(人教版)初一数学试题

合集下载

人教版初一上册数学试卷

人教版初一上册数学试卷

人教版初一上册数学试卷一、选择题(每题 3 分,共30 分)1. 下列各数中,是负数的是()A. 0B. -2C. 5D. 3.142. 有理数-3 的相反数是()A. 3B. -3C. 1/3D. -1/33. 若气温上升2℃记作+2℃,那么气温下降3℃记作()A. -3℃B. +3℃C. -2℃D. +2℃4. 下列计算正确的是()A. -2+2=0B. -2-2=0C. 2×(-2)=4D. 2÷(-2)=15. 若|a|=3,则a 的值是()A. 3B. -3C. ±3D. 06. 下列式子中,是单项式的是()A. 2x+1B. x+2yC. 3xD. x²+17. 化简2(a-b)-(a+b)的结果是()A. a-3bB. a-bC. a+bD. 3a-3b8. 若方程2x+a=3 的解是x=1,则a 的值是()A. 1B. -1C. 1/2D. -1/29. 一个角的余角是40°,则这个角的度数是()A. 50°B. 40°C. 140°D. 130°10. 把一些图书分给某班学生阅读,如果每人分3 本,则剩余20 本;如果每人分4 本,则还缺25 本.设这个班有x 名学生,则可列方程为()A. 3x+20=4x-25B. 3x-20=4x+25C. 3x-20=4x-25D. 3x+20=4x+25二、填空题(每题 3 分,共15 分)11. 比较大小:-3____-2(填“<”“>”或“=”)。

12. 单项式-2xy²的系数是____。

13. 若2x²y^{m}与-3x^{n}y³是同类项,则m=____,n=____。

14. 一个多项式加上2x²-3x+1 得4x²-5x+3,则这个多项式是____。

15. 已知线段AB=10cm,点C 是线段AB 上一点,且BC=4cm,则线段AC 的长是____cm。

人教版初一数学上册单元测试卷(全套)_广州重点中学试题

人教版初一数学上册单元测试卷(全套)_广州重点中学试题

广州市重点中学初一数学单元测试人教版第一章《有理数》一、单选题(共8题;共16分)1.近似数1.50所表示的精确数n的范围是()A. 1.45≤n<1.55B. 1.45<n<1.55C. 1.495≤n<1.505D. 1.495<n<1.5052.受“莫拉克”台风影响,台湾引发了50年不遇的严重水灾,截至2009年8月19日止,大陆各界向台湾受灾同胞捐款总数已达1.76亿元人民币,把1.76亿元进行科学记数正确的是().A. B. C. D.3.下列叙述正确的是()A. 若|a|=|b|,则a=bB. 若|a|>|b|,则a>bC. 若a<b,则|a|<|b|D. 若|a|=|b|,则a=±b4.交通运输部消息:2017年春运从1月13日开始至2月21日结束,预计此次春运客流量将达到29.78亿人次,同比增长2.2%,将29.78亿用科学记数法表示应为()A. 2.978×109B. 2.978×108C. 29.78×108D. 0.2978×10105.有理数﹣22,(﹣2)2,|﹣23|,﹣按从小到大的顺序排列是()A. |﹣23|<﹣22<﹣<(﹣2)2B. ﹣22<﹣<(﹣2)2<|﹣23|C. ﹣<﹣22<(﹣2)2<|﹣23|D. ﹣<﹣22<|﹣23|<(﹣2)26.已知,a,b是不为0的有理数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是()A. B. C. D.7.如果a的相反数是2,那么a等于()A. ﹣2B. 2C.D.8.下列说法中,正确的是()A. 正整数和负整数统称整数B. 整数和分数统称有理数C. 零既可以是正整数,也可以是负整数D. 一个有理数不是正数就是负数二、填空题(共8题;共12分)9.若a<b<0,则(a+b)(a﹣b)________ 0.10.计算(﹣1)2017+(﹣1)2018的结果是________.11.化简: ________12.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2016=________.13.利用分配律可以得﹣2×6+3×6=(﹣2+3)×6=﹣6.如果a表示任意一个有理数,那么利用分配律可以得到﹣2a+3a=(________)a=________.14.三个互不相等的有理数,既可以表示为1、a+b、a的形式,也可以表示为0、、b的形式,则字母a表示的有理数是________.15.如图所示,点A表示________,点B表示________,点C表示________,点D表示________.16.互为相反数的两数之和是________ .三、计算题(共5题;共30分)17.任何一个数都可以拆成两个数的和、差、积、商,通过拆分法你能计算下面这道题吗?计算:2018×20172017-2017×20182018.18.计算:-22×7-6÷(-3)+519.20. 计算:(1);(2).21.已知:|a|=2,|b|=3,且a+b<0,求a+b的值四、解答题(共5题;共25分)22.小丽与小明在讨论问题:小丽:如果你把7498近似到4位数,你就会得到7000.小明:不,我有另外一种解答方法,可以得到不同的答案,首先,将7498近似到百位,得到7500,接着再把7500近似到千位,就得到8000.你怎样评价小丽和小明的说法呢?23.把下列各数分别填入相应的大括号内:−7,3.5,−3.1415,π,0,,0.03,,10,,自然数集合{ …};整数集合{ …};正分数集合{ …};非正数集合{ …};有理数集合{ …}.24.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,(1)a2是a1的差倒数,求a2;(2)a3是a2的差倒数,则a3;(3)a4是a3的差倒数,…依此类推a n+1是a n的差倒数,直接写出a2015.25.有一个棱长4分米的正方体铁块熔铸成宽2.5分米,高1.6分米的长方体铁块,长方体铁块的长是多少分米?26.