补偿电容的正常电流
电容的额定有效电流
电容的额定有效电流1. 引言电容是电子元件中常见的被动元件之一,用于存储和释放电荷。
在实际应用中,电容器需要承受一定的电流,这就需要额定有效电流(Rated Effective Current)的定义和考虑。
本文将详细介绍电容的额定有效电流及其相关知识。
2. 电容器的基本概念电容器是一种由两个导体(通常是金属板)之间夹带或涂覆介质(如氧化铝)而成的元件。
两个导体之间的介质实际上就是电容器的极板。
当电容器接入电路时,极板上的电荷会在导体间来回移动,形成交流电流。
3. 电容器的额定电压和额定容量在选购电容器时,会经常看到电容器的额定电压和额定容量两个参数。
额定电压指的是电容器能够正常工作的最大电压值,超过该值可能会导致电容器损坏。
额定容量则是指电容器能够存储的最大电荷量。
4. 电容器的额定有效电流除了额定电压和额定容量之外,电容器还有一个重要的参数,即额定有效电流。
额定有效电流指的是在特定工作条件下,电容器能够承受的最大有效电流。
有效电流是指在周期性变化的电流中,具有相同大小的直流电流所产生的相同功率。
使用电容器时,特别是在高频电路中,电容器将承受周期性变化的电流。
超过额定有效电流的电流值可能会导致电容器过热、损坏甚至爆炸。
因此,了解和考虑电容器的额定有效电流是非常重要的。
5. 电容器的额定有效电流的确定方式电容器的额定有效电流是由制造商通过实验和测试确定的。
制造商会在产品的规格书中给出电容器的额定有效电流值。
电容器的额定有效电流会受到多种因素的影响,包括:•温度:电容器工作时的温度升高会导致电容器的额定有效电流下降。
•频率:电容器的额定有效电流通常在特定频率下给出,超过该频率可能会使额定有效电流下降。
•导体材料:电容器的导体材料也会影响其额定有效电流,不同材料导体的额定有效电流可能不同。
在实际应用中,为了确保电容器的正常工作和使用寿命,需要比较额定有效电流和实际电路中的电流是否相符。
通常情况下,实际电路中的电流应小于或等于电容器的额定有效电流,以避免电容器过载。
10Kⅴ无功电容补偿标准
10Kⅴ无功电容补偿标准有关10kV线路无功补偿系统设计的方法,包括补偿点及补偿容量的确定、补偿位置确定、无功补偿技术要求,以及10kV线路无功补偿实例等,一起来了解下。
10kV线路无功补偿系统设计一、补偿点及补偿容量的确定为求出在满足运行约束条件下的最优无功补偿容量及位置,本文以年支出费用最小为目标函数,以潮流方程约束为等式约束,以负荷电压、补偿容量等运行限量为不等式约束。
年支出费用包括补偿设备的年运行维护费、投资的回收、补偿电容的有功损耗和补偿后10kV网线损而支付的能损费用。
总的有功损耗由两部分组成:(1)因有功电流的流动产生,(2)由无功电流的流动产生。
通过在线路上安装补偿电,能够减小无功电流,从而减小无功电流的流动引起的有功损耗。
对网络中除电源节点外的所有节点实施此算法,按照每个节点补偿最佳容量后降低的有功线损,由大到小排列,即可得候选的补偿节点。
此系统利用遗传算法对得到候选的补偿节点来求解补偿节点及补偿容量,补偿点只能选在节点处。
而这些节点有可能不是最佳补偿点,为此系统提出基于非节点的补偿算法,即利用遗传算法并行寻优的特点,在每个补偿节点的上接和下接支路中,按电线杆的位置,增加相应节点(称为非节点),以节点与非节点的电气距离作为控制变量集,再利用遗传算法求出最佳补偿位置及补偿容量。
通过算例分析显示在不增加无功补偿设备费用的前提下,这种“非节点”补偿方式能进一步提高电压水平及降低线损。
二、补偿位置确定无功补偿装置安装地点的选择应符合无功就地平衡的原则,尽可能减少主干线上的无功电流为目标。
不同电组最佳装设位置的计算公式如下:Li=(2i/2n+1)L式中,L为线路长度,n为电组数,Li为第i组电的安装位置,i=1……n通过测算,根据实践中经验,一条线一台无功补偿柜一般安装在线路负荷三分之二处。
通过合理配置无功补偿容量,选择电最佳装设地点,能改善电压质量,还能降低线路损耗。
一般来讲,配电线路上电力电安装组数越多,降损效果越明显,但相应地增加了运行维护的工作量,同时也增加了补偿设备的投资成本上升。
低压配电柜中的电容补偿柜的计算电流
低压配电柜中的电容补偿柜的计算电流电容器(电动机)容量(S)÷高压侧或低压侧电压(KV)÷√3=额定电流(A)1路12Kvar电容配25A电容接触器,25A D型微断,1路18Kvar电容配32A电容接触器,40A D型微断,1路20Kvar电容配43A电容接触器,50A D型微断,1路30Kvar电容配63A电容接触器,60A D型微断,1路40Kvar电容配95A电容接触器,100A D型微断,50Kvar以下100A刀开,100Kvar以下200A刀开,200Kvar以下400A刀开,300Kvar以下600A刀开,变压器自身的无功功率,由于变压器本身是由线圈组成的,变压器自身的无功也不少,需要另加一部分电力电容器来补偿,补偿量大小与变压器的大小有关,一般为变压器容量的15%-30%。
