人教版九年级数学下册 投影习题

合集下载

初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】

第二十九章投影与视图29.1投影第1课时投影知能演练提升能力提升1.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()2.如图,树是小明昨天画的一幅画的一部分,则小明创作这幅画的时间大约在()A.早上8点B.中午12点C.下午4点D.不能确定3.如图,晚上小明在灯下散步,在小明由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短,再变长D.先变长,再变短4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,则下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中正确结论的序号是.5.小军晚上到新世纪广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的一盏路灯一定位于两人.”6.两棵树及其影子的情形如图所示.(1)哪个图反映了在阳光下的情形?哪个图反映了在路灯下的情形?(2)你是用什么方法判断的?(3)请画出图中表示小丽影长的线段.①②7.如图,小明家楼边立了一根长为4 m的竹竿,小明在测量竹竿的影子时,发现影子不全落在地面上,有一部分落在楼房的墙壁上(如图),小明测出它落在地面上的影子长为2 m,落在墙壁上的影子长为1 m.此时,小明想把竹竿移动位置,使其影子刚好不落在墙上.试问:小明应把竹竿移到什么位置?(要求竹竿移动距离尽可能小)8.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子(如图),树影是路灯灯光形成的.你能确定此时路灯光源的位置吗?创新应用9.如图,在一面与地面垂直的围墙的同一侧有一根高10 m的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF=2 m,落在地面上的影子BF=10 m;而电线杆落在围墙上的影子GH=3 m,落在地面上的影子DH=5 m.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.1.A太阳光线是平行的,同一地点同一时刻树与影长的比应是一样的,影子的方向也应相同.2.C3.C路灯的光线可以看成是从一个点发出的,所产生的投影为中心投影.过灯所在的位置点及小明头顶作射线与地面相交,交点到小明脚跟的距离就是影长.如图,根据画出的每个位置的影长容易发现:小明从A到B的影子变化可分为两个阶段:A→M影子越来越短,M→B影子越来越长,因此从A→B影子先变短,再变长,故选C.4.①③④当木杆绕点A按逆时针方向旋转时,如图所示,当AB与光线BC垂直时,m最大,则m>AC,故①成立,②不成立;最小值为AB与底面重合时,即n=AB,故③成立;由上可知,影子的长度先增大后减小,④成立.5.之间6.解(1)题图①反映了在阳光下的情形,题图②反映了在路灯下的情形.(2)题图①中的光线是平行的,题图②中的光线相交于一点.(3)如图,AB,EF分别是表示小丽在阳光下和路灯下影长的线段.①②7.解设影子刚好不落在墙上时的影长为x m,则4-12=4x,x=83,所以小明应把竹竿移到离墙83m的位置.8.解能,如图.9.解(1)平行.(2)过点E作EM⊥AB于点M,过点G作GN⊥CD于点N,则MB=EF=2 m,ND=GH=3 m,ME=BF=10 m,NG=DH=5 m,所以AM=AB-MB=10-2=8(m),由平行投影可知,AMME =CNNG,即810=CD-35,解得CD=7 m,即电线杆的高度为7 m.第2课时正投影知能演练提升能力提升1.有一个热水瓶如图所示,平行光线从正前方照射得到它的正投影是()2.下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D.当△ABC平行于投影面时的正投影3.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影试验,矩形木板在地面上形成的投影不可能是()4.在太阳光下,转动一个正方体,观察正方体在地面上投下的影子,那么这个影子最多可能是()A.四边形B.五边形C.六边形D.七边形5.正方形在太阳光的投影下得到的几何图形一定是()A.正方形B.平行四边形或一条线段C.矩形D.菱形6.在太阳光照射下,如图所示的图形中,哪些可以作为正方体的影子,将光源改为灯光将如何?7.一个圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,求圆柱的体积和表面积.创新应用8.如图,已知一纸板的形状为正方形ABCD,AD,BC与投影面平行,AB,CD与投影面不平行.(1)画出它的正投影A1B1C1D1;(2)若其边长为10 cm,∠ABB1=45°(点B1与点B是对应点),求正投影A1B1C1D1的面积.能力提升1.A2.D3.A4.C最多可能是如图所示的六边形ABCDEF.5.B6.解(1)(2)可作为太阳光照射下的影子;(1)(2)(3)可作为灯光照射下的影子.7.解因为圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,所以圆柱的底面半径为2,高为4.所以圆柱的体积是π×22×4=16π,圆柱的表面积是2×π×22+4π×4=24π.创新应用8.解(1)正投影A1B1C1D1如图所示.(2)如图,过点A作AH⊥BB1于点H.∵∠ABB1=45°,∴△ABH是等腰直角三角形,∴AH=√2AB=5√2 cm,2∴A1B1=AH=5√2 cm.∵A1D1=AD=10 cm,∴矩形A1B1C1D1的面积=A1B1·A1D1=5√2×10=50√2(cm2).即正投影A1B1C1D1的面积是50√2 cm2.。

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。

人教版九年级下册数学试题:29.1投影 经典题和易错题(含解析)

人教版九年级下册数学试题:29.1投影 经典题和易错题(含解析)

投 影一、经典题例1.下面是一天中四个不同时刻两个建筑物的影子.(1)将它们按时间的先后顺序进行排列,并说明一下你的理由.(2)一天中物体在太阳光下的影子的方向是如何变化的?分析:(1)太阳在东方,刚升起不久,光线与地平面的夹角小,物体的影子应当长,且方向由东向西,所以C为早晨的影子;随着时间推移,到了上午影子渐短,影子方向北偏西,所以D是上午某时刻的影子;到了中午,物体的影子最短;而到了下午,物体的影子又逐渐变长,且方向为北偏东,所以A为下午某一时刻的影子;到了接近晚上时,太阳在西方,光线与地平面的夹角小,物体的影子长,且方向由西向东,所以B是接近晚上时的物体的影子.(2)根据一天中太阳影子的变化规律即可解答.解:(1)按时间的顺序进行排列为CDAB.(2)物体在阳光下的影子的方向是正西、北偏西、正北、北偏东、正东.评注:物体在太阳光照射的不同时刻,不仅影子的长短在变化,而且影子的方向也在改变.根据不同时刻影长的变换规律,以及太阳东升西落的自然规律,可以判断时间的先后顺序. 例2.如图是两根标杆及它们在灯光下的影子,请在图中画出光源的位置(用点P 表示),并在图中画出人在此光源下的影子(用线段EF )表示.分析:(1)表面上看,木杆的影子似乎画不出来,其实并不难,因为太阳光是平行光,只有过木杆的顶端作已知光线的平行线即可画出它在阳光下的影子(如图中线段CD );(2)因为两个标杆的投影在标杆的同侧,只要分别画出两条光线,它们的交点就是光源的位置O ,即这个投影是中心投影,根据中心投影的特征即可画出人在此光源下的影子(如图中线段EF ).解:如图所示.评注:本意只要考查了平行投影和中心投影的知识,解题的关键理解掌握灯光光线与太阳光D.C.B. A.线的区别方法。

例3.在一次数学活动课上,李老师带领学生去测教学楼的高度。

在阳光下,测得身高1.65米的黄丽同学BC 的影厂BA 为1.1米,与此同时,测得教学楼DE 的影长DF 为12.1米。

人教版-数学-九年级下册--29.1投影 本站原创 完整版

人教版-数学-九年级下册--29.1投影   本站原创  完整版

投影一、选择题1.(2009年贵州安顺)如图,箭头表示投影的方向,则图中圆柱体的投影是:A.圆B.矩形C.梯形D.圆柱【关键词】平行投影【答案】B2.(2009年甘肃庆阳)如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【关键词】中心投影【答案】B3.(2009年湖北鄂州)在一个晴朗的上午,皮皮拿着一块正方形术板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是()【关键词】平行投影【答案】A4.(2009年湖北孝感)小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是【关键词】投影【答案】A二、填空题1.(2009年广西南宁)三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .【关键词】中心投影 【答案】252.(2009年浙江衢州)陈老师要为他家的长方形餐厅(如图)选择一张餐桌,并且想按如下要求摆放:餐桌一侧靠墙,靠墙对面的桌边留出宽度不小于80cm 的通道,另两边各留出宽度不小于60cm 的通道.那么在下面四张餐桌中,其大小规格符合要求的餐桌编号是 (把符合要求的编号都写上).【关键词】平行投影 【答案】①②③④3.(2009年山西省)如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 .【关键词】解一元二次方程;一元二次方程根与系数的关系;中心投影 【答案】(9,0)三、解答题桌面是边长为80cm的正方形 桌面是长、宽分别为100cm 和64cm 的长方形桌面是半径 为45cm 的圆桌面的中间是边长 为60cm 的正方形, 两头均为半圆A AO 灯三角尺投影1.(2009年江西)问题背景 在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息: 甲组:如图1,测得一根直立于平地,长为80cm 的竹竿的影长为60cm. 乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm ,影长为156cm . 任务要求(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH 与O e 相切于点M .请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段NG 的影长;需要时可采用等式222156208260+=).【关键词】相似、光影、投影 【答案】解:(1)由题意可知:90BAC EDF BCA EFD ==︒∠=∠∠∠,.∴ABC DEF △∽△.∴AB AC DE DF =,即8060900DE =.································································· 2分 ∴DE =1200(cm ).所以,学校旗杆的高度是12m . ···························································· 3分 (2)解法一: 与①类似得:AB AC GN GH =,即8060156GN =.∴GN =208. ······················································································· 4分在Rt NGH △中,根据勾股定理得:2222156208260.NH =+=∴NH =260. ······················································································· 5分 设O e 的半径为r cm ,连结OM , ∵NH 切O e 于M ,∴OM NH ⊥. ·························································· 6分 则90OMN HGN =∠=︒∠,又ONM HNG =∠∠.F 图2 图1 图3(第1题)∴OMN HGN △∽△.∴OM ONHG HN=.···················································· 7分 又()8ON OK KN OK GN GK r =+=+-=+. ∴8156260r r +=,解得:r =12. 所以,景灯灯罩的半径是12cm . ···························································· 9分解法二: 与①类似得:AB AC GN GH =,即8060156GN =.∴GN =208. ······················································································· 4分设O e 的半径为r cm ,连结OM , ∵NH 切O e 于M ,∴OM NH ⊥. ·························································· 5分 则90OMN HGN =∠=︒∠,又ONM HNG =∠∠, ∴OMN HGN △∽△.∴OM MN HG GN =,即156208r MN=.······························································· 6分 ∴43MN r =,又()8ON OK KN OK GN GK r =+=+-=+. ···················· 7分在Rt OMN △中,根据勾股定理得:()222483r r r ⎛⎫+=+ ⎪⎝⎭,即29360r r --=. 解得:12123r r ==-,(不合题意,舍去)所以,景灯灯罩的半径是12cm . 9分2.(2009年山东济宁)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=o,在A 点和塔之间选择F 图2 图1 图3一点B ,测出看塔顶()M 的仰角45β=o,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈o,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? . 【关键词】测量、投影【答案】解:(1)设CD 的延长线交MN 于E 点,MN 长为xm ,则( 1.6)ME x m =-.∵045β=,∴ 1.6DE ME x ==-.∴ 1.618.617CE x x =-+=+. ∵0tan tan 35ME CE α==,∴ 1.60.717x x -=+,解得45x m =. ∴太子灵踪塔()MN 的高度为45m .(2) ①测角仪、皮尺; ② 站在P 点看塔顶的仰角、自身的高度.(注:答案不唯一)AB CD MNα β 图1图2PMN。

