y '有界,则函数(,)f x y 在区域D 内连续.证明因为(,)x f x y '与(,)y f x y '在D 内有界,所以0M ∃>,对(,)x y D ∀∈均有(,),(,)x y f x y M f x y M ''≤≤,设000(,)P x y D ∈,则0δ∃>,当ρδ=<时有00(,)x x y y D +∆+∆∈,记100200(,),(,)P x x y P x x y y +∆+∆+∆,则线段01P P 与12PP 必完全属于D 内,由Lagrange 中值定理知0000(,)(,)f x x y y f x y +∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x x y f x x y f x y =+∆+∆-+∆++∆-001020(,)(,)y x f x x y y y f x x y x θθ''=+∆+∆∆++∆∆,0000(,)(,)()f x x y y f x y M x y +∆+∆-≤∆+∆,由夹逼准则可知00000lim[(,)(,)]0x y f x x y y f x y ∆→∆→+∆+∆-=,即函数(,)f x y 在点000(,)P x y 处连续,由点000(,)P x y 的任意性可知,函数(,)f x y 在区域D 内处处连续.习题9-41.求函数22z x xy y =+-在点000(,)P x y 处当自变量,x y 分别取得增量,x y ∆∆时相应的全增量及全微分.解222200000000()()()()()z x x x x y y y y x x y y ∆=+∆++∆+∆-+∆--+2200000000(2)(2),d (2)(2)x y x x y y x x y y y x y x x y y =+∆+-∆+∆+∆∆-∆=+∆+-∆.2.求下列函数的全微分:(1)yz yx =;(2)arctan y z x=;(3)2222x y z x y-=+;(4)u =.解(1)21d d (1ln )d y y z y x x x x y -=++;(2)22d d d y x x yz x y -+=+;(3)2224(d d )d ()xy y x x y z x y -=+;(4)d u =3.试证:(,)f x y =在点(0,0)处连续,偏导数存在,但不可微.证明000(0,0)x y f →→==,因而函数(,)f x y 在点(0,0)处连续,00(,0)(0,0)(0,)(0,0)(0,0)lim0,(0,0)lim 0x y x y f x f f y f f f x y→→--''====,因而函数(,)f x y 在点(0,0)处偏导数存在,又00limx x y y →→→→''---=不存在,故该函数在点(0,0)处不可微.4.设221sin ,(,)(0,0),(,)0,(,)(0,0).xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩证明:(1)(0,0),(0,0)x y f f ''存在;(2)(,),(,)x y f x y f x y ''在点(0,0)处不连续;(3)(,)f x y 在点(0,0)处可微.解(1)00(,0)(0,0)(0,)(0,0)lim0,(0,0)lim 0y x y f x f f y f f x y→→--'====,因此(0,0)x f ',(0,0)y f '存在;(2)222222220000121lim (,)lim[sin cos ]()x x x y y x y f x y y x y x y x y →→→→'=-+++不存在,因而(,)x f x y '在(0,0)处不连续,又222222220000121lim (,)lim[sin cos ]()y x x y y xy f x y x x y x y x y →→→→'=-+++不存在,因此(,)x f x y '在(0,0)处也不连续;(3)22001sin lim0x x y y xy x y →→→→''---==,因而函数(,)f x y 在点(0,0)处可微.5的近似值.解令22(,)(,)(,)x y f x y f x y f x y ''===,则有(1.02,1.97)(1,2)(1,2)0.02(1,2)(0.03)x y f f f f ''=≈+⨯+⨯-130.022(0.03) 2.952=+⨯+⨯-=.6.设有一无盖的圆柱形容器,容器的壁与底厚均为0.1cm ,内高为20cm ,内半径为4cm ,求容器外壳体积的近似值.解若圆柱体的底半径为r ,高为h ,则体积为2V hr π=,223d 22 3.144200.1 3.1440.155.3cm V V rh r r h ππ∆≈=∆+∆=⨯⨯⨯⨯+⨯⨯=.。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。

河海大学理学院《高等数学》9-6含参变量积分

河海大学理学院《高等数学》9-6含参变量积分

高等数学(下)
例4 1cosx y zdz.
x 0

x
1
0
cos
x
y
z dz
1
0
sinx
y
z dz
cosx y 1 cosx y
高等数学(下)
证 因为 ( x) lim ( x x) ( x) ,
x0
x
为了求 ( x),先利用公式(1)作出增量之比
( x x) ( x)
第四节 含参变量积分
高等数学(下)
河海大学理学院
一、含参变量积分的连续性
设函数 f ( x, y) 在矩形 R(a x b, b )
上的连续函数. 积分
x
f
x,
ydy
(a x b).
()
确定了一个定义在 [a, b] 上的 x 的函数
称为含参变量 x 积分。
高等数学(下)
定理1 如果函数 f ( x, y)在矩形
( x) d
( x)
f ( x, y)dy
( x) f ( x, y) dy
dx ( x)
( x) x
f [x, ( x)] ( x) f [x, ( x)] ( x). (7)
称为莱布尼茨公式.
高等数学(下)
下面先考虑由积分(*)确定的函数 ( x) 的微分问题.
x
f
x,
ydy
解1
lim
1 e xydx
lim
1
e xy
1
ey lim
1
1
y0 0
y0 y
y 0 y0
解2
Hale Waihona Puke lim1 e xydx

高等数学下册试题题库及参考答案

高等数学下册试题题库及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( A ) A )5 B ) 3 C ) 6 D )9解 AB ={1-1,2-0,1-2}={0,2,-1},||=5)1(20222=-++. 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4πC )3π D )π 解 由公式(6-21)有21112)1(211)1(1221c o s 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x .解 由于平面平行于z 轴,因此可设这平面的方程为 0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。