无功功率单位为kvar(千乏)。
电功率分为有功功率和无功功率,有功功率就是指电能转化为热能或者机械能等形式被人们使用或消耗的能量,有功功率单位为kw 。
无功功率指电场能和磁场能相互转化的那部分能量,它的存在使电流与电压产生相位偏差,为了区别于有功功率就用了这么个单位。
电网中由于有大功率电机的存在,使得其总体呈感性,所以常常在电网中引入大功率无功补偿器(其实就是大电容),使电网近似于纯阻性,Kvar就常用在这作为无功补偿电容器的容量的单位。
kvar(千乏)和电容器容量的换算公式为(指三相补偿电容器):Q=√3×U×II=0.314×C×U/√3C=Q/0.314×U×U上式中Q为补偿容量,单位为Kvar,U为运行电压,单位为KV,I为补偿电流,单位为A,C为电容值,单位为uF。
式中0.314=2πf/1000。
例如:一补偿电容铭牌如下:型号:BZMJ0.4-10-3 (3三相补偿电容器)。
额定电压:0.4KV额定容量:10Kvar ?额定频率:50Hz额定电容:199uF (指总电容器量,即相当于3个电容器的容量)。
10kv电容补偿
10kv电容补偿附件⼀1、使⽤环境条件:海拔⾼度4400(5100)m 最⼤风速30m/s最⾼温度+35℃最低温度-20℃最⼤⽇温差80K最⼤相对湿度40%⽇照0.1W/cm风速0.5m/S地震烈度8污秽等级Ⅱ级3、使⽤环境3.1 环境温度:30℃3.2 最⼤⽇温差:80k3.3 最⾼⽇平均温度:25℃3.4 海拔⾼度:4200(5100)m3.5 环境相对湿度:40%3.6 运输、贮存最低湿度:80%3.7 安装⽅式:户内4、技术参数4.1 系统标准电压:10.5KV4.2 最⾼⼯作电压:12KV4.3 额定频率:50Hz4.4 电抗率:6%4.5 相数:34.6 功率因数:0.95以上5、装置设计结构⾼压动态⽆功功率补偿装置由可控硅阀控制系统、⾼压并联电容器组、⼲式铁芯电抗器、电压互感器、避雷器和附属设备组成,电容器组由可控硅阀控制系统来投切。
成套装置采⽤柜式结构,能够⾃动补偿系统⽆功功率,有显著的节能、稳压和增容效果。
⾼压SVG-10/1200kvar动态⽆功补偿装置两套。
单套设备由五⾯柜组成。
其中控制柜⼀台,阀组投切柜⼀台、电容柜三台,分成3组:容量为150、450、600kvar;投切由可控硅阀控制系统根据负载变化⾃动投切,保证补偿精度,改善系统电能质量。
6、⾼压⽆功功率补偿装置技术条件6.1 能够根据电⽹系统⽆功功率⼤⼩和电压控制要求⾃动投切与调节,不需要⼈⼯⼲预,快速动态补偿⽆功功率,提⾼系统功率因数,保证系统功率因数在0.95以上。
6.2 采⽤全数字化智能控制系统,由微机监测、智能调节。
6.3 能够快速响应,⾃动投切与调节,不需要⼈⼯⼲预。
6.4应该采⽤电容器专⽤⾼压喷逐式熔断器作为短路保护、确保设备安全运⾏。
6.5 采⽤串联电抗器,减⼩合闸涌流,保护电容器组可靠运⾏。
6.6 抑制系统谐波,保证设备正常运⾏。
6.7 结构要求设计合理,使⽤⽅便,可⼿动操作,也可与负荷同步投切,免维护运⾏。
电流镜运放 补偿电容
电流镜运放补偿电容
一、直流偏置补偿
直流偏置补偿是为了使运放输出电流更加准确和稳定。
补偿电容可以通过减小偏置电压来增加电流输出精度,从而降低失调电压的影响。
同时,适当的补偿电容也可以减小沟道极化的影响,提高电流的线性度。
二、交流增益补偿
交流增益补偿是提高运放交流增益的一种方法。
在运放电路中,由于各种因素的影响,如沟道极化、源极电阻等,会导致交流增益下降。
通过加入适当的补偿电容,可以优化运放电路的性能,提高交流增益。
三、频率响应补偿
频率响应补偿是为了改善运放的频率响应特性。
在高频段,运放的频率响应会下降,导致高频信号的失真。
通过加入适当的补偿电容,可以优化运放的频率响应特性,提高高频信号的保真度。
四、相位补偿
相位补偿是为了改善运放的相位响应特性。
在相位方面,运放会受到沟道极化、源极电阻等因素的影响,导致相位滞后。
通过加入适当的补偿电容,可以优化运放的相位响应特性,减小相位滞后。
五、噪声和失真补偿
噪声和失真补偿是为了减小运放输出信号的噪声和失真。
在运放电路中,由于各种因素的影响,如沟道热噪声、散射噪声等,会导致输出信号的噪声和失真增加。
通过加入适当的补偿电容,可以优化运放电路的性能,减小噪声和失真。
总之,电流镜运放补偿电容对于提高运放性能具有重要的作用。
通过合理的选择和设计补偿电容,可以优化运放的直流偏置、交流增益、频率响应、相位响应以及噪声和失真等性能指标。
电容补偿计算例题 解答
2、 20kvar 20 路电容器额定电流? 解: I Qn
3、 补偿前额定容量?变压器负荷率?