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、当投影线由上到下照射水杯时,如图所示,那么水杯的正投影是()A. B. C. D.2、如图所示的三视图所对应的几何体是()A. B. C. D.3、如图,有一个无盖的正方体纸盒,它的下底面标有字母“M”,若沿图中的粗线将其剪开展成平面图形,这个平面图形是()A. B. C.D.4、下列立体图形中,主视图是三角形的是()。

A. B. C. D.5、分别由五个大小相同的正方形组成的甲﹑乙两个几何体如图所示,它们的三视图中完全一致的是()A.主视图B.左视图C.俯视图D.三视图6、如图是一个几何体表面展开图(字在外表面上),面“江”的对面所写的字是()A.我B.爱C.春D.都7、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A.爱B.国C.善D.诚8、如图是某一正方体的展开图,那么该正方体是()A. B. C. D.9、如图所示的几何体的俯视图是()A. B. C. D.10、将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90度,然后在桌面上按逆时针方向旋转90度,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成32次变换后,骰子朝上一面的点数是()A.6B.5C.3D.211、如图是一个长方体包装盒,则它的平面展开图是()A. B. C. D.12、如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π13、铅球的左视图是()A.圆B.长方形C.正方形D.三角形14、用3个相同的立方块搭成的几何体如图所示,则它的主视图是()A. B. C. D.15、如图是由4个大小相同的小正方体摆成的几何体,它的左视图是()A. B. C. D.二、填空题(共10题,共计30分)16、一个几何体的表面展开图如图所示,则这个几何体是________.17、写出一个主视图、左视图、俯视图都相同的几何体:________.18、若圆柱的底面圆半径为2cm,高为5cm,则该圆柱的侧面展开图的面积为________cm2.19、如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有1个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有________种拼接方法.20、生活中有这样一种几何体,三视图中至少有二种视图(左、主、俯视图中任意二个视图)是相同的,请你至少写出二种符合要求的几何体:________.21、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为________.22、如图是由五个大小相同的正方体搭成的几何体,从________ 面看所得到的性状图的面积最小.23、如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“守”字一面的相对面上的字是________.24、一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)25、谜语:正看三条边,侧看三条边,上看圆圈圈,就是没直边(打一几何体)________ .三、解答题(共5题,共计25分)26、一个几何体的三视图如图,求这个几何体的侧面积?27、一个正方体六个面分别标有字母A、B、C、D、E、F,其展开如图所示,已知:A=x2﹣2xy、B=A﹣C,C=3xy+y2,若该正方体相对两个面上的多项式的和相等,试用x、y的代数式表示多项式D,并求当x=﹣1,y=﹣2时,多项式D 的值.28、某一空间图形的三视图如下图所示,其中主视图:半径为1的半圆以及高为1的矩形;左视图:半径为1的四分之一圆以及高为1的矩形;俯视图:半径为1的圆,求此图形的体积.29、如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.30、按要求完成下列视图问题(1)如图(一),它是由6个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,哪一个视图没有发生改变?(2)如图(二),请你借助图四虚线网格画出该几何体的俯视图.(3)如图(三),它是由几个小立方块组成的俯视图,小正方形上的数字表示该位置上的正方体的个数,请你借助图四虚线网格画出该几何体的主视图.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、B5、A6、D7、C8、B9、B10、A11、A12、A13、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

人教版九年级下册数学第二十九章第1节《投影》训练题 (1)(含答案解析)

人教版九年级下册数学第二十九章第1节《投影》训练题 (1)(含答案解析)

九年级下册数学第二十九章第1节《投影》训练题 (1)一、单选题1.下列各图中,物体的影子不正确的是()A.B.C.D.2.从早上太阳升起的某一时刻开始到傍晚,广场上旗杆在地面上形成的影子的变化规律是()A.先变短再变长B.先变长再变短C.方向改变,长短不变D.以上都不正确3.北半球的两个物体一天中四个不同时刻在阳光照射下落在地面上的影子如图所示,按照时间的先后顺序排列正确的是()A.③④①②B.③④②①C.②①③④D.②①④③4.一张矩形纸板(不考虑厚度,不折叠)的正投影可能是()①矩形;②平行四边形;③线段;④三角形;⑤任意四边形;⑥点A.②③④B.①③⑥C.①②⑤D.①②③5.在同一时刻的太阳光下,小刚的影子比小红的长,那么晚上在同一路灯下()A.小刚的影子比小红长B.小红的影子比小刚长C.小刚和小红的影子一样长D.无法确定6.由下列光源产生的投影,是平行投影的是()A.太阳B.台灯C.手电筒D.路灯7.下列结论正确的有()①物体在灯光照射下,影子的方向是相同的;②物体在路灯照射下,影子的方向与路灯的位置有关;③物体在光线照射下,影子的长短仅与物体的长短有关A.0个B.1个C.2个D.3个8.下列属于中心投影的有()①中午用来乘凉的树影;②灯光下小明读书的影子;③上午10点时,走在路上的人的影子;④升国旗时,地上旗杆的影子;⑤在空中低飞的燕子在地上的影子.A.1个B.2个C.3个D.4个9.给出以下光源:①探照灯;②车灯;③太阳;④月亮;⑤台灯.形成的投影是中心投影的是()A.②③B.①③C.①②③D.①②⑤10.下列现象是物体的投影的是()A.小明看到镜子里的自己B.灯光下猫咪映在墙上的影子C.自行车行驶过后车轮留下的痕迹D.掉在地上的树叶11.圆形的物体在太阳光照射下的投影是()A.圆B.椭圆C.线段D.以上都有可能12.如图,水杯的杯口与投影面平行,投影线的几方向如箭头所示,它的正投影是()A.B.C.D.二、填空题13.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.14.身高相同的小刚和小美站在一盏路灯下的不同位置,已知小刚的影子比小美长,我们可以判定小刚离灯较________.15.如图,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为_________平方米(不计墙的厚度).16.圆柱的轴截面平行于投影面,它的正投影是长为4、宽为3的矩形,则这个圆柱的表面积是__________.(结果保留 )17.如图,晚上小红由路灯A走向路灯B,当她走到点P时,发现她的影子顶部正好接触到路灯B 的底部,此时她距离路灯A20m,距离路灯B5m.如果小红的身高为1.2m,那么路灯A的高度是___________m.18.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_____________.(填“逐渐变大”“逐渐变小”)三、解答题19.如图,AB和MN是直立在地面上的两根立柱,AB=6m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时MN在阳光下的投影.(2)在测量AB的投影时,同时测量出MN在阳光下的投影长为6m,计算MN的长.20.如图,某光源下有三根杆子,甲杆GH的影子为GM,乙杆EF的影子一部分落在地面EA上,一部分落在斜坡AB上的AD处.(1)请在图中画出形成影子的光线,确定光源所在的位置R,并画出丙杆PQ在地面的影子. (2)在(1)的结论下,若过点F的光线FD⊥AB,斜坡与地面的夹角为60°,AD=1m,AE=2 m,请求出乙杆EF的高度:(结果保留根号).,,小明上午上学时发现路灯AB在太阳下的影21.如图,公路旁有两个高度相同的路灯AB CD子恰好落到E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一地方,发现在路灯CD的灯光下自己的影手恰好落在E处.(1)在图中画出小明的位置(用线段MN表示)并画出光线,标明太阳光、灯光.(2)若上午上学时高1m的木棒的影子为2m,小明身高为1.6m,他离E恰好4m,求路灯高.22.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成60角,房屋向南的窗户AB高1.6m.现要在窗户外面的上方安装一个水平遮阳篷AC(如图所示).要使太阳光线不能直接射入室内,遮阳篷AC的宽度至少为多少?23.如图,已知木棒AB 在投影面p 上的正投影为''A B ,且20'120=∠=︒,AB cm BAA ,求''A B 的长.24.一木杆按如图所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD 表示).25.如图,晚上小明由路灯AD 走向路灯BC ,当他行至点P 处时,发现他在路灯BC 下的影长为2m ,且影子的顶端恰好在A 点,接着他又走了6.5m 至点Q 处,此时他在路灯AD 下的影子的顶端恰好在B 点,已知小明的身高为1.8m ,路灯BC 的高度为9m .(1)计算小明站在点Q 处时在路灯AD 下影子的长度;(2)计算路灯AD 的高度。

人教版九年级下册数学《投影》习题(含答案)

人教版九年级下册数学《投影》习题(含答案)

