初一数学月考试卷及答案
七年级数学上册月考试卷【含答案】
七年级数学上册月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 23厘米C. 17厘米D. 7厘米2. 下列哪个数是质数?A. 21B. 37C. 39D. 273. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少立方厘米?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个角是锐角?A. 120°B. 45°C. 180°D. 90°5. 如果一个数的平方是64,那么这个数可能是多少?A. 8B. -8C. 7D. 9二、判断题(每题1分,共5分)1. 任何两个偶数相加的和都是偶数。
()2. 一个正方形的对角线长度等于它的边长的平方根。
()3. 在三角形中,最大的角对应最长的边。
()4. 任何两个奇数相乘的积都是奇数。
()5. 1是质数。
()三、填空题(每题1分,共5分)1. 如果一个四边形的对边平行且相等,那么这个四边形是______。
2. 一个数的立方根是指这个数乘以自己两次后得到的结果,记作______。
3. 如果一个数既是4的倍数又是6的倍数,那么这个数至少是______。
4. 在平面直角坐标系中,点(3, 4)的横坐标是______,纵坐标是______。
5. 一个圆的半径是5厘米,那么这个圆的直径是______厘米。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是因数分解?请给出一个例子。
3. 请解释什么是算术平均数。
4. 请说明如何计算一个三角形的面积。
5. 请解释什么是比例尺。
五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
2. 如果一个数加上50后等于它的3倍,求这个数。
3. 一个圆锥的底面半径是4厘米,高是6厘米,求这个圆锥的体积。
山西省太原市太原师范学院附属中学2024-2025学年七年级上学期10月月考数学试卷(含答案)
太原师范学院附属中学2024-2025学年第一学期初一年级数学学情导航试题一、选择题(本大题含10个小题,在每个小题给出的四个选项中,只有一项符合题意)1.中国古代数学成就辉煌,数学著作众多,其中的一部记录了“引入负数及正负数的加减运算法则”,这是世界上至今发现的最早记载.这部数学著作是( )A .《九章算术》B .《周髀算经》C .《算法统宗》D .《几何原本》2.足球是全球最具影响力的单项体育运动,它的质量有严格标准,若将超过标准的克数记为正数,不足的克数记为负数,下面四个足球的质量最接近标准的是( )A .B .C .D .3.圆柱可以看成是由长方形绕着它的一边所在直线旋转一周所得到的,那么下面右图的立体图形是由以下四个图中的哪一个绕着直线旋转一周得到的( )A .B .C .D .4.下列各数:,,,5.3,0,中,负分数有( )A .1个B .2个C .3个D .4个5.体育中考女生立定跳远的测试中,以1.97m 为满分标准,若小贺跳出了2.00m ,可记作+0.03m ,则小郑跳出了1.90m ,应记作( )A .-0.07mB .+0.07mC .+1.90mD .-1.90m6.为计算简便,把写成省略括号和加号的和的形式,正确的是12-0.7-31415-7.14-()()()()()1.4 3.70.5 2.4 3.5----++++-( )A .B .D .C .7.用一平面去截如图所示的5个几何体,能得到长方形截面的几何体的个数是( )A .4B .3C .2D .18.设x 是相反数等于本身的数,y 是最大的负整数,z 是最小的正整数,则的值为( )A .B .2C .0D .19.将如图的正方体表面展开图折成正方体后,与点D 重合的点是( )A .点B 和点C B .点A 和点E C .点C 和点ED .点A 和点B10.有理数a ,b 在数轴上的表示如图所示,则下列结论正确的是( )甲:;乙:;丙:.A .只有甲正确B .只有甲、乙正确C .只有甲、丙正确D .只有丙正确二、填空题(本大题共5个小题)11.比较大小:__________.12.将如图的直角三角形分别绕两条直角边所在的直线旋转一周,得到不同的立体图形,其中体积最大的立体图形的体积是__________立方厘米,(结果保留)13.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,探空气球探测高空某处温度为-39℃,则此处的高度是__________千米.14,有底面为正方形的直四棱柱容器A 和圆柱形容器B ,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B 容器盛满水,全部倒入A 容器,问:结果会__________(“溢出”、“刚好”、“未装满”,选一个)15.如图,将刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.4cm ”对应数轴上的数为__________.1.4 3.70.52.43.5-+-+- 1.4 3.70.5 2.4 3.5-+++-1.4 3.70.5 2.4 3.5---+- 1.4 3.70.5 2.4 3.5-+-++x y z -+1-b a -<0ab >b a a b -=-67-56-π三、解答题(本大题共7个小题)16.计算(1)(2)(3)(4)17.将下列各数表示的点在数轴上表示出来,并用“<”连接下面各数:,3,,,0,.18.问题情景:七(1)班综合实践小组进行废物再利用的环保小卫士行动,他们准备用废弃的宣传单制作装垃圾用的无盖纸盒.图1 图2 图3(1)若准备制作一个无盖的正方体纸盒,图1中的__________图形经过折叠能围成无盖正方体纸盒;(2)图2是小明的设计图,把它折成无盖正方体纸盒后,与“卫”字相对的是__________;(3)如图3,有一张边长为20cm 的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体纸盒.①请你在图3中画出示意图,用实线剪切线,虚线表示折痕;②若四角各剪去了一个边长为3cm 的小正方形,求这个纸盒的容积.19.用若干大小相同的小正方体搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,完成下列问题:(1)搭成满足如图的几何体最多需要__________个小正方体,最少需要__________个小正方体:(2)请在网格中画出用最多小正方体搭成的几何体的左视图.20.小明家购置了一辆续航为350km (能行驶的最大路程)的新能源纯电汽车,他将汽车充满电后连续7天每天行车电脑上显示的行驶路程记录如下表(单位:km ,以40km 为标准,超过部分记为“+”,不足部23177---()()1218715--+--()()314 3.853 3.1544⎛⎫-+--+- ⎪⎝⎭21113642⎛⎫⎛⎫⎛⎫-+---- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2-112-1233-分记为“-”).已知该汽车第三天行驶了45km ,第六天行驶了34km .第一天第二天第三天第四天第五天第六天第七天■●(1)“■”处的数为__________,“●”处的数为__________;(2)已知小明家这款汽车在行驶结束时,若剩余电量不足续航的15%,行车电脑就会发出充电提示、请通过计算说明该汽车第七天行驶结束时,行车电脑会不会发出充电提示.21.定义☆运算,观察下列运算:,,,,,,.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号__________,异号__________.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,__________.(2)计算:__________.(3)若,求a 的值为__________.22.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础,小锦画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使1表示的点与表示的点重合,则表示的点与__________表示的点重合;操作二:(2)折叠纸面,若使2表示的点与表示的点重合,回答以下问题:①3表示的点与__________表示的点重合:②若数轴上A 、B 两点之间距离为16(A 在B 的左侧),且A 、B 两点经折叠后重合则A 点表示的数是__________,B 点表示的数是__________;操作三:(3)在数轴上剪下9个单位长度(从到6)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图).若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是__________.6-2+3-8+7+()()51419++=+☆()()13720--=+☆()()21517-+=-☆()()18725+-=-☆()01919-=+☆()13013+=+☆()()()()304347-+=-+=-⎡⎤⎣⎦☆☆☆()()17016+-=⎡⎤⎣⎦☆☆()()2213a a +⨯+-=⎡⎤⎣⎦☆1-3-6-3-2024-2025学年太原师范学校附中七年级(上)10月月考数学答案1-5.ACACA6-10.ABBAC 11.<12.13.1014.未装满15.16.(1);(2)8;(3)1;(4)17.18.(1)C(2)保;(3)①;②19.(1)10 7(2)20.(1) (2)不会发出充电提醒21.(1)得正 得负 得到这个数的绝对值(2)+33(3)或322.(1)3(2)①② 6(3)或或16π 2.4-1-1312-1321032-<-<-<<3588cm 5+6-5-7-10-3832218。
七年级月考试卷数学及答案
一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()A. -3B. 0C. 3.5D. -2.12. 下列各数中,有最小整数的是()A. -1/3B. 0.5C. -2D. 1/43. 下列各数中,能被3整除的是()A. 9B. 12C. 18D. 244. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 55. 下列各数中,是偶数的是()A. 2B. 3C. 4D. 56. 下列各数中,绝对值最大的是()A. -5B. -4C. -3D. -27. 下列各数中,能同时被2和3整除的是()A. 6B. 8C. 9D. 108. 下列各数中,是质数的是()A. 2B. 3C. 4D. 59. 下列各数中,是合数的是()A. 2B. 3C. 4D. 510. 下列各数中,是互质数的是()A. 4和9B. 5和10C. 6和8D. 7和14二、填空题(每题3分,共30分)11. 2的平方根是______,3的立方根是______。
12. -5的相反数是______,5的倒数是______。
13. 2/3乘以3/4等于______,5减去2/5等于______。
14. 0.8加上0.2等于______,1.5乘以2等于______。
15. 3除以0.6等于______,4减去1.2等于______。
16. 0.3乘以0.5等于______,1.2除以0.4等于______。
17. 2/5加3/5等于______,4/7减去1/7等于______。
18. 0.6乘以1.2等于______,1.5除以0.3等于______。
三、解答题(每题10分,共40分)19. 简化下列各数:a. 24/36b. 18/27c. 42/6020. 求下列各数的和或差:a. 5/6 + 2/3b. 3/4 - 1/2c. 7/8 + 1/8 - 1/421. 解下列方程:a. 2x + 3 = 11b. 5 - 3x = 2c. 4x - 7 = 1522. 求下列各数的百分比:a. 20是30的多少百分比?b. 40是50的多少百分比?c. 60是80的多少百分比?四、应用题(每题15分,共30分)23. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,它离出发地多远?24. 一个长方形的长是8厘米,宽是5厘米,求这个长方形的面积和周长。
初一月考试卷人教版2024湖北黄冈数学
初一月考试卷人教版2024湖北黄冈数学一、下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2(答案)B。
解析:正整数是大于0的整数,0不是正整数,-1是负整数,2是正整数但比1大,所以最小的正整数是1。
二、若a=3,b=2,则a加b的平方等于多少?A. 5B. 13C. 11D. 9(答案)B。
解析:根据题意,需要先计算b的平方,即2的平方等于4,然后再将a与b的平方相加,即3加4等于7加4等于13。
三、下列哪个选项表示的是互为相反数的两个数?A. 5和-5B. 5和5C. -5和-5D. 5和0(答案)A。
解析:互为相反数的两个数,它们的和等于0。
5和-5的和为0,所以它们互为相反数。
四、一个角的余角是这个角的补角的四分之一,求这个角的度数。
A. 30度B. 45度C. 60度D. 90度(答案)C。
解析:设这个角为x,则其余角为90-x,补角为180-x。
根据题意,90-x等于四分之一倍的180-x,解方程得x等于60度。
五、下列哪个选项的图形是轴对称图形?A. 等腰梯形B. 平行四边形C. 一般三角形D. 梯形(答案)A。
解析:轴对称图形是指沿一条直线折叠后,两边能够完全重合的图形。
等腰梯形有一条对称轴,沿此轴折叠后两边能够完全重合,所以它是轴对称图形。
六、小明有12本书,给了小红3本后,他还剩下多少本书?A. 6本B. 9本C. 12本D. 15本(答案)B。
解析:小明原来有12本书,给了小红3本后,他剩下的书为12减3等于9本。
七、下列哪个数不是质数?A. 2B. 3C. 4D. 5(答案)C。
解析:质数是只有1和它本身两个正因数的自然数,且必须大于1。
2、3、5都是质数,而4除了1和它本身外,还有2是它的因数,所以4不是质数。
八、若一个长方形的长为8厘米,宽为x厘米,且它的周长为20厘米,则x等于多少?A. 2厘米B. 3厘米C. 4厘米D. 6厘米(答案)A。
解析:长方形的周长等于两倍的长加两倍的宽,即2乘8加2乘x等于20,解方程得x等于2厘米。
河北初一初中数学月考试卷带答案解析