某地某天中午的气温是﹣12℃,下午5点的气温比中午下降了4℃,下午5点的气温是多少?五、综合题(共1题;共20分)27.把下列各数填入表示它所在的集合里.﹣2,7,﹣1.732,0,3.14,﹣(+5),﹣,﹣(﹣3),2007(1)正数集合{ …}(2)负数集合{ …}(3)整数集合{ …}(4)有理数集合{ …}.答案解析部分一、单选题1.【答案】C【考点】近似数及有效数字【解析】【解答】近似数1.50所表示的精确数n的范围为1.495≤n<1.505.故答案为:C.【分析】根据题意近似数1.50所表示的精确数是小数点后第二位数是百分位,由四舍五入得到,求出精确数n的范围.2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【分析】由于1.76亿=176 000 000,再用科学记数法表示即可.【解答】1.76亿=176 000 000=1.76×108.故选C.【点评】将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.3.【答案】D【考点】绝对值及有理数的绝对值【解析】【解答】解:A、令a=1,b=﹣1,此时|a|=|b|,而a≠b,故本选项错误;B、令a=﹣2,b=1,此时|a|>|b|,而a<b,故本选项错误;C、令a=﹣2,b=1,此时a<b,而|a|>|b|,故本选项错误;D、若|a|=|b|,则a=±b,故本选项正确.故选D.【分析】根据负数的绝对值为正数,可分别举反例判断各选项.4.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将29.78亿用科学记数法表示应为2.978×109,故选:A.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.5.【答案】B【考点】相反数及有理数的相反数,有理数大小比较,有理数的乘方【解析】【解答】解:∵﹣22=﹣4,(﹣2)2=4,|﹣23|=8,∴﹣4<﹣<4<8,∴﹣22<﹣<(﹣2)2<|﹣23|.故选B.【分析】求出﹣23、(﹣2)2、|﹣23|的值,再根据有理数的大小比较法则比较即可.6.【答案】C【考点】数轴及有理数在数轴上的表示,相反数及有理数的相反数【解析】【解答】解:∵|a|=﹣a,|b|=b,∴a≤0,b≥0,∵|a|>|b|,∴表示数a的点到原点的距离比b到原点的距离大,故选:C.【分析】根据绝对值的性质可得a≤0,b≥0,再根据|a|>|b|可得a距离原点比b距离原点远,进而可得答案.7.【答案】A【考点】相反数及有理数的相反数【解析】【分析】因为绝对值相等且符号不同的两个数互为相反数,根据题意可求得a的绝对值,再根据相反数的概念不难求得a的值.【解答】∵a的相反数是2,∴|a|=|2|=2,∴a=-2.故选A.【点评】此题主要考查学生对相反数的概念的理解及掌握情况.8.【答案】B【考点】有理数及其分类【解析】【解答】A、正整数和负整数统称整数,因为0是整数但既不是正数也不是负数,所以本选项错误;B、整数和分数统称为有理数,此选项符合有理数的意义,所以本选项正确;C、零既可以是正数,也可以是负数,在有理数中,0既不是正数,也不是负数,所以本选项错误;D、0是有理数,但既不是正数也不是负数,所以本选项错误.故选:B.【分析】此题可根据有理数的意义对每个选项注意推理论证,得出正确选项.二、填空题9.【答案】>【考点】有理数的乘法【解析】【解答】解:∵a<b<0,∴a+b<0,a﹣b<0.∴(a+b)(a﹣b)>0.故答案为:>.【分析】由有理数的加法法则可知a+b<0,由a<b可知a﹣b<0,然后依据有理数乘法法则即可判断.10.【答案】0.【考点】有理数的加法,有理数的乘方【解析】【解答】解:原式=-1+1=0,故答案为:0【分析】利用乘方的意义计算即可得到结果.11.【答案】【考点】绝对值及有理数的绝对值【解析】【解答】∵π-4<0,∴,又∵,∴,∴【分析】本题主要考查绝对值的意义,|a|=a(a>0)|a|=-a(a<0)|a|=0(a=0)灵活运用绝对值的性质是解题的关键.12.【答案】4【考点】倒数【解析】【解答】解:∵a1=﹣,a2= = ,a3= =4,a4= =﹣,…∴数列以﹣,,4三个数依次不断循环,∵2016÷3=672,∴a2016=a3=4.故答案为:4.【分析】利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.13.【答案】﹣2+3;a【考点】有理数的乘法【解析】【解答】解:﹣2a+3a=(﹣2+3)a=a,故答案为:﹣2+3;a【分析】利用乘法分配律将原式合并即可.14.【答案】-1【考点】有理数及其分类【解析】【解答】∵三个数互不相等,∴a≠0,∴a+b=0,∴a=-b,∴=-1∴1,0,a又可以写成0,-1,b即a=-1.【分析】依据两组形式是同一组有理数,利用数据中的已知数推导出未知数.15.【答案】1;-1;2.5;-1.5【考点】数轴【解析】【解答】A点距离原点右边一个单位,即A为1;B点距离原点左边一个单位,即为-1;C点距离原点右边2.5个单位,即为2.5;D点距离原点左边1.5个单位,即为-1.5.【分析】本题考查的是数轴的知识,只要掌握了数轴上的点与有理数一一对应的关系就容易解答.16.【答案】0【考点】相反数【解析】【解答】解:互为相反数两数和为0.故答案为:0.【分析】根据互为相反数的两个数的和等于0解答.三、计算题17.【答案】解:原式=2018×2017×(10000+1)-2017×2018×(10000+1)=0.【考点】有理数的乘法运算律【解析】【分析】一看这是一道混合运算的题,被减数与减数都是非常大的两个数相乘,感觉非常难算,但通过拆分法将20172017拆成2017×(10000+1),20182018拆成2018×(10000+1),从而将减法算式的被减数与减数变成了相同的两个数,根据有理数的减法法则,相同两数相减等于0,即可得出答案。