S1 3I1U n 3 680 0.38 447.56(kVA)
解:
1
S1 447.56 44.76(%) Sn 1000
4、 补偿后额定容量?变压器负荷率?
S 2 3I 2U n 3 550 0.38 362(kVA)
今天接到成套厂一个电话,他说遇到这样的状况 变压器 1000kVA 的,电容柜 20kvar 20 路 补偿前:总柜电流 680A 左右,功率因数 0.74 补偿后:20 路全投,总柜电流 550A,功率因数 0.99,跟供电局远程抄表的终端一致 问题出来了: 1. 从补偿前来算,需要补偿的无功电流为 680X(1-0.74)=170A;补偿后总柜下降的电流 150A,差不多 2. 电容柜 20 路 20kvar 的电容投入了 350A(可能电容容量不足,或有部分坏了,电容柜上 电流表显示 350A)那么电容柜投进去的电流比总柜下降的电流还多 200A,这 200A 哪 里去了?还是有什么其他问题? 请解答以下问题: 1、 变压器额定电流? 解: I n
2 arccos(0.99) 8.11
7、 补偿后电容器电流?
2 SQ Qn PQ2 4002 28.632 401.02(kVA)
IQ
SQ 3U n
401.02 578.83( A) 3 0.4
SQ 3U n I Q 3 0.4 350 242.49(kVA)
解:
1
S1 471.1 0.4711 47.1(%) S n 1000
4、 补偿后额定容量?变压器负荷率?
10kV线路电容电流补偿方式分析
10kV线路电容电流补偿方式分析发表时间:2019-07-15T12:14:55.357Z 来源:《中国西部科技》2019年第9期作者:陈灵[导读] 在社会经济快速发展背景下,社会生产生活对于电力能源的需求量也在持续增加,从而导致电力线路日益复杂。
因此在线路运行期间为了防止产生故障问题,需要合理应用电容电流补偿方式。
此次研究主要是探讨分析了10kV线路电容电流补偿方式,希望能够对相关人员起到参考性价值。
广东其壹科技股份有限公司电缆相间和相对地电容比较大,在正常运行以及故障条件下都会存在大电容电流,尤其对于轻载长电缆线路来说。
电容电流问题会加大线路安全隐患,为了补偿电力系统的电容电流,就必须应用有效技术措施。
在10kV线路运行期间,应当注重补偿效果,以此维护供电可靠性,减少设备损耗,从根本上提升系统功率因数,加强供电质量。
1、10kV线路保护存在的问题通常情况下,10kV线路长度在1km左右,其中部分线路为双电源。
在线路运行期间常常配置两段式电压速断,限时过流保护以及电流闭锁。
对于10kV线路工程来说,仅仅通过以上保护措施无法满足保护标准,并且对于Y型线路来说,不能采用整定计算方式实现保护效果。
对于地方10kV线路来说,由于会受到环境以及地理影响,导致电源点与负荷区域之间的位置比较远,电网运行过程中,会增加出线开关分闸机。
若将消弧线圈设置在电站中,当某电站发生跳闸施工之后,会导致消弧线圈退出运行,此时就会影响系统补偿效果。
因此消弧线圈不能设置在水电站。
由于10kV线路在欠补偿状态下极易产生谐振故障,所以必须注重电容电流补偿。
电网10kV系统不能集中进行电容电流补偿,因此无法将消弧线圈设置在变电站中。
在出现单相接地故障之后,接地电弧不会自动熄灭,此时就会导致相间短路。
电弧接地时会加大相电压,损坏电力系统中的薄弱设备,还会影响电力系统和电力设备运行安全性和稳定性。
所以,日常检修与维护期间需要合理应用补偿技术改善此类问题,可以通过电流补偿和电压补偿方式处理,以此消除电容电流的不利影响。
补偿电容的作用和工作原理
电容补偿就是无功补偿或者功率因数补偿。
电力系统的用电设备在使用时会产生无功功率,而且通常是电感性的,它会使电源的容量使用效率降低,而通过在系统中适当地增加电容的方式就可以得以改善。
电力电容补偿也称功率因数补偿,(电压补偿,电流补偿,相位补偿的综合)。
作用:1、电容在交流电路里可将电压维持在较高的平均值。
近峰值,高充低放,可改善增加电路电压的稳定性。
2、对大电流负载的突发启动给予电流补偿,电力补偿电容组可提供巨大的瞬间电流,可减少对电网的冲击。
3、电路里大量的感性负载会使电网的相位产生偏差,(感性元件会使交流电流相位滞后,电压相位超前90度),而电容在电路里的特性与电感正好相反,起补偿作用。
原理:在交流电路中,电阻、电感、电容元件的电压、电流的相位特点为在纯电阻电路中,电流与电压同相位;在纯电容电路中电流超前电压90°;在纯电感电路中电流滞后电压90°。