高数下参考答案

高数下参考答案

高数下参考答案高数下参考答案高等数学作为大学数学系列课程中的一门重要课程,对于理工科学生来说是必修的一门课程。

学习高等数学的过程中,很多同学会遇到各种各样的问题,其中一个常见的问题就是找不到参考答案。

本文将就高等数学下册的一些典型题目给出参考答案,希望能够帮助到广大学生。

一、极限与连续1. 求极限lim(x→0) (sinx/x)解:根据极限的定义,当x趋向于0时,sinx/x的极限等于1。

所以,lim(x→0) (sinx/x) = 1。

2. 求导数y = x^2 + 3x - 2解:对y进行求导,得到dy/dx = 2x + 3。

所以,函数y = x^2 + 3x - 2的导数为dy/dx = 2x + 3。

二、微分学1. 求函数的极值点y = x^3 - 6x^2 + 9x解:首先求函数的导数,得到dy/dx = 3x^2 - 12x + 9。

令dy/dx = 0,解方程得到x = 1或x = 3。

将x = 1和x = 3代入函数y = x^3 - 6x^2 + 9x,得到y(1) = 4和y(3) = 0。

所以,函数y = x^3 - 6x^2 + 9x在x = 1处取极小值,极小值为4,在x = 3处取极大值,极大值为0。

2. 求函数的凹凸性y = x^3 - 6x^2 + 9x解:首先求函数的二阶导数,得到d^2y/dx^2 = 6x - 12。

令d^2y/dx^2 = 0,解方程得到x = 2。

将x = 2代入函数d^2y/dx^2 = 6x - 12,得到d^2y/dx^2(2) = 0。

所以,函数y = x^3 - 6x^2 + 9x在x = 2处取拐点。

三、积分学1. 求不定积分∫(x^2 + 2x + 1)dx解:根据积分的性质,∫(x^2 +2x + 1)dx = ∫x^2dx + ∫2xdx + ∫1dx。

对每一项进行积分,得到(1/3)x^3 + x^2 + x + C。

大一高等数学教材答案下册

大一高等数学教材答案下册

大一高等数学教材答案下册第一章:函数与极限1.1 函数的概念与性质1.1.1 函数的定义与表达式求值根据教材中给出的函数定义和表达式求值的相关知识,我们来解答下列问题:1. 将函数 f(x) = 2x + 3 在 x = 5 处求值得到的结果是多少?解答:将 x = 5 代入函数 f(x) = 2x + 3 中计算,得到 f(5) = 2 * 5 + 3 = 13。

2. 给定函数 g(x) = x^2 - 2x,求 g(-3) 的值为多少?解答:将 x = -3 代入函数 g(x) = x^2 - 2x 中计算,得到 g(-3) = (-3)^2 - 2 * (-3) = 15。

1.1.2 函数的性质与图像根据教材中给出的函数性质与图像的相关知识,我们来解答下列问题:1. 如果函数 f(x) 是一个奇函数,它的图像关于原点对称,那么函数f(x) 在 x = 0 处的值是多少?解答:由奇函数的性质可知,f(0) = -f(0)。

因此,f(0) = 0。

2. 若函数 g(x) 的图像关于 x 轴对称,那么 g(x) 在 x = 2 处的值是多少?解答:由函数图像关于 x 轴对称的性质可知,g(x) = g(-x)。

因此,g(2) = g(-2)。

1.2 极限的概念与性质1.2.1 极限的定义与运算法则根据教材中给出的极限定义与运算法则的相关知识,我们来解答下列问题:1. 设函数 f(x) = x^2 - 3x + 2,求当 x 趋于 2 时,f(x) 的极限为多少?解答:根据极限的定义可知,lim(x→2) f(x) = f(2)。

将 x = 2 代入函数 f(x) = x^2 - 3x + 2 中计算,得到 f(2) = 2。

因此,lim(x→2) f(x) = 2。

2. 如果lim(x→a) f(x) = 3,lim(x→a) g(x) = 4,那么lim(x→a) [f(x) + g(x)] 等于多少?解答:根据极限的运算法则可知,lim(x→a) [f(x) + g(x)] = lim(x→a)f(x) + lim(x→a) g(x) = 3 + 4 = 7。

河海高数ch3习题答案

河海高数ch3习题答案

第三章 微分中值定理Ex16 中值定理一、1、不满足 ; 不存在。

2.、不满足 ; 存在。

3、θ = 125 。

4、ξ =914。

二、1. A 2. C 三、证明:因为)(x f 在],[b a 上二阶可导,所以)(x f 在区间],[c a 上连续,在(a,c)内可导,且 )()(c f a f =,由Rolle 定理知,至少存在一点 1ξ),(c a ∈,使得0)(1='ξf 。

同理,至少存在一点 2ξ),(b c ∈,使得0)(2='ξf 。

而)(x f '在区间],[21ξξ 上又满足Rolle 定理条件,故存在∈ξ],[21ξξ使0)(=''ξf ,即方程0)(=''x f 在),(b a 内至少有一个实根。

四、证明:令)()(x xf x g =,易知g(x) 在[0, 1]上连续,在(0, 1)内可导,由Lagrange 中值定理知,至少存在一点)1,0(∈ξ,使得)01)(()0()1(-'=-ξg g g ,即 )()(0ξξξf f '⋅+=,再由0>ξ,可得ξξξ)()(f f -='。

五、证明:由)(x f 在],[b a 上有连续的导数,对],[,21b a x x ∈∀,根据lagrange 中值定理得,至少存在一点),(21x x ∈ξ使得))(()()(2121x x f x f x f -'=-ξ所以 |||)(||)()(|2121x x f x f x f -⋅'=-ξ。

而)(x f '在],[b a 上连续,因此必有界,即存在0>L ,对],[b a x ∈∀,都有L x f ≤'|)(|,所以2121)()(x x L x f x f -≤-。