投影习题1.在墙边有A,B两根木杆如图4-2-5,已知A木杆的影子恰好不落在墙上,•请你画出木杆B在墙上的那段投影,并用字母MN标明.2.如图,高20m的教学楼在一天的某一时刻在地上的影子长15m,•在教学楼前10m处有一高为5m的国旗杆.试问在这一时刻你能看到国旗的影子吗?通过计算说明.3.如图,小明家住的甲楼AB面向正北,现计划在他家居住的甲楼前修建一座2•楼CD,楼高18m.已知冬天的太阳最低时,光线与水平线的夹角为30°,若让2楼的影子刚好不影响甲楼,则两楼之间的距离至少应是多少?4.(兰州)(1)一木杆按如图1所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD 表示);(2)图2是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P 表示),并在图中画出人在此光源下的影子.(用线段EF 表示).5 .(绍兴) 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( )A .11.5米B .11.75米C .11.8米D .12.25米太阳光线 木杆 图1 图2 A B A ' B ' 0.34.6 树答案:1.如图所示.2.解:过点D 作DE ∥光线AB ,交GF 的延长线于点E ,则△DEF ∽△ABC , ∴EF DF BC AC =.∵BC=15m ,AC=20m ,DF=5m , ∴EF=15520BC DF AC ⨯=g =3.75(m ). ∴GE=GF+EF=10+3.75=13.75(m )<BC .因此看不到国旗的影子.3.解:∵CE ∥DB ,∴∠ECB=30°,∴∠CBD=30°.在Rt △CDB 中,CD=18m ,∴BC=2CD=2×18=36(m ).∴BD=22223618BC CD -=-=183(m ).答:两楼之间的距离至少应是183m ,2楼的影子不影响甲楼.4分析:由已知物体及其太阳光线,作另一物体在同一时刻的平行投影,就是过物体的顶端作太阳光线的平行线,交地面于一点,便得到该物体的平行投影.对于⑵,我们先找到光源的位置,由两标杆在灯光下的影子,我们连接两标杆影子的末端和它们的顶端并延长交于一点.确定灯源的位置.如下图,然后连接光源和人头的末端并延长交地面于一点,便确定了人在光源下的影子.解:(1)如图1,CD 是木杆在阳光下的影子;(2)如图2,点P 是影子的光源;EF 就是人在光源P 下的影子.5析解:读完题后发现此题不能直接根据“在同一时刻,物体在太阳光下的高度与其影长成太阳光线 木杆图1 图2 A B A ' B ' C D E F P(2图)正比”来求,但是由题意我们可以将问题转化,会得到如下的图形.设树的高度为x米,于是得到1x-0.30.4 4.40.2=+,解得x=11.8米.所以树高为11.8米.此题选C.投影习题1.同一时刻,小明和小亮走在操场上,小明的影子比小亮的影子短,•那么你能判断他们谁更高吗?____________.2.高4m的旗杆在水平地面上的投影长是5m,•此刻测得附近一个建筑物的影长20m,则该建筑物的高是___________.3.如图,是一天下午不同时刻的旗杆的影子,•则它们按时间先后排列应为(). A.①─②─③ B.③─②─① C.②─③─① D.③─①─②4.如图①②③④,是木杆一天中四个不同时刻在地面上的影子,将它们按时间顺序排列正确的一项是().A.①②③④ B.④③②① C.①③②④ D.③②④①5.为了使窗前的大树不会挡住太阳光,则树离房屋的距离最好是().A.距离不限 B.树高的一半 C.树高 D.影长的最大值答案:1.小亮点拨:在同一时刻物高与在太阳光下形成的影长成正比.2.16m 点拨:因为在太阳光下,同一时刻物高与影长成正比,所以设建筑物高xm,则4520x,解得x=163.C 点拨:在下午,随着太阳位置的变化,物体影子的长度逐渐变长.4.B 点拨:一天当中影子的变化情况是:正西─北偏西─正北─北偏东─正东. 5.D。

人教版九年级下册数学 29.1投影 同步习题

人教版九年级下册数学 29.1投影 同步习题

29.1投影同步习题一.选择题1.长方形的正投影不可能是()A.正方形B.长方形C.线段D.梯形2.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.3m B.4m C.4.5m D.5m3.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()A.3B.5C.6D.74.太阳光照射一扇正方形的窗户,投在平行于窗户的墙上的影子形状是()A.比窗户略大的正方形B.比窗户略小的正方形C.与窗户全等的正方形D.平行四边形5.下列哪种影子不是中心投影()A.皮影戏中的影子B.晚上在房间内墙上的手影C.舞厅中霓虹灯形成的影子D.太阳光下林荫道上的树影6.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42317.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”8.木棒长为1.5m,则它的正投影的长一定()A.大于1.5m B.小于1.5mC.等于1.5m D.小于或等于1.5m9.一天下午小红先参加了校运动会女子200m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是()A.乙照片是参加200m的B.甲照片是参加200m的C.乙照片是参加400m的D.无法判断甲、乙两张照片10.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm2二.填空题11.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.12.甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长之比的关系是13.小明拿一个等边三角形木板在阳光下玩,等边三角形木板在地面上形成的投影可能是.(填序号)14.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD =4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是m.15.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为m.三.解答题16.如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?17.如图所示,阳光透过长方形玻璃投射到地面上,地面上出现一个明亮的平行四边形,杨阳用量角器量出了一条对角线与一边垂直,用直尺量出平行四边形的一组邻边的长分别是30cm,50cm,请你帮助杨阳计算出该平行四边形的面积.18.如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.参考答案一.选择题1.解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是梯形,故选:D.2.解:∵AB∥OP,∴△CAB∽△COP,∴=,∴=,∴OP=5(m),故选:D.3.解:延长P A、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,∵P(2,2),A(0,1),B(3,1).∴PD=1,PE=2,AB=3,∵AB∥A′B′,∴△P AB∽△P A′B′,∴=,即=,∴A′B′=6,故选:C.4.解:太阳光照射一扇正方形的窗户,投在平行于窗户的墙上的影子形状是与窗户全等的正方形.故选:C.5.解:∵皮影戏中的影子,晚上在房间内墙上的手影,舞厅中霓红灯形成的影子,它们的光源都是灯光,故它们都是中心投影,故选项A、B、C不符合题意,太阳光下林荫道上的树影的光源是太阳光,这是平行投影,故选项D符合题意,故选:D.6.解:时间由早到晚的顺序为4312.故选:B.7.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,可得应该是下午.故选C.8.解:正投影的长度与木棒的摆放角度有关系,但无论怎样摆都不会超过1.5 m.故选:D.9.解:下午,影子在身体的东边,时间越早影子越短,故乙是参加200m的图片,故选:A.10.解:如图所示:∵AC⊥OB,BD⊥OB,∴△AOC∽△BOD,∴=,即=,解得:BD=2m,同理可得:AC′=m,则BD′=1m,∴S圆环形阴影=22π﹣12π=3π(m2).故选:B.二.填空题11.解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.12.解:甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长之比相等.故答案为相等.13.解:当等边三角形木框与阳光平行时,投影是①;当等边三角形木框与阳光垂直时,投影是③;当等边三角形木框与阳光有一定角度时,投影是④;故答案为:①③④.14.解:∵AB∥CD,∴△P AB∽△PCD,假设CD到AB距离为x,则=,=,x=1.8,∴AB与CD间的距离是1.8m;故答案为:1.8.15.解:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴=,∵AE=5m,解得:EF=7.5m.故答案为:7.5.三.解答题16.解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴=,即=,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则小云的身影变短了4﹣1.2=2.8米.∴变短了,短了2.8米.17.解:如图,AB=30cm,BC=50cm,AB⊥AC,在Rt△ABC中,AC==40cm,所以该平行四边形的面积=30×40=1200(cm2).18.解:(1)线段CP为王琳在站在P处路灯B下的影子;(2)由题意得Rt△CEP∽Rt△CBD,∴,∴,解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC,∴,解得:AC=12米.答:路灯A的高度为12米.。

人教版九年级下册数学《投影》练习题及答案

人教版九年级下册数学《投影》练习题及答案

29.1 投影1.皮影戏是在哪种光照射下形成的()A.灯光 B.太阳光 C.平行光 D.都不是2.下列各种现象属于中心投影现象的是()A.上午10点时,走在路上的人的影子 B.晚上10点时,走在路灯下的人的影子 C.中午用来乘凉的树影 D.升国旗时,地上旗杆的影子3.小刚走路时发现自己的影子越走越长,这是因为()A.从路灯下走开,离路灯越来越远 B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关 D.路灯的灯光越来越亮4.两个物体映在地上的影子有时在同侧,有时在异侧,则这可能是________投影.5._______和_______都是在灯光照射下形成的影子.6.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB•在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_______.7.说出平行投影与中心投影的异同.8.点光源发出的光线照射到物体上,会形成影子,那么在手术室里有4位医生,会有几个影子?说明你的理由.9.如图,AB,CD是两根木杆,它们在同一平面内的同一直线MN 上,则下列有关叙述正确的是()A.若射线BN正上方有一盏路灯,则AB,CD的影子都在射线BN上;B.若线段BD正上方有一盏路灯,则AB的影子在射线BM上,CD的影子在射线DN上; C.若在射线DN正上方有一盏路灯,则AB,CD的影子都在射线BN上;D.若太阳处在线段BD的正上方,则AB,CD的影子位置与选项B中相同.10.在一盏路灯的周围有一圈栏杆,则下列叙述中不正确的是()A.若栏杆的影子落在围栏里,则是在太阳光照射下形成的B.若这盏路灯有影子,则说明是在白天形成的影子C.若所有的栏杆的影子都在围栏外,则是在路灯照射下形成的D.若所有的栏杆的影子都在围栏外,则是在太阳光照射下形成的11.如图,BE,DF是甲,乙两人在路灯下形成的影子,•请在图中画出灯泡的位置.12.如图,在圆桌的正上方有一盏吊灯,在灯光下,圆桌在地板上的投影是面积为4 m2的圆.已知圆桌的高度为1m,圆桌面的半径为0.5m,•试求吊灯距圆桌面的距离.13.在太阳光下两根竹竿直立在地上,如图所示是其中一根竹竿的位置和它在地面上的投影,以及另一根竹竿在地面上的投影,请画出第二根竹竿的位置(•不写画法).14.请在图中画出灯泡的位置,并且画出形成影子MN的小木杆.15.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,•它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8•米,求木杆PQ的长度.QP N MC BA参考答案1.A 2.B 3.A 4.中心 5.皮影,手影等 6.10m7.相同点:都是在光线照射下形成的影子;不同点:平行投影是平行光源,中心投影是点光源;形成的影子情况不同8.没有影子,手术室里用的是无影灯9.B 10.D 11.连结EA,FC,•它们的延长线的交点即为灯泡的位置12.13m 13.略14.连结CA,FD并延长,它们的交点S•即为灯泡的位置,连结MS,过N作GN⊥MN交MS于G,则GN就是小木杆,图略15.2.3m投影习题1.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是:(A ) (B ) (C ) (D )2.在一个宁静的夜晚,月光明媚,张芳和身高为1.65m 的李红两位同学在人民广场上玩.张芳测得李红的影长为1m ,并立即测得小树影长为1.5m ,请你估算小树的高约为多少?3.如图,现有m 、n 两堵墙,两个同学分别在A 处和B 处,请问小明在哪个区域内活动才不会被这两个同学发现(画图用阴影表示)4.如图,在一个长40m 、宽30m 的长方形小操场上,王刚从A 点出发,沿着A→B→C 的路线以3m/s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就从A 地出发沿王刚走的路线追赶,当张华跑到距B 地223m 的D 处时,他和王刚在阳光下的影子恰好重叠A Bn m在同一条直线上.此时,A 处一根电线杆在阳光下的影子也恰好落在对角线AC 上.⑴求他们的影子重叠时,两人相距多少米(DE 的长)?⑵求张华追赶王刚的速度是多少(精确到0.1m/s)?5.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m ,CA=0.8m ,则树的高度为( )(A )4.8m (B )6.4m (C )8m (D )10m6.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是( )(A )③④②① (B )②④③① (C )③④①② (D )③①②④7.如图,晚上,小亮在广场上乘凉.图中线段AB 表示站在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.⑴请你在图中画出小亮在照明灯(P )照射下的影子;⑵如果灯杆高PO=12m ,小亮的身高AB=1.6m ,小亮与灯杆的距离BO=13m ,请求出小亮影子的长度.A O P B参考答案:1解析:本题考查的是投影的相关知识.主要考查空间观念、直觉思维能力和合情推理能力,只要在平时的生活中稍加留意,就能正确解答.太阳光线可以看作是平行线,同一时刻两棵树所形成的影子和它们自身的高度应该是成正比例的.另外,在同一时刻,影子应该在同方向.观察四幅图中的投影,只有(A )符合条件,故选(A ).2解析:由于是在月光的照射下,所以此时可以看作是平行投影.如果设小树的高为h m ,则由相似的知识可得1.61 1.5h =,所以 2.4h =m .答:小树的高约为2.4m . 3解析:在2005年各地的中考试卷中对“盲区”这一问题的考查中,这可能是唯一的一道题目,很好地诠释了《数学课程标准》(实验稿)中所提出的“了解视点、视角及盲区的含义,并能在简单的平面图和立体图中表示”这一学习要求,在北师大版九年级数学教材中却没有涉及到这一内容,它作为一个重要的考点,应引起同学们一定的重视.由相关知识可得:小明在阴影部分的区域就不会被发现.(原题的评分标准是:画对①、②区域各得3分,画对第③个区域得4分)4解析:(1)由阳光与影子的性质可知DE∥AC, 所以∠BDE=∠BAC,∠BED=∠BCA.则△BDE∽△BAC.所以DE AC BD AB=. 又AC=22304050+=(m ),BD=83(m ),AB=40(m ),所以103DE =(m ). (2)因为BE=222DE BD -=,所以王刚到E 点所用时间为402143+=(s ). 张华到达D 点所用时间为14-4=10(s ),所以张华追赶王刚的速度是(40-83)÷10≈3.7(m/s ).5.(C );6.(C );7. 解:⑴连结PA 并延长交地面于点C ,线段BC 就是小亮在照明灯(P )照射下的影子.(2)2m .。