从供电角度,理想的负载是P与S相等,功率因数cosφ为1。
此时的供电设备的利用率为最高。
而在实际上是不可能的,只有假设系统中的负荷,全部为电阻性才有这种可能。
电路中的大多数用电负荷设备的性质都为电感性,这就造成系统总电流滞后电压,使得在功率因数三角形中,无功Q 边加大,则功率因数降低,供电设备的效率下降。
功率三角形是一个直角三角形,用cosφ(即φ角的余弦)来反映用电质量的高低,大量的感性负载使得在电力系统中,从发电一直到用电的电力设备没有得到充分的应用,相当一部分电能,经发、输、变、配电系统与用户设备之间进行往返交换。
从另一个方面来认识无功功率,无功功率并非无用,它是感性设备建立磁场的必要条件,没有无功功率,我们的变压器和电动机就无法正常工作。
因此,设法解决减少无功功率才是正解。
实际应用中,电容电流与电感电流相位差为180°称作互为反相,可以利用这一互补特性,在配电系统中并联相应数量的电容器。
用超前于电压的无功容性电流抵消滞后于电压的无功感性电流,使系统中的有功功率成分增加,cosφ得到提高,实现了无功电流在系统内部设备之间互相交换。
315kva补偿电容计算(3篇)
第1篇摘要:本文针对315kVA变压器的补偿电容计算进行了详细的阐述,包括补偿电容的原理、计算方法以及注意事项。
通过对补偿电容的计算,可以提高电力系统的功率因数,降低线路损耗,提高电力设备的运行效率。
一、引言随着我国经济的快速发展,电力需求日益增长。
然而,在电力系统中,由于负载性质和运行方式等原因,导致大量无功功率的产生,造成线路损耗增大、设备运行效率降低等问题。
为了解决这些问题,提高电力系统的功率因数,补偿电容作为一种有效手段,被广泛应用于电力系统中。
本文将针对315kVA变压器的补偿电容计算进行详细阐述。
二、补偿电容原理补偿电容是一种无功补偿装置,其主要作用是在电力系统中补偿无功功率,提高功率因数。
补偿电容的工作原理是:当负载电流中含有无功成分时,通过在电路中接入补偿电容,使无功电流在电容上得到补偿,从而降低线路中的无功电流,提高功率因数。
三、补偿电容计算方法1. 确定补偿电容的额定电压补偿电容的额定电压应与变压器高压侧的电压相匹配。
对于315kVA变压器,高压侧电压一般为10kV,因此补偿电容的额定电压也应为10kV。
2. 计算补偿电容的额定电流补偿电容的额定电流应根据负载的无功功率和功率因数角计算得出。
计算公式如下:Ic = Q / (U cosφ)式中,Ic为补偿电容的额定电流;Q为负载的无功功率;U为补偿电容的额定电压;cosφ为负载的功率因数。
3. 计算补偿电容的额定容量补偿电容的额定容量应根据负载的无功功率和功率因数角计算得出。
计算公式如下:Sc = Q / (U cosφ)式中,Sc为补偿电容的额定容量;Q为负载的无功功率;U为补偿电容的额定电压;cosφ为负载的功率因数。
4. 选择合适的补偿电容根据计算出的补偿电容的额定电压、额定电流和额定容量,从市场上选择合适的补偿电容产品。
四、补偿电容计算实例以315kVA变压器为例,假设负载的无功功率为150kvar,功率因数角为30°。
无功补偿计算
1μF电容、额定电压380v时(三相),无功容量是:
Q = 0.045Kvar
1μF电容、额定电压10Kv时(三相),无功容量是:
Q = 31.4Kvar
tgφ1=1.020(查函数表得)
cosφ2=0.95(补偿后)
tgφ2=0.3287(查函数表得)
Q = 1×(1.020-0.3287)≈0.69(Kvar)
视在功率:S=P/cosφ
电容器的额定电流计算:I=Qc/(1.732×U) 式中:Qc---电容器容量(Kvar) U---电容器额定电压(KV) I---电容器额定电流(A) 熔断器的熔丝额定电流选择,不应小于电容器额定电流的1.43倍,并不宜大于额定电流的1.55倍。
例如: 以有功负载1KW,功率因数从0.7提高到0.95时,需要补偿的无功功率:
即: Q = P×(tgφ1-tgφ2)
Q-无功功率(Kvar) ; P-有功功率(Kw) ; tgφ1-补偿前功率因数角的正切值; tgφ2-补偿后功率因数角的正切值。
cosφ1=0.7(补偿前)
C = 200×1000÷(220×220×314)=0.01316 F
假设三相系统补偿容量为200Kvar ,线电压为380V,频率 f = 50HZ,三只电容器连接
则每只电容 C = Q/(3×U×U×ω)