六、证明:令()x x x F ln =,()xx G 1=。

则)(x F 、)(x G 在区间[a, b]上满足柯西中值定理的条件,至少存在一点()b a ,∈ξ使得)()()()()()(ξξG F a G b G a F b F ''=--, 即 221ln 111ln ln ξξξ--=--a b a a b b ,化简后即得 ()()1ln ln ln --=-ξa b b a a b 。

高等数学(第六版)课后习题(完整版)及答案

高等数学(第六版)课后习题(完整版)及答案

习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy : (1) y 2-2x y +9=0; (2) x 3+y 3-3axy =0; (3) xy =e x +y ; (4) y =1-xe y .解 (1)方程两边求导数得 2y y '-2y -2x y ' =0 , 于是 (y -x )y '=y ,xy y y -='.(2)方程两边求导数得 3x 2+3y 2y '-2ay -3axy '=0, 于是 (y 2-ax )y '=ay -x 2 ,axy x ay y --='22.(3)方程两边求导数得 y +xy '=e x +y (1+y '), 于是 (x -e x +y )y '=e x +y -y ,yx y x e x y e y ++--='.(4)方程两边求导数得y '=-e y -xe y y ', 于是 (1+xe y )y '=-e y ,yy xe e y +-='1.2. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程.解 方程两边求导数得032323131='+--y y x ,于是 3131---='y x y , 在点)42 ,42(a a 处y '=-1.所求切线方程为 )42(42a x a y --=-,即a y x 22=+.所求法线方程为)42(42a x a y -=-, 即x -y =0.3. 求由下列方程所确定的隐函数y 的二阶导数22dxyd :(1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2; (3) y =tan(x +y ); (4) y =1+xe y .解 (1)方程两边求导数得 2x -2yy '=0, y '=yx ,3322221)(yy x y y y xx y y y x y y x y -=-=-='-='=''.(2)方程两边求导数得 2b 2x +2a 2yy '=0,yx a b y ⋅-='22,22222222)(y y x a b x y a b y y x y a b y ⋅--⋅-='-⋅-=''32432222222ya b y a x b y a a b -=+⋅-=.(3)方程两边求导数得 y '=sec 2(x +y )⋅(1+y '),1)(cos 1)(sec 1)(sec 222-+=+-+='y x y x y x y 222211)(sin )(cos )(sin y y x y x y x --=+-+++=,52233)1(2)11(22y y y y y y y +-=--='=''.(4)方程两边求导数得 y '=e y +xe y y ',ye y e xe e y y y y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;(2)55225+-=x x y ;(3)54)1()3(2+-+=x x x y ;(4)x e x x y -=1sin . 解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |, 两边求导得x x x x x x y y +⋅-+-⋅+='11)1ln(1ln 1, 于是]111[ln )1(xx x x x y x ++++='.(2)两边取对数得)2ln(251|5|ln 51ln 2+--=x x y ,两边求导得22251515112+⋅--⋅='x xx y y ,于是]225151[25512552+⋅--=+-='x x x x x y .(3)两边取对数得)1ln(5)3ln(4)2ln(21ln +--++=x x x y ,两边求导得1534)2(211+---+='x x x y y , 于是]1534)2(21[)1()3(254+--+++-+='x x x x x x y(4)两边取对数得)1ln(41sin ln 21ln 21ln x e x x y -++=,两边求导得 )1(4cot 21211x xe e x x y y--+=',于是 ])1(4cot 2121[1sin x xx e e x x e x x y --+-=']1cot 22[1sin 41-++-=x xx e e x x e x x .5. 求下列参数方程所确定的函数的导数dx dy : (1) ⎩⎨⎧==22bty at x ;(2)⎩⎨⎧=-=θθθθcos )sin 1(y x . 解 (1)t a bat bt x y dx dy t t 23232==''=. (2)θθθθθθθθcos sin 1sin cos ---=''=x y dx dy . 6. 已知⎩⎨⎧==.cos ,sin t e y t e x t t 求当3π=t 时dx dy的值.解 tt tt t e t e t e t e x y dx dy t tt t t t cos sin sin cos cos sin sin cos +-=+-=''=,当3π=t 时,23313123212321-=+-=+-=dx dy .7. 写出下列曲线在所给参数值相应的点处的切线方程和法线方程: (1) ⎩⎨⎧==t y t x 2cos sin , 在4π=t 处; (2) ⎪⎩⎪⎨⎧+=+=2221313t at y t at x , 在t =2处.解 (1)tt x y dx dy t t cos 2sin 2-=''=.当4π=t 时,222224cos )42sin(2-=-=⋅-=ππdx dy , 220=x ,00=y ,所求切线方程为 )22(22--=x y , 即0222=-+y x ; 所求法线方程为)22(221---=x y , 即0142=--y x .(2)222222)1(6)1(23)1(6t at t t at t at y t +=+⋅-+=', 222222)1(33)1(23)1(3t at a t t at t a x t +-=+⋅-+=', 2212336tt at a at x y dx dy t t -=-=''=.当t =2时, 3421222-=-⋅=dx dy, a x 560=, a y 5120=,所求切线方程为)56(34512a x a y --=-, 即4x +3y -12a =0;所求法线方程为)56(43512a x a y -=-, 即3x -4y +6a =0.8. 求下列参数方程所确定的函数的二阶导数22dxyd :(1) ⎪⎩⎪⎨⎧-==.122t y tx ;(2) ⎩⎨⎧==t b y t a x sin cos ;(3) ⎩⎨⎧==-tte y e x 23; (4)⎩⎨⎧-==)()()(t f t tf y t f x tt , 设f ''(t )存在且不为零.解 (1) t x y dx dy t t 1-=''=, 322211)(t t t x y dx y d t t x =='''=.(2) t ab t a t b x y dx dy t t cot sin cos -=-=''=,t a b t a ta b x y dx y d t t x 32222sin sin csc )(-=-='''=.(3) t t tt t e e e x y dx dy 23232-=-=''=-,t t t t t x e e e x y dx y d 3222943232)(=-⋅-='''=-.(4) t t f t f t f t t f x y dx dy t t ='''-''+'=''=)()()()(,)(1)(22t f x y dxy d t t x ''='''=.9. 求下列参数方程所确定的函数的三阶导数33dxyd :(1)⎩⎨⎧-=-=321t t y t x ; (2)⎩⎨⎧-=+=t t y t x arctan )1ln(2.解(1)tt t t t dx dy 231)1()(223--='-'-=,)31(412)231(3222t t t t t dx y d +-=-'--=, )1(832)31(4125333t tt t t dx yd +-=-'+-=.(2)t t t t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=,t t t t t dx y d 4112)21(2222+=+'=,3422338112)41(tt tt t t dx y d -=+'+=.10. 落在平静水面上的石头, 产生同心波纹, 若最外一圈波半径的增大率总是6m/s , 问在2秒末扰动水面面积的增大率为多少?解 设波的半径为r , 对应圆面积为S , 则S =πr 2, 两边同时对t 求导得 S t '=2πrr '.当t =2时, r =6⋅2=12, r 't =6, 故S t '|t =2=2⋅12⋅6π=144π (米2/秒).11. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dt dh h dt dV ⋅⋅=2312π, dtdV h dt dh ⋅=24π.已知h =5(m),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).12. 溶液自深18cm 直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中, 开始时漏斗中盛满了溶液, 已知当溶液在漏斗中深为12cm 时, 其表面下降的速率为1cm/min . 问此时圆柱形筒中溶液表面上升的速率为多少?解 设在t 时刻漏斗在的水深为y , 圆柱形筒中水深为h . 于是有 h y r 22253118631=-⋅⋅ππ.由186y r =, 得3y r =, 代入上式得hy y 2225)3(3118631=-⋅⋅ππ,即h y 233253118631=-⋅⋅π. 两边对t 求导得h y y t '='-222531.当y =12时, y 't =-1代入上式得 64.025165)1(1231222≈=-⋅⋅-='t h (cm/min)..2-71. 已知y =x 3-x , 计算在x =2处当∆x 分别等于1, 0.1, 0.01时的∆y 及dy .解 ∆y |x =2, ∆x =1=[(2+1)3-(2+1)]-(23-2)=18, dy |x =2, ∆x =1=(3x 2-1)∆x |x =2, ∆x =1=11;∆y |x =2, ∆x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161,dy |x =2, ∆x =0.1=(3x 2-1)∆x |x =2, ∆x =0.1=1.1;∆y |x =2, ∆x =0.01=[(2+0.01)3-(2+0.01)]-(23-2)=0.110601, dy |x =2, ∆x =0.01=(3x 2-1)∆x |x =2, ∆x =0.01=0.11.2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、∆y 及∆y -d y 并说明其正负. 解 (a )∆y >0, dy >0, ∆y -dy >0. (b )∆y >0, dy >0, ∆y -dy <0. (c )∆y <0, dy <0, ∆y -dy <0. (d )∆y <0, dy <0, ∆y -dy >0. 3. 求下列函数的微分: (1)x xy 21+=;(2) y =x sin 2x ; (3)12+=x x y ;(4) y =ln 2(1-x ); (5) y =x 2e 2x ; (6) y =e -x cos(3-x ); (7)21arcsinx y -=;(8) y =tan 2(1+2x 2);(9)2211arctanx xy +-=;(10) s =A sin(ωt +ϕ) (A , ω, ϕ是常数) . 解 (1)因为xxy 112+-=', 所以dxxx dy )11(2+-=.(2)因为y '=sin2x +2x cos2x , 所以dy =(sin2x +2x cos2x )dx .(3)因为1)1(111122222++=++⋅-+='x x x x x x y , 所以dx x x dy 1)1(122++=.(4)dxx x dx x x dx x dx y dy )1ln(12])1(1)1ln(2[])1([ln 2--=--⋅-='-='=. (5)dy =y 'dx =(x 2e 2x )'dx =(2xe 2x +2x 2e 2x )dx =2x (1+x )e 2x . (6) dy =y 'dx =[e -x cos(3-x )]dx =[-e -x cos(3-x )+e -x sin(3-x )]dx =e -x [sin(3-x )-cos(3-x )]dx . (7)dx xx x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin--=--⋅--='-='=. (8) dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4xdx=8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx . (9))11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-=dx x x dx x x x x x x x 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. (10) dy =d [A sin(ω t +ϕ)]=A cos(ω t +ϕ)d (ωt +ϕ)=A ω cos(ωt +ϕ)dx .4. 将适当的函数填入下列括号内, 使等式成立: (1) d ( )=2dx ; (2) d ( )=3xdx ; (3) d ( )=cos tdt ; (4) d ( )=sin ωxdx ; (5) d ( )dx x 11+=;(6) d ( )=e -2x dx ; (7) d ( )dxx1=;(8) d ( )=sec 23xdx . 解 (1) d ( 2x +C )=2dx . (2) d (C x +223)=3xdx .(3) d ( sin t +C )=cos tdt . (4) d (C x +-ωωcos 1)=sin ωxdx .(5) d ( ln(1+x )+C )dx x 11+=.(6) d (C e x +--221)=e -2x dx . (7) d (C x +2)dxx1=.(8) d (C x +3tan 31)=sec 23xdx . 5.如图所示的电缆B O A的长为s , 跨度为2l , 电缆的最低点O 与杆顶连线AB 的距离为f , 则电缆长可按下面公式计算:)321(222lf l s +=,当f 变化了∆f 时, 电缆长的变化约为多少?解ff l df lf l dS S ∆='+=≈∆38)321(222.6. 设扇形的圆心角α=60︒, 半径R =100cm(如图), 如果R 不变, α 减少30', 问扇形面积大约改变了多少?又如果α 不变, R 增加1cm , 问扇形面积大约改变了多少?解 (1)扇形面积221R S α=,αααα∆='=≈∆2221)21(R d R dS S .将α=60︒3π=, R =100, 36003πα-='-=∆ 代入上式得63.43)360(100212-≈-⋅⋅≈∆πS (cm 2).(2)R R dR R dS S R ∆='=≈∆αα)21(2.将α=60︒3π=, R =100, ∆R =1代入上式得72.10411003≈⋅⋅≈∆πS (cm2).7. 计算下列三角函数值的近似值: (1) cos29︒; (2) tan136︒.解 (1)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=cos x 时, 有cos(x +∆x )≈cos x -sin x ⋅∆x , 所以cos29︒=87467.01802123)180(6sin 6cos )1806cos(≈⋅+=-⋅-≈-ππππππ.(2)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=tan x 时, 有tan(x +∆x )≈tan x +sec 2x ⋅∆x , 所以 tan136︒=96509.01802118043sec 43tan )18043tan(2-≈⋅+-=⋅+≈+ππππππ.8. 计算下列反三角函数值的近似值 (1) arcsin0.5002; (2) arccos 0.4995.解 (1)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=arcsin x 时, 有 x x x x x ∆⋅-+≈∆+211arcsin )arcsin(,所以0002.05.0115.0arcsin )0002.05.0arcsin(5002.0arcsin 2⋅-+≈+= 0002.0326⋅+=π≈30︒47''.(2)已知f (x +∆x )≈f (x )+f '(x )∆x , 当f (x )=arccos x 时, 有 x x x x x ∆⋅--≈∆+211arccos )arccos(, 所以)0005.0(5.0115.0arccos )0005.05.0arccos(4995.0arccos 2-⋅--≈-= 0005.0323⋅+=π≈60︒2'.9. 当x 较小时, 证明下列近似公式: (1) tan x ≈x (x 是角的弧度值); (2) ln(1+x )≈x ; (3)x x-≈+111, 并计算tan45' 和ln1.002的近似值.(1)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取f (x )=tan x , x 0=0, ∆x =x ,则有tan x =tan(0+x )≈tan 0+sec 20⋅x =sec 20⋅x =x .(2)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取f (x )=ln x , x 0=1, ∆x =x ,则有ln(1+x )≈ln1+(ln x )'|x =1⋅x =x .