河北初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列不是单项式的是()A.a B.C.D.02.“m与n的差的平方”,用代数式表示为()A.B.C.D.3.下列各组中的两项,不是同类项的是()A.与B.与 C.与D.与4.代数式的值一定不能是()A.6B.0C.8D.245.光年是天文中的距离单位,1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示()A.㎞B.㎞C.㎞D.㎞6.已知A、B两点之间的距离是10cm,C是线段AB上的任意一点,则AC中点与BC中点间的距离是()A.3cm B.4cm C.5cm D.不能计算7.下列说法中不正确的是()A.由两条射线所组成的圆形叫做角B.∠AOB的顶点是点OC.∠AOB和∠BOA表示同一个角D.角可以看做一条射线绕着端点旋转到另一个位置所形成的图形8.已知∠A=52°,若∠A与∠B互余,∠A与∠C互补,则∠C-∠B的度数为()A.128°B.100°C.90°D.80°9.多项式的次数及最高次项的系数分别是()A.3,-3B.2,-3C.5,-3D.2,310.下列各式中是一元一次方程的是()A.B.-5-3=-8C.x+3D.11.方程的解是,则a等于()A.-8B.0C.2D.812.下列方程变形中,正确的是()A.方程,移项,得;B.方程,去括号,得;C.方程,未知数系数化为1,得;D.方程化成.13.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电标价是()A.3200元B.3429元C.2667元D.3168元14.下列说法正确的是()A.平角就是一条直线B.周角就是一条射线C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数是0°15.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角16.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.B.C.D.二、填空题1.当x=_______时,与互为相反数.2.若与是同类项,则=_______.3.多项式与多项式的公因式是.4.观察一列单项式:,,,,,,…,则第2013个单项式是.5.OC是∠AOB内部的一条射线,若∠AOC=,则OC平分∠AOB;若OC是∠AOB的角平分线,则 =2∠AOC.6.将一个细木条固定在墙上,只需两个钉子,他的依据是__________________.7.将21.54°用度、分、秒表示为.8.2013年11月9日是一年一度的中国消防宣传日,某中学七年级(1)、(2)、(3)班的学生去人民广场当消防宣传志愿者,七年级(1)班去了a个人,七年级(2)班去的人数比(1)班的2倍还多8人,七年级(3)班去的人数比(2)班的一半少6人,当七年级(1)班去了20人时,三个班总共有人去当消防宣传志愿者.三、计算题1.(每小题5分,共10分)计算:(1)(2)2.(每小题5分,共10分)(1)(2)四、解答题1.(7分)如果,那么的值是多少?2.(7分)已知:,,且,求的值.3.(7分)已知三角形的第一边长为3a+2b,第二边比第一边长a-b,第三边比第二边短2a,求这个三角形的周长.4.(10分)某商场用2500元购进了A、B两种新型节能台灯共50盏,这两种台灯的进价,标价如下表所示:(1)这两种台灯各购进多少盏?(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?5.(10分)如图,点O在直线AB上,OC是∠AOB的平分线,在直线AB的另一侧以点O为顶点作∠DOE=90°.(1)若∠AOE=46°,求∠DOB的度数为多少?请你指出∠AOE与∠DOB之间的数量关系;(2)请你指出∠DOB与∠COE之间的数量关系,并说明理由.河北初一初中数学月考试卷答案及解析一、选择题1.下列不是单项式的是()A.a B.C.D.0【答案】C.【解析】A.a是单项式,不合题意;B.是单项式,不合题意;C.是多项式,符合题意;D.0是单项式,不合题意;故选C.【考点】单项式.2.“m与n的差的平方”,用代数式表示为()A.B.C.D.【答案】A.【解析】m与n的差的平方是:,故选A.【考点】列代数式.3.下列各组中的两项,不是同类项的是()A.与B.与 C.与D.与【答案】C.【解析】A.是同类项;B.是同类项;C.相同的字母的次数不同,不是同类项;D.是同类项.故选C.【考点】同类项.4.代数式的值一定不能是()A.6B.0C.8D.24【答案】B.【解析】A、当a=10时,=6,故选项错误;B.分式的值等于0的条件是分子等于0而分母不等于0,这个式子的分母不等于0,则式子的值一定不等于0,故选项正确;C.当a=4时,=8,故选项错误;D.当a=12时,=24,故选项错误.故选B.【考点】分式的值.5.光年是天文中的距离单位,1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示()A.㎞B.㎞C.㎞D.㎞【答案】B.【解析】将9500 000 000 000km用科学记数法表示为:km.故选B.【考点】科学记数法—表示较大的数.6.已知A、B两点之间的距离是10cm,C是线段AB上的任意一点,则AC中点与BC中点间的距离是()A.3cm B.4cm C.5cm D.不能计算【答案】C.【解析】∵AC+BC=AB,∴AC的中点与BC的中点距离=AB=5CM.故选C.【考点】两点间的距离.7.下列说法中不正确的是()A.由两条射线所组成的圆形叫做角B.∠AOB的顶点是点OC.∠AOB和∠BOA表示同一个角D.角可以看做一条射线绕着端点旋转到另一个位置所形成的图形【答案】A.【解析】A.有公共端点是两条射线组成的图形叫做角,故此选项错误;B.∠AOB的顶点是点O,正确,不合题意;C.∠AOB和∠BOA表示同一个角,正确,不合题意;D.角可以看做一条射线绕着端点旋转到加一个位置所形成的图形,正确,不合题意;故选A.【考点】角的概念.8.已知∠A=52°,若∠A与∠B互余,∠A与∠C互补,则∠C-∠B的度数为()A.128°B.100°C.90°D.80°【答案】C.【解析】∵∠A=52°,∠A与∠B互余,∠A与∠C互补,∴∠B=90°﹣52°=38°,∠C=180°﹣52°=128°,∴∠C﹣∠B=128°﹣38°=90°.故选C.【考点】余角和补角.9.多项式的次数及最高次项的系数分别是()A.3,-3B.2,-3C.5,-3D.2,3【答案】A.【解析】多项式的次数是3,最高次项是,系数是﹣3;故选A.【考点】多项式.10.下列各式中是一元一次方程的是()A.B.-5-3=-8C.x+3D.【答案】D.【解析】A.含有两个未知数,所以不是一元一次方程,故本选项错误;B.因为﹣5﹣3=﹣8不含未知数,所以不是方程,故本选项错误;C.因为x+3不是等式,所以不是方程,故本选项错误;D.符合一元一次方程的定义,故本选项正确.故选D.【考点】一元一次方程的定义.11.方程的解是,则a等于()A.-8B.0C.2D.8【答案】D.【解析】把代入方程,得到:,解得a=8.故选D.【考点】方程的解.12.下列方程变形中,正确的是()A.方程,移项,得;B.方程,去括号,得;C.方程,未知数系数化为1,得;D.方程化成.【答案】D.【解析】A.将方程3移项,得,错误;B.将方程去括号,得,错误;C.将方程x系数化为1,得,错误;D.将方程整理,得:,即,正确,故选D.【考点】解一元一次方程.13.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电标价是()A.3200元B.3429元C.2667元D.3168元【答案】A.【解析】设彩电的标价是元,则商店把彩电按标价的9折出售即0.9x,若该彩电的进价是2400元.根据题意列方程得:0.9x﹣2400=2400×20%,解得:x=3200元.则彩电的标价是3200元.故选A.【考点】1.一元一次方程的应用;2.销售问题.14.下列说法正确的是()A.平角就是一条直线B.周角就是一条射线C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数是0°【答案】C.【解析】A.平角和直线是两个概念,平角的特点是两条边在同一条直线上,但不能说成平角就是一条直线,故错误;B.周角的特点是两条边重合成射线,但不能说成周角是一条射线,因为角和线是两个不同的概念,二者不能混淆,故错误;C.平角的两条边在同一条直线上,故正确;D.周角的终边与始边重合,所以周角的度数是360°,故错误.故选C.【考点】角的概念.15.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角【答案】C.【解析】A选项:75°的角,45°+30°=75°;B选项:135°的角,45°+90°=135°;C选项:160°的角,无法用三角板中角的度数拼出;D选项:105°的角,45°+60°=105°.故选C.【考点】角的计算.16.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.B.C.D.【答案】A.【解析】由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:.故选A.【考点】规律型.二、填空题1.当x=_______时,与互为相反数.【答案】1.【解析】∵与互为相反数,∴,,,∴.故答案为:1.【考点】解一元一次方程.2.若与是同类项,则=_______.【答案】1.【解析】根据题意,得m=3,n=2,则m﹣n=3﹣2=1.故答案为:1.【考点】同类项.3.多项式与多项式的公因式是.【答案】.【解析】多项式=,多项式=,则两多项式的公因式为.故答案为:x﹣1.【考点】公因式.4.观察一列单项式:,,,,,,…,则第2013个单项式是.【答案】.【解析】系数依次为1,3,5,7,9,11,…2n﹣1;x的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵=671,∴第2013个单项式指数为2,故可得第2013个单项式是.故答案为:.【考点】1.单项式;2.规律型.5.OC是∠AOB内部的一条射线,若∠AOC=,则OC平分∠AOB;若OC是∠AOB的角平分线,则 =2∠AOC.【答案】∠AOB,∠AOB.【解析】∵角平分线定义是:从一个角的顶点出发的一条射线,如果把这个角分成两个相等的角,这条射线就叫这个角的平分线,∴满足OC平分∠AOB的条件是:∠AOC=∠AOB,同理:若OC是∠AOB的角平分线,则∠AOB=2∠AOC,故答案为:∠AOB、∠AOB.【考点】角平分线的定义.6.将一个细木条固定在墙上,只需两个钉子,他的依据是__________________.【答案】两点确定一条直线.【解析】根据两点确定一条直线.故答案为:两点确定一条直线.【考点】直线的性质:两点确定一条直线.7.将21.54°用度、分、秒表示为.【答案】21°32′24″.【解析】21.54°=21°32′24″,故答案为:21°32′24″.【考点】度分秒的换算.8.2013年11月9日是一年一度的中国消防宣传日,某中学七年级(1)、(2)、(3)班的学生去人民广场当消防宣传志愿者,七年级(1)班去了a个人,七年级(2)班去的人数比(1)班的2倍还多8人,七年级(3)班去的人数比(2)班的一半少6人,当七年级(1)班去了20人时,三个班总共有人去当消防宣传志愿者.【答案】86.【解析】∵七年级(1)班去了a个人,七年级(2)班去了人数比(1)班的2倍还多8人,七年级(3)班去的人数比七年级(2)班的一半少6人,∴七年级(2)班去的人数为2a+8,七年级(3)班去的人数为(2a+8)﹣6=a﹣2,∴三个班一共去的人数为:a+2a+8+a﹣2=4a+6,∴当a=20时,4a+6=4×20+6=86.故答案为:86.【考点】一元一次方程的应用.三、计算题1.(每小题5分,共10分)计算:(1)(2)【答案】(1);(2)4.【解析】(1)直接合并同类项即可;(2)先根据去括号法则去掉括号,再合并同类项即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.试题解析:(1)原式==;(2)原式==4.【考点】1.同类项;2.整式的加减.2.(每小题5分,共10分)(1)(2)【答案】(1);(2).【解析】(1)去分母得:,去括号得:,移项得:,合并同类项得:,化系数为1得:;(2)去分母得:,去括号得:,合并同类项得:,移项得:,合并同类项得:,化系数为1得:.【考点】解一元一次方程.四、解答题1.(7分)如果,那么的值是多少?【答案】.【解析】利用非负数的性质求出a,b及c的值,代入所求式子中计算即可求出值.试题解析:∵,∴a+1=0,2b+3=0,c+1=0,解得:,,c=1,原式= ==.【考点】1.有理数的混合运算;2.非负数的性质.2.(7分)已知:,,且,求的值.【答案】-125或-1.【解析】先根据绝对值的性质去绝对值符号,再根据a<b确定出a、b的值,代入代数式进行计算即可.试题解析:∵,∴a=±3,∵|b|=2,∴b=±2,又∵a<b,∴a=﹣3,b=±2.∴===﹣1或===﹣125.【考点】1.有理数的乘方;2.绝对值.3.(7分)已知三角形的第一边长为3a+2b,第二边比第一边长a-b,第三边比第二边短2a,求这个三角形的周长.【答案】.【解析】本题涉及三角形的周长,三角形的周长为三条边相加的和.试题解析:第一边长为3a+2b,则第二边长为(3a+2b)+(a﹣b)=4a+b,第三边长为(4a+b)﹣2a=2a+b,∴(3a+2b)+(4a+b)+(2a+b)=3a+2b+4a+b+2a+b=9a+4b.【考点】整式的加减.4.(10分)某商场用2500元购进了A、B两种新型节能台灯共50盏,这两种台灯的进价,标价如下表所示:(1)这两种台灯各购进多少盏?(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?【答案】(1)A灯30盏,B灯20盏;(2)720元.【解析】(1)有两个等量关系:A型灯盏数+B型灯盏数=50,购买A型灯钱数+购买B型灯钱数=2500.(2)根据利润=售价﹣进价,知商场共获利=A型灯利润+B型灯利润.试题解析:(1)设A型台灯购进x盏,B型台灯购进()盏.根据题意得:,解得:,所以;答:A型台灯购进30盏,B型台灯购进20盏.(2)30×(60×90%﹣40)+20×(100×80%﹣65)=30×14+20×15=720(元).答:这批台灯全部售完后,商场共获利720元.【考点】1.一元一次方程的应用;2.图表型.5.(10分)如图,点O在直线AB上,OC是∠AOB的平分线,在直线AB的另一侧以点O为顶点作∠DOE=90°.(1)若∠AOE=46°,求∠DOB的度数为多少?请你指出∠AOE与∠DOB之间的数量关系;(2)请你指出∠DOB与∠COE之间的数量关系,并说明理由.【答案】(1)44°,互为余角;(2)互为补角,理由见试题解析.【解析】(1)由∠DOB=∠AOB﹣∠AOE﹣∠DOE,然后将∠AOB=180°,∠AOE=46°,∠DOE=90°代入即可求出∠DOB=44°,根据∠AOE=46°,∠DOB=44°可得∠AOE与∠DOB互为余角;(2)由OC是∠AOB的平分线,可得∠AOC=90°,因为∠DOE=90°,所以∠AOC=∠DOE,所以∠COE=∠AOD,进而得到∠DOB与∠COE互补.试题解析:(1)∵∠DOB=∠AOB﹣∠AOE﹣∠DOE,∠AOB=180°,∠AOE=46°,∠DOE=90°,∴∠DOB=180°﹣46°﹣90°=44°,∴∠AOE+∠DOB=46°+44°=90°,∴∠AOE与∠DOB互为余角;(2)∠DOB+∠COE=180°,理由:∵OC是∠AOB的平分线,∴∠AOC=90°,∵∠DOE=90°,∴∠AOC=∠DOE,∵∠COE=∠AOE+∠AOC,∴∠COE=∠AOE+∠DOE=∠AOD,∵∠AOD+∠BOD=180°,∴∠COE+∠BOD=180°.【考点】角的计算.。