(人教版)初一数学下册实数测试题及答案解析

(人教版)初一数学下册实数测试题及答案解析

一、选择题1.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥ D .()0f k =或12.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6663.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是( )A .pB .qC .mD .n4.如图,A 、B 、C 、D 是数轴上的四个点,其中最适合表示10的点是( )A .点AB .点BC .点CD .点D5.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120B .125C .-120D .-1258.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根.A .1B .2C .3D .49.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 2210.已知f(1)=2 (取12⨯的末位数字),f(2)=6 (取2?3的末位数字),f(3)=2 (取34⨯的末位数字),…, 则()()()()f 1f 2f 3f 2021++++的值为( )A .4036B .4038C .4042D .4044二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为222M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____. 13.观察下列各式: 225-85425⨯25225-253310-27103910⨯3103310-31021n n n -+_____.14.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____15.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.16.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号).17.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________.18.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.19.已知M 是满足不等式27a -<<的所有整数的和,N 是52的整数部分,则M N +的平方根为__________.20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.22.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)23.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭24.对于实数a ,我们规定:用符号⎡⎤⎣⎦a a ⎡⎣a 为a 的根整数,例如:93⎡=⎣,10⎡⎣=3.(1)仿照以上方法计算:4⎡⎣=______;26⎡⎤⎣⎦=_____.(2)若1x ⎡=⎣,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次103⎡=⎣→3⎡⎣=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 25.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号).①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 27.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果. 28.阅读下面的文字,解答问题的小数部分我们不可能全部11,将这个数减去其整数部分,差就是小数部分.23, ∴22)请解答:(1整数部分是 ,小数部分是 .(2a b ,求|a ﹣b(3)已知:x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数. 29.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)30.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=nf x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0,当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.B解析:B 【详解】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; }2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选B.点睛本题考查了估算无理数的大小.3.C解析:C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解. 【详解】解:∵0p q m n +++= 结合数轴可得:()-=p q m n ++, 即原点在q 和m 之间,且离m 点最近, ∴绝对值最小的数是m , 故选:C . 【点睛】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.4.D解析:D 【分析】根据<4即可得到答案.【详解】∵9<10<16,∴<4,∴的点是点D,故选:D.【点睛】此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.5.C解析:C【分析】设木块的长为x,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x的值,由AD=2x可得答案.【详解】解:设木块的长为x,根据题意,知:(x-2)2=19,则2x-=∴2x=(舍去)x=22则24==,BC x故选:C.【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.6.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.D解析:D【详解】根据题目中的运算方法a *b =ab +a -b ,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D .点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.8.C解析:C 【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错; 根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.9.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,1=-,则2x =-∴点C 表示的数是2-.故选:D. 【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.10.C解析:C 【分析】先计算部分数的乘积,观察运算结果,发相规律,每运算5次后结果重复出现,求出f(1)+f(2)+f(3)+f(4)+f(5)和,再求2021次运算重复的次数,用除数5,商和余数表示2021=5×404+1,说明重复404次和f(2021)=2的结果,(f(1)+f(2)+f(3)+f(4)+f(5))×10+2计算结果即可. 【详解】解:f(1)=2, f(2)=6,f(3)=2,f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,f(10)=0,f(11)=2,每5次运算一循环,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10, 2021=5×404+1,()()()()f 1f 2f 3f 2021++++=10×404+2=4040+2=4042.故选:C . 【点睛】本题考查新定义运算,读懂题目的含义与要求,掌握运算的方法,观察部分运算结果,从中找出规律,用规律解决问题是解题关键.二、填空题 11.2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为(222==; ∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且ab ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1, ∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下:1>若点A位于点B左边:①若点D在点A左边,如图所示:此时,37222 BD AD AB=+=+=;②若点D在点A右边,如图所示:此时,31222 BD AB AD=-=-=;2>若点A位于点B右边:①若点D在点A左边,如图所示:此时,31222 BD AB AD=-=-=;②若点D在点A右边,如图所示:此时,37222 BD AD AB=+=+=;综上,线段BD的长度为12或72,故答案为:2;21;12或72.【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000= 401401.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 13.n .【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】解:=n .故答案为:n .【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析: 【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】故答案为: 【点睛】 此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键. 14.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】根据若[]x 表示不超过x 的最大整数,①取 2.5x 验证;②根据定义分析;③直接将 2.75-代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x ]与﹣[x ]两者不相等,故①不符合题意;②若[x ]=n ,∵[x ]表示不超过x 的最大整数,∴x 的取值范围是n ≤x <n +1,故②符合题意;③将x =﹣2.75代入4x ﹣[x ]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x <1时,若﹣1<x <0,[1+x ]+[1﹣x ]=0+1=1,若x =0,[1+x ]+[1﹣x ]=1+1=2,若0<x <1,[1+x ]+[1﹣x ]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解. 17.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立 解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5.【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.18.﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答. 22.(1)2-,2;(2)①图见解析,5;②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A 和点B 表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a ,再用圆规以这个长度画弧,交数轴于点M ,再把这个长方形向左平移3个单位,用同样的方法得到点N .【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A 表示的数是2-,点B 表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.23.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】(1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.24.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴56,∴,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,,∴对255只需进行3次操作后变为1,∵,,,,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.25.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.26.(1) 4;(2)1;(2) ±12.【分析】(1(2a、b的值,再代入求出即可;(3的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵45,∴4,故答案为4;(2)∵2<3,∴-2,∵34,∴b=3,∴;(3)∵100<110<121,∴1011,∴110<111,∵,其中x是整数,且0<y<1,∴x=110,,∴+10=144,的平方根是±12.【点睛】键.27.(1)x7-1;(2)x n+1-1;(3)51312-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)=12×(x50+1-1)=51312-故答案为:(1)x7-1;(2)x n+1-1;(3)51312-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.28.(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴3a,∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.29.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.30.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯,∵6132->-,∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-,∴()161f =, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=,∴6b a -=,∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,,∴t 为39,28,17;∵39=1×39=3×13,∴()33913f =; 28=1×28=2×14=4×7,∴()28f =47; 17=1×17,∴()11717f =; ∴()f t 的最大值47. (3)①∵223572021⨯⨯⨯=⨯∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯∴()4402023574221f ⨯⨯⨯==; 故答案为:2021;2021 【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.。

人教版初一数学七年级数学上册练习题【附答案】

人教版初一数学七年级数学上册练习题【附答案】

人教版初一数学七年级数学上册练习题【附答案】人教版七年级数学上册精品练题(附答案)——有理数一、填空题(每空2分,共38分)1、-1的倒数是-1;1/2的相反数是-1/2.2、比-3小9的数是-12;最小的正整数是1.3、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是-1或6.4、两个有理数的和为5,其中一个加数是-7,那么另一个加数是12.5、某旅游景点11月5日的最低气温为-2℃,最高气温为8℃,那么该景点这天的温差是10℃。

6、计算:(-1)100+(-1)101=-2.7、平方得21的数是√2;立方得-64的数是-4.8、+2与-2是一对相反数,表示两个方向的移动。

9、绝对值大于1而小于4的整数有2、3,其和为5.10、若a、b互为相反数,c、d互为倒数,则3(a+b)-3cd=0.11、若(a-1)2+|b+2|=1,则a+b=-2.12、数轴上表示数-5和表示-14的两点之间的距离是9.13、在数-5、1、-3、5、-2中任取三个数相乘,其中最大的积是75,最小的积是-75.14、若m,n互为相反数,则|m-1+n|=1.二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示,则a+b<0.16、下列各式中正确的是|a2|=|-a2|。

17、如果a+b>0,且ab<0,那么a、b异号。

18、下列代数式中,值一定是正数的是(-x)+2.19、算式(-3/3)×4可以化为-3×4/3.20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分。

求小明第四次测验的成绩。

答案:C、91分。

21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再以8折(80%)的价格大拍卖。

求该商品三月份的价格比进货价高还是低?答案:低12.8%。

三、计算(每小题5分,共15分)22、(–– +)|–|(22)、4912÷36;答案:22为正数,所以(–– +)|–|(22) = (–– +)|22| = 22;4912÷36 = 136.23、9÷3–5)–3×(–4)2÷3答案:9÷3 = 3,3–5 = –2,(–2)–3×(–4)2÷3 = –2–3×16÷3 = –2–16 = –18.24、–12–1+(–12)÷6×(–)34÷7答案:(–12)÷6 = –2,(–)34÷7 = –4,–12–1+(–2)×(–4)= –12–1+8 = –5.四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b的值。

人教版初一数学练习题

人教版初一数学练习题

⼈教版初⼀数学练习题⼈教版初⼀数学七年级数学上练习题四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。

(7分) 26、若x>0,y<0,求32---+-x y y x 的值。

(7分)27、已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm cb mn --++-2的值(7分) 28、现规定⼀种运算“*”,对于a 、b 两数有:ab a b a b 2*-=, 试计算2*)3(-的值。