(3)已知当|∆x |较小时, f (x 0+∆x )≈f (x 0)+f '(x 0)∆x , 取xx f 1)(=, x 0=1, ∆x =x ,则有x x x x x -=⋅'+≈+=1|)1(1111.tan45'≈45'≈0.01309; ln(1.002)=ln(1+0.002) ≈0.002. 10. 计算下列各根式的的近似值:(1)3996; (2)665.解 (1)设n x x f =)(, 则当|x |较小时, 有x nx f f x f 11)1()1()1(+='+≈+,987.9)10004311(101000411041000996333≈⋅⋅-≈-⋅=-=.(2)设n x x f =)(, 则当|x |较小时, 有x nx f f x f 11)1()1()1(+='+≈+, 于是0052.2)641611(26411216465666≈⋅+≈+⋅=+=.11. 计算球体体积时, 要求精确度在2%以内, 问这时测量直径D 的相对误差不能超过多少? 解 球的体积为361D V π=,D D dV ∆⋅=221π,因为计算球体体积时, 要求精度在2%以内, 所以其相对误差不超过2%, 即要求 %23612132≤∆⋅=∆⋅=DD D DD V dV ππ,所以%32≤∆D D ,也就是测量直径的相对误差不能超过%32.12. 某厂生产如图所示的扇形板, 半径R =200mm , 要求中心角α为55︒. 产品检验时, 一般用测量弦长l 的办法来间接测量中心角α, 如果测量弦长l 时的误差δ1=0.1mm , 问此而引起的中心角测量误差δx 是多少?解 由2sin 2αR l =得400arcsin 22arcsin2l R l ==α,当α=55︒时,2sin 2αR l ==400sin27.5︒≈184.7,δ 'α=|α'l |⋅δl l l δ⋅⋅-⋅=4001)400(1122. 当l =184.7, δ l =0.1时,00056.01.04001)4007.184(1122≈⋅⋅-⋅=αδ(弧度).总 习 题 二1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x )在点x 0可导是f (x )在点x 0连续的____________条件. f (x )在点x 0连续是f (x )在点x 0可导的____________条件.(2) f (x )在点x 0的左导数f -'(x 0)及右导数f +'(x 0)都存在且相等是f (x )在点x 0可导的_______条件.(3) f (x )在点x 0可导是f (x )在点x 0可微的____________条件. 解 (1)充分, 必要. (2) 充分必要. (3) 充分必要.2. 选择下述题中给出的四个结论中一个正确的结论:设f (x )在x =a 的某个邻域内有定义, 则f (x )在x =a 处可导的一个充分条件是( ).(A ))]()1([lim a f ha f h h -++∞→存在; (B )hh a f h a f h )()2(lim0+-+→存在;(C )hh a f h a f h 2)()(lim 0--+→存在; (D )hh a f a f h )()(lim 0--→存在. 解 正确结论是D . 提示:xa f x a f h a f h a f h h a f a f x h h ∆-∆+=---=--→∆→→)()(lim )()(lim )()(lim000(∆x =-h ). 3. 设有一根细棒, 取棒的一端作为原点, 棒上任一点的做标x 为, 于是分布在区间[0, x ]上细棒的质量m 是x 的函数m =m (x ),应怎样确定细棒在点x 0处的线密度(对于均匀细棒来说, 单位长度细棒的质量叫做这细棒的线密度)?解 ∆m =m (x 0+∆x )-m (x 0).在区间[x 0, x 0+∆x ]上的平均线密度为xx m x x m xm ∆-∆+=∆∆=)()(00ρ.于是, 在点x 0处的线密度为)()()(lim lim 0000x m xx m x x m xm x x '=∆-∆+=∆∆=→∆→∆ρ.4. 根据导数的定义, 求x x f 1)(=的导数. 解20001)(1lim)(lim 11lim x x x x x x x x x x x x x y x x x -=∆+-=∆+∆∆-=∆-∆+='→∆→∆→∆.5. 求下列函数f (x )的f -'(0)及f +'(0),又f '(0)是否存在?(1)⎩⎨⎧≥+<=0)1ln(0sin )(x x x x x f ;(2)⎪⎩⎪⎨⎧=≠+=0 00 1)(1x x e x x f x.解 (1)因为10sin lim 0)0()(lim )0(00=-=--='--→→-xx x f x f f x x ,1ln )1ln(lim 0)1ln(lim 0)0()(lim )0(1000==+=-+=--='+++→→→+e x xx x f x f f x x x x ,而且f -'(0) = f +'(0), 所以f '(0)存在, 且f '(0)=1. (2)因为111lim 01lim 0)0()(lim )0(10100=+=--+=--='---→→→-xx xx x e x e x x f x f f ,011lim 001lim 0)0()(lim )0(10100=+=--+=--='+++→→→+xx xx x e x e x x f x f f ,而f -'(0)≠ f +'(0), 所以f '(0)不存在.6. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin )(x x xx x f 在x =0处的连续性与可导性. 解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续;因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim000→→→=-=-不存在, 所以f (x )在x =0处不可导.7. 求下列函数的导数:(1) y =arcsin(sin x ); (2)xx y -+=11arctan ;(3)x x x y tan ln cos 2tan ln ⋅-=;(4))1ln(2x x e e y ++=;(5)x x y =(x >0) . 解(1)|cos |cos cos sin 11)(sin sin 1122x x x xx x y =⋅-='⋅-='.(2)222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(3))(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(4)xxx x x x x x x x x e e e e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='. (5)x xy ln 1ln =, x x x x y y 11ln 112⋅+-=', )ln 1()1ln 1(222x x x x x x x y xx -=+-='.8. 求下列函数的二阶导数: (1)y =cos 2x ⋅ln x ; (2)21x xy -=.解 (1)xx x x xx x x x y 1cos ln 2sin 1cos ln sin cos 222⋅+⋅-=⋅+⋅-=',221cos 1sin cos 212sin ln 2cos 2x x x x x x x x x y ⋅-⋅-⋅-⋅-='' 22cos2sin 2ln 2cos 2xx x x x x --⋅-=.(2)232222)1(111--=---⋅--='x xx xx x y 52252)1(3)2()1(23x x x x y -=-⋅--=''-.9. 求下列函数的n 阶导数: (1)m x y +=1; (2)xx y +-=11.解 (1)m mx x y 1)1(1+=+=,11)1(1-+='m x m y , 21)1)(11(1-+-=''m x m m y , 31)1)(21)(11(1-+--='''m x mm m y , ⋅ ⋅ ⋅,n m n x n mm m m y-++-⋅⋅⋅--=1)()1)(11( )21)(11(1.(2)1)1(2111-++-=+-=x xx y ,y '=2(-1)(1+x )-2, y ''=2(-1)(-2)(1+x )-3, y '''=2(-1)(-2)(-3)(1+x )-4, ⋅ ⋅ ⋅, 1)1()()1(!)1(2)1)(( )3)(2)(1(2++-+-=+-⋅⋅⋅---=n n n n x n x n y.10. 设函数y =y (x )由方程e y +xy =e 所确定, 求y ''(0).解 方程两边求导得e y y '+y +xy '=0, —— (1) 于是 ye x y y +-=';2)()1()()(y y y y e x y e y e x y e x y y +'+-+'-='+-=''. ——(2)当x =0时, 由原方程得y (0)=1, 由(1)式得ey 1)0(-=', 由(2)式得21)0(ey =''. 11. 求下列由参数方程所确定的函数的一阶导数dxdy及二阶导数22dxyd :(1)⎩⎨⎧==θθ33sin cos a y a x ;(2)⎩⎨⎧=+=ty t x arctan 1ln 2.解(1)θθθθθθθtan )sin (cos 3cos sin 3)cos ()sin (2233-=-=''=a a a a dx dy ,θθθθθθθcsc sec 31sin cos 3sec )cos ()tan (422322⋅=--=''-=aa a dx y d .