陕西初一初中数学月考试卷带答案解析
陕西初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥B.①②③C.③⑥D.④⑤2.﹣2的相反数是()A.2B.﹣2C.D.﹣3.如果向右走5步记为+5,那么向左走3步记为()A.+3B.﹣3C.+D.﹣4.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2C.0D.﹣3.45.下列图形中,不属于三棱柱的展开图的是()A.B.C.D.6.最大的负整数和绝对值最小的有理数分别是()A.0 ,﹣1B.0 , 0C.﹣1 , 0D.﹣1 ,﹣17.用一个平面去截一个正方体,截面的形状不可能是()A.梯形B.长方形C.六边形D.七边形8.下列说法错误的是()A.﹣2的相反数是2B.3﹢(﹣3)﹦0C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为4B.左视图的面积为2C.俯视图的面积为5D.搭成的几何体的表面积是2010.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①a<0<b;②|b|<|a|;③a﹢b<0;A.①②B.①③C.②③D.③二、填空题1.如果收入80元记作+80元,那么支出20元记作____2.三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……由此可推测n棱柱有____个面、____个顶点、____条棱3.数轴上表示3的点和表示﹣6的点的距离是______.4.已知一个数的绝对值是4,则这个数是__________.5.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.三、解答题1.计算:(1)27 + 18﹣﹙﹣3﹚﹣18 (2)15+(﹣5)+ 7﹣(﹣3)(3)﹙﹣11.5﹚﹣﹙﹣4.5﹚﹣3 (4)﹣(﹣)+(﹣3.4)2.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,﹣,0, ﹣30,﹣0.15,﹣128,, +20,﹣2.6正数集合{ ﹜;负数集合﹛﹜;整数集合﹛﹜;非负数集合﹛﹜.3.六个小立方体搭成的几何体的俯视图如图所示,小正方体中数字表示在该位置的小立方体的个数,请画出这几个几何体的主视图和左视图.4.画出数轴并按要求答题:在数轴上表示下列有理数:﹣3,|﹣2.5|,+4,﹣(+2),0;再用“<”将它们连接起来:5.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为相反数,请写出x、y、z的值并计算x﹣y﹢z.6.在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少?(3)李洋和刘红相差多少分?7.已知x是最小正整数,y ,z是有理数,且有| y﹣2|+|z+3|=0,计算:(1)求x,y,z的值.(2)求3x﹢y﹣z的值.陕西初一初中数学月考试卷答案及解析一、选择题1.下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥B.①②③C.③⑥D.④⑤【答案】A【解析】试题解析:根据立体图形的概念和定义,立体图形是空间图形.因此,在①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱中属于立体图形的是③⑤⑥故选A.2.﹣2的相反数是()A.2B.﹣2C.D.﹣【答案】A【解析】试题解析:根据相反数的定义得:-2的相反数是2.故选A.3.如果向右走5步记为+5,那么向左走3步记为()A.+3B.﹣3C.+D.﹣【答案】B【解析】试题解析:此题主要用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,据此,得如果向右走5步记为+5,那么向左走3步记为-3.故选B.4.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2C.0D.﹣3.4【答案】D【解析】试题解析:根据小于0的分数是负分数,得-3.4是负分数.故选D.5.下列图形中,不属于三棱柱的展开图的是()A.B.C.D.【答案】B【解析】试题解析:A、C、D中三个长方形能围成三棱柱的侧面,两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图;B、是两个四边形,不能围成三棱柱,不是三棱柱的表面展开图.故选B.6.最大的负整数和绝对值最小的有理数分别是()A.0 ,﹣1B.0 , 0C.﹣1 , 0D.﹣1 ,﹣1【答案】C【解析】试题解析:最大的负整数是-1;绝对值最小的有理数是0.故选C.7.用一个平面去截一个正方体,截面的形状不可能是()A.梯形B.长方形C.六边形D.七边形【答案】D【解析】根据正方体共有六个面,再依次分析各项即可判断.正方体的截面的形状可能是三角形、梯形、六边形,不可能是七边形,故选D.【考点】正方体的截面点评:本题属于基础应用题,只需学生熟练掌握正方体的性质,即可完成.8.下列说法错误的是()A.﹣2的相反数是2B.3﹢(﹣3)﹦0C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【答案】D【解析】试题解析:A. ﹣2的相反数是2,该选项正确;B. 3﹢(﹣3)﹦0,该选项正确;C.(﹣3)﹣(﹣5)=2,该选项正确;D. ﹣11,0,4这三个数中最小的数是-11,该选项错误.故选D.9.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为4B.左视图的面积为2C.俯视图的面积为5D.搭成的几何体的表面积是20【答案】A【解析】试题解析:A、从正面看,可以看到4个正方形,面积为4,故A选项正确;B、从左面看,可以看到3个正方形,面积为3,故B选项错误;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、搭成的几何体的表面积是22,故D错误.故选A.10.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①a<0<b;②|b|<|a|;③a﹢b<0;A.①②B.①③C.②③D.③【答案】D【解析】试题解析:如图可知a>0>b,①②显然错误;在a+b中,b的绝对值大于a的绝对值,故和为负号,故③正确.故选D.二、填空题1.如果收入80元记作+80元,那么支出20元记作____【答案】-20【解析】试题解析:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为-20元.2.三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……由此可推测n棱柱有____个面、____个顶点、____条棱【答案】 n+2 2n 3n【解析】试题解析:结合三棱柱、四棱柱和五棱柱的特点,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱.3.数轴上表示3的点和表示﹣6的点的距离是______.【答案】9【解析】数轴上表示3的点和表示﹣6的点的距离为3﹣(﹣6)=3+6=9.【考点】数轴上两点之间的距离.4.已知一个数的绝对值是4,则这个数是__________.【答案】4或-4【解析】题中已知一个数的绝对值,求这个数,根据绝对值的意义求解即可,注意结果有两个.解:一个数的绝对值是4,根据绝对值的意义,这个数是:4或﹣4.故答案为:4或﹣4.5.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.【答案】点动成线线动成面面动成体【解析】试题解析:根据分析即知:点动成线;线动成面;面动成体.三、解答题1.计算:(1)27 + 18﹣﹙﹣3﹚﹣18 (2)15+(﹣5)+ 7﹣(﹣3)(3)﹙﹣11.5﹚﹣﹙﹣4.5﹚﹣3 (4)﹣(﹣)+(﹣3.4)【答案】(1)30;(2)20;(3)-10;(4)-2.4.【解析】利用减法法则变形,计算即可得到结果.试题解析:(1)27 + 18﹣﹙﹣3﹚﹣18=27+18+3-18=(27+3)+(18-18)=30+0=30;(2)15+(﹣5)+ 7﹣(﹣3)=15+7+3+(-5)=25+(-5)=20;(3)﹙﹣11.5﹚﹣﹙﹣4.5﹚﹣3=-11.5+4.5-3=(-11.5-3)+4.5=-14.5+4.5=-10;(4)﹣(﹣)+(﹣3.4)=-3.4=1-3.4="-2.4."2.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,﹣,0, ﹣30,﹣0.15,﹣128,, +20,﹣2.6正数集合{ ﹜;负数集合﹛﹜;整数集合﹛﹜;非负数集合﹛﹜.【答案】正数集合{15,,+20,﹜;负数集合﹛﹣,﹣30,﹣0.15,﹣128,﹣2.6﹜;整数集合﹛15,0, ﹣30,﹣128,+20,﹜;非负数集合﹛15,0, , +20,﹜.【解析】按照有理数的分类填写:试题解析:正数集合{15,,+20,﹜;负数集合﹛﹣,﹣30,﹣0.15,﹣128,﹣2.6﹜;整数集合﹛15,0, ﹣30,﹣128,+20,﹜;非负数集合﹛15,0, , +20,﹜.3.六个小立方体搭成的几何体的俯视图如图所示,小正方体中数字表示在该位置的小立方体的个数,请画出这几个几何体的主视图和左视图.【答案】作图见解析.【解析】本题主视图主要是将从前面数最多的块数3、2、2画好即可,左视图主要是将从左面看最多的块数3、2画好即可.试题解析:如图:4.画出数轴并按要求答题:在数轴上表示下列有理数:﹣3,|﹣2.5|,+4,﹣(+2),0;再用“<”将它们连接起来:【答案】(1)数轴见解析;(2)-3<-2<0<|-2.5|<4.【解析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.试题解析:(1)(2)-3<-2<0<|-2.5|<4.5.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为相反数,请写出x、y、z的值并计算x﹣y﹢z.【答案】(1)x=-2 y=-3 z=-1;(2)0.【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴1与z相对,2与x相对,y与3相对,∵相对表面上所填的数互为相反数,∴x=-2,y=-3,z=-1.∴x﹣y﹢z=-2-(-3)+(-1)=0.6.在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少?(3)李洋和刘红相差多少分?【答案】(1)+4;(2)81;(3)9.【解析】(1)90-86即可;(2)86-5即可;(3)用李洋的成绩减去刘红的成绩即可.试题解析:(1)90-86=+4;(2)86-5=81;(3)90-81=9.7.已知x是最小正整数,y ,z是有理数,且有| y﹣2|+|z+3|=0,计算:(1)求x,y,z的值.(2)求3x﹢y﹣z的值.【答案】(1)x=1,y=2,z=-3;(2) 3x+y-z=8.【解析】由x是最小正整数,可得x=1,根据绝对值的非负性求出y=2,z=-3.从而可解答出问题. 试题解析:(1)∵x是最小正整数∴x=1∵|y﹣2|≥0,|z+3|≥0,且|y﹣2|+|z+3|=0∴|y﹣2|=0,|z+3|=0∴y﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x﹢y﹣z=3×1+2-(-3)=3+2+3=8.。
陕西初一初中数学月考试卷带答案解析
陕西初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列方程:①x﹣2=;②0.3x=1;③=5x﹣1;④x2﹣4x=3;⑤x=0;⑥x+2y=0.其中一元一次方程的个数是()A.2B.3C.4D.52.如图,下列说法,正确说法的个数是()①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A.0B.1C.2D.33.下列说法中正确的个数为()(1)平角就是一条直线(2)有一个公共端点的两条射线组成的图形叫做角(3)连接两点的线段叫做两点的距离(4)两点之间,直线最短(5)AB=BC,则点B是AC的中点A.1个B.2个C.3个D.4个4.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5="y+5"B.若a=b,则ac=bcC.若=,则a="b"D.若x=y,则=5.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b6.已知,∠AOC=90°,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°7.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=()A.B.C.﹣D.﹣8.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=BCC.CD=AB﹣BD D.CD=AD﹣BC9.如图,已知∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.βB.(α﹣β)C.αD.α﹣β10.如图,工作流程线上A、B、C、D处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置()A.线段BC的任意一点处B.只能是A或D处C.只能是线段BC的中点E处D.线段AB或CD内的任意一点处二、填空题1.如图所示,共有直线条,射线条,线段条.2.已知(y2﹣1)x2+(y+1)x+4=0是关于x的一元一次方程,y= .3.如图,已知线段AB,C点分线段AB为5:7两部分,D点分线段AB为5:11两部分,若CD=1,则AB= .4.45°= 平角,周角= 度,= 度.5.时钟表面11点15分时,时针与分针所夹角的度数是度.6.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若∠BOG比∠AOB′小15°,则∠BOG 的度数为度.三、解答题1.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB;作射线BC;画线段CD;(2)连接AD,并将其反向延长至E,使DE=2AD;(3)找到一点F,使点F到A、B、C、D四点距离和最短.2.尺规作图(不写作法,仅保留作图痕迹,在原图上不给分):已知线段a、b(a<b),求作线段AB,使AB=b﹣a.3.解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)x﹣=﹣1.4.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.5.如图,已知∠AOB=∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.6.根据图中给出的信息,求x.(温馨提示:量筒是圆柱形的啊!)(要求:用方程解)7.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有1个点时,线段总共有3条,如果线段AB上有2个点时,线段总数有6条,如果线段AB上有3个点时,线段总数共有10条,…(1)当线段AB上有6个点时,线段总数共有条.(2)当线段AB上有n个点时,线段总数共有条。