(7分)整式⼀.判断题(1)31+x 是关于x 的⼀次两项式. ( )(2)-3不是单项式.( )(3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) ⼆、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有()A .2个B .3个C .4个 D5个 2.多项式-23m 2-n 2是()A .⼆次⼆项式B .三次⼆项式C .四次⼆项式D 五次⼆项式 3.下列说法正确的是() A .3 x 2―2x+5的项是3x 2,2x ,5B .3x-3y 与2 x 2―2xy -5都是多项式C .多项式-2x 2+4xy 的次数是3D .⼀个多项式的次数是6,则这个多项式中只有⼀项的次数是6 4.下列说法正确的是() A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是⼀次⼆项式 5.下列代数式中,不是整式的是()A 、23x -B 、745b a -C 、xa 523+ D 、-20056.下列多项式中,是⼆次多项式的是()A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平⽅的差,⽤代数式表⽰正确的是() A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬⼀楼梯,从楼下爬到楼顶后⽴刻返回楼下。

人教版初一数学《有理数运算》测试卷(含答案)

人教版初一数学《有理数运算》测试卷(含答案)

人教版初一数学《有理数运算》测试卷(含答案)一、选择题(每小题4分,共20分)1. 下列选项中,表示有理数的是()- A. √2- B. -√3- C. π- D. e2. (-3) + (-7)的结果是()- A. 10- B. -10- C. 4- D. -43. 计算:(-5) - (-11)的结果是()- A. -6- B. 6- C. 16- D. -164. 下列各式中,结果为负数的是()- A. 5 - 8- B. -3 + 7- C. -2 - (-5)- D. -4 + (-6)5. 已知a = -3,b = 7,c = -5,求a - b + c的值为()- A. -21- B. 5- C. -15- D. -5二、填空题(每小题4分,共20分)1. 有理数中绝对值最大的数是-8,那么它的相反数是()2. 下列各数中,哪一个是5的倍数:-25,-20,20,-10,03. 把两个相同的数相加,和是0,这两个数是()4. “负负得正”中的“负负”有几个负()5. 下列各组中只含有负有理数的是()三、解答题(共60分)1. 小明家里今年过年准备了2大盒汤圆,第一大盒有126颗汤圆,第二大盒有158颗汤圆。

请问小明家里一共准备了多少颗汤圆?()2. 中国男足在一场比赛中进了10个球,但同时也失去了6个球。

请问中国男足这场比赛的进球数和失球数的差是多少?3. 计算:(-7) + 9 - (-3) - (-16) + 2的结果。

4. 小明手中有一把剪刀,他又借了一把剪刀。

小明现在手中的剪刀数是借之前的两倍,那么小明手中现在有几把剪刀?5. (5 - 2) × (4 + 3) + 6的结果是多少?四、附加题(挑战每小题10分,共20分)1. 请用箭头表示数轴上面的0、5、-3和4这四个数。

2. 小明写下了一个负数,它的绝对值是3,小明还写下了一个正数,它的相反数比小明写下的负数的相反数大2。

人教版初一数学计算题完整版

人教版初一数学计算题完整版

人教版初一数学计算题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】计算题。

一.选择题(共6小题)1.下列方程组,是二元一次方程组的是()A.B.C.D.2.a,b的关系如图,化简:﹣+|b+a﹣1|得()A.1 B.1﹣2b﹣2a C.2a﹣2b+1 D.2a+2b﹣13.若a<0,b>0,|a|>|b|,则a+b的值()A.是负数B.是正数C.不是正数 D.符号不确定4.当a>b时,下列各式中不正确的是()A.a+3>b+3 B.a﹣3>b﹣3 C.3a>3b D.﹣>﹣5.已知,如果x与y互为相反数,那么()A.k=0 B.C.D.6.化简1﹣|1﹣|的结果是()A.﹣B.2﹣C.D.2+二.填空题(共6小题)7.若7<x<8,化简|x﹣7|+|x﹣8|= .8.化简或计算:(1)= ;(2)||= .9.在方程2x+4y=7中,用含x的代数式表示y,则y= .10.一个多边形的内角和等于其外角和2倍,那么这个多边形的边数是.11.对某班同学的身高进行统计(单位:厘米),频数分布表中到,这一组的学生人数是12,频率为,则该班有名同学.12.x的3倍不>1,用不等式表示是.(直接表示,无需化简)三.解答题(共28小题)13.解方程组:(1)(2).14.解不等式组:,并把解集在数轴上表示出来.15.解方程.(1)5(x﹣3)+3(2﹣x)=7(x﹣5);(2).16.化简并求值:5x﹣[x﹣1﹣2(3x﹣4)﹣2],其中.17.4x﹣3(20﹣x)=6x﹣7(9﹣x)18..19.20.解方程:x﹣=﹣.21.x﹣3=﹣x﹣4.22.解方程组23.解下列不等式,并把它的解集在数轴上表示出来..24.解方程组或不等式组:(1);(2).25.解不等式组,并将它的解集在数轴上表示出来.26.解方程组.27.解下列方程组(1)(2)28.解下列不等式(组)并把它们的解集在数轴上表示出来:(1)(2).29.解方程组或不等式组:(1).(2).30.计算:.31.已知:=0,求(a+b)x的值.32..33.解不等式:.34.解不等式:(3﹣2x)>+1035.解不等式组:.36.解不等式组:.37.(1)解方程组.(2)解不等式组,并把解集在数轴上表示出来:.38.计算下列各式的值:(1);(2).39.解方程组:40.解不等式组:,并把其解集表示在数轴上.计算题。

人教版初一数学试题及答案

人教版初一数学试题及答案

人教版初一数学试题及答案初一数学试题及答案1一、单项选择(每小题3分,共30分)1、一个数的立方等于它本身,这个数是()A、0B、1C、-1,1D、-1,1,02、下列各式中,不相等的是()A、(-3)2和-32B、(-3)2和32C、(-2)3和-23D,-2,3和,-233、(-1)200+(-1)201=()A、0B、1C、2D、-24、有一组数为:-1,1/2,-1/3,1/4,-1/5,1/6,找规律得到第7个数是()A、-1/7B、1/7C、-7D、75、下列说法正确的是()A、有理数的绝对值一定是正数B、如果两个数的绝对值相等,那么这两个数相等C、如果一个数是负数,那么这个数的.绝对值是它的相反数D、绝对值越大,这个数就越大6、比较-1/5与-1/6的大小,结果为()A、B、C、=D、不确定7、下列说法中错误的是()A、零除以任何数都是零。