(2)tt t t t t dx dy 1111]1[ln )(arctan 222=++='+'=,3222222111]1[ln )1(t t t t t t t dx y d +-=+-='+'=.12.求曲线⎩⎨⎧==-ttey e x 2在t =0相的点处的切线方程及法线方程.解t t tt t ee e e e dx dy 2212)2()(-=-=''=--.当t =0时,21-=dx dy, x =2, y =1. 所求切线的方程为)2(211--=-x y , 即x +2y -4=0;所求法线的方程为y -1=2(x -2).13. 甲船以6km/h 的速率向东行驶, 乙船以8km/h 的速率向南行驶, 在中午十二点正, 乙船位于甲船之北16km 处. 问下午一点正两船相离的速率为多少?解 设从中午十二点开始, 经过t 小时, 两船之间的距离为S , 则有 S 2=(16-8t )2+(6t )2, t t dtdS S 72)816(162+--=,St t dt dS 272)816(16+--=. 当t =1时, S =10,8.220721281-=+-==t dtdS (km/h),即下午一点正两船相离的速度为-2.8km/h .14. 利用函数的微分代替函数的增量求302.1的近似值. 解 设3)(x x f =, 则有x x f f x f ∆=∆'≈-∆+31)1()1()1(, 或x x f ∆+≈∆+311)1(于是007.102.031102.0102.133=⋅+=+=.15. 已知单摆的振动周期gl T π2=, 其中g =980 cm/s 2, l 为摆长(单位为cm). 设原摆长为20cm , 为使周期T 增大0.05s , 摆长约需加长多少? 解 因为L gLdT T ∆⋅=≈∆π,所以23.205.020=≈∆=L gLL π(cm),即摆长约需加长2.23cm .习题3-11. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cotξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性.解 因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点ξ∈(0, 1), 使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x .因此确有)1 ,0(12135∈±=ξ, 使01)0()1()(--='y y y ξ. 3. 对函数f (x )=sin x 及F (x )=x +cos x 在区间]2,0[π上验证柯西中值定理的正确性.解 因为f (x )=sin x 及F (x )=x +cos x 在区间]2,0[π上连续, 在)2,0(π可导, 且F '(x )=1-sin x 在)2,0(π内不为0, 所以由柯西中值定理知至少存在一点)2,0(πξ∈,使得)()()0()2()0()2(ξξππF f F F f f ''=--.令)0()2()0()2()()(F F f f x F x f --=''ππ, 即22sin 1cos -=-πx x .化简得14)2(8sin 2-+-=πx . 易证114)2(802<-+-<π, 所以14)2(8sin 2-+-=πx 在)2,0(π内有解, 即确实存在)2,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--.4. 试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明 因为函数y =px 2+qx +r 在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 由拉格朗日中值定理, 至少存在一点ξ∈(a , b ), 使得y (b )-y (a )=y '(ξ)(b -a ), 即(pb 2+qb +r )-(pa 2+qa +r )=(2p ξ+q )(b -a ). 化间上式得p (b -a )(b +a )=2p ξ (b -a ), 故2b a +=ξ.5. 不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在ξ1∈(1, 2), 使f '(ξ1)=0. 同理存在ξ2∈(2, 3), 使f '(ξ2)=0; 存在ξ3∈(3, 4), 使f '(ξ3)=0. 显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根. 注意到方程f '(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f '(x )=0的全部根. 6. 证明恒等式:2arccos arcsin π=+x x (-1≤x ≤1).证明 设f (x )= arcsin x +arccos x . 因为01111)(22≡---='x x x f ,所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x .7. 若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0,x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.8. 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明:在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0.又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0. 9. 设a >b >0, n >1, 证明: nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明 设f (x )=x n , 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即a n -b n =n ξ n -1(a -b ). 因为 nb n -1(a -b )<n ξ n -1(a -b )< na n -1(a -b ), 所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) . 10. 设a >b >0, 证明:bb a b a a b a -<<-ln .证明 设f (x )=ln x , 则f (x )在区间[b , a ]上连续, 在区间(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即)(1ln ln b a b a -=-ξ.因为b <ξ<a , 所以)(1ln ln )(1b a bb a b a a -<-<-,即bb a ba ab a -<<-ln .11. 证明下列不等式: (1)|arctan a -arctan b |≤|a -b |; (2)当x >1时, e x >e ⋅x .证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 f (b )-f (a )=f '(ξ)(b -a ), 即)(11arctan arctan 2a b a b -+=-ξ,所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ, 即|arctan a -arctan b |≤|a -b |.(2)设f (x )=e x , 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在ξ∈(1, x ), 使f (x )-f (1)=f '(ξ)(x -1), 即 e x -e =e ξ (x -1). 因为ξ >1, 所以e x -e =e ξ (x -1)>e (x -1), 即e x >e ⋅x . 12. 证明方程x 5+x -1=0只有一个正根.证明 设f (x )=x 5+x -1, 则f (x )是[0, +∞)内的连续函数.因为f (0)=-1, f (1)=1, f (0)f (1)<0, 所以函数在(0, 1)内至少有一个零点, 即x 5+x -1=0至少有一个正根.假如方程至少有两个正根, 则由罗尔定理, f '(x )存在零点, 但f '(x )=5x 4+1≠0, 矛盾. 这说明方程只能有一个正根.13. 设f (x )、g (x )在[a , b ]上连续, 在(a , b )内可导, 证明在(a , b )内有一点ξ, 使)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.解 设)()()()()(x g a gx f a f x =ϕ, 则ϕ(x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 ϕ(b )-ϕ(a )=ϕ'(ξ)(b -a ), 即 ⎥⎦⎤⎢⎣⎡''+''-=-)()()()()(])([)(])([)()()()()()()()()(ξξξξg a g f a f g a g f a f a b a g a g a f a f b g a g b f a f .