2024-2025学年七年级数学上学期第一次月考卷及答案(人教版)
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七上第一章~第二章。
5.难度系数:0.8。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列说法中不正确的是( ).A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2 000既是负数,也是整数,但不是有理数D .0是正数和负数的分界2.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出100元记作100−元,那么80+元表示( ) A .支出80元B .收入80元C .支出20元D .收入20元3.在数轴上表示2−与8的点的距离是( ) A .6B .10C .10−D .15−4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075.将()()()3652−−+−−+−写成省略括号和加号的形式是( )A .1B .1−C .10D .10−8.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,例如将2(101),2(1011)换算成十进制数应为: 2102(101)1202124015=×+×+×=++=;32102(1011)12021212802111=×+×+×+×=+++=.按此方式,将二进制2(1001)换算成十进制数的结果为( ) A .17B .9C .10D .189.下列说法中正确的个数有( ).①最大的负整数是1−;②相反数是本身的数是正数;③有理数分为正有理数和负有理数:④数轴上表示a −的点一定在原点的左边:⑤几个有理数相乘,负因数的个数是奇数个时,积为负数. A .1个B .2个C .3个D .4个abc19.(9分)上午八时,张、王两同学分别从A、B两地同时骑摩托车出发,相向而行.已知张同学每小时比王多行2千米,到上午十时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向和原来的速度继续前进,到中午十二时十五分,两人又相距36千米的路程.A、B两地间的路程有多少千米?20.(10分)操作与探索:请你自己画出数轴并表示有理数:52−,3.①大于3−并且小于3的整数有哪几个?②在数轴上表示到1−的点的距离等于2个单位长度的点表示的数是什么?21.(10分)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, ()()()()3333−÷−÷−÷−记作()3−④,读作:“()3−的圈4次方”.一般地,把n 个a 相除记作a ⓝ,读作“a 的圈n 次方”.22.(12分)递等式计算,能简便计算的要简便计算:×,请在下面长方形内写出相应的算式.请你按照小布的方法计算2.4 2.1有理数x的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数之间的距离PA=________(用含2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2024-2025学年初中七年级上学期(第1-2章) 数学月考试题及答案(新浙教版)
2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米B .30+米C .10−米D .10米2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710×B .37.8710×C .47.8710×D .50.78710×3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个B .2个C .3个D .4个4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−−B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)+C .-|-0.01|与1100−−D .13−与0.3 6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3B .2C .1−D .07.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34B .32−C .152D .129.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a <<②1c <−③2b >−④b a <⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg .1314.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .15.比较两数大小: −76−16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 17.比2−小6的数是 .18.当||2,||4x y ==,且2x y +=−,则xy = . 19.已知1xyz xyz =,则x zy x y z++值为 .20.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 .三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−;(2)12433−÷−×;(3)()()32211234−+×−+−;(4)()235363412−+×−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.24.(本题8分)如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:.(2)A、B两点间的距离是,A、C两点间的距离是.(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×.27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×=. 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1 B .任何非零数的圈3次方都等于它的倒数 C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472−−÷−×−④⑥⑧.2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米 B .30+米 C .10−米 D .10米【答案】A【分析】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可. 【详解】解:∵向东走40米记作40+米, ∴向西走30米可记作30−米, 故选A .2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710× B .37.8710×C .47.8710× D .50.78710×【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中≤<110a ,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将78700用科学记数法表示为:47.8710× 故选:C .3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】将每个数进行化简后,得出判断.【详解】解:239−=−,2(93) ,(2)2−−=,|5|5−−=−,因此负数有:23−和|5|−−,共有2个, 故选:B .4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−− B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−【答案】C【分析】本题考查了绝对值、有理数的乘方、相反数、倒数,熟练掌握这几个定义是解题的关键.根据绝对值、有理数的乘方、相反数、倒数的定义分别计算判断即可. 【详解】解:A 、22−=,故此选项不符合题意; B 、()328−=−,故此选项不符合题意; C 、−2的相反数是2,故此选项符合题意; D 、−2的倒数是0.5−,故此选项不符合题意; 故选:C .5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)−+C .-|-0.01|与1100−−D .13−与0.3 【答案】C【分析】先化简,根据相反数的定义:只有符号不同的两个数即可求解. 【详解】解:A .−(+5)=−5−5)=−5,选项A 不符合题意; B .−(+0.5)=−0.5,与12−相等,选项B 不符合题意;C .−|−0.01|=−0.01,−(1100−)=1100=0.01,−0.01与0.01互为相反数,选项C 符合题意; D .13−与0.3不是相反数,选项D 不符合题意;故选:C .6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3 B .2 C .1− D .0【答案】B【分析】先用a 的式子表示出点C ,根据点C 与点B 互为相反数列出方程求解即可. 【详解】解:由题可知:A 点表示的数为a ,B 点表示的数为1, ∵C 点是A 向左平移3个单位长度,∴C 点可表示为:3a −, 又∵点C 与点B 互为相反数,∴310a −+=, ∴2a =. 故选:B .7.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A 、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B 、原式=﹣(4×125×7),不符合题意;C 、原式=(10﹣119)×16=160﹣1619,不符合题意; D 、原式=3×[(﹣25)×(﹣2)],不符合题意. 故选:A .8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34 B .32− C .152 D .12【答案】C【分析】本题主要考查了有理数的乘方运算,求一个数的绝对值,有理数的加法运算等知识点,熟练掌握相关运算法则是解题的关键. 先计算乘方和绝对值,然后相加即可. 【详解】解:722−▲2722=+−742=+152=,故选:C .9.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a << ②1c <− ③2b >− ④b a < ⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个【答案】B【分析】此题考查了利用数轴比较有理数的大小,由a ,b ,c 在数轴上的位置得到1012b c a <−<<<<<,进而逐项求解即可.【详解】解:由题意得,1012b c a <−<<<<<, ∴12a <<,①正确;1c >−,②错误; 2b <−,③错误;b a <,④正确; 12c −<<,⑤正确;a 到原点的距离小于b 到原点的距离,⑥错误;在a 与c 之间有2个整数,⑦正确.∴正确的有4个.故选:B .10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024【答案】D【分析】根据前面图案中三角形的个数,找出规律,即可求解. 【详解】解:第1个图案有2个三角形,即12个; 第2个图案有4个三角形,即22个; 第3个图案有8个二角形,即32个; 第4个图案有16个三角形,即42个; 则第n 个图案有2n 个三角形,只有D 选项,当21024n =时,10n =符合题意,其余选项n 都不符合题意, 故选:D二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 【答案】12024【分析】本题考查了相反数,熟练掌握相反数的概念:“只有符号不同的两个数叫做互为相反数”,是解题的关键. 【详解】解:12024−的相反数是12024. 故答案为:12024. 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg . 【答案】0.4【分析】本题主要考查正负数的意义,有理数的加减混合运算,根据题意质量相差最多的是()250.2kg ±,再根据有理数的加减运算即可求解,解题的关键理解并掌握正负数的意义,进行有理数的混合运算.【详解】解:根据题可得,质量最少的是少了0.2kg ,质量最多的是多了0.2kg ,∴质量最多相差0.20.20.4(kg)+=, 故答案为:0.4.13 【答案】2−【分析】根据绝对值的意义进行化简即可求解. 