B、-7/9的倒数的绝对值是9/7C、相反数等于它的本身的数是零和一切正数。

D、除以一个数,等于乘以它的倒数。

8、(-m)1010,则一定有()A、m0B、m0C、m=0D、以上都不对9、一个正整数n与它的倒数1/n、相反数-n相比较,正确的是()A、-n≦n≦1/nB、-n1/nC、1/n初一数学试题及答案21.填空题(1)5个人平均分苹果30个,每个分得____个;m个人平均分苹果n个,每个人平均分得_____个.(2)每天工作a小时,5天总共工作_____小时.(3)汽车每小时走40千米,那么2小时走_____千米;t小时走_____千米;若汽车每小时走v千米,则t小时走___千米.(4)长方形的面积是40平方厘米,如果宽是5厘米,那么长是___厘米,如果长是m厘米,那么宽是_____厘米.(5)半径是R的圆周长等于____;圆的面积等于____.(6)三角形的底为a,高为h,面积为_____.2.选择题(1)下列说法正确的是(A)a表示正数(B)-a表示负数(C)表示分数(D)以上都不正确(2)a与b的平方和是(A)(a+b)2(B)a2+b2(C)a2+b(D)a+b2(3)用含字母的算式表示“a和b的差的相反数”正确的是(A)-a-b(B)-(a-b)(C)a-b(D)以上都不正(4)“-,某,”用语言叙述为(A)某的相反数(B)某的绝对值(C)某的绝对值的相反数(D)某的相反数的绝对值3.判断题(1)-3a一定是负数.(2)是某的倒数.(3)(某-y)与(y-某)是互为相反数.。

人教版数学初一上学期试题及解答参考

人教版数学初一上学期试题及解答参考

人教版数学初一上学期自测试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、下列哪个数是质数?A、12B、15C、17D、202、一个长方形的长是6厘米,宽是4厘米,那么这个长方形的周长是多少厘米?A、20厘米B、24厘米C、28厘米D、32厘米3、小明把一些相同的苹果平均分给4个同学,每人分得5个苹果。

如果每人多分2个苹果,那么这些苹果总共会多分出多少个?A. 8个B. 16个C. 24个D. 32个4、一个长方形的长是8厘米,宽是4厘米,如果长方形的面积增加20%,那么增加后的面积是多少平方厘米?A. 40平方厘米B. 48平方厘米C. 56平方厘米D. 64平方厘米5、在下列各数中,哪个数是负数?A、-3B、+2C、0D、-56、下列哪个数是质数?A、4B、9C、15D、177、下列选项中,不是正方形的图形是:A、正方形B、矩形C、菱形D、平行四边形8、若a和b是实数,且a + b = 5,a - b = 1,则a² + b²的值为:A、26B、25D、279、若a、b是方程x² - 5x + 6 = 0的两个根,则a+b的值为:A. 1B. 2C. 3D. 4二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为4,腰长为6,则该三角形的周长为______ 。

2、若一个长方形的长是宽的3倍,设长方形的长为x,则宽为 ______ 。

3、若等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为 ______cm。

4、已知一元二次方程(x2−3x+2=0)的两个根为a和b,且a + b = 3,则该方程的判别式为 ______ 。

5、在三角形ABC中,角A、角B、角C的对边分别为a、b、c,且满足a=5,b=7,cosA=1/2。

则三角形ABC的周长是 _______ 。

三、解答题(本大题有7小题,第1小题7分,后面每小题8分,共55分)第一题已知函数f(x)=2x+3,求函数f(x)在定义域内的最大值和最小值。

人教版初一数学电子试题卷及答案

人教版初一数学电子试题卷及答案

人教版初一数学电子试题卷及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可能是:A. -1B. 0C. 1D. 23. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 24. 绝对值最小的数是:A. 0B. 1C. -1D. 25. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/96. 一个数的平方是它自己,这个数可能是:A. -1B. 0C. 1D. 27. 一个数的绝对值是它自己,这个数可能是:A. 任何数B. 负数C. 正数D. 08. 下列哪个数是无理数?A. 3.14B. πC. √2D. 1/29. 如果a > b 且 a > 0,b < 0,那么下列哪个不等式是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 010. 下列哪个方程的解是x = 2?A. x + 2 = 4B. x - 2 = 0C. 2x = 4D. x^2 = 4二、填空题(每题2分,共20分)11. 一个数的平方根是它自己,这个数是______。