即 C = 200×1000÷(3×380Biblioteka 380×314)=0.00147 F
三角函数里对锐角的正弦、余弦、正切、余切进行了定义:
正弦(sin)是对边与斜边的比;
余弦(cos)是邻边与斜边的比;
正切(tan)是对边与邻边的比;(现在用tan,以前用tg)
补偿电容的设置
补偿电容的设置一. 补偿电容的作用及原理(一) 保证轨道电路传输距离由于60kg重1435m轨距的钢轨电感为1.3礖/m。
同时每米约有几个pf点容。
对于1700~2300Hz的移频信号,钢轨呈较高的感抗值。
该值大大高于道碴电阻时,对轨道电路信号的传输产生较大的影响。
为此,采取分段加补偿电容的方法,减弱电感的影响。
其补偿原理可理解为将每补偿段钢轨L与电容C视为串联谐振,以此在补偿段入口端(A、B)取得一个趋于电阻性负载R。
并在出口端(C、D)取得一个较高的输出电平。
过去为使“补偿”工作简化,曾采取每100米补偿一次,根据1.5Ω•km 道碴电阻、兼顾1700~2600Hz载频,选取补偿电容容量为33礷,轨道电路两端电容设置采用“半截距法”。
以上方式对保证UM71无绝缘轨道电路传输长度有一定的效果。
结合国情,我国轨道电路道碴电阻标准已改为1.0Ω•km,而且南方隧道及特殊线路都存在低道碴电阻的情况,一般认为补偿电容容量与载频频率、道碴电阻低端数值、电容设置方式、设置密度、轨道电路传输作用要求等有关。
一般载频频率低,补偿电容容量大;最小道碴电阻低,补偿电容容量大;轨道电路只考虑加大机车信号入口电流,不考虑列车分路状态时,补偿电容容量大。
为保证轨道电路电容调整、分路及机车信号同时满足一定要求时,补偿电容容量应有一个优选范围。
补偿电容设置密度加大,有利于改善列车分路,减小轨道电路中列车分路电流的波动范围,有利于延长轨道电路传输长度,过密设置又增加了成本,带来维修的不便,要适当考虑。
补偿电容的设置方法宜采用“等间距法”,即将无绝缘轨道电路两端BA间的距离L按补偿电容总量N等分,其步长△=L/N(L:轨道电路两端调谐单元的距离)。
轨道电路两端按半步长(△/2),之间按全步长(△)设置电容,以获得最佳传输效果。
(二) 保证接收端信号有效信干比由于轨道电路加补偿电容后趋于阻性,改善了轨道电路信号传输,加大了轨道入口端短路电流,减小了送受电端钢轨电流比,从而保证了轨道电路入口端信号、干扰比,改善了接收器和机车信号的工作。
无功补偿电容计算方法
1、Q = UU2πfC2、C = Q/2πfUU2、若功率因数为,则:无功功率Q = 3/4P ,相无功功率Qx = 1/4P ;3、相电容Cx = Qx/2πfUU,U = 380V,三相电容△接;4、相电容Cx = Qx/2πfUU,U = 220V,三相电容Y 接;李纯绪:引用加为好友发送留言2008-2-28 9:35:00 告诉你最简单的一个估算办法:1.测量电机的实际运行电流,变化负载估计一个平均电流;2.测量电流与铭牌电流比较,可得电机大概的有功功率,由此可算出有功电流;3.测量电流减去计算的有功电流,所得结果就是要选的电容器的电流。
比如一台75KW电机,负载是水泵,测量电流140A;铭牌电流150A,可得此时电机的有功功率约70KW,有功电流约106A,140-106=34。
结果是选34A的电容或选20KVar左右的电容器。
按此方法选的电容器在欠补偿范围,其余的补偿量由集中补偿完成。
刘志斌:引用加为好友发送留言编辑2008-2-29 11:04:0TO 李纯绪:1、“测量电流140A-有功电流约106A=无功电流34”,正弦交流电是矢量,要按矢量求和的法则运算,你按算术求和的方法算是极其错的!2、异步电机补偿电容的大小,首先要确定补偿的无功电流或无功功率;3、在确定一相的无功电流或无功功率,然后计算电容的大小和接法;曾lingwu:引用加为好友发送留言2008-2-29 11:19:00 不要说得那么深奥,以电机额定电流的30%来选择电容电流就可以了. 一般情况下,只有高压电容我们才用考虑接法,低压的电力电容器都已接好.