人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)

人教版九年级下册数学 第29章  投影与视图  同步练习题(含答案)

人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。

九年级数学下册《第二十九章-投影》练习题附答案解析-人教版

九年级数学下册《第二十九章-投影》练习题附答案解析-人教版

九年级数学下册《第二十九章投影》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.小明在操场上练习双杠时,则发现两横杠在地上的影子().A.相交B.平行C.垂直D.无法确定2.身高1.6米的小明同学利用相似三角形测量学校旗杆的高度,上午10点,小明在阳光下的影长为1米,此时测得旗杆的影长为9米,则学校旗杆的高度是()A.9米B.10米C.13.4米D.14.4米3.如图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),可判断形成该影子的光线为()A.该影子实际不可能存在B.可能是太阳光线也可能是灯光光线C.太阳光线D.灯光光线4.在下列四幅图形中能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A.A B.B C.C D.D5.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A .B .C .D . 6.如果在同一盏路灯下,小明与小强的影子一样长,下列说法正确的是( )A .小明比小强的个子高B .小强比小明的个子高C .两个人的个子一样高D .无法判断谁的个子高7.下列物体的影子中不正确的是( )A .B .C .D .8.正方形在太阳光下的投影不可能是( ).A .正方形B .一条线段C .矩形D .三角形9.如图,在平面直角坐标系中点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B C .13 D .310.如图,树AB 在路灯O 的照射下形成投影AC ,已知树的高度3m AB =,树影4m AC =,树AB 与路灯O 的水平距离6m AP =,则路灯高PO 的长是( )A .2mB .4.5mC .7.5mD .12m11.如图,在直角坐标系中点P (2,2)是一个光源.木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的投影长为( )A .3B .4C .5D .612.当投影线由物体的左方射到右方时,则如图所示几何体的正投影是( )A .B .C .D .13.当棱长为20的正方体的某个面平行于投影面时,则这个面的正投影的面积为()A.20 B.300 C.400 D.60014.下列关于投影与视图的说法正确的是()A.平行投影中的光线是聚成一点的B.线段的正投影还是线段C.三视图都是大小相同的圆的几何体是球D.正三棱柱的俯视图是正三角形15.下列投影是正投影的是( )A.①B.②C.③D.都不是16.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形B.矩形C.线段D.梯形17.下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.18.几何体在平面P的正投影,取决于()①几何体形状;②投影面与几何体的位置关系;③投影面P的大小.A.①②B.①③C.②③D.①②③二、解答题19.①操作方法:选一名学生为观测者,在他和旗杆之间的地面上直立一根高度已知的标杆,观测者前后调整自己的位置,使旗杆顶部、标杆顶部与眼睛恰好在同一直线上时,则分别测出,以及,然后测出即可求出旗杆的高度.②点拨:如图,过点A作AN⊥DC于N,交EF于M.△_____∽△_____∴()()=()(),代入测量数据即可求出旗杆CD的高度.20.如图,在安装路灯AB的路面CD比种植树木的地面PQ高 1.2mCP=,身高1.8m的红英MN站在距离C点15米的路面上.在路灯的照射下,路基CP留在地面上的影长EP为0.4米(1)画出红英MN在地面的影子NF;(2)若红英留在路面上的影长NF为3m,求路灯AB的高度.21.如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,则测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).22.如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60°,他们向南走50m到达D点,测得古亭B位于北偏东45°,求古亭与古柳之间的距离AB 1.41 1.73,结果精确到1m).23.分别画出下列几个几何体从正面和上面看的正投影.24.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24︒.求斜坡上相邻两树间的坡面距离(结果保留小数点后一位).三、填空题25.如图所示是两棵小树在同一时刻的影子,可以断定这是_______投影.(填“平行投影”或“中心投影”)26.如图,在ABC 中8cm,16cm AB AC ==,点P 从A 出发,以2cm/s 的速度向B 运动,同时点Q 从C 出发,以3cm/s 的速度向A 运动,当其中一个动点到达端点时,则另一个动点也随之停止运动,设运动的时间为t .(1)用含t 的代数式表示:AQ =_______;(2)当以A ,P ,Q 为顶点的三角形与ABC 相似时,则运动时间t =________27.对于一个物体(例如一个正方体)在三个投影面内进行正投影①在正面内得到的由前向后观察物体的视图,叫____.②在水平面内得到的由上向下观察物体的视图,叫做____.③在水平面内得到的由左向右观察物体的视图,叫做____.28.如图,把一根直的细铁丝(记为线段AB )放在三个不同位置;三种情形下铁丝的正投影各是什么形状?(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有交点).通过观察,我们可以发现:(1)当线段AB平行于投影面α时,则它的正投影是线段A1B1,线段与它的投影的大小关系为AB_____A1B1;(2)当线段AB倾斜于投影面α时,则它的正投影是线段A2B2,线段与它的投影的大小关系为AB______A2B2;(3)当线段AB垂直于投影面α时,则它的正投影是一个________.参考答案与解析1.【答案】B【分析】根据平行投影的特点即可求解.【详解】解:依题意得两横杠在地上的影子平行.故选:B.2.【答案】D【分析】同一时刻,物体的实际高度与影长成比例,据此列方程即可解答.【详解】∵同一时刻的物高与影长成正比例∴1.6∶1=旗杆的高度∶9.∴旗杆的高度为14.4米.故选D.3.【答案】D【分析】根据平行投影和中心投影的特点分析判断即可.【详解】解:若影子是由太阳光照射形成的,则两条直线一定平行;若影子是由灯光照射形成的,则两条直线一定相交.据此可判断形成该影子的光线为灯光光线.故选:D.4.【答案】D【分析】由太阳光是平行光线,可知同一时刻下,影子的朝向一致,由此进行求解即可.【详解】解:太阳光是平行光线,因此同一时刻下,影子的朝向是一致的.故选:D.5.【答案】D【分析】因为中心投影物体的高和影长成比例,正确的区分中心投影和平行投影,依次分析选项即可找到符合题意的选项【详解】因为正方形的对角线互相垂直,且一条对角线垂直地面,光源与对角线组成的平面垂直于地面,则有影子的对角线仍然互相垂直,且由于光源在平板的的上方,则上方的边长影子会更长一些故选D6.【答案】D【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】解:在同一路灯下由于小明与小强位置不确定,虽然影子一样长,但无法判断谁的个子高.故选:D.7.【答案】B8.【答案】D【分析】同一时刻,平行物体的投影仍旧平行.则正方形在太阳光下的投影得到的应是平行四边形或是特殊的平行四边形或线段.【详解】A项:正方形是特殊的平行四边形,符合要求;B项:线段,符合要求;C项:矩形是特殊的平行四边形,符合要求;D项:三角形不是平行四边形,不是特殊的平行四边形,不是线段,不符合要求.故选D9.【答案】C【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解.【详解】∵P 点坐标为(1,1)则OP 与x 轴正方向的夹角为45°又∵OP AB ∥则∠BAO =45°,OAB 为等腰直角形∴OA =OB设OC =x ,则OB =2OC =2x则OB =OA =3x ∴tan 133OC x OAP OA x ∠===. 【点睛】本题考查了等腰三角形的性质、平行线的性质、勾股定理和锐角三角函数的求解,根据P 点坐标推出特殊角是解题的关键.10.【答案】C【分析】根据相似三角形的判定与性质直接求解即可. 【详解】解:根据题意可知AB PO ∥C C ∴∠=∠ CAB CPO ∠=∠CAB CPO ∴∆∆∽AB PO AC PC ∴=,即3446PO =+,解得30157.542PO ===m∴路灯高PO 的长是7.5m故选:【答案】C .11.【答案】D【分析】利用中心投影,延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图,证明△PAB ∽△PA ′B ′,然后利用相似比可求出A 'B '的长.【详解】解:延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图∵P(2,2),A(0,1),B(3,1).∴PD=1,PE=2,AB=3∵AB//A′B′∴△PAB∽△PA′B′∴AB PDA B PE''=,即312A B=''∴A′B′=6故选:D.12.【答案】A【详解】试题解析:从左边看第一层一个小正方形,第二层一个小正方形.故选A.13.【答案】C【分析】根据平行投影性质可知该正方体的正投影是边长为20的正方形,计算可得.【详解】解:根据题意知,该正方体的正投影是边长为20的正方形∴正投影的面积为2020400⨯=故选C.14.【答案】C【分析】根据排除法判断即可;【详解】平行投影中的光线是是平行的,而不是聚成一点的,故A错误;线段的正投影不一定是线段,比如光线平行于线段时,则正投影是一点,故B错误;三视图都是大小相同的圆的几何体是球,故C正确;正三棱柱的俯视图不一定是正三角形,要看它如何放置,如水平放置,它是矩形,故D错误;故答案选C.15.【答案】C【分析】平行投影法分为正投影和斜投影,正投影是平行光垂直于屏幕的投影.【详解】根据题意:①是点光源的投影,是错误的;②是斜投影,故错误;③是正投影,故正确.故选C.16.【答案】D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意B.将矩形木框与地面平行放置时,则形成的影子为矩形,故该选项不符合题意C.将矩形木框立起与地面垂直放置时,则形成的影子为线段D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等∴得到投影不可能是梯形,故该选项符合题意故选:D.17.【答案】B【分析】根据平行投影的意义和性质,得出影子与实物的位置和大小关系得出答案.【详解】解:太阳光和影子,同一时刻,杆高和影长成正比例,且影子的位置在物体的统一方向上可知,选项B中的图形比较符合题意;故选:B.18.【答案】A【详解】试题分析:对于①,同一个方向球体和长方体的正投影的形状是不同的,故①与题意相符;对于②,保持平行光线和投影面的位置不变,转动长方体的位置,投影的形状会改变,故②与题意相符;对于③,投影面的大小和投影的形状无关,故③与题意不符.故选A.19.【答案】①观测者的脚到旗杆底端的距离,观测者的脚到标杆底端的距离,标杆的高,②AME,ANC,AM AN=EM CN20.【答案】(1)见解析(2)9米【分析】(1)根据相似即可画出影子NF;(2)如图,设AB=x m,CB=y m.构建方程组解决问题即可.(1)解:如图所示:(2)解:设AB x = CB y = ∵AB PC BC EP= AB BF MN NF = ∴ 1.20.41.81533x y x y ⎧=⎪⎪⎨⎪=⎪-+⎩∴解得93x y =⎧⎨=⎩ 经检验93x y =⎧⎨=⎩是分式方程的解 ∴9AB =答:灯AB 的高度为9米.21.【答案】货轮从A 到B 航行的距离约为30.6海里.【分析】过B 作BD ⊥AC 于D ,在Rt △BCD 中利用正弦函数求得BD =15.32海里,再在Rt △ABD 中利用含30度角的直角三角形的性质即可求解.【详解】解:过B 作BD ⊥AC 于D由题意可知∠ABE =30°,∠BAC =30°,则∠C =180°-30°-30°-70°=50°在Rt △BCD 中∠C =50°,BC =20(海里)∴BD = BC sin50°≈20×0.766=15.32(海里)在Rt △ABD 中∠BAD =30°,BD =15.32(海里)∴AB =2BD =30.64≈30.6(海里)答:货轮从A 到B 航行的距离约为30.6海里.22.【答案】古亭与古柳之间的距离AB 的长约为137m【分析】过点B 作AD 的垂线,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案.【详解】解:如图,过点B 作AD 的垂线,交DA 延长线于点C由题意得:50m,60,45AD BAC D =∠=︒∠=︒设m AC x =,则(50)m CD AC AD x =+=+在Rt BCD 中tan (50)m BC CD D x =⋅=+在Rt ABC △中tan m BC AC BAC =⋅∠=与2m cos AC AB x BAC==∠则50x +=解得25x =则250137(m)AB x ==≈答:古亭与古柳之间的距离AB 的长约为137m .23.【答案】见解析 【分析】根据投影的概念逐个求解即可.【详解】解:从正面正投影依次为:从上面正投影依次为:【点睛】本题主要考查投影视图,解决本题的关键是要熟练掌握正投影的定义.24.【答案】6.0m【分析】根据题意画出图形,再根据三角函数可得AB =AC ÷cos24°,再代入数计算即可.【详解】解:如图:由题意得:AC =5.5米,∠A =24°AB =AC ÷cos24°=5.5÷0.914≈6.0(米).答:斜坡上两树间的坡面距离是6.0米.25.【答案】中心【分析】根据光线的平行和相交即可判断是平行投影和中心投影.【详解】解:因为影子的顶点和大树的顶点的连线不平行所以它们的光线应该是点光源.所以是中心投影.故答案为:中心.26.【答案】163t -##316-+t 167秒或4秒 【分析】(1)根据路程=速度⨯时间,即可表示出AQ 的长度.(2)此题应分两种情况讨论.①当APQ ABC ∽时;②当APQ ACB ∽时.利用相似三角形的性质求解即可.【详解】解:(1)由题意可知:163=-AQ t(2)连接PQ∵∠PAQ =∠BAC∴当AP AQ AB AC =时,则APQ ABC ∽,即2163816t t -=,解得167t =; 当AP AQ AC AB =时,则APQ ACB ∽,即2163168t t -=,解得t=4. ∴运动时间为167秒或4秒.故答案为:163t167秒或4秒27.【答案】主视图俯视图左视图28.【答案】= > 点A3(B3)。