【详解】解:2−−=2−, 故答案为:2−.14.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .【答案】25−【分析】本题考查了有理数的混合运算,根据操作步骤列出式子进行计算即可求解. 【详解】解:依题意,()()310529 −÷−×−−()289=×−− 169=−− 25=−故答案为:25−.15.比较两数大小: −76−【答案】>【分析】本题主要考查的是比较有理数的大小,依据两个负数比较大小,绝对值大的反而小比较即可; 【详解】解:∵6677−=,7766−=,6776<, ∴−>−6776, 故答案为:>.16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 【答案】 579−+− 负5加7减9【分析】本题主要考查了有理数的加减混合运算,熟练掌握有理数的加减法法则是解题的关键.利用有理数的减法法则和有理数的加法法则解答即可.【详解】()()()()()()579579579−−−−+=−+++−=−+−, 读作:负5加7减9;故答案为:579−+−;负5加7减9. 17.比2−小6的数是 . 【答案】8−【分析】本题考查了有理数的减法,理解题意,根据题意正确列出式子,进行计算即可. 【详解】解:比2−小6的数是268−−=−, 故答案为:8−.18.当||2,||4x y ==,且2x y +=−,则xy = . 【答案】8−【分析】根据绝对值先求出x ,y 的值,再根据2x y +=−得出符合条件的值,计算即可. 【详解】解:∵||2,||4x y ==, ∴2x =±,4y =±, ∵2x y +=−, ∴2,4x y ==−, ∴8xy =−, 故答案为:8−. 19.已知1xyz xyz =,则x zy x y z++值为 . 【答案】1−或3【分析】此题考查了绝对值,以及有理数的除法,熟练掌握运算法则是解本题的关键.根据已知等式得到||xyz xyz =,确定出x ,y ,z 中负因式有0个或2个,原式利用绝对值的代数意义化简即可得到结果. 【详解】解:由1||xyzxyz =,得到||xyz xyz =,x ∴,y ,z 中有0个或2个负数,当2个都为负数时,原式1111=−−+=−; 当0个为负数时,原式1113=++=.∴1x zy xy z++=−或3 故答案为:1−或320.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 . 【答案】202348【分析】根据题意列出算式进行计算即可. 【详解】解:根据题意可得:11112023111123448×−×−×−− ……12347202323448=××××……1202348× 202348=. 故答案为:202348. 三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−; (2)12433−÷−× ;(3)()()32211234−+×−+−;(4)()235363412−+×−. 【答案】(1)50− (2)38(3)6(4)12−【分析】(1)根据有理数的加法法则计算即可; (2)根据有理数的混合运算法则解答即可;(3)根据含有乘方的有理数的混合运算法则解答即可; (4)根据乘法运算律解答即可.本题考查了有理数的混合运算,运算律的应用,熟练掌握法则和预算律是解题的关键. 【详解】(1)解:()()43772743+−++− ()43277743=++−− ()70120=+−50=−.(2)解:12433−÷−×()2433=−×−×236=+ 38=.(3)解:()()32211234−+×−+−()11894=−+×−+129=−−+ 6=.(4)解:()235363412−+×−()()()2353636363412=×−−×−+×− 242715=−+−12=−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明. 【答案】(1)=,=,= (2)满足交换律,理由见解析【分析】本题考查有理数的混合运算,新定义,理解新定义是关键. (1)按照题中新定义的运算进行计算即可作出判断; (2)就一般情况根据新定义进行计算即可.【详解】(1)解:∵()424(2)4(2)10⊗−=×−−−−=−,()24(2)4(2)410−⊗=−×−−−=−; ∴()42(2)4⊗−=−⊗;∵()()53(5)(3)(5)(3)23−⊗−=−×−−−−−=,()()35(3)(5)(3)(5)23−⊗−=−×−−−−−=,∴(5)(3)(3)(5)-⊗-=-⨯-;∵1115557222 −⊗=−×−−−=− ,1115557222⊗−=×−−−−=− ; ∴115522 −⊗=⊗− ; 故答案:=,=,=(2)解:运算:“✞”满足交换律 理由如下:由新定义知:a b ab a b ⊗−−,b a ba b a ⊗−−, ∴a b b a ⊗=⊗,表明运算“✞”满足交换律.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.【答案】见解析,()11300.5133234<<−−<+−<−<−−【分析】本题考查了有理数的大小比较,解题的关键是先将所给各数化简,在数轴上表示出各数,再根 【详解】解:()33110.50.5,,334433−−=−−=−+−=− . 画出数轴并在数轴上表示出各数如图:根据数轴的特点从左到右用“<”把各数连接起来为: ()1313300.51342+−<−<−−<<−−<24.(本题8分)如图,在数轴上有A 、B 、C 这三个点.回答:(1)A 、B 、C 这三个点表示的数各是多少?A : ;B : ;C : .(2)A 、B 两点间的距离是 ,A 、C 两点间的距离是 . (3)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等? 【答案】(1)6−、1、4 (2)7;10(3)点B 向左移动2个单位【分析】本题考查了是数轴,运用数轴上点的移动和数的大小变化规律是左减右加是解答此题的关键. (1)本题可直接根据数轴观察出A 、B 、C 三点所对应的数; (2)根据数轴的几何意义,根据图示直接回答;(3)由于10AC =,则点B 到点A 和点C 的距离都是5,此时将点B 向左移动2个单位即可. 【详解】(1)解:根据图示可知:A 、B 、C 这三个点表示的数各是6−、1、4, 故答案为:6−;1;4.(2)解:根据图示知:AB 的距离是()167−−=;AC 的距离是6410−−=, 故答案为:7;10;(3)解:∵A 、C 的距离是10, ∴点B 到点A 和点C 的距离都是5,∴应将点B 向左移动2B 表示的数为1−,5ABBC ==. 25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元? 【答案】(1)将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米 (2)800915:~:汽车共耗油21.2升(3)沈师傅在上午800915:~:一共收入156元【分析】本题考查了正数和负数在实际问题中的应用,明确正负数的含义及题中的数量关系,是解题的关键.(1)把记录的数字相加即可得到结果,结果为正则在东面,结果为负则在西面; (2)把记录的数字的绝对值相加,再乘以0.4,即可得答案;(3)先计算起步费总额,再将超过3千米的路程相加,所得的和乘以2,将起步费加上超过3千米的费用总额,即可得答案.【详解】(1)解:∵(8)(6)(3)(6)(8)(4)(8)(4)(3)(3)5++−+++−+++++−+−++++=, ∴将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米; (2)解:|8||6||3||6||8||4||8||4||3||3|+−+++−+++++−+−++++8636848433=+++++++++ 53=,∴0.45321.2×=(升),∴800915:~:汽车共耗油21.2升. (3)解:∵共营运十批乘客, ∴起步费为:1110110×=(元), 超过3千米的收费总额为:[](83)(63)(33)(63)(83)(43)(83)(43)(33)(33)246−+−+−+−+−+−+−+−+−+−×=(元),∴11046156+=(元),∴沈师傅在上午800915:~:一共收入156元 26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−× .【答案】(1)11111565630−×=−+=− (2)()11111111n n n n n n −×=−+=−+++ (3)20222023−【分析】本题考查了有理数的乘法运算,(1)根据题干,模仿写出第5个等式,即可作答;(2)由(1)以及题干条件,即得第n 个等式:()11111111n n n n n n −×=−+=−+++;(3) 由(2)的结论,先化简再运算,即可作答,掌握第n 个等式:()11111111n n n n n n −×=−+=−+++是解题的关键. 【详解】(1)解:依题意,第5个等式: 11111305656−×=−+=−; (2)解:第1个等式:11111222−×=−+=−; 第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−; 第4个等式:11111454520−×=−+=−; 第5个等式:11111565630−×=−+=−; ……故第n 个等式:()11111111n n n n n n −×=−+=−+++; (3)解:由(2)知第n ()11111111n n n n n n −×=−+=−+++;则111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×111111112233420222023=−++−++−++⋅⋅⋅⋅⋅⋅+−+111111112022202322334=−+−+−++⋅⋅⋅⋅⋅⋅−+112023=−+ 20222023=−27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×= . 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−【答案】(1)没有除法分配律,故解法一错误; (2)过程见解析,114−.【分析】本题考查了有理数的除法乘法分配律; (1)根据有理数的运算法则进行判断,可得答案;(2)根据有理数的运算顺序,计算原式的倒数,和按照先计算括号内的,最后计算除法,两种方法求解,即可得出答案.【详解】(1)解:没有除法分配律,故解法一错误; (2)解法一:原式的倒数为: 132216143742 −+−÷− , ()132********=−+−×−()()()()13224242424261437=×−−×−+×−−×− 14=−;所以原式114=−; 解法二:原式=17928124242424242 −÷−+−17928124242−+− =−÷1424214=−×114=−. 28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472 −−÷−×− ④⑥⑧. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)1149− 【分析】(1)根据题意,计算出所求式子的值即可;(2(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10a a a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确;B .因为()10a a a a a a=÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .圈n 次方等于它本身的数是1或1−,说法错误,()11−=②;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ,故答案为:21n a −; (4)解:()2114172 −−÷−×− ④⑥⑧ ()()()()711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−8个16个 41119647=−−÷×1149=−−4950=−.。
7年级数学月考试卷【含答案】
7年级数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 26厘米D. 30厘米二、判断题(每题1分,共5分)1. 两个质数的乘积一定是合数。
()2. 任何两个等边三角形都是全等的。
()3. 一个数的立方根只有一个。
()4. 两个负数相乘的结果是正数。
()5. 一条对角线可以把平行四边形分成两个面积相等的三角形。
()三、填空题(每题1分,共5分)1. 如果一个数的平方是64,那么这个数是______。
2. 一个正方形的边长是6厘米,那么它的面积是______平方厘米。
3. 1千米等于______米。
4. 如果一个等腰三角形的底边长是8厘米,腰长是10厘米,那么这个三角形的周长是______厘米。
5. 下列各数中,______是最小的质数。
四、简答题(每题2分,共10分)1. 解释什么是质数和合数。
2. 简述等腰三角形的性质。
3. 解释什么是立方根。
4. 简述负数乘法的规则。
5. 解释什么是平行四边形。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,求它的体积。
2. 如果一个等腰三角形的底边长是12厘米,腰长是15厘米,求这个三角形的周长。
3. 计算1千米等于多少米。
4. 如果一个数的平方是81,求这个数。
2023初一下学期月考数学试卷-学生用卷 (5)