因此)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.14. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ,所以在(-∞, +∞)内ϕ(x )为常数. 因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x .15. 设函数y =f (x )在x =0的某邻域内具有n 阶导数, 且f (0)=f '(0)= ⋅ ⋅ ⋅ =f (n -1)(0)=0, 试用柯西中值定理证明:!)()()(n x f x x f n nθ= (0<θ<1).证明 根据柯西中值定理 111)(0)0()()(-'=--=n n n f x f x f x x f ξξ(ξ1介于0与x 之间),2221111111)1()(0)0()()(-----''=⋅-'-'='n n n n n n f n n f f n f ξξξξξξ(ξ2介于0与ξ1之间),3332222222)2)(1()(0)1()1()0()()1()(------'''=⋅---''-''=-''n n n n n n n f n n n n f f n n f ξξξξξξ(ξ3介于0与ξ2之间),依次下去可得 !)(02 )1(2 )1()0()(2 )1()()(1)1(1)1(11)1(n f n n n n f f n n f n n n n n n n n n ξξξξξ=⋅⋅⋅⋅--⋅⋅⋅⋅--=⋅⋅⋅⋅--------(ξn 介于0与ξn -1之间), 所以!)()()(n f x x f n n nξ=.由于ξn 可以表示为ξn =θ x (0<θ<1), 所以!)()()(n x f x x f n nθ= (0<θ<1).习题3-21. 用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→; (2)x ee x x x sin lim 0-→-; (3)a x a x a x --→sin sin lim ;(4)xx x 5tan 3sin lim π→; (5)22)2(sin ln limx x x -→ππ;(6)n n mma xax a x --→lim ;(7)xx x 2tan ln 7tan ln lim0+→; (8)xx x 3tan tan lim2π→; (9)xarc x x cot )11ln(lim++∞→;(10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→; (12)2120lim x x e x →;(13))1112(lim 21---→x x x ;(14)x x xa )1(lim +∞→; (15)x x x sin 0lim+→; (16)x x xtan 0)1(lim +→. 解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x .(2)2cos lim sin lim00=+=--→-→x e e x e e x x x x x x . (3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ.(6)n m n m n m a x n n m m a xa n m namx nx mx a x a x -----→→===--1111lim lim .(7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x 177sec 22sec lim 277tan 2tan lim 272200=⋅⋅==+→+→x x x x x x .(8)xx x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅=)sin (cos 23)3sin (3cos 2lim 312x x x x x -⋅-=→πxx x cos 3cos lim 2π→-=3sin 3sin 3lim 2=---=→xx x π.(9)22221lim 11)1(111lim cot arc )11ln(lim xx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→122lim 212lim ==+=+∞→+∞→x x x x . (10)x x x x x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1sin lim )sin (cos 22lim00==--=→→xx x x x x x . (注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x .(12)+∞====+∞→+∞→→→1lim lim 1lim lim 21012022t t t t x x x x e t e x e e x (注: 当x →0时, +∞→=21xt . (13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x .(14)因为)1ln(lim )1(limx ax x x x e xa +∞→∞→=+,而221)(11lim 1)1ln(lim )1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→ a a a x ax x x ==+=∞→∞→1lim lim , 所以ax a x x x x e e xa ==++∞→∞→)1ln (l i m )1(l i m ..(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=, 而 xx x x x x x x x x cot csc 1lim csc ln lim ln sin lim 000⋅-==+→+→+→ 0cos sin lim 20=-=+→xx x x ,所以1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=, 而 xx x x x x x x x 2000csc 1limcot ln lim ln tan lim -==+→+→+→ 0sin lim 20=-=+→xx x , 所以 1l i m )1(l i m 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限xx x x sin lim+∞→存在, 但不能用洛必达法则得出. 解1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则.3.验证极限xx x x sin 1sin lim20→存在, 但不能用洛必达法则得出.解0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x , 极限xx x x sin 1sin lim20→是存在的.但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则.4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0])1([)(2111x e x e x x f x x 在点x =0处的连续性.解 21)0(-=e f ,)0(lim)(lim 2121f e e x f x x ===---→-→,因为 ]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x x x x x e ex x f ,而 200)1ln(lim]1)1ln(1[1lim x xx x x x x x -+=-++→+→ 21)1(21lim 2111lim00-=+-=-+=+→+→x x x x x , 所以]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x xx x x x x x e ex x f)0(21f e ==-.因此f (x )在点x =0处连续. 习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f=-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4. 2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f'''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+= =1-9x +30x 3-45x 3+30x 4-9x 5+x 6. 3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为 24)4(==f ,4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f ,328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1).4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , nn nn xn x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1),。