刘志斌:引用加为好友发送留言编辑2008-2-29 11:29:0 0“以电机额定电流的30%来选择电容电流就可以了.”1、这又是一种估算的方法,和李纯绪的方法不同;2、以电机额定电流的30%来选择补偿电容电流,没有错误可言,是一种经验估算的方法;4、按照这个估算法,额定电流150A,补偿电流应该是150×30% = 45A ;1、如果电机额定运行,功率因数是,那么无功电流是额定电流的倍,即60%;2、额定电流150A,补偿电流无功电流应该是150×60% = 90A1、电机的额定电流Ie,功率因数COSΦ = ,则SinΦ = ;2、此时的有功电流是Ie×COSΦ ;3、此时的无功电流是Ie×SinΦ ;1、电机符合变化不大时,可按符合电流I,以及功率因数COSΦ,查表得Sin Φ ,计算实际无功电流,确定补偿电容;2、电机符合变化大时,可按小符合电流I,以及功率因数COSΦ,查表得Sin Φ ,计算实际无功电流,确定补偿电容;3、也可按空载电流的倍的规定,确定补偿电容;1、补偿电流选大,补偿电容大,会出现过补偿,过补偿会降低线路功率因数;2、过补偿,电容电流会造成电网电压上飘,电压不稳;3、由于电机的无功电流是变化的,为了不出现过补偿的情况,所以补偿电流以最小无功电流计算;4、由于电机电压不变,所以励磁电流不变,即认为无功电流不变;5、电机空载时的电流,90%是励磁电流,即无功电流,所以以空载电流的倍作为无功电流计算补偿电容,是科学的,是最简单的方法;如果知道无功电流Ig,则补偿电容C可按下式计算:1、三相的无功功率Q = √3×U×Ig;2、一相的无功功率Qx = 1/3×Q = 1/√3 ×U×Ig;3、相电容Cx = Qx/2πfUU =(1/√3 ×U×Ig)/2πfUcUc = Ig/2√3πfUc, Uc = 380V,三相电容△接;4、相电容Cx = Qx/2πfUU =(1/√3 ×U×Ig)/2πfUcUc = Ig/2πfUc, ,Uc = 220V,三相电容Y 接;。
电容补偿实验报告
一、实验目的1. 了解电容补偿的基本原理和作用。
2. 掌握电容补偿电路的连接方法和操作步骤。
3. 通过实验验证电容补偿对电路功率因数的影响。
二、实验原理在交流电路中,电容器具有储存电荷和释放电荷的能力,能够对电路中的无功功率进行补偿。
当电路中存在感性负载时,电流滞后于电压,导致功率因数降低,电路效率降低。
通过在电路中接入适当的电容器,可以提供与感性负载电流相位相反的无功电流,从而补偿电路中的无功功率,提高功率因数。
三、实验器材1. 交流电源2. 交流电压表3. 交流电流表4. 电容器5. 感性负载(如电阻器、线圈等)6. 连接导线四、实验步骤1. 搭建电路:根据实验要求,将交流电源、交流电压表、交流电流表、电容器、感性负载和连接导线连接成实验电路。
2. 测量电路初始状态:闭合电路,测量电路的初始电压、电流和功率因数。
3. 接入电容器:在电路中接入电容器,观察电压表、电流表和功率因数的变化。
4. 调整电容器容量:根据实验要求,调整电容器的容量,观察电压表、电流表和功率因数的变化。
5. 记录数据:记录不同电容器容量下的电压、电流和功率因数。
五、实验结果与分析1. 实验结果:| 电容器容量(μF) | 电压 (V) | 电流 (A) | 功率因数(Cosφ) || :----------------: | :-------: | :-------: | :--------------: || 10 | 220 | 2.5 | 0.6 || 100 | 220 | 1.8 | 0.8 || 500 | 220 | 1.5 | 0.9 || 1000 | 220 | 1.2 | 0.95 |2. 实验分析:通过实验可以得出以下结论:- 随着电容器容量的增加,电路中的电流逐渐减小,功率因数逐渐提高。
- 当电容器容量达到一定值时,电路中的电流基本不变,功率因数达到最大值。
- 电容器补偿可以提高电路的功率因数,降低线路损耗,提高电路效率。
电容器计算方式
附件1 TBB10-450/50-AZW 保护计算单根据DL/T 584-95《3~110kV 电网继电保护装置运行整定规程》(4.2.13并联补偿电容器保护中:过电流保护电流定值应可靠躲电容器组额定电流,一般整定为1.5~2倍额定电流,保护动作时间一般整定为0.3~1s ;过电压保护定值应按电容器端电压不长时间超过1.1倍电容器额定电压的原则整定,过电压保护动作时间应在1min 以内;低电压定值应能在电容器所接母线失压后可靠动作,而母线电压恢复正常后可靠返回,一般整定为0.3~0.6倍额定电压,保护的动作时间应与本侧出线后备保护时间配合。
)的规定。
计算公式见《3~110kV 电网继电保护装置运行整定规程》表8(部分)。
保护整定计算如下:装置为单星形结线,采用过电流保护按额定电流的1.5倍;过电压按额定电压的1.1倍;欠电压按额定电压的0.6倍整定。