初一下学期月考数学试卷-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、计算x2⋅x3结果是().A. 2x5B. x5C. x6D. x82、下列计算正确的是().A. a2+2a2=3a4B. (2a2)3=6a6C. (a+b)2=a2+b2D. (a+2)(a−2)=a2−43、已知火车站托运行李的费用C和托运行李的质量P(P为整数)的对应关系如下表所示:则C与P之间的关系式为().A. C=2+0.5(P−1)B. C=2P−05C. C=2P+0.5D. C=0.5(P−1)4、中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名命为2019−nCoV.该病毒的直径在0.00000008米−0.00000012米,将0.000000012用科学记数法表示为a×10n的形式,则n为()A. −8B. −7C. 7D. 85、下列每组数分别是三根木棒的长度,不折断且将它们首尾相连时,能摆成三角形的是().A. 3cm,4cm,8cmB. 8cm,7cm,15cmC. 13cm,12cm,20cmD. 5cm,5cm,11cm6、如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在().A. A、C两点之间B. E、G两点之间C. B、F两点之间D. G、H两点之间7、根据下列已知条件,能画出唯一△ABC的是().A. AB=3,BC=4,AC=8B. AB=4,BC=3,∠A=30°C. ∠A=60°,∠B=45°,AB=4D. ∠C=90°,AB=68、下列说法中,正确的个数是().①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A. 1B. 2C. 3D. 49、实践课上,张老师给同学们出了这样−道题:已知,如图,点C在∠AOD的边上,用尺规作出CN//OA.小颖进行如图所示的操作,从作图的痕迹中可以发现,弧FG是().A. 以点C为圆心,OM为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OM为半径的弧D. 以点E为圆心,DM为半径的弧10、已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是().A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,每小题3分,共18分)11、计算:(−3)2020×(−13)2018=.12、已知a m=3,a n=2,则a2m+n的值为.13、已知等腰三角形的一边等于3cm,一边等于6cm,则它的周长为cm.14、如图1、2,小明为了测出塑料瓶直壁厚度,由于不便测出塑料瓶的内径,小明动手制作一个简单的工具(如图2,AC=BD,O为AC、BD的中点)解决了测瓶的内径问题,测得瓶的外径为a、图2中的DC长为b,瓶直壁厚度x=(用含a,b的代数式表示).15、如图,把△ABC沿线段DE折叠,使点A落在点F处,BC//DE,若∠C=80°,则∠CEF=°.16、△ABC中,AD是高,∠BAD=60°,∠CAD=20°,AE平分∠BAC,则∠EAD的度数为.三、解答题(本大题共8小题,共52分)17、计算:(1) (π−3)0+(12)−2−(−1)2009.(2) (−3a2)2−a2⋅a2+a6÷a2.(3) (x+3)(x−4)−2x(x+1).(4) (2a−b)2−(2a+b)(2a−b).18、先化简再求值:[(xy+2)(xy−2)−2x2y2+4]÷(−xy),其中x=10,y=−1.2519、如图,已知线段a、b,用尺规作△ABC,使AC=a,AB=b,BC=2a.(不写作法,保留作图痕迹)20、如图,在△ABC中,点E是AC的中点,FC//AB,连接FE并延长FE交AB于点D,求证:DE=FE.21、A、B两地相距50km,甲于某日骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A 地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量s(km)表示,甲所用的时间用变量t(时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程s与时间t的变化关系,请根据图象回答:(1) 直接写出:甲出发后小时,乙才开始出发.(2) 请分别求出甲出发1小时后的速度和乙的行驶速度?(3) 求乙行驶几小时后追上甲,此时两人距B地还有多少千米?22、如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22−02,12=42−22,20=62−42,因此4,12,20这三个数都是“和谐数”.(1) 36和2020这两个数是“和谐数”吗?为什么?(2) 设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?23、如图1,AB=7cm,AC⊥AB,BD⊥AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t(s),当点P到达点B 时,点Q也停止运动.(1) 若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ全等,此时PC⊥PQ吗?请说明理由.(2) 将图1中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”后得到如图2,其他条件不变.设点Q的运动速度为xcm/s,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.(3) 在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=.(直接写出结果)1 、【答案】 B;【解析】x2⋅x3=x2+3=x5.2 、【答案】 D;【解析】 A选项 : a2+2a2=3a2,故A错;B选项 : (2a2)3=8a6,故B错;C选项 : (a+b)2=a2+2ab+b2,故C错;D选项 : D正确.3 、【答案】 A;【解析】根据表格数据可知,P每增加1,C增加0.5,且当P=1时,C为2,所以C与P的关系式为:C=0.5P+1.5.故选A.4 、【答案】 B;【解析】解:0.00000012用科学记数法表示为1.2×10−7,∴n=−7,故选:B.5 、【答案】 C;【解析】三角形三边满足任意两边之和大于第三边,所以要判断三根木棒能否构成三角形只要判断较短两边之和是否大于最长边即可,满足条件的只有C.6 、【答案】 B;【解析】工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选B.7 、【答案】 C;【解析】 A选项 : 根据三边关系3,4,8不能构成三角形,A错误.B选项 : SSA不能判定全等,B错误.C选项 : ASA可以判定全等,C正确.D选项 : 一边及其对角不能判定全等,D错误.8 、【答案】 A;【解析】三角形的中线、角平分线、高都是线段.三角形的三条角平分线、三条中线都在三角形内部,且分别交于一点;锐角三角形的三条高在三角形内部,直角三角形也有三条高,其中两条高是三角形的两条直角边,且交于一点,钝角三角形有两条高在三角形外部,钝角三角形的三条高无交点,但高所在直线会交于三角形外一点.故①正确,②③④错误,故答案为A.9 、【答案】 D;【解析】根据题意,所作出的是∠BCN=∠AOB,根据作一个角等于已知角的作法,FG⌢是以点E为圆心,DM为半径的弧.故选D.10 、【答案】 D;【解析】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,{AB=AC∠BAD=∠CAEAD=AE,∴△BAD≅△CAE(SAS),∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≅△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°−90°−90°=180°,故此选项正确,故选:D.11 、【答案】9;【解析】原式=(−3)2020×(−13)2018=(−3)2018×(−13)2018×(−3)2=(−1)2018×9=9.12 、【答案】18;【解析】原式=a2m+n=a2m⋅a n=(a m)2⋅a n=32×2=18.13 、【答案】15;【解析】当3cm为腰长,6cm为底长时,∵3+3=6,∴不能构成三角形;当腰长为6cm时,∵3+6>6,∴能构成三角形,∴等腰三角形的周长为:6+6+3=15cm.故答案为15.14 、【答案】a−b2;【解析】∵AC=BD,O为AC、BD的中点,∴OA=OB=OC=OD,在△OAB和△BCD中,{OA=OC∠AOB=∠DOCOB=OD,∴△OAB≌△OCD(SAS),∴AB=DC=b,由图可知,瓶直壁厚度x=a−b2.故答案为:a−b2.15 、【答案】20;【解析】因为BC//DE,∠C=80°,所以∠AED=∠C=80°,且∠DEC=180°−∠C=100°,又因折叠关系,∠FED=∠AED=80°,故∠CEF=∠DEC−∠FED=100°−80°=20°.16 、【答案】20°或40°;【解析】17 、【答案】 (1) 6.;(2) 9a4.;(3) −x2−3x−12.;(4) −4ab+2b2.;【解析】 (1) (π−3)0+(12)−2−(−1)2009=1+4−(−1)=6.(2) (−3a2)2−a2⋅a2+a6÷a2=9a4−a4+a4=9a4.(3) (x+3)(x−4)−2x(x+1)=x2−x−12−2x2−2x=−x2−3x−12.(4) (2a−b)2−(2a+b)(2a−b)=4a2−4ab+b2−4a2+b2=−4ab+2b2.18 、【答案】−25.;【解析】原式=(x2y2−4−2x2y2+4)÷(−xy) =(−x2y2)÷(−xy)=xy,当x=10,y=−125时,原式=10×(−125)=−25.19 、【答案】画图见解析.;【解析】如图所示,△ABC即为所求.20 、【答案】证明见解析.;【解析】∵E是AC的中点,∴AE=EC,∵FC//AB,∴∠F=∠ADE,在△ADE和△CFE中,{∠ADE=∠F∠AED=∠CEFAE=EC,∴△ADE=∽△CFE(AAS).∴DE=FE.21 、【答案】 (1) 1;(2) 甲的速度为10千米/时,乙的速度为25千米/时.;(3) 乙行驶43小时后追上甲,此时两人距B地还有503千米.;【解析】 (1) t=1时,S乙=0,所以甲出发后1小时,乙才开始出发.故答案为1.(2) 甲出发1小时后的速度为:(50−20)÷(4−1)=10千米/时,乙的速度为:50÷(3−1)=25千米/时.(3) 设乙行驶t小时后追上甲,根据题意得20+(50−203)t=502t,解得t=43,即乙行驶43小时后追上甲,此时两人距B 地还有50−43×25=503(千米). 答:乙行驶43小时后追上甲,此时两人距B 地还有503千米. 22 、【答案】 (1) 36和2020是“和谐数”. ;(2) 两个连续偶数构成的“和谐数”是4的倍数. ;【解析】 (1) ∵36=102−82,2020=5062−5042, ∴36和2020是“和谐数”.(2) ∵(2k +2)2−(2k)2=4(2k +1),∴两个连续偶数构成的“和谐数”是4的倍数. 23 、【答案】 (1) 垂直,证明见解析.;(2) x =2,t =1或x =207,t =74. ;(3) 60°;【解析】 (1) ∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°,∵AP =BQ =2cm ,∴BP =AB −AP =5cm ,∴BP =AC 在△ACP 和△BPQ 中,{AP =BQ∠A =∠B AC =BP,∴△ACP =∽△BPQ (SAS ),∴∠C =∠BPQ ,∵∠C +∠APC =90°,∴∠BPQ +∠APC =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2) ①若△ACP =∽ △BPQ , 则AC =BP ,AP =BQ , ∴5=7−2t ,2t =xt , 解得:x =2,t =1; ②若△ACP =∽ △BQP , 则AC =BQ ,AP =BP , ∴5=xt ,2t =7−2t , 解得:x =207,t =74.综上所述:x =2,t =1或x =207,t =74.(3) 由(1)知,∠A =∠B =60°, ∵P 、Q 两点的运动速度相同, ∴P 、Q 两点的运动速度为2cm/s , ∴t =1,∴AP =BQ =2cm ,∴BP =AB −AP =5cm , ∴BP =AC在△ACP 和△BPQ 中,{AP =BQ∠A =∠B AC =BP,∴△ACP =∽ △BPQ (SAS ), ∴∠C =∠BPQ ,∵∠C +∠APC =120°, ∴∠BPQ +∠APC =120°, ∴∠CPQ =60°.。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
重庆地区专用七年级(下)第一次月考数学试卷(含答案)
七年级(下)第一次月考数学试卷题号 一二三四总分得分一、选择题(本大题共 12 小题,共 48.0 分)1.在方程 3x-y=2 ,,x 2(), -2x-3=0 中一元一次方程的个数为A. 1个B. 2个C. 3 个D.4个2.nn)假如单项式 2x 2y2+2 与 -3y 2-x 2是同类项那么 n 等于(A. 0B.C. 1D. 23. 以下各对数中,知足方程组的是()A. B.C.D.4.假如 2x-7y=8,那么用含 y 的代数式表示x 正确的选项是()A. B.C.D.5.A 种饮料比B 种饮料单价少 1 元,小峰买了 2 瓶 A 种饮料和 3 瓶 B 种饮料,一共花了 13 元,假如设 B 种饮料单价为 x 元 / 瓶,那么下边所列方程正确的选项是()A.B.C.D.6.用白铁皮做罐头盒。
每张铁皮可制盒身 16 个,或制盒底 48 个,一个盒身与两个盒底配成一套罐头盒。