12. 如果一个数的绝对值是5,那么这个数可能是______或______。

13. 一个数的倒数是它自己,这个数是______或______。

14. 一个数的立方根是它自己,这个数是______。

15. 一个数的相反数是-3,这个数是______。

16. 一个数的平方是16,这个数是______或______。

17. 一个数的绝对值是它自己,这个数是非负数,即______。

18. 一个数的平方根是2,这个数是______。

19. 一个数的立方是-8,这个数是______。

20. 一个数的倒数是1/2,这个数是______。

数学人教版(2024)版七年级初一上册 1.1 正数和负数 课时练 含答案01

数学人教版(2024)版七年级初一上册 1.1 正数和负数 课时练 含答案01

第一章 有理数1.1 正数和负数一、单选题1.若零下2摄氏度记为2-℃,则零上2摄氏度记为( )A .2+℃B .0℃C .2-℃D .1-℃2.热气球上升5米记为5+,则下降3米应该记为( )A .3B .2C .2-D .3-3.某建筑工地仓库管理员如果将进货水泥2吨记为2+吨,那么出货水泥2吨可记为( )A .2-吨B .0吨C .2+吨D .4吨4.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .5.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入50元记作50+元,那么支出50元记作( )A .50-元B .50+元C .0元D .100+元6.下列各数中:553025.827---+,,,,,,负数有( )A .1个B .2个C .3个D .4个7.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思就是:在计算过程中遇到具有相反意义的量,要用正数和负数来区分.如果室内温度为零上8℃,记为8+℃,那么室外温度为零下2℃,记为( )A .2-℃B .2+℃C .8-℃D .8+℃8.下列各数中,是正数的有( )5,﹣59,0,0.56A .1个B .2个C .3个D .4个9.在-2,+3,5,0,―23,-0.7,11中,负数有( )A .1个B .2个C .3个D .4个10.下列为负数的是( )A .0B .2024C .2024-D .2024-二、填空题11.如果收入80元,记作80+元,那么支出37元应记作 元.12.由于没有大气层的保护,在太阳光线直射下的空间站表面温度可达150℃以上,在背阳面温度最低可达零下100℃以下,可以说太空环境“冰火两重天”.为了保持空间站设备正常运行并为航天员提供适宜工作生活的温度环境,热控系统发挥了十分关键的作用.空间站的热控系统中的“中央空调”——流体回路遍布在舱段的各个角落,通过特殊液体在管路内的往复循环,将舱内设备以及航天员生活产生的热量收集起来,通过回路再带到相应的设备和结构中,给过热的地方散热,给过冷的地方加热,便实现了散热和补热功能.如果把150℃记作150+℃,那么零下100℃记作 ℃.13.某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶.种类原味草莓味香草味巧克力味净含量/mL 17518019018514.某蓄水池的标准水位记为0m ,若0.08m +表示水面高于标准水位0.08m ,则水面低于标准水位1.2m ,可记为 m .15.某厂家生产一种袋装食品的标准重量是500克,质检员把每袋超出的部分记作正数,不足的部分记作负数,质检员随机测得袋食品质量为501克,则记作 .16.生活中常有用正负数表示范围的情形,例如某种食品的说明书上标明保存温度是()252±℃,请你写出一个适合该食品保存的温度: ℃.17.若指针沿顺时针方向旋转26°,记作26-°,则指针沿逆时针方向旋转106°,记18.某市某一时刻的气温是零上2℃,记作2+℃,另一时刻的气温是零下1℃,则记作 ,若某时气温是零摄氏度,则记作 .19.中国历史上刘徽首先给出了正负数的定义,“今两算得失相反,要令正负以名之”.意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.如果收入5000元记作5000+元,那么支出2000元记作 元.20.金星表面的白天平均温度为零上480℃,夜间平均温度为零下120℃.如果零上480℃记作480+℃,那么零下120℃应该记作 ℃.三、解答题21.某饮料公司生产的一种瓶装饮料,外包装上印有“60030mL ()±”的字样,那么“60030mL ()±”是什么含义?质检局对该产品抽查了5瓶,容量分别为603mL ,611mL ,588mL ,568mL ,628mL ,抽查的产品容量是否合格?22.如图,一只甲虫在55´的方格(每小格边长为1)上沿着网格线运动,他从A 处出发去看望B 、C 、D 处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A 到B 记为14{}A B ®,,从B 到A 记为:}14{B A ®--,,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C ®{______,______},C B ® {______,______}:(2)若这只甲虫的行走路线为A B C D ®®®,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M 、N ,且}15{M A a b ®--,,}52{M N a b ®--,,则A N ®应记为什么?直接写出你的答案.23.下列各数中,哪些是正数?哪些是负数?235,8,9,3,0,3,7,101311-+-+--.24.如果前进5km 记作+5km ,后退6km 记作-6km ,那么下列各数分别表示什么?(1)+8km(2)-4.5km25.某班抽查了10名同学的期末成绩,以90分为基准,超出的记为正数,不足的记为负数,记录结果如下:+7,﹣3,+10,﹣7,﹣9,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于90分的所占的是多少?(3)10名同学的平均成绩是多少?26.(1)某人转动转盘,如果用5+圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02g ,那么- 0.03g 表示什么?(3)某大米包装袋上标注着“净含量:10kg 150g ±”,这里的“10kg 150g ±”表示什么?参考答案1.A2.D3.A4.A5.A6.C7.A8.B9.C10.D11.37-12.100-13.香草味14. 1.2-15.1+16.25(答案不唯一).17.106+°18.1-℃0℃19.2000-20.120-21.解:30mL +表示比600mL 多30mL ,30mL -表示比600mL 少30mL ;所以产品合格的容量为570mL 630mL ~这个范围内,所以抽查样品容量603mL ,611mL ,588mL ,568mL ,628mL ,只有568mL 不合格,其它的都合格.22.(1)解:图中{}3,4A C ®,{}2,0C B ®-故答案为:3,4;2-,0.(2)解:由已知可得:A B ®表示为{}1,4,B C ®记为{}2,0,C D ®记为{}1,2-,则该甲虫走过的路程为:1421210++++=.(3)解:由{}1,5M A a b ®--,{}5,2M N a b ®--,可知:()514a a ---=,()253b b ---=,∴点A 向右走4个格点,向上走3个格点到点N ,∴A N ®应记为()4,3.23.解:正数有:28,3,33++;负数有:35,9,7,10111----.24.(1)+8km 表示前进+8km ;(2)-4.5km 表示后退4.5km ;(3)0km 表示没有动25.解:(1)根据题意得:最高分为90+10=100分,最低分为90-9=81分;(2)低于90分的为87,83,81,87,82,共5个,一共有10个,510¸´100%=50% ,占的百分比为50%;(3)10名同学的平均成绩为110(+7﹣3+10﹣7﹣9﹣3﹣8+1+0+10+90×10)=89.8(分).26.解:(1)如果用5+圈表示沿逆时针方向转了5圈,则沿顺时针方向转了12圈记作12-圈;(2)超出标准质量0.02 g 记作+0.02g ,则0.03g -表示乒乓球的质量低于标准质量0.03g ;(3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即最多超出标准质量150 g ,最少少于标准质量150 g .。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm,今天的水位为0cm,那么2天前的水位用算式表示正确的是()A.(+3)×(+2) B.(+3)×(﹣2) C.(﹣3)×(+2) D.(﹣3)×(﹣2)2、若,则以下四个结论中,正确的是()A .一定是正数B .可能是负数C .一定是正数D .一定是正数3、下表是淮河某河段今年雨季一周内水位变化情况,(其中 0 表示警戒水位)那么水位最高是()星期一二三四五六日水位变化/米+0.03 +0.41 +0.25 +0.10 0 -0.13 -0.2A .周一B .周二C .周三D .周五4、将 7 张扑克牌,全部背面朝上,每次翻三张且必须翻三张,最少翻多少次可翻成全部背面朝下()A . 3B . 4C . 5D . 65、计算-2+3的结果是A.1 B.-1 C.-5 D.-6 6、在、、、这四个数中比小的数是()A.B.C. D.7、 -5的相反数是()A. -5 B. 5 C.D.8、 5的相反数是()A、-5B、5C、D、9、的倒数为()A.-2 B.2 C.D.10、已知,则下列四个式子中一定正确的是( ).A. B. C. D.二、填空题(共10题)1、设有理数、、满足及,若,,则的值为__________.2、若|m|=1,|n|=2,且|m+n|=m+n,则=________.3、若,则______.4、已知:,则_________.5、湛江市某天的最高气温是℃,最低气温是℃,那么当天的温差是℃.6、如果水位上升1.2米,记作+1.2米,那么水位下降0.8米记作______米。

7、计算:的结果是___________.8、-2的绝对值等于___________9、经验证明,在一定范围内,高出地面的高度每增加l00m,气温就降低大约0.6℃,现在地面的温度是25℃,则在高出地面5000m高空的温度是_________.10、若实数a、b满足,则=__________。

人教版数学练习题初一

人教版数学练习题初一

人教版数学练习题初一一、有理数1. 计算下列各题:(1) (3) + 7(2) 5 (2)(3) 4 × 25(4) 18 ÷ 3(5) (5 3) × 22. 化简下列各题:(1) 3 + 5 7(2) 4 (3) + 6(3) 2 × (5) ÷ 10(4) 8 ÷ (2) × (4)二、整式1. 计算下列各题:(1) 3a 2a(2) 4b + 5b 2b(3) 2x^2 3x^2 + x^2(4) 5m^2n 2m^2n + 3m^2n2. 化简下列各题:(1) 2a + 3b a + 4b(2) 3x^2 2x + 4x x^2(3) 4xy 3yx + 5xy 2xy1. 解下列方程:(1) 3x 7 = 11(2) 5 2y = 1(3) 4a + 9 = a(4) 7b 3 = 2b + 102. 解决实际问题:(1) 某数的3倍减去5等于8,求这个数。