电容器额定电流:A I E 7.24=保护过流电流:A I K I E K D Z 0.37==(K K 取1.5) 电容器额定电压:V U E k 5.10=保护过压电压:VU X X K U E CLV DZ k 6.12)1(=-=(V K 取1.1)保护欠压电压:V U UE D Zk 3.66.0==‘。
附件2TBB10-450/50-AZW 爆破能量计算单 一、 依据标准:《标称电压1kV 以上交流电力系统用并联电容器 GB/T 11024-2001 第3部分:并联电容器和并联电容器组的保护》5.3.1二、 爆破能量计算式:计算条件:当电容器在1.1倍额定电压下运行时,发生极间击穿或极对壳绝缘击穿,电容器组中其它电容器对故障电容器进行放电,若其放电总能量小于故障电容器壳体的耐爆能量15kJ 的限值,则该电容器装置符合爆破能量的要求,其电容器的配置是可以接受的。
TBB10-450-AZW ,电容器装置内部接线为单串落地式结构(如右图所示),并联(P )数为1,串联(S )段数为1,单元额定容量为QN=450×1=450kvar ,则爆破能量为:N N f Q W /192⨯==1728J注:式中192系数,已考虑1.1倍的运行电压。
并联补偿电容器保护运行整定规程
并联补偿电容器保护运行整定规程选自《3~110kV电网继电保护装置运行整定规程》DL/T 584—954.2.13并联补偿电容器保护4.2.13.1延时电流速断保护。
a.速断保护电流定值按电容器端部引线故障时有足够的灵敏系数整定,一般整定为3~5倍额定电流。
b.考虑电容器投入过渡过程的影响,速断保护动作时间一般整定为0.1~0.2s。
c.在电容器端部引出线发生故障时灵敏系数不小于2。
4.2.13.2过电流保护。
a.过电流保护应为三相式。
b.过电流保护电流定值应可靠躲电容器组额定电流,一般整定为1.5~2倍额定电流。
c.保护动作时间一般整定为0.3~1s。
4.2.13.3过电压保护。
a.过电压保护定值应按电容器端电压不长时间超过1.1倍电容器额定电压的原则整定。
b.过电压保护动作时间应在1min以内。
c.过电压保护可根据实际情况选择跳闸或发信号。
d.过电压继电器宜有较高的返回系数。
e.过电压继电器宜优先选用带有反时限特性的电压继电器。
4.2.13.4低电压保护。
低电压定值应能在电容器所接母线失压后可靠动作,而在母线电压恢复正常后可靠返回,一般整定为0.3~0.6倍额定电压。
保护的动作时间应与本侧出线后备保护时间配合。
4.2.13.5单星形接线电容器组的开口三角电压保护。
电压定值按部分单台电容器(或单台电容器内小电容元件)切除或击穿后,故障相其余单台电容器所承受的电压(或单台电容器内小电容元件)不长期超过1.1倍额定电压的原则整定,同时,还应可靠躲过电容器组正常运行时的不平衡电压。
动作时间一般整定为0.1~0.2s。
电容器组正常运行时的不平衡电压应满足厂家要求和安装规程的规定。
4.2.13.6单星形接线电容器组电压差动保护。
差动电压定值按部份单台电容器(或单台电容器内小电容元件)切除或击穿后,故障相其余单台电容器所承受的电压不长期超过1.1倍额定电压的原则整定,同时,还应可靠躲过电容器组正常运行时的段间不平衡差电压。
电容并联和串联无功补偿 -回复
电容并联和串联无功补偿-回复电容并联和串联无功补偿,是电力系统中常用的一种无功补偿方式。
在电力系统中,无功功率是指由电感和电容元件所产生的能量交换,并且不做功的功率。
无功功率的存在会导致电流产生相位滞后,造成电压下降,影响电力系统的稳定性和负载的正常运行。
因此,无功补偿是电力系统中非常重要的一项工作。
首先,我们先了解一下电容的基本情况。
电容是一种被动元件,具有存储和释放电能的能力。
当电容器两端施加电压时,电场会带动电荷在电容器的电极之间移动,从而形成电流。
根据电容的特性,我们可以通过并联或串联电容器的方法来实现无功补偿。
一、电容并联无功补偿电容并联无功补偿是指将电容器并联接在负载侧,通过电容器释放无功功率,从而提高电力系统的功率因数,减少无功功率的流向。
具体的实施步骤如下:1.计算负载的无功功率:首先要明确负载的无功功率,可以通过测量仪器进行实时监测,或者通过电力系统的负荷曲线图进行估算。
2.根据负载的无功功率计算所需的电容容量:根据电容器的电容值和无功功率的大小,可以通过以下公式计算所需电容的容值:C = Q / (2πfV^2)其中,C为电容值,Q为无功功率,f为系统频率,V为电压。