人教版九年级数学下册第29章《投影与视图》测试带答案解析

人教版九年级数学下册第29章《投影与视图》测试带答案解析
A.圆柱B.五棱柱C.长方体D.五棱锥
7.下列几何体中,主视图为等腰三角形的是()
A. B. C. D.
8.如图,一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是圆,关于这个几何体的说法错误的是()
A.该几何体是圆柱B.几何体底面积是
C.主视图面积是4D.几何体侧面积是
9.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()
参考答案:
1.C
【分析】根据常见几何体的主视图特征判断即可;
【详解】解:A.主视图为圆,不符合题意;
B.主视图为等腰梯形,不符合题意;
C.主视图为长方形,符合题意;
D.主视图为三角形,不符合题意;
故选:C.
【点睛】本题考查了主视图:在正面内得到的由前向后观察物体的视图,叫做主视图;掌握常见几何体的三视图特征是解题关键.
【详解】如图所示:

【点睛】本题考查简单组合体的三视图,掌握三视图的画法是画出三视图的关键.
18.图见解析.
【分析】根据几何体的三视图,可得从正面看有3列,每列小方形数目为2,1,3;从左面看有2列,每列小方形数目为2,3;从上面看有3列,每列小方形数目为1,1,2;分别画出即可求解.
【详解】解:如图所示.
16.如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是___________.
三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)
17.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状图,小正方形中的数字表示在该位置的小正方块儿的个数,请在相应网格中画出从正面和左面看到的几何体的形状图.

人教版九年级数学下册投影同步练习题

人教版九年级数学下册投影同步练习题

第二十九章投影与视图29.1投影一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列光线所形成的投影是平行投影的是A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【答案】A【解析】四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选A.2.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律【答案】B【解析】在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选B.3.小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为A.上午8时B.上午9时C.上午10时D.上午12时【答案】A【解析】在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选A.学科=网4.小红和小花在路灯下的影子一样长,则她们的身高关系是A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【答案】D【解析】小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断她们身高关系.故选D.5.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度A.变长3.5m B.变长2.5mC.变短3.5m D.变短2.5m【答案】C6.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解析】如图,由图易得AB<CD,那么离路灯越近,它的影子越短,故选B.二、填空题:请将答案填在题中横线上.7.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是__________.(填写“平行投影”或“中心投影”)【答案】中心投影【解析】因为在同一时刻,两根长度不等的木杆置于阳光之下,当它们都垂直于地面或都倒在地上或平行插在地面时,木杆长的它的影子就长;当它们垂直竖立在地面上时,它们的影长相等,此时只能是中心投影.故答案为:中心投影.8.如图所示,此时树的影子是在__________(填“太阳光”或“灯光”)下的影子.【答案】太阳光【解析】此时的影子是在太阳光下的影子,理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光.9.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是__________(用“=、>或<”连起来)【答案】S1=S<S2【解析】∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.10.如图,在平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴,垂足为点D,点C坐标为(3,1),则CD在x轴上的影子长为__________.【答案】3 4【解析】∵DC∥AO,∴△ECD∽△EAO,∴DEOE=DCAO,∴3DEDE=15,解得DE=34,即CD在x轴上的影子长为:34;故答案为:34.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.【解析】如图所示,点O即为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.12.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是()A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD =n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a+b+c=0,且abc≠0,则a+c2b=-12;②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;③若a+b+c=0,且abc≠0,则abc>0;④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