现有 15 张白铁皮, 用制盒身和盒底, 能够恰巧配多少套? ()A. 144 套B. 9套C.6套D.15套7. 某牧场,放养的鸵鸟和奶牛一共 70 只,已知鸵鸟和奶牛的腿数之和为196 条,则鸵鸟的头数比奶牛多()A.20只B. 14只C. 15只D.13只8. 察看以下算式的规律21=2, 22=4, 23=8,24=16, 25=32 , 26=64 , 2 7=128, 28 =256,依据上述的规律,你以为2204 的末位数字应当为()A. 2B. 4C. 6D. 89.二元一次方程 3x+2y=15 在自然数范围内的解的个数是()A. 1个B. 2 个C.3个D. 4 个10. 若方程组的解 x 和 y 互为相反数,则 k 的值为()A. 2B.C. 3D.11. 对于 x , y 的方程组的解是二元一次方程3x+2y=14 的一个解,那么 m的值是( )A. 1B.C. 2D.12. 第二十届电视剧飞天奖今年有a 部作品参赛, 比昨年增添了 40%还多 2 部.设昨年参赛的作品有 b 部,则 b 是( )A.B.C. D.二、填空题(本大题共6 小题,共 24.0 分)14.已知( 2x-4)2+|x+2y-8|=0,则( x-y)2004=______.15.以下图, 8 个同样的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是______.16. 某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完整池水需要 9h,当同时开放甲、乙两管时需要______h 水池水量达全池的.17.2mn是对于 x、y 的二元一次方程,则mn=______ .已知 3x -2y =118. 当 m=______时,方程组的解是正整数.三、计算题(本大题共 1 小题,共 8.0 分)19.解以下方程组:(1)(2)四、解答题(本大题共7 小题,共70.0 分)20.解以下方程:(1) 4x+3=2 ( x-1) +1(2)-=21.已知方程组与方程组的解同样,求a+b 的值.22. 已知方程组,因为甲看错了方程①中的 a 获得方程的解为,乙看错了方程②中的 b 获得方程组的解为,求 a+b 的值是多少?23.某天,一蔬菜经营户用 60 元钱从蔬菜批发市场批了西红柿和豆角共 40kg 到菜市场去卖,西红柿和豆角这日的批发价与零售价以下表所示:品名西红柿豆角批发价(单位:元 /kg)零售价(单位:元 /kg)问:他当日卖完这些西红柿和豆角能赚多少钱?A 、B两地相距20km,甲从A地向B地行进,同时乙从B地向A地行进,2h后二24.人在途中相遇,相遇后,甲返回 A 地,乙仍旧向 A 地行进,甲回到 A 地时,乙离 A 地还有 2km,求甲、乙二人的速度.25.某牛奶加工厂现有鲜奶9t,若在市场上直接销售鲜奶,每吨可获收益500 元,制成酸奶销售,每吨可获收益 1 200 元,制成奶片销售,每吨可赢利 2 000 元.该厂的生产能力是:如制成酸奶,每日可加工3t,制成奶片,每日可加工1t,受人员限制,两种加工方式不行同时进行,受气温限制,这批牛奶需在 4 天内所有销售或加工完毕,为此,该厂设计了两种方案:方案一:尽可能多的制成奶片,其他鲜奶直接销售;方案二:一部分制成奶片,其他制成酸奶销售,并恰巧 4 天达成.26.为奖赏在演讲竞赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔录本中选择.假如买 4 个笔录本和 2 支钢笔,则需86 元;假如买 3 个笔录本和 1 支钢笔,则需57 元.( 1)求购置每个笔录本和钢笔分别为多少元?( 2)售货员提示,买钢笔有优惠,详细方法是:假如买钢笔超出10 支,那么高出部分能够享受 8 折优惠,若买 x( x>0)支钢笔需要花 y 元,请你求出 y 与 x 的函数关系式;( 3)在( 2)的条件下,小明决定买同一种奖品,数目超出10 个,请帮小明判断买哪一种奖品省钱.答案和分析1.【答案】A【分析】解:① 3x-y=2 含有两个未知数,故不是一元一次方程;② 是分式方程;③ 切合一元一次方程的形式;④是一元二次方程.只有x=正确.应选:A.只含有一个未知数(元),而且未知数的指数是 1(次)的方程叫做一元一次方程,它的一般形式是 ax+b=0(a,b 是常数且 a≠0).本题主要考察了一元一次方程的一般形式,只含有一个未知数,未知数的指数是 1,一次项系数不是 0,这是这种题目考察的要点.2.【答案】A【分析】解:∵单项式 2x 2y2n+2与 -3y2-nx2是同类项,∴2n+2=2-n,解得 n=0,应选 A .两个单项式是同类项,依据同类项的定义,列方程 2n+2=2-n,解方程即可求得 n 的值.本题是对同类项定义的考察,同类项的定义是所含有的字母同样,而且同样字母的指数也同样的项叫同类项,因此只需判断所含有的字母能否同样,同样字母的指数能否同样即可.3.【答案】B【分析】解:,①+② ×2 得:7x=7,即x=1,将 x=1 代入②得:y=1,则方程组的解为.,应选:B.将各项中 x 与 y 的值代入方程组查验即可获得结果.本题考察了二元一次方程组的解,方程组的解即为能使方程组中双方程建立4.【答案】C【分析】解:移项,得2x=8+7y,系数化为 1,得x=.应选:C.第一移项,把含有 x 的项移到方程的左边,其他的项移到方程的右边,再进一步化系数为 1 即可.本题主要考察解方程的一些基本步骤:移项、系数化为 1.5.【答案】A【分析】解:设 B 种饮料单价为 x 元 /瓶,则 A 种饮料单价为(x-1)元,依据小峰买了 2瓶 A 种饮料和 3 瓶 B 种饮料,一共花了 13 元,可得方程为:2(x-1)+3x=13.应选:A.要列方程,第一要依据题意找出题中存在的等量关系,由题意可获得:买 A 饮料的钱+买 B 饮料的钱 =总印数 13元,明确了等量关系再列方程就不那么难了.列方程题的要点是找出题中存在的等量关系,此题的等量关系为买 A 中饮料的钱+买 B 中饮料的钱=一共花的钱 13 元.6.【答案】A【分析】解:设用制盒身的铁皮为 x 张,用制盒底的铁皮为 y 张,依据题意得:,解得:,∴16x=16 ×9=144.应选:A.设用制盒身的铁皮为 x 张,用制盒底的铁皮为 y 张,依据铁皮共 15 张且制作的盒底的数目为盒身数目的 2 倍,即可得出对于 x,y 的二元一次方程组,解之即可得出 x 的值,再将其代入 16x 中即可求出 结论 .本题考察了二元一次方程 组的应用,找准等量关系,正确列出二元一次方程组是解题的要点.7.【答案】 B【分析】解:设奶牛的头数为 x ,则鸵鸟的头数为 70-x ,故:4x+2(70-x )=196, 解得 x=28, 故 70-2x=14,应选:B .设出奶牛的 头数,表示出鸵鸟的头数,依据鸵鸟和奶牛的腿数之和 为 196 条,列出方程.本题考察了列一元一次方程的 应用,难度不大,在解方程的 时候简单出 错,要注意仔细解答.8.【答案】 C【分析】解:2n的个位数字是 2,4,8,6 四个一循 环,因此 204÷4=51,则 2204 的末位数字与 24 的同样是 6.应选:C .经过察看发现:2n的个位数字是 2,4,8,6 四个一循 环,因此依据 204÷4=1,得出 2204 的个位数字与 24 的个位数字同样,是 6,由此得出答案即可.本题考察学生剖析数据,总结、概括数据规律的能力,要修业生有必定的解题技巧.解题要点是知道个位数字 为 2,4,8,6 按序循环.9.【答案】 C【分析】解:二元一次方程 3x+2y=15 在自然数范 围内的解是:,即二元一次方程 3x+2y=15 在自然数范 围内的解的个数是 3 个.应选:C .依据二元一次方程3x+2y=15,可知在自然数范围内的解有哪几组,从而能够解答本题.本题考察二元一次方程的解,解题的要点是明确什么是自然数,能够依据题意找到二元一次方程3x+2y=15 在自然数范围内的解有哪几组.10.【答案】A【分析】解:依据题意增添方程 x+y=0 则 x=-y ,将此代入 4x+3y=1 得 y=-1,x=1 ,将 x,y 的值代入第二个方程得: 2kx+ (k-1)y=3,则 2k-(k-1)=3,解得k=2.应选:A.依据 x 和 y 互为相反数增添一个方程 x+y=0,由此三个方程分别求出 x,y,k的值.本题主要考察了二元一次方程组解的定义.第一理解题意获得第三个方程x+y=0 ,而后将此三个方程联立成方程组求解出 x,y,z 的值.11.【答案】C【分析】解:解方程组,得,把 x=3m,y=-m 代入 3x+2y=14 得:9m-2m=14,∴m=2.应选:C.先解方程组,求得用 m 表示的 x,y 式子,再代入 3x+2y=14,求得 m 的值.先用含 k 的代数式表示 x,y,即解对于 x,y 的方程组,再代入 3x+2y=14 中可得.12.【答案】C【分析】第8页,共 15页∴b=.应选:C.依据等量关系为:昨年作品数×(1+40%)+2=今年作品数,把有关数值代入,整理求得昨年作品数即可.本题主要考察了列代数式,获得昨年作品数与今年作品数的等量关系是解决本题的要点.13.【答案】-1【分析】解:把代入方程组中,得;解,得 m=-1,n=0.故 m+n=-1.第一依据方程组解的定义,将已知的方程组的解代入方程组中,可获得对于m、n 的二元一次方程组,即可得 m 和 n 的值,从而求出代数式的值.主要考察了方程组解的定义,假如是方程组的解,那么它们必知足方程组中的每一个方程.14.【答案】1【分析】解:由题意,得:,解得2004 2004;则(x-y ) =(2-3) =1.先依据非负数的性质列出方程组,求出 x、y 的值,而后将它们的值代入(x-y )2004中求解即可.本题考察了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.215.【答案】300cm【分析】解:设一个小长方形的长为 xcm,宽为 ycm,则可列方程组,解得.2答:每块小长方形地砖的面积是 300cm 2.故答案为:300cm 2.由题意可知本 题存在两个等量关系,即小 长方形的长+小长方形的宽 =40cm ,小长方形的长+小长方形宽的 3 倍=小长方形长的 2 倍,依据这两个等量关系可列出方程 组,从而求出小正方形的 长与宽,最后求得小正方形的面 积.考察了二元一次方程 组的应用,解答本题要点是弄清题意,看懂图示,找出适合的等量关系,列出方程 组.并弄清小长方形的长与宽的关系.16.【答案】 6【分析】解:设水池容积为 1,同时开放甲、乙两管时需要 xh 水池水量达全池的 ,依题意得:( - )x= ,解得 x=6,∴同时开放甲、乙两管时需要 6h 水池水量达全池的 .设 水池容 积为 则 时 注 满时 设 时 1, 甲每小 水池的 ,乙每小 放完水池的 , 同 开放甲、乙两管时需要 xh 水池水量达全池的,用(甲进水速度 -乙出水速度)x= ,列方程求解.本题考察了列方程解 应用题的能力,依据题意确立进、出水的速度,时间,剩余水量之 间的等量关系. 17.【答案】【分析】解:∵3x2m-2y n=1 是对于 x 、y 的二元一次方程,∴2m=1,n=1, ∴,∴mn=0.5 ×,故答案为:.依据二元一次方程的定 义得出 2m=1,n=1,求出 m ,再代入求出 mn 即可.本题考察了二元一次方程的定 义,能熟记二元一次方程的定 义的内容是解此题的要点.18.【答案】-4【分析】解:在中,∵x+4y=8,∴x=8-4y>0,∴y<2,∴y=1,x=4,此时 m=-4.故答案为:-4.本题可运用加减消元法,将 x、y 的值用 m 来取代,而后依据 y>0 得出 m 的范围,再依据 y 为整数可得出 m 的值.本题考察的是二元一次方程组和不等式的综合问题,经过把 x ,y 的值用 m 代,再依据 y 的取值判断 m 的值.19.【答案】解:(1)方程组整理得:,① ×3-② ×2 得: 5x=-20 ,即 x=-4 ,把 x=-4 代入①得: y=12 ,则方程组的解为;( 2)方程组整理得:,① ×7-②得: 48y=288 ,即 y=6,把 y=6 代入①得: x=18,则方程组的解为.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】解:(1)4x+3=2(x-1)+1,4x+3=2 x-2+1 ,4x-2x=-2+1-3 ,2x=-4 ,x=-2;( 2)去分母得:2( x-1) -( x+2 )=3( 4-x),去括号得: 2x-2- x-2=12-3 x,移项得: 2x-x+3x=12+2+2 ,4x=14 ,.【分析】(1)去括号,移项,归并同类项,系数化成 1 即可;(2)去分母,去括号,移项,归并同类项,系数化成 1 即可.本题考察认识一元一次方程,能正确依据等式的性质进行变形是解此题的关键.21. 与方程组的解同样,【答案】解:∵方程组∴方程组的解与方程组的解也同样.解方程组得:,把代入方程组,得,因为 2a+2b=-4 ,因此 a+b=-2.【分析】依据两个方程组的解同样,可重组一个只含 x、y 的方程组,求出它们的解,再把解代入含 a、b 的方程,得方程组并求出 a、b 的值.本题考察了二元一次方程组的解法,解决本题的要点是重组方程组求出 x、y 的值.22. ,【答案】解:∵甲看错了方程①中的 a 获得方程的解为∴把解代入②,得 -52+b=-2 ,解得 b=50 ;∵乙看错了方程②中的 b 获得方程组的解为,∴把解代入①,得 5a+20=15 ,解得 a=-1 .∴a+b=50-1=49 .【分析】别看错了组中的一个方程获得不一样的解,把解分别代入他们没有看甲、乙分错的方程,得新的方程组,求出 a、b.本题考察了方程组的解喜悦义和一元一次方程的解法,理解题意得新方程组是解决本题的要点.23.【答案】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有,解得,40×() =52 (元),答:他当日卖完这些西红柿和豆角能赚52 元.【分析】经过理解题意可知本题的两个等量关系,西红柿的重量 +豆角的重量 =40,1.2 ×西红柿的重量 +1.5 ×豆角的重量 =60,依据这两个等量关系可列出方程组.本题主要考察了二元一次方程组的应用,要点是正确理解题意,找出题目中的等量关系,栽设出未知数,列出方程组.24.【答案】解:如图,设甲的速度为x 千米 /小时,乙的速度为y 千米 /小时,由题意得,,解得:,答:甲的速度为 5.5 千米 /小时,乙的速度为 4.5 千米 /小时.【分析】设甲的速度为 x 千米 /小时,乙的速度为 y 千米 / 小时,依据甲乙二人相向而行2 小时相遇(甲乙两人走的行程之和是 AB 的全程),依据题意还可知相遇后,甲 2 小时走的行程 -乙 2 小时走的行程 =2km,据此列方程组求解.本题考察了二元一次方程组的应用,解答本题的要点是读懂题意,设出未知数,找出等量关系,列方程组求解.25.【答案】解:方案一:4×2000+5×500=10500(元)方案二:设xt 制成奶片, yt 制成酸奶,则,因此,收益为 1.5 ××1200=12000 > 10500,因此选择方案二赢利最多.【分析】方案一是尽可能多的制奶片,也就是四天都制奶片,每日加工一吨,可加工 4 吨,剩下的 5 吨鲜奶直接销售;方案二制奶片,也制酸奶.那么包括两个等量关系:制奶片的吨数 +制酸奶的吨数 =9,制奶片的吨数÷1+制酸奶的吨数÷3=4.学生在看到题目字多时候,第一感觉是惧怕,我必定不会做.因此,要有耐心与仔细找到关键话,理解清它的意思,找到打破点,等量关系.比如本题中方案一,方案二的含义.26.【答案】解:(1)设每个笔录本 x 元,每支钢笔 y 元.( 1 分)(2 分)解得答:每个笔录本14 元,每支钢笔15 元.( 5 分)且是整数(2)且是整数(3)当 14x< 12x+30 时, x<15;当 14x=12x+30 时, x=15;当 14x> 12x+30 时, x>15.( 8 分)综上,当买超出 10 件但少于 15 件商品时,买笔录本省钱;当买 15 件奖品时,买笔录本和钢笔同样;当买奖品超出15 件时,买钢笔省钱.(10 分)【分析】(1)分别设每个笔录本 x 元,每支钢笔 y 元列出方程组可得.(2)依题意可列出不等式.(3)分三种状况列出不等式求解.解题要点是要读懂题目的意思,找准要点的描绘语,理清适合的等量关系,列出方程组和不等式,再求解.第14 页,共 15页。
七年级上册数学月考试卷及答案
七年级上册数学月考试卷及答案七年级上册数学月考试卷及答案七年级上册数学月考试卷一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A。