大一高数下习题册答案解析

大一高数下习题册答案解析

大一高数下习题册答案解析大一高数下习题册答案解析大学的高等数学课程对于许多大一新生来说是一个巨大的挑战。

高数下学期的习题册更是让许多同学感到头疼。

为了帮助大家更好地理解和掌握高数下习题册中的问题,本文将对一些典型题目进行解析和讲解。

一、函数与极限在高数下学期的习题册中,函数与极限是一个重要的章节。

其中,极限的概念和性质是理解整个章节的关键。

在习题册中,经常会出现一些求极限的问题,下面我们就以一个典型的例子来进行解析。

例题:求极限lim(x→0) (sinx/x)。

解析:首先,我们可以观察到当x趋近于0时,分子sinx也趋近于0,而分母x 也趋近于0。

这个极限的形式是0/0型,我们可以利用洛必达法则来求解。

根据洛必达法则,我们可以对分子和分母同时求导。

对于分子sinx,它的导数是cosx;对于分母x,它的导数是1。

所以,原极限可以转化为求lim(x→0) (cosx/1)。

再次观察新的极限,我们可以发现当x趋近于0时,分子cosx也趋近于1,分母1保持不变。

所以最终的极限结果是1。

二、导数与微分导数与微分是高数下学期习题册中的另一个重要章节。

在这个章节中,我们需要掌握导数的定义和性质,以及一些常见函数的导数公式。

下面我们以一个例题来进行解析。

例题:求函数f(x) = 3x^2 - 2x + 1的导数。

解析:对于这个函数,我们可以使用导数的定义来求解。

导数的定义是函数在某一点的变化率,可以通过求函数的极限来得到。

对于函数f(x) = 3x^2 - 2x + 1,我们可以先求出它的变化率。

设x1和x2是两个不同的点,那么函数在这两个点的变化率为:Δy/Δx = [f(x2) - f(x1)] / (x2 - x1)将函数f(x) = 3x^2 - 2x + 1代入上式,我们可以得到:Δy/Δx = [3x2^2 - 2x2 + 1 - (3x1^2 - 2x1 + 1)] / (x2 - x1)化简上式,我们得到:Δy/Δx = 3(x2 + x1) - 2当Δx趋近于0时,上式的极限就是函数f(x)在点x处的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档