人教版九年级数学下《第二十九章投影与视图》单元练习题含答案

人教版九年级数学下《第二十九章投影与视图》单元练习题含答案

第二十九章投影与视图一、选择题1.下列四个几何体的俯视图中与众不同的是()A.B.C.D.2.下面几何体的主视图是()A.B.C.D.3.如图是一只茶壶,从不同方向看这只茶壶,你认为是俯视效果图的是()A.B.C.D.4.小亮在上午8时、9时、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午12时B.上午10时C.上午9时D.上午8时5.有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为()A. 45°B. 60°C. 90°D. 135°6.如图,该几何体主视图是()A.B.C.D.7.如图,下列四幅图中一定有两种不同的光源同时照射下的图案是()A.B.C.D.8.在下面的四个几何体中,它们各自的主视图与左视图可能相同的是() A.B.C.D.9.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A.B.C.D.10.如图是一个几何体的三视图,则这个几何体的表面积是()A. 18 cm2B. 20 cm2C. (18+2) cm2D. (18+4) cm2二、填空题11.如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是________(多填或错填得0分,少填酌情给分).12.现有m,n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不被这两个同学发现(用阴影部分的序号表示)________.13.一块直角三角形板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为________ cm.14.主视图与俯视图的________一致;主视图与左视图的________一致;俯视图与左视图的________一致.15.直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(-10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是________.16.如图是某几何体的三视图,则该几何体的体积是_________.17.长方体、球体、三棱柱、圆柱体,这四个几何体中有三个的某一种视图都是同一种几何图形,则这一个几何体是________.18.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是________.19.如图是某个几何体的三视图,该几何体是_________.20.在直角坐标平面内,一点光源位于A(0,5)处,线段CD垂直于x轴,D为垂足,C(3,1),则CD在x轴上的影子长________,点C的影子E的坐标为________.三、解答题21.如图,李平和张亮分别骑自行车从两条小胡同驶向马路,当他们分别行驶到图中的A,B位置时,哪个看到的范围更大一些?为什么?你还能举出生活中类似的例子吗?22.如图假设一座大楼高30米,观众坐在距大楼500米处,魔术师只需做一个屏障,屏障上的图画和没有大楼以后的景物一样,将屏障立在大楼前100米处,这样观众看上去好像大楼突然消失了.若要完全挡住大楼,请你找到一个方法计算出屏障至少要多高?(人身高忽略不计)23.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定……比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子)24.从这个图形的表面上你观察到哪些平面图形?25.王芹家住在A楼5层,杨雨家住在A楼正前方的B楼里,B楼没有A楼高.一天,站在自己家窗口的王芹,看见杨雨正从B楼的正前方往自己住的楼走去,一会儿就看不见杨雨了,请你在如图所示中找出从哪点开始,王芹看不见杨雨.26.已知一个模型的三视图如图,其边长如图所示(单位:cm).制作这个模型的木料密度为150 kg/m3,则这个模型的质量是多少kg?如果油漆这个模型,每千克油漆可以漆4 m2,需要油漆多少kg?(质量=密度×体27.一个几何体的三视图如图所示,分别求出这个几何体的体积和表面积.28.试确定图中路灯的位置,并画出此时小明在路灯下的影子.答案解析1.【答案】B【解析】A的俯视图是第一列两个小正方形,第二列一个小正方形,B的俯视图是第一列是两个小正方形,第二列是两个小正方形,C的俯视图是第一列两个小正方形,第二列一个小正方形,D的俯视图是第一列两个小正方形,第二列一个小正方形,故选B.2.【答案】D【解析】主视图有3列,从左往右小正方形的个数为2,1,1故选D.3.【答案】A【解析】由立体图形可得其俯视图为.故选A.4.【答案】D【解析】在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选D.5.【答案】C【解析】利用已知条件可以推出△OBC,△OAD均为等腰直角三角形,此时再利用已知条件就很容易求得所求的角的度数.∵AB=4,O为圆心,∴AO=BO=2,∵BC=2,BC⊥AB,∴△OBC为等腰直角三角形,∴∠COB=45°,同理∠AOD=45°,∴∠COD=90°.故选C.6.【答案】B【解析】三棱柱的主视图为矩形,∵正对着的有一条棱,∴矩形的中间应该有一条实线,故选B.7.【答案】C【解析】由于只有C选项有两个投影,其余三个选项都只有一个,所以C选项中的物体一定有两种光源同时照射,故选C.8.【答案】B【解析】A.此几何体主视图与左视图不相同,故此选项错误;B.立方体的主视图与左视图都是矩形,故此选项正确;B.三棱柱主视图是矩形,左视图也是矩形,矩形宽不相同,故此选项错误;D.四棱柱的主视图是矩形,左视图也是矩形,矩形宽不相同,故此选项错误;故选B.9.【答案】B【解析】∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B,故选B.10.【答案】C【解析】根据三视图可知,几何体是一个直三棱柱,由侧视图知,底面是边长为2 cm的等边三角形,边上的高是cm,且侧棱与底面垂直,侧棱长是3 cm,∴该几何体的表面积S=2××2×+3×2×3=18+2(cm2),故选C.11.【答案】①②③【解析】综合左视图跟主视图,从正面看,第一行第1列有3个正方体,第一行第2列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.故答案为①②③.12.【答案】①②③【解析】由图可知,①②③都在AB两个视点的盲区内,因此在这三处,不会被两个同学发现,因此选①②③.13.【答案】8【解析】∵∠ACB=90°,BC=12 cm,AC=8 cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1∶AB=B1C1∶BC=2∶1,即A1B1=8cm.14.【答案】长高宽【解析】根据三视图的特征,主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图的宽相等进行填空即可.故答案为长、高、宽.15.【答案】0<y≤2.5【解析】过D作DF⊥OC于F,交BE于H,OF=1.5,BH=0.5,三角形DBH中,tan∠BDH=BH∶DH=0.5∶5,因此三角形CDF中,CF=DF·tan∠BDH=1,因此,OC=OF+CF=1+1.5=2.5.因此盲区的范围在0<y≤2.5.16.【答案】108【解析】由三视图可知该几何体是底面边长为6,高为2的正六棱柱,由俯视图可知,梯形的高为=3,它的体积是×(6+12)×3×2×2=108.故答案为108.17.【答案】球体【解析】视图是同一种几何图形的几何体是正方体或者球体,所给选项中有球体,故答案为球体.18.【答案】5【解析】综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故答案为5.19.【答案】三棱柱【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.20.【答案】(,0)【解析】如图:∵CD⊥x轴,∴CD∥OA,∴△ECD∽△EAO,∴DE∶OE=CD∶OA,∵A(0,5),C点坐标为(3,1),∴DE∶(DE+3)=1∶5,∴DE=,∴CD在x轴上的影长E的坐标为(,0).故答案是,(,0).21.【答案】解B位置看到的范围大一些.实际生活中:人离窗子越远,向外眺望时此人的盲区是就变大,相反就变小.【解析】根据视角和盲区的定义直接判断得出即可,进而举出实际生活中的实例.22.【答案】解连接OA,交CD于E,由题意知,AB⊥OB,CD⊥OB,∠EDO=∠ABO=90°.则tan∠EOD=tan∠AOB==,故=,解得ED=24(m).答:屏障至少是24 m.【解析】根据已知,得出tan∠EOD=tan∠AOB==,进而求出即可.23.【答案】解(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①如图1,∴===.∴=,MB=3x,BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<5;②如图2,设运动时间为t秒,则EE′=FF′=0.8t,∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴===,∴=,∵EE′∥RR′,∴∠PEE′=∠PRR′,∠PE′E=∠PR′R,∴△PEE′∽△PRR′,∴=,∴=,∴RR′=1.2t,∴V影子==1.2米/秒.(2)如图3,【解析】(1)易证△MEF∽△MAB,根据相似三角形的对应边的比相等.可以把BF用x表示出来,同理,DF也可以用y表示出来.根据BD=10,就可以得到x,y的一个关系式,从而求出函数的解析式.根据△REF∽△RPQ就可以求出PE与RP的比值,同理.根据△PEE′∽△PRR′,求得EE′与RR′的比值.则影子的速度就可以得到.(2)根据故事的叙述,就可以作出图象.24.【答案】解如图所示:【解析】从正面看可得到一个长方形;从左面看得到一个正方形;从上面看得到一个长方形.25.【答案】解从点P开始进入盲区,即开始看不见杨雨.【解析】根据题意画出盲区即可判断出答案.26.【答案】解模型的体积=300×200×100+50×80×80=6 320 000 cm3=6.32 m3,模型的质量=6.32×150=948 kg;模型的表面积=2(100×200+100×300+200×300)+2(50×80+80×80+50×80)-2×80×80=236 000cm2=23.6 m2,需要油漆:23.6÷4=5.9 kg.答:这个模型的质量是948 kg;需要油漆5.9 kg.【解析】先计算模型的体积,再根据质量=体积×密度,求质量,再根据需要先求模型的表面积,再求所需油漆的重量.27.【答案】解3×1×3+3×3×1=9+9=18,(3×3+1×3)×2+(3×3+3×1+3×1)×2=(9+3)×2+(9+3+3)×2=12×2+15×2=24+30=54.答:这个几何体的体积是18,表面积是54.【解析】观察三视图可知,这个几何体的体积=长3宽1高3的长方体的体积+长3宽3高1的长方体的体积;这个几何体的表面积=长3宽1高3的长方体的侧面积+长3宽3高1的长方体的表面积;依此列出算式计算即可求解.28.【答案】解如图所示:【解析】分别过物体的顶点及其影子的顶点作射线,两条射线的交点即为光源的位置,进而画出小明的影子即可.。

人教版数学九年级下册第二十九章 投影与视图 达标测试卷(含答案)

人教版数学九年级下册第二十九章 投影与视图 达标测试卷(含答案)

第二十九章投影与视图达标测试卷(本试卷满分120分)一、选择题(每小题3分,共30分)1.下列几何体的左视图为长方形的是()A B C D2.下列图形能表示两根立柱所形成的投影是平行投影的是()A B C D3.如图是一个正三棱柱的三视图,则这个三棱柱摆放方式正确的是()A B C D第3题图第5题图第6题图4.下列结论:①同一地点、同一时刻,不同物体在阳光照射下影子的方向是相同的;②不同物体在任何光线照射下影子的方向都是相同的;③同一物体在路灯照射下影子的方向与路灯的位置有关;④物体在光线照射下影子的长短仅与物体的长短有关.其中正确的有()A.1个B.2个C.3个D.4个5.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图是()A B C D6.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.俯视图C.左视图D.主视图和俯视图7.与图中所示的三种视图相对应的几何体是()A B C D 第7题图8.在同一天的四个不同时刻,某学校旗杆的影子如图所示,下列选项中按时间先后顺序排列正确的是()A.②④③①B. ②③④①C. ③④①②D. ④③①②第8题图9.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼.如图,甲构件带有榫头,乙构件带有卯眼,两个构件恰好可以完全咬合,根据图中标示的方向,乙构件的主视图是()A B C D第9题图第10题图10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π二、填空题(每小题3分,共18分)11.如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我门可以确定这个几何体是.12.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_________.(填“逐渐变大”或“逐渐变小”)第12题图第13题图第14题图13.一圆柱按如图所示方式放置,若其左视图的面积为48,则该圆柱的侧面积为_______.14.如图,晚上小红由路灯A走向路灯B,当她走到点P时,发现她的影子顶部正好接触到路灯B的底部,此时她与路灯A的距离为20 m,与路灯B的距离为5 m.如果小红的身高为1.2 m,那么路灯A的高度是___________m.15.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.第15题图第16题图16.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:2,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE为米.(结果保留根号)三、解答题(本大题共8小题,共72分)17.(6分)画出如图所示几何体的三视图.第17题图第18题图18.(6分)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景(粗线分别表示三人的影子).请根据要求,进行作图.(不写画法,但要保留作图痕迹).(1)在图中画出灯泡所在的位置;(2)在图中画出小明的身高.19.(8分)(1)由大小相同的小立方块搭成的几何体如图,请在如图的方格中画出该几何体的俯视图和左视图;第19题图(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在方格中所画的图一致,则这样的几何体最多要个小立方块.20. (8分)如图所示为一几何体的三视图.(1)这个几何体的名称为__________;(2)画出它的任意一种表面展开图;(3)若主视图是长方形,其长为10 cm,俯视图是等边三角形,其边长为4 cm,求这个几何体的侧面积.第20题图第21题图21.(8分)如图,在Rt△ABC中,∠ACB=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D. (1)试写出边AC,BC在AB上的投影;(2)试探究线段AC,AB和AD之间的关系;(3)线段BC,AB和BD之间也有类似的关系吗?请直接写出结论.22.(10分)某几何体的主视图和俯视图如图所示(单位:mm),求该几何体的体积.第22题图第23题图23.(12分)在一个阳光明媚的上午,数学陈老师组织学生测量小山坡上一棵大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),同一时刻站在水平地面上身高1.7米的小明AB在地面的影长BP为1.2米,此刻大树CD在斜坡上的影长DQ为5米,求大树的高度.24.(14分)如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).第24题图(1)请在图中画出灯光光源O的位置及小明位于点F时在这一灯光下的影长FM(不写画法);(2)求小明原来的速度.投影与视图达标测试卷一、1.C 2.B 3.B 4.B 5.B 6.C 7.D 8.B 9.C 10.B二、11.圆锥 12.逐渐变大 13.48π 14.6 15.108 16.18-102三、17.解:如图所示:第17题图18.解:(1)如图所示,点O即为灯泡所在的位置.(2)如图所示,EF即为小明的身高.第18题图19. 解:(1)如图所示:第19题图(2)7 提示:由俯视图可知最底层有4个小立方块,第二层最多有3个小立方块,所以最多要4+3=7(个)小立方块.20. 解:(1)该几何体是三棱柱.(2)展开图如图所示(答案不唯一):第20题图(3)三棱柱的侧面展开图是长方形,长方形的长是等边三角形的周长即4×3=12(cm).由题意,知主视图的长是三棱柱的高,所以三棱柱侧面展开图的面积为12×10=120(cm2). 所以这个几何体的侧面积是120 cm2.21. 解:(1)边AC,BC在AB上的投影分别为AD,BD.(2)因为点C在斜边AB上的正投影为点D,所以CD⊥AB.所以∠ADC=90°.因为∠A=∠A,∠ADC=∠ACB,所以△ADC∽△ACB.所以AC ADAB AC=,即AC2=AD•AB.(3)BC2=BD•AB.提示:同(2)可证△BCD∽△BAC,所以BC BDBA BC=,即BC2=BD•AB.22.解:由主视图和俯视图可知,该几何体是上下两个圆柱的组合图形.所以该几何体的体积为16×π×2162⎛⎫⎪⎝⎭+4×π×282⎛⎫⎪⎝⎭=1088π(mm3).23. 解:过点Q作QE⊥DC于点E.由题意,得△ABP∽△CEQ,所以AB BPCE EQ=.所以AB CEBP EQ=,即1.71.2CEEQ=.因为EQ∥NO,所以∠1=∠2=30°.因为QD=5,所以DE=52,EQ=532.所以1.71.2532CE=,解得CE=85324.所以CD=CE+DE=52+85324=6085324+(米).答:大树的高度为6085324+米.第23题图24.解:(1)灯光光源O,影长FM如图所示:第24题图(2)设小明原来的速度为x 米/秒,则AD=DF=CE=2x,AM=AF-MF=2x+2x-1.2=4x-1.2,EG=FH=2×1.5x=3x,MB=AB-AM=12-(4x-1.2)=13.2-4x.因为点C,E,G在一条直线上,CG∥AB,所以∠OCE=∠A,∠OEC=∠OMA,∠OEG=∠OMB,∠OCE=∠B.所以△OCE∽△OAM,△OEG∽△OMB.所以CE OEAM OM=,EG OEMB OM=.所以CE EGAM MB=,即234 1.213.24x xx x=--,解得x=1.5.经检验,x=1.5为原分式方程的根. 答:小明原来的速度为1.5米/秒.。