(2) 一个数的2倍加上4等于这个数的5倍减去6,求这个数。

四、图形认识1. 判断下列说法是否正确:(1) 平行线一定在同一平面内。

(2) 两条直线的夹角可以是180度。

(3) 等腰三角形的底角相等。

2. 画图题:(1) 画一个等边三角形。

(2) 画一个长方形,并标出它的对角线。

五、数据初步认识1. 计算下列各题:(1) 求一组数据3, 5, 7, 9, 11的平均数。

(2) 求一组数据4, 6, 8, 10, 12的中位数。

2. 解决实际问题:(1) 某班学生数学成绩的平均分为85分,若加上一个得100分的学生,平均分变为87分,求原来班级的学生人数。

1. 解下列方程组:(1) \(\begin{cases} 2x + 3y = 8 \\ x y = 1\end{cases}\)(2) \(\begin{cases} 4a 2b = 6 \\ 3a + b = 9\end{cases}\)(3) \(\begin{cases} 5m + n = 17 \\ 2m 3n = 1\end{cases}\)(4) \(\begin{cases} 7p 3q = 26 \\ p + 2q = 11\end{cases}\)七、不等式与不等式组1. 解下列不等式:(1) \(3x 7 > 2\)(2) \(5 2y \leq 1\)(3) \(4a + 9 \geq a\)(4) \(7b 3 < 2b + 10\)2. 解下列不等式组:(1) \(\begin{cases} x > 3 \\ x 2 < 5 \end{cases}\)(2) \(\begin{cases} y + 4 \geq 0 \\ 2y 3 < 7\end{cases}\)八、平面几何1. 计算下列图形的面积:(1) 一个长为8cm,宽为6cm的长方形。

人教版初一数学试题及答案

人教版初一数学试题及答案

人教版初一数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的绝对值是5,那么这个数可能是:A. 5或-5B. 5C. -5D. 都不是答案:A3. 两个数的和为10,其中一个数是3,另一个数是:A. 7B. 6C. 5D. 4答案:A4. 下列哪个表达式的结果为正数?A. -3 + 2B. -3 - 2C. 3 - 2D. -3 * 2答案:C5. 一个数的平方是16,这个数可以是:A. 4B. -4C. 4或-4D. 都不是答案:C二、填空题(每题1分,共5分)1. 一个数的相反数是-8,这个数是________。

答案:82. 如果一个数的立方是-27,那么这个数是________。

答案:-33. 一个数的绝对值是它本身,那么这个数是________。

答案:非负数4. 一个数的平方根是4,那么这个数是________。

答案:165. 一个数除以-2等于-3,这个数是________。

答案:6三、计算题(每题5分,共15分)1. 计算下列表达式的值:(-2)^2 - 3 * 4 + 5答案:4 - 12 + 5 = -8 + 5 = -32. 解下列方程:2x - 7 = 9答案:2x = 16,x = 83. 计算下列表达式的值:(-3) * (-2) + 4 / (-2)答案:6 - 2 = 4四、解答题(每题10分,共20分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。

答案:周长 = 2 * (10 + 5) = 2 * 15 = 30厘米面积 = 10 * 5 = 50平方厘米2. 一个班级有40名学生,其中20名学生参加了数学竞赛,求参加数学竞赛的学生占班级总人数的百分比。

答案:百分比 = (20 / 40) * 100% = 50%五、应用题(每题15分,共30分)1. 某商店购进一批玩具,每个成本是20元,标价是30元。

人教版初一上册数学期末考试试题及答案

人教版初一上册数学期末考试试题及答案

人教版初一上册数学期末考试试题及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3/4C. √9D. 02. 下列哪个数是负数?A. -3B. 3C. 0D. 1/23. 两个互为相反数的数,它们的和是:A. 0B. 1C. -1D. 24. 已知a=5,b=3,则a²-b²的值是:A. 16B. 25C. 4D. 15. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 三角形6. 若|x|=3,则x的值是:A. 3B. -3C. 0D. 无法确定7. 下列哪个式子的结果是负数?A. 2+3B. -2+3C. 2-3D. -2-38. 已知a=4,b=3,则a²+b²的值是:A. 25B. 16C. 9D. 49. 下列哪个数是正数?A. -5B. -3/4C. 0D. -1/210. 若a²=64,则a的值是:A. 8B. -8C. 4D. -4二、填空题(每题4分,共40分)1. 5²=______2. |-2|=______3. 2×(-3)=______4. 3/4+1/2=______5. (-2)³=______6. √36=______7. 0.3333...(3无限循环)=______8. 1/2+1/3=______9. 4²-3²=______10. 5×(-7)=______三、解答题(每题10分,共60分)1. 解方程:2x-5=32. 计算:(-3)×(-2)+4×(-1)3. 判断:平行四边形ABCD中,AB//CD,AD//BC,求证ABCD是矩形。