例如,当负载的无功功率为3Mvar,系统频率为50Hz,电压为10kV 时,计算所需电容器的容值为:C = 3 * 10^6 / (2π*50*(10^4)^2) ≈95μF3.选择合适的电容器并联:根据所得到的电容容值,选择合适的电容器并联到负载侧。
通常可以采用多个小容值的电容器并联来实现所需的电容容量。
4.对电容器进行保护:并联电容器时要注意对电容器的保护,避免因电容器受到过电压或过电流的冲击而损坏。
二、电容串联无功补偿电容串联无功补偿是指将电容器串联接在电源侧,通过电容器的带电,产生与负载的电感抵消的效果,达到无功功率的补偿。
具体的实施步骤如下:1.计算电源的无功功率:首先要明确电源的无功功率,可以通过测量仪器进行实时监测,或者通过电力系统的负荷曲线图进行估算。
电容补偿的计算公式
电容补偿的计算公式未补偿前的负载功率因数为COS∮1。
负载消耗的电流值为I1。
负载功率(KW)*1000则I1=----------------------√3*380*COS∮1负载功率(KW)*1000则I2=----------------------√3*380*COS∮2补偿后的负载功率因数为COS∮2,负载消耗的电流值为I2则所需补偿的电流值为:I=I1-I2 所需采用的电容容量参照如下:得到所需COS∮2每KW负荷所需电容量(KVAR)例:现有的负载功率为1500KW,未补偿前的功率因数为COS∮1=0.60,现需将功率因数提高到COS∮2=0.96。
则1500*1000则I1=-----------------=3802(安培)√3*380*0.601500*1000则I2=------------------=2376(安培)√3*380*0.96即未进行电容补偿的情况下,功率因数COS∮1=0.60,在此功率因数的状况下,1500KW负载所需消耗的电流值为I1=3802安培。
进行电容补偿后功率因数上升到COS∮2=0.95,在此功率因数的状况下,1500KW负载所需消耗的电流值为I2=2376安培。
所以功率因数从0.60升到0.96。
所需补偿的电流值为I1-I2=1426安培查表COS∮1=0.60,COS∮2=0.96时每KW负载所需的电容量为1.04KVAR,现负载为1500KW,则需采用的电容量为1500*1.04=1560KVAR。
现每个电容柜的容量为180KVAR,则需电容柜的数量为1500÷180=8.67个即需9个容量为180KVAR电容柜。
电容器容量Kvar_千乏_与电容量uF(微法)怎样换算
电容器容量Kvar(千乏)与电容量uF(微法)怎样换算无功功率单位为kvar(千乏)。
电功率分为有功功率和无功功率,有功功率就是指电能转化为热能或者机械能等形式被人们使用或消耗的能量,有功功率单位为kw 。
无功功率指电场能和磁场能相互转化的那部分能量,它的存在使电流与电压产生相位偏差,为了区别于有功功率就用了这么个单位。
电网中由于有大功率电机的存在,使得其总体呈感性,所以常常在电网中引入大功率无功补偿器(其实就是大电容),使电网近似于纯阻性,Kvar就常用在这作为无功补偿电容器的容量的单位。
kvar(千乏)和电容器容量的换算公式为(指三相补偿电容器):Q=√3×U×II=0.314×C×U/√3C=Q/0.314×U×U上式中Q为补偿容量,单位为Kvar,U为运行电压,单位为KV,I为补偿电流,单位为A,C 为电容值,单位为uF。
式中0.314=2πf/1000。
例如:一补偿电容铭牌如下:型号:BZMJ0.4-10-3 (3三相补偿电容器)。
额定电压:0.4KV额定容量:10Kvar ?额定频率:50Hz额定电容:199uF (指总电容器量,即相当于3个电容器的容量)。
额定电流:14.4A代入上面的公司,计算,结果基本相付合。
补偿电容器:主要用于低压电网提高功率因数,电少线路损耗,改善电能质量。
BSMJ型补偿电容器,是国家推荐使用的新型节能产品,使用环境应无谐波冲击。
最高允许过电流小于1.30倍额定电流。
ASMJ型滤波电容器:拥有BSMJ所有用途以外,可滤除电路中高次谐波,稳定电路质量,保护用电设备,最高允许电流大于2倍额定电流。
单相电动机电容器的容量选择小型三相异步电动机作单相运行时,所选电容容量一定要合适,若太小则旋转无力,启动困难;太大则回路电流过大,导致电机过热。
一般电容容量值选择按表查得。
如果不查表,也可以按经验公式获得:当星形连接时,所需电容容量C(Μf)=P(W)/17。