人教版九年级下册数学第二十九章《投影》练习题

人教版九年级下册数学第二十九章《投影》练习题

人教版九年级下册数学第二十九章《投影》练习题一、单选题1.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A. 3mB. 4mC. 4.5mD. 5m2.如图所示是滨河公园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A. (3)(4)(1)(2)B. (4)(3)(1)(2)C. (4)(3)(2)(1)D. (2)(4)(3)(1)3.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A. B. C. D.4.下列现象中,属于中心投影的是()A.白天旗杆的影子B.阳光下广告牌的影子C.舞台上演员的影子D.中午小明跑步的影子5.下列现象是物体的投影的是()A. 小明看到镜子里的自己B. 灯光下猫咪映在墙上的影子C. 自行车行驶过后车轮留下的痕迹D. 掉在地上的树叶6.如下左图,王华晚上由路灯A下的B处走到C处时,测得影子的长为1m,继续往前走3m到达E处时,测得影子的长为2m,已知王华的身高是1.5m,那么路灯A的高度等于()(6题)(8题)A. 4.5mB. 6mC. 7.5mD. 8m7.圆形的物体在太阳光照射下的投影是()A. 圆B. 椭圆C. 线段D. 以上都有可能8.如上右图,在平面直角坐标系中,点是一个光源.木杆AB两端的坐标分别为,.则木杆AB在x轴上的投影长为()A. 4B. 5C. 6D. 89.小兵身高1.4m,他的影长是2.1m,若此时学校旗杆的影长是18m,那么旗杆的高度是()A. 9mB. 11 mC. 12 mD. 27m10.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A. B. C. D.二、填空题11.在某一时刻,测得一根高为1.8m的竹竿影长为3m,同时测得一根旗杆的影长为12m,那么这根旗杆的高度为 m。

人教版九年级数学下-第二十九章-《投影与视图》单元练习题(含答案)

人教版九年级数学下-第二十九章-《投影与视图》单元练习题(含答案)