4. 解方程:3x+2=115. 计算:√(49+64)6. 某数的平方根是12,求这个数。

初一数学人教版试卷

初一数学人教版试卷

初一数学人教版试卷考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列运算正确的是()A.(﹣3)+(﹣4)=﹣3+﹣4B.(﹣3)+(﹣4)=﹣3+4C.(﹣3)﹣(﹣4)=﹣3+4D.(﹣3)﹣(﹣4)=﹣3﹣42.有理数a,b在数轴上的位置如图所示,则在a+b,a-b,ab,a3,a2b3这五个数中,正数的个数是()A.2 B.3 C.4 D.53.下图中,由AB∥CD,能得到∠1=∠2的是( )A.A B.B C.C D.D4.(2014•绍兴)比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣25.的相反数是()A. B. C. D.+16.邻补角是指( )A.和为180°的两个角B.有公共顶点且互补的两个角C.有一条公共边且相等的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角7.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A.90° B.105° C.130° D.120°8.下列关于单项式的说法中,正确的是 ( )A.系数是-,次数是4B.系数是-,次数是3C.系数是-3,次数是4D.系数是-2π,次数是39.多项式1﹣2xy+xy3的次数是()A.1 B.2 C.3 D.410.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10-5B.0.25×10-6C.2.5×10-5D.2.5×10-6评卷人得分二、判断题11.判断题(对的打“∨”,错的打“×”)(1)(-1)0=-10=-1;();()(3)-(-2)-1=-(-2-1);()(4)5x-2=.()12.小李购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m、n的代数式表示地面的总面积S;(2)已知客厅面积是卫生间面积的8倍,且卫生间、卧室、厨房的面积和比客厅还少3平方米.如果铺地砖的费用为每平方米100元,试求出小李铺地砖的总费用.13.(1)如图,一个正方体纸盒的棱长为厘米,将它的一些棱剪开展成一个平面图形,求这个平面图形的周长.(2)如图,一个长方体纸盒的长、宽、高分别是厘米、厘米、厘米()将它的一些棱剪开展成一个平面图形,求这个平面图形的最大周长,画出周长最大的平面图形.14.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.15.计算:(1) ()﹣1+(π﹣2 016)0﹣(﹣1)2017. (2)(﹣)2013•()2014.评卷人得分三、填空题16.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000用科学记数法可表示为_____________17.-5的相反数是___;-5的绝对值是___;-5的立方是___; -0.5的倒数是___;18.当x=90.28时,8.37x+5.63x-4x=____ _____.19.已知是关于x、y的二元一次方程,求a的值_______.20.多项式-3a2 b2+7a3b2-2ab+1的次数是;评卷人得分四、计算题21.计算:(1)﹣3﹣(﹣10)+(﹣14)(2)÷(﹣)+(﹣2)2×(﹣2)(3)100°﹣12°17′×6.22.五、解答题23.把下列各式分解因式(1)(2)a2(x-y)-b2(x-y)24.某股民上周五收盘时买进某公司股票1000股,每股27元.股票交易时间是周一到周五上午9:30-11:30,下午1:00-3:00. 下表为本周内每日股票的涨跌情况:(单价:元)(1)根据上表填空:星期三收盘时,每股是元;本周内最高价是每股元,最低价是每股元;(2)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期五收盘时才将股票全部卖出,请算算他本周的收益如何.参考答案1 .C【解析】试题分析:A、原式=-3-4;B、原式=-3-4;C、原式=-3+4;D、原式=-3+4,则正确的是C.考点:有理数的计算2 .A【解析】解:由数轴可知-1<a<0,b>1>0,根据有理数的加法、减法、乘法、乘方法则得:a+b>0,a-b<0,ab<0,a3<0,a2b3>0,所以正数的个数是2个.故选A.3 .B【解析】试题解析:A.又是同旁内角,不能判断故错误.B. 如图, 故正确.C. 不能得到故错误.D. 不能得到故错误.故选B.4 .A【解析】试题分析:本题是对有理数的大小比较,根据有理数性质即可得出答案.解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.点评:本题主要考查了有理数大小的判定,难度较小.5 .B【解析】试题分析:根据只有符号不同的两数互为相反数,直接求得的相反数为-.故选B考点:相反数的意义6 .D【解析】根据邻补角定义得出答案.7 .C【解析】本题主要考查了多边形的外角和内角. 先用2570°÷180°,看余数是多少,再把余数补成180°解:∵2570°÷180°=14…50°,又130°+50°=180°∴这个内角度数为130°故选C8 .B【解析】本题考查单项式的相关概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)期末水平测试
一、你能填得又快又准吗?(每题3分,共30分)
1.某栋楼每层高度为4.8m ,地下室高度为3.5米,如果地面高度为0m ,那么三楼地面高度应记为 米。

2.点A 在数轴上距原点5个单位长度,且位于原点的左侧,若将A 向右移动4个单位长度,再向左移动1个单位长度,此时点A 表示的数是__________。

3、用“>”、“<”填空:-54 _____ -32 ;若0<<b a ,则b
a 1
____1 。

4.如图是某个几何体的展开图,这个几何体是 .
5.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量)。

某班有53名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为 立方米。

6.关于x 的方程132-=-m x 解为1-=x ,则=m
7.绝对值大于3但不超过5的整数它们的和为________,积为________。

8.如图,是一个简单的数值运算程序当输入x 的值为-1时,则输出的数值为 。

9.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,则∠1= 。

10.图1表示某地区2003年12个月中 每个月平均气温,图2表示该地区某 家庭这年12个月中每月的用电量。

根据统计图,请你说出该家庭用电量
输入x
×(-3)
-2
输出
与气温之间的关系(只要求写出一条 信息即可): 。

二、你一定能选对!(每题3分,共30分) 11.下列各数中,是负数的是( )。

(A)-(-3) (B)-|-3| (C) (-3)2 (D) |-3|
12.下列四个运算中,结果最小的是( )
(A) 1+(-2) (B) 1-(-2) (C) l ×(-2) (D) 1÷(-2)
13. 2003年10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行 (用科学记数法表示保留三个有效数字) ( )
(A) 4.28×104千米 (B) 4.29×104千米 (C) 4.28×105千米 (D) 4.29×105千米
14、如果2
92313
a x x --=是关于x 的一元一次方程,则a 的值是( )
(A) 0 (B)3 (C)9/2 (D)4
15.如图,钟表8时30分时,时针与分针所成的角的度数为( ) (A )30° (B )60° (C )75° (D )90°
16.如图,在一个正方体的两个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于( )
(A) 60° ( B) 75° (C) 90° ( D) 135°
17、若|x |=-x ,则x 的取值范围是( )
(A )x =-1 (B )x <0 (C ) x ≥0 (D ) x ≤0
18.若|x -1
2|+(2y -1)2=0,则22x y +的值是( )
(A )38 (B )12 (C )-18 (D )-3
8
19.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪
开展成平面图形,想一想,这个平面图形是( )
(A)
(B) (C) (D)
20.如图是“光明超市”中“丝美”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮助算一算,
该洗发水的原价是 ( ) (A )22元 (B )23元 (C )24元 (D )26元 三、你来算一算!千万别出错哟!!!(共18分) (友情提示:请特别注意符号,并要写出必要的演算步骤) 21.计算:(5分×2=10分)
(1) )3()4()2(8102-⨯---÷+- (2) ⎥⎦
⎤⎢⎣⎡-+-⨯-⨯-522)2()32(323
22.(7分)解方程:
3252
243
x x ---
=.
23.(7分)李司机5次载客行程记录如下:(以向东方向行驶记为正,向西方向记为负,以车站为出发点)
+10,-3,-8,+7,-9(单位为公里)
问:(1)最后一次载客的目的地离车站有多远?在车站以东还是车站以西? (2)若汽车每公里耗油量0.5升,那么这5次载客从开始到目的地共耗油多少升?
四、拿起画图工具,连一连,画一画 (4+6=10分) 24.分别将下列四个物体与其相应的俯视图连接起来:
M M M M
25.如图,已知∠AOB .
(1)画∠AOB 的角平分线OC ; (2)在OC 上任取一点P ,画PE ⊥OA ,PF ⊥OB ,垂足分别为E 和F 。

比较PE 和PF 的大小,再同样取几个点试一试,你发现了什么结论?
B
O
A
五、探索规律(8分)
26.如图所示已知︒=∠︒=∠30,90BOC AOB ,OM 平分AOC ∠,ON 平分BOC ∠; (1)︒=∠_____MON ;
(2) βα=∠=∠BOC AOB ,,求MON ∠的度数;
并从你的求解你能看出什么什么规律吗?
六、应用题(18分)
M
O
N C
B A
27.某校整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?(8分)
28.“水是生命之源”
(1)某用户1
(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费
43. 2元,该用户2月份实际应交水费多少元?。

相关文档
最新文档