第二十九章《投影与视图》单元练习题一、选择题1.如图,是一组几何体,它的俯视图是()A.B.C.D.2.如图是某几何体的三视图,则与该三视图相对应的几何体是()A.B.C.D.3.如图所示的四棱台,它的俯视图是下面所示的图形的()A.B.C.D.4.由下列光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯5.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.6.如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为()A.B.C.D.7.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A. 6-3B. 4C. 6D. 3-28.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A.B.C.D.分卷II二、填空题9.若某几何体的三视图如图所示,则该几何体是_________.10.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=24 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m和1 m,那么塔高AB为________ m.11.一位工人师傅要制造某一工件,想知道工件的高,他须看到在视图的________或________.12.在下列关于盲区的说法中,正确的有________.(填序号①②等)①我们把视线看不到的地方称为盲区;②我们上山与下山时视野盲区是相同的;③我们坐车向前行驶,有时会发现高大的建筑物会被比它矮的建筑物挡住;④人们说“站得高,看得远”,说明在高处视野盲区要小些,视野范围要大些.13.如图,是小明在一天中四个时刻看到的一棵树的影子的俯视图,请你将它们按时间的先后顺序进行排列________.14.从上面看圆柱和从上面看圆锥,其形状是一样的,都是圆,但是它们的俯视图是有区别的,其区别是________________.15.主视图与俯视图的________一致;主视图与左视图的________一致;俯视图与左视图的________一致.16.一块直角三角形板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为________ cm.三、解答题17.看教室黑板上的同一幅画,是离黑板近,视角大;还是离黑板远,视角大呢?是离黑板近看得清还是远看得清呢?由此你可以得出一个什么样的结论?18.当你去看电影的时候,你想坐得离屏幕近一些,可是又不想为了看屏幕边缘的镜头不停地转动眼睛.如图所示,点A、B分别为屏幕边缘两点,若你在P点,则视角为∠APB.如果你觉得电影院内P点是观看的最佳位置,可是已经有人坐在那了,那么你会找到一个位置Q,使得在Q、P两点有相同的视角吗?请在图中画出来(保留画图痕迹,不写画法).19.如图所示,太阳光与地面成60°角,一颗倾斜的大树在地面上所成的角为30 °,这时测得大树在地面上的影长约为10 m,试求此大树的长约是多少?(得数保留整数)20.如图,两棵树的高度分别为AB=6 m,CD=8 m,两树的根部间的距离AC=4 m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6 m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?21.如图所示,一段街道的两边沿所在直线分别为AB,PQ,并且AB∥PQ,建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N,小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等待小亮.(1)请你画出小亮恰好能看见小明的视线,以及此时小亮所在的位置(用点C标出).(2)已知:MN=30 m,MD=12 m,PN=36 m.求(1)中的点C到胜利街口的距离.第二十九章《投影与视图》单元练习题答案解析1.【答案】B【解析】如图摆放的位置,从上面看三棱柱可得到左右相邻的两个长方形;六棱柱为一个六边形,故选B.2.【答案】C【解析】由主视图和左视图发现应该有一个正四棱锥和正方体的组合体,根据俯视图发现正方体位于正四棱柱的右前方,故选C.3.【答案】B【解析】四棱台的俯视图是两个大小相套的正方形,全部为实线.故选B.4.【答案】A【解析】用平行光线照射物体所产生的投影为平行投影,而用路灯、手电筒、台灯等照射物体所产生的投影为中心投影.故选A.5.【答案】C【解析】几何体的主视图和左视图完全一样均如图所示则上面的几何体从正面看和左面看的长度相等,只有等边三角形不可能,故选C.6.【答案】C【解析】从上边看矩形内部是个圆,故选C.7.【答案】B【解析】利用所给角的正切值分别求出两次影子的长,然后作差即可.第一次观察到的影子长为6×tan 30°=2(米);第二次观察到的影子长为6×tan 60°=6(米).两次观察到的影子长的差=6-2=4(米).故选B.8.【答案】A【解析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.A.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B.影子的方向不相同,故本选项错误;C.影子的方向不相同,故本选项错误;D.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.9.【答案】长方体【解析】从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是矩形,这样的几何体是长方体.10.【答案】28.8【解析】过点D作DF∥AE,如图,根据题意得=,即=,解得BF=9.6;=,即=,解得AF=19.2,所以AB=AF+FD=19.2+9.6=28.8(m).故答案为28.8.11.【答案】正视图左视图【解析】从正面看某一工件,看到的是工件的长和高,从左面看到的是工件的宽和高,从上面看到的是工件的长和宽,由此问题得解.要想知道工件的高,需从正面或左面看到高,因此需知道正视图或左视图.12.【答案】①③④【解析】盲区是指看不见的区域,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.②中上山和下山时盲区是不同的,要记住仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.而①③④都是正确的,因此选①③④.13.【答案】④②①③【解析】西为④,西北为②,东北为①,东为③,故其按时间的先后顺序为④②①③.14.【答案】圆锥的俯视图圆心处有一实心点【解析】15.【答案】长高宽【解析】根据三视图的特征,主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图的宽相等进行填空即可.故答案为长、高、宽.16.【答案】8【解析】∵∠ACB=90°,BC=12 cm,AC=8 cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1∶AB=B1C1∶BC=2∶1,即A1B1=8cm.17.【答案】解根据视角的定义可得:离黑板近视角大,离黑板近看得清.结论:视角大,看得清.【解析】人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.18.【答案】解作AB,AP的中垂线,交点为O,以O为圆心,OP长为半径做三角形ABP的外接圆,在圆上P点同侧找一点Q,连接AQ,BQ,则点Q即可所求点.【解析】作AB,AP的中垂线,找到交点O,然后以O为圆心,OP长为半径做三角形ABP的外接圆,圆上每一点与A,B的连线所成的角都与∠APB相等,找到一个和P点同侧的Q点连接AQ,BQ即可.19.【答案】解过B作BM⊥AC于M,∵∠A=30°,∴BM=BC=5,AM=5,又∵∠CBE=60°,∴∠ACB=30°,∴AB=CB,∴CM=AM=5,∴AC=10≈17.答:此大树的长约是17 m.【解析】先过B作BM⊥AC于M,构造含30°角的直角三角形,求得AM的长,再根据△ABC为等腰三角形,利用三线合一求得AC的长.20.【答案】解设FG=x米.那么FH=x+GH=x+AC=x+4(米),∵AB=6 m,CD=8 m,小强的眼睛与地面的距离为1.6 m,∴BG=4.4 m,DH=6.4 m,∵BA⊥PC,CD⊥PC,∴AB∥CD,∴FG∶FH=BG∶DH,即FG·DH=FH·BG,∴x×6.4=(x+4)×4.4,解得x=8.8(米),因此小于8.8米时就看不到树CD的树顶D.【解析】根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH 的比例关系式,用FG表示出FG后即可求出FG的长.21.【答案】解(1)如图所示,CP为视线,点C为所求位置.(2)∵AB∥PQ,MN⊥AB于M,∴∠CMD=∠PND=90°.又∵∠CDM=∠PDN,∴△CDM∽△PDN,∴=.∵MN=30 m,MD=12 m,∴ND=18 m.∴=,∴CM=24(m).∴点C到胜利街口的距离CM为24 m.【解析】本题以生活场景为载体,考查学生运用知识解决实际问题能力,本题可根据生活常识得第(1)问,第(2)问由相似三角形性质求出.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《29.1投影》习题一、单选题1.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子().A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短2.下列命题正确的是().A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上,得到的光区仍是矩形3.如图是小明一天上学.放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是().A.(1)(2)(3)(4)B.(4)(3)(1)(2)C.(4)(3)(2)(1)D.(2)(3)(4)(1)4.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是().5.如图,AB,CD是两根木杆,它们在同一平面内的同一直线MN上,则下列有关叙述正确的是().A.若射线BN正上方有一盏路灯,则AB,CD的影子都在射线BN上;B.若线段BD正上方有一盏路灯,则AB的影子在射线BM上,CD的影子在射线DN上;C.若在射线DN正上方有一盏路灯,则AB,CD的影子都在射线BN上;D.若太阳处在线段BD的正上方,则AB,CD的影子位置与选项B中相同.6.小刚走路时发现自己的影子越走越长,这是因为().A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关D.路灯的灯光越来越亮二、填空题7.已知小聪的身高为1.8米,在太阳光下的地面影长为2.4米,若此时测得一旗杆在同一地面的影长为20米,则旗杆高应为.8.矩形在光线下的投影,可能是_________或_________也可能是_________.9.太阳光线形成的投影是_________,灯光形成的投影是_________.10.如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而(填“变大”、“变小”或“不变”).11.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是___ ___ ,影子的长短随人的位置的变化而变化的是___12.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB•在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_______.13.如图,甲、乙两盏路灯相距20米.一天晚上,当小明从路灯甲走到距路灯乙底部4米处时,发现自己的身影顶部[正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为米.14.小丽站在30米高的楼上远眺前方的广场,在离楼房15米处,有一个高为5米的障碍物,那么离楼房__________米的范围内小丽看不见三、解答题15.小明同学在教室透过窗户看外面的小树,他能看见小树的全部吗?请在(1)中画图说明.如果他想看清楚小树的全部,应该往(填前或后)走.在(2)中画出视点A(小明眼睛)的位置.(1)(2)16.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)17.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.18.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A 点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?19.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.20.如下图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P 表示).如果是太阳光请画出光线.(2)在图中画出表示大树高的线段21.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼之间的距离AC=24m,现需了解甲楼对乙楼的采光的影响情况,当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1m ,≈1.41,≈1.73)?22.如图,是两根柱子在同一灯光下的影子.(1)请在图中画出光源的位置(用点P表示光源);(2)在图中画出人物DE在此光源下的影子(用线段EF表示).答案与解析1.知识点:中心投影答案:A解析:试题分析:由题意小亮离光源是由远到近的过程,根据中心投影的特点,即可得到身影的变化特点.小亮在路灯下由远及近向路灯靠近时,其影子应该逐渐变短,故选A.考点:本题考查了中心投影的特点点评:本题属于基础应用题,只需学生熟练掌握中心投影的特点,即可完成.2.知识点:简单几何体的三视图、平行投影、中心投影答案:C解析:试题分析:根据中心投影、平行投影的性质,三视图的知识依次分析个选项即可.A.三视图是平行投影,故本选项错误;B.牡丹花不能看作视点,故本选项错误;C.球的三视图均是半径相等的圆,本选项正确;D.阳光从矩形窗子里照射到地面上,得到的光区可能是平行四边形,故本选项错误;故选C.考点:本题考查的是三视图点评:解答本题的关键是掌握从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.3.知识点:平行投影答案:B.解析:试题分析:根据平行投影的规律:早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长可得顺序为(4)(3)(1)(2).故选B.考点:平行投影.4.知识点:平行投影答案:A解析:试题分析:根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.考点:本题考查了平行投影特点点评:解答本题的关键是掌握平行投影的特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.5.知识点:中心投影答案:B解析:试题分析:两个影长在相反方向,连接两个物体与影长的对应顶点,可得交于一点,那么应为点光源的光线形成的影子.如图所示:它们是点光源的光线形成的影子,锐线段BD正上方有一盏路灯,则AB的影子在射线BM上,CD的影子在射线DN上,故选B.考点:本题考查的是中心投影点评:解决本题的关键是理解点光源的光线交于一点.6.知识点:中心投影答案:A解析:试题分析:中心投影的形成光源为灯光,根据中心投影的性质即可判断.小刚走路时发现自己的影子越走越长,这是因为从路灯下走开,离路灯越来越远,故选A.考点:此题主要考查了中心投影的性质点评:中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.7.知识点:相似三角形的性质、平行投影答案:15m.解析:试题分析:设旗杆高为xm,根据同时同地物高与影长成正比列出比例式:,解得x=15m.考点:相似三角形的应用.8.知识点:平行投影答案:平行四边形矩形线段9.知识点:平行投影、中心投影答案:平行投影中心投影10.知识点:中心投影答案:变小;解析:试题分析:易知投影为光线路程从蜡烛A点到人物头所连接的直线延伸到墙上,设为AD.当人离墙的距离变小时候(即往右边移动),易知其AD与AB的夹角会变小,AD长度变小,根据勾股定理易知,斜边变小,其中一条直角边固定不变,则另一条直角边肯定会长度变小.考点:勾股定理点评:本题难度中等,需要学生作图简单推理.应注意数形结合的培养并在考试中应用11.知识点:平行投影、中心投影答案:太阳光下形成的影子;灯光下形成的影子.解析:试题分析:根据平行投影和中兴投影的性质分别分析得出答案即可.试题解析:根据太阳光照射角度随时间的变化而变化,得出影子的长短随时间的变化而变化,人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.考点: 1.平行投影;2.中心投影.12.知识点:相似三角形的性质、平行投影答案:10m解析:试题分析:根据已知连接AC,过点D作DF∥AC,即可得出EF就是DE的投影;利用三角形△ABC∽△DEF.得出比例式求出DE即可.作法:连接AC,过点D作DF∥AC,交直线BE于F,则EF就是DE的投影.∵太阳光线是平行的,∴AC∥DF.∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴,∵AB=5m,BC=3m,EF=6m,∴,∴DE=10(m).考点:此题主要考查了平行投影的画法以及相似三角形的应用点评:解答本题的关键是掌握平行投影的性质,根据已知得出△ABC∽△DEF.13.知识点:相似三角形的性质、中心投影答案:解析:考点:相似三角形的应用.分析:易得△ABO∽△CDO,利用相似三角形对应边的比相等可得路灯甲的高.解答:解:∵AB⊥OB,CD⊥OB,∴△ABO∽△CDO,∴=,=,解得AB=8,故答案为8.点评:考查相似三角形的应用;用到的知识点为:相似三角形对应边的比相等.14.知识点:相似三角形的性质、中心投影答案:15~1815.知识点:中心投影答案:小明同学在教室透过窗户看外面的小树,他不能看见小树的全部;如果他想看清楚小树的全部,应该往前走;点A(小明眼睛)的位置,图形见解析.解析:试题解析:小明同学在教室透过窗户看外面的小树,他不能看见小树的全部;如果他想看清楚小树的全部,应该往前走;点A(小明眼睛)的位置,如图:.考点:光的直线传播.16.知识点:中心投影答案:作图见解析.解析:试题分析:先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P 作过木桩顶端的直线与地面的交点即为F.试题解析:作图如下:考点:1.作图题;2.中心投影.17.知识点:相似三角形的应用、平行投影答案:(1)画图见解析;(2)米.解析:试题分析:(1)连接AC,过D点作AC的平行线即可;(2)过M作MN⊥DE于N,利用相似三角形列出比例式求出旗杆的高度即可.试题解析:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴又∵AB=1.6,BC=2.4,DN=DE-NE=15-xMN=EG=16∴解得:x=.答:旗杆的影子落在墙上的长度为米.考点: 1.相似三角形的应用;2.平行投影.18.知识点:相似三角形的判定与性质、中心投影答案:变短3.5米.解析:试题分析:如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.试题解析:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.考点:相似三角形的应用.19.知识点:平行投影答案:解:(1)连接AC,过点D作,交直线BC于点F,线段EF即为DE的投影.(2)DE=10(m)说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.20.知识点:中心投影答案:图形见解析.解析:试题分析:(1)根据光线相交于一点得出确定路灯的位置;(2)利用AB,DE,确定大树的高.试题解析:(1)根据光线(图中虚线)相交于一点,即可得出路灯确定路灯的位置P;(2)如图所示:MQ表示大树高的线段.考点:平行投影.21.知识点:解直角三角形、平行投影答案:16.2m22.知识点:中心投影答案:如图,点P是影子的光源,EF就是人在光源P下的影子.解析:考点:作图—应用与设计作图.分析:(1)连接A′与柱子A的顶点,B′与柱子B的顶点,相交于点P,则点P就是光源所在的位置;(2)连接PD并延长与底面相交于点F,即可得到影子EF.解答:(1)如图所示,点P是影子的光源;(2)如图所示,EF就是人在光源P下的影子.点评:本题考查了应用于设计作图,找出光源是解题的关键,是基础题,比较简单。

相关文档
最新文档