-7℃ B。
+7℃ C。
+12℃ D。
-12℃2.某同学春节期间将自己的压岁钱800元,存入银行。
XXX放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( ) A。
+800,+350,-100 B。
+800,-350,-100C。
-800,+350,+100 D。
+800,-350,+1003.-6的相反数为( )A。
6 B。
-6 C。
0 D。
-14.下列式子中,-(-3),-|-3|,3-5,-1-5是负数的有( )A。
1个 B。
2个 C。
3个 D。
4个5.下列计算不正确的是( )A。
-(-3)=-3 B。
+[-(-3)]=3 C。
-3+|-3|=0 D。
-5=-56.下列四个数中,最小的数是( )A。
2 B。
-2 C。
0 D。
-18.某种面粉袋上的质量标识为250.25kg,则下列面粉中合格的是( )A。
24.70kg B。
25.30kg C。
25.51kg D。
24.80kg9.(-1)-(-3)+2(-3)的值等于( )A。
1 B。
-4 C。
5 D。
-110.若ab≠0,则a/b的值不可能是( )A。
2 B。
0 C。
-2 D。
1二、填空题(每小题3分,共30分)11.①3的相反数是-3,②-2的倒数是-1/2,③|-2012|=2012.12.如果m≥0,n≥0,m≥|n|,那么m≥n≥-m≥-n.13.写出一个比-1小的数是-2.14.7(-2)的相反数是-14.16.若|x|=3,y=2,则|x+y|=5.17.计算|-|-3|=3.18.武冈某天早晨气温是-5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为-7℃.19.已知a,b互为相反数,且都不为0,则(a+b-5)(-3)=12.20.一组按规律排列的数:-4,-1,2,5,8,请你推断第9个数是14.三、XXX21.(16分) 计算1) 3+(-2)-(-3)+2 = 62) |-5+7|+(-4)-6 = 03) -2×(-3)-(-4)×(-5) = 24) (-2)×[(3-7)×(-4)] = 3222.(14分) 一张纸的厚度是0.01cm,折叠后厚度变成原来的2倍,再折叠后厚度变成原来的3倍,求折叠3次后纸的厚度.答:第一次折叠后厚度为0.02cm,第二次折叠后厚度为0.06cm,第三次折叠后厚度为0.18cm.23.(10分) 如果-3x+2y=5,3x-y=7,求x和y的值.答:将第二个式子两边乘以3得-9x+6y=15,与第一个式子相加得7y=20,即y=20/7.将y的值代入第二个式子得3x-(20/7)=7,解得x=61/21.因此,x=61/21,y=20/7.24.(10分) 一辆汽车从A地出发,以每小时60公里的速度向B地行驶,途中遇到了一次故障,耽误了1小时,然后以每小时40公里的速度向B地行驶,结果比原计划晚到2小时,求AB两地的距离.答:设AB两地的距离为x公里,则原计划行驶时间为x/60小时,故障后行驶时间为(x/60+1)小时,最后行驶时间为(x/60+1)+(x/40)小时。
七年级下第二次月考数学试题及答案
七年级第二次月水平测试数学试卷时间100分钟 满分120分一、选择题(每题3分,共30分)1.有下列长度的三条线段,能组成三角形的是( )A 、3cm 4cm 8cm 、、 B 、4cm 4cm 8cm 、、 C 、5cm 6cm 10cm 、、 D 、2cm 5cm 10cm 、、 2.已知有长为1、2、3的线段若干条,任取其中三条构造三角形,则最多能构成形状或大小不同的三角形个数是( )A 、5B 、6C 、7D 、83.下列说法①任意一个三角形的三条高至少有一条在此三角形内部;②一个多边形从一个顶点共引出三条对角线,此多边形一定是五边形;③一个三角形中,至少有一个角不小于060;④以a 为底的等腰三角形其腰长一定大于2a ;⑤以cb a ,,为边,且c b a >+能构成一个三角形 ;⑥一个多边形增加一条边,那么它的外角均增加0180.其中正确的是( )A 、①②③④B 、①③④⑤C 、③④⑤⑥D 、①②③⑥4.如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )5.下列结论错误的是( )A 、等边三角形是轴对称图形B 、轴对称图形的对应边相等,对应角相等C 、成轴对称的两条线段必在对称轴同侧D 、成轴对称的两个图形的对应点的连线被对称轴垂直平分6.两个图形关于某直线对称,对称点一定是( )A 、这条直线的两旁B 、这条直线的同旁C 、这条直线上D 、这条直线两旁或这条直线上7.甲、乙、丙、丁四名同学在讨论数学问题时作了如下发言:甲:因为三角形中最多有一个钝角,因此三角形的外角之中最多只有一个锐角;乙:在求n 个角都相等的n 边形的一个内角的度数时,可用结论: 180°-n 1×360°; 丙:多边形的内角和总比外角和大;丁:n 边形的边数每增加一条,对角线就增加n 条.四位同学的说法正确的是( ).A 、甲、丙B 、乙、丁C 、甲、乙D 、乙、丙8.如果三角形的一个外角与它不相邻的两内角的和为180º,那么与这个外角相邻的内角等于( )A 、30ºB 、60ºC 、90ºD 、120º9.一个多边形的内角和比它的外角和的3倍少0180,这个多边形的边数是( )A 、5条B 、6条C 、 7条D 、8条10.下列正多边形的组合中,能够铺满地面的是( )A 、正八边形和正方形B 、正五边形和正八边形C 、正六边形和正三角形D 、正五边形和正六边形二、填空题(每题3分,共30分)11.把一张正方形纸沿两对角线对折两次,形成了四个同样大小的三角形.12.工人师傅在做完门框后.为防小变形常常像图1中所示的那样上两条斜拉的木条(即图1中的AB ,CD ),这样做根据的数学道理是 .13.如图2 ,⊿ABC 中,AD 是∠BAC 的平分线,AE 是BC 边上的高,已知∠B=47º∠C=73º,则∠DAE= .14.如图3,AD 是△ABC 的外角平分线,∠B=30º,∠DA E=55º,则∠ACD= .15.等腰三角形的周长为12,则腰长a 的取值范围是 .16.一个多边形减少一条边,它的内角和减少 度,如果一个多边形减少一条边后,内角和为1260度,那么原来的多边形的边数为 .17.n边形的内角和等于t边形的外角和的2倍,则n= .18.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是,内角和是.19.一个多边形的每一个内角都相等,并且它的一个外角与一个内角之比为2:3,则这个多边形是边形.20.如图4三、解答题(7个小题,共60分)21.(10分)如图,四边形ABCD中,∠A=∠C=90°,B E平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?22.(10分)如图,∠ACD是△ABC的一个外角,∠ABC和∠ACD的平分线BE、CE交于一点E,试说明∠A=2∠E.23.(9分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求n( 的值.pm)24.(8分)已知等腰三角形的周长为28厘米,①底边长和腰长之比为3:2,求各边长;②底边比腰小2厘米,求各边长.25、(6分)请用1个等腰三角形,2个长方形,3个圆设计一个轴对称图形,并用简炼的文字说明你的创意。
福建初一初中数学月考试卷带答案解析
福建初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.若海平面以上50米记作+50米,则海平面以下60米记作()A.-60米B.-80米C.-40米D.40米2.的相反数是()A.B.C.D.3.在2,-2,-3这三个数中,任意两数之和的最大值是()A.0B.-1C.5D.-54.下列说法不正确的是 ( )A.0既不是正数,也不是负数B.-1的底数是-1C.一个有理数不是整数就是分数D.0的绝对值是05.下列算式正确的是()A.(-14)-5=-9B.0-(-3)=3C.(-3)-(-3)=-6D.|5-3|=-(5-3) 6.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是:()A.25.30千克B.24.70千克C.24.80千克D.25.51千克7.下列各数中,互为相反数的是()A.;B.;C.;D..8.如果,那么()A.B.C.D.9.若a,b为有理数,a>0,b<0,且|a|<|b|,则a,b,-a,-b的大小关系是()A.b<-a<-b<a B.b<-a<a<-b C.b<-b<-a<a D.-a<-b<b<a二、单选题如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长三、填空题1.把写成省略加号的和的形式是__________________________。
2.__________(填“>”或“<”)3.在数轴上表示数的点与表示数+的点之间的距离为___________个单位长度。
4.绝对值不大于3的整数有.5.若|x-2|=3,则x=__________。
6.小海在自学了简单的电脑编程后,设计了如图所示的程序,若他输入的数是2,那么执行了程序后,输出的数是______。
初一数学第一学期第一次月考试卷两份(附答案)
数学月考试题(一)一、选择题(每小题3分,共24分)1.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .-3mB .+3mC .+mD .﹣5m2.下列各数中,不是有理数的是( ) A .3.14 B .C .D .0.10100100013. 下列说法中,正确的是( ) A .0是最小的整数 B .最大的负整数是﹣1C.有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列算式正确的是 ( ) A .(-14)-5=-9 B .0-(-3)=3 C .(-3)-(-3)=-6 D .()5353-=--5.如图,在数轴上点M 表示的数可能是( )A .1.5B .﹣1.5C .﹣2.4D .2.46.若a 的倒数为﹣,则a 是( )A .B .﹣C .2D .﹣27.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有( ) A .4个B .3个C .2个D .1个8.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是 ( ) A .点C B .点D C .点A D .点B二、填空题(每小题3分,共30分)9. ―2的相反数是_______;10.比较大小:-0.3 ____11.今年2月份某市一天的最高气温为10℃,最低气温为﹣7℃,那么这一天的最高气温比最低气温高.12.绝对值小于3的所有整数和是.13.如果3-m与2m+1互为相反数,则m=________。
14.若|x+2|+|y﹣3|=0,则x+y的值为.15.在数轴上,点A表示的数是1,那么在数轴上与A相距3个单位长度的点表示的数是________。
16.若|﹣x|=5,则x=17.如图,是一个简单的数值计算程序,当输入的x的值为5,则输出的结果为18.a是不为1的有理数,我们把11-a称为a的差倒数.如:2的差倒数是11-2=-1,-1的差倒数11-(-1)=12.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2011=________.三、解答题(共96分)19.(8分)把下列各数在数轴上表示,并从小到大的顺序用“<”连接起来.+(﹣4),4,0,﹣|﹣2.5|,﹣(﹣3).20.(8分)若a、b互为相反数,c、d互为倒数,m(m<0)的绝对值为2,求2m﹣cd+的值。
初一月考数学试题及答案
初一月考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 23. 一个数的绝对值是它与0的距离,那么|-5|的值是:A. 5B. -5C. 0D. 104. 以下哪个选项是正确的不等式?A. 3 > 5B. 3 < 5C. 3 = 5D. 3 ≥ 55. 一个角的补角是与它相加等于180°的角,那么45°的补角是:A. 135°B. 45°C. 90°D. 180°6. 一个数的平方是它本身,那么这个数是:A. 0 或 1B. -1 或 0C. 1 或 -1D. 0 或 -17. 一个数的立方是它本身,那么这个数是:A. 0, 1, -1B. 0, 1C. 1, -1D. 0, -18. 以下哪个选项是正确的分数比较?A. 1/2 > 2/3B. 1/2 < 2/3C. 1/2 = 2/3D. 1/2 ≥ 2/39. 一个数的因数是能够整除它的数,那么12的因数包括:A. 1, 2, 3, 4, 6, 12B. 1, 2, 3, 4, 6, 12, 24C. 1, 2, 3, 4, 6, 12, 24, 36D. 1, 2, 3, 4, 6, 12, 24, 36, 4810. 一个数的倍数是它乘以任何整数的结果,那么6的倍数包括:A. 6, 12, 18, 24B. 6, 12, 18, 24, 30C. 6, 12, 18, 24, 30, 36D. 6, 12, 18, 24, 30, 36, 42二、填空题(每题4分,共20分)1. 一个数的相反数是它加上_____的结果。
2. 如果一个数的绝对值是5,那么这个数可以是_____或_____。
3. 一个角的补角是与它相加等于_____°的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学试题
2010.10
(考试时间:100分钟 满分:100分)
一、精心选一选:(每题只有一个正确答案,将序号填在表格内,每题2分,共20分) 题 号 1 2 3 4 5 6 7 8 9 10 答 案
1.2
1
-
的相反数是 A. 2- B. 2 C. 2
1-
D. 21
2.下列各组运算中,结果为负数的是 A .)3(-- B .|3|-- C .)2()3(-⨯- D .2)3(-
3.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是( )
A .61049.1⨯
B .810149.0⨯
C .7109.14⨯
D .71049.1⨯
4.下列说法中不正确的有( )个 ①.最大的负有理数是1- ②.0是最小的数
③. 如果两个数互为相反数,那么它们的绝对值相等 ④.任何有理数的绝对值都是正数 A .1个 B .2个
C .3个
D .4个 5.下列说法正确的是
A .倒数等于它本身的数只有1
B .正数的绝对值是它本身
C .平方等于它本身的数只有1
D .立方等于它本身的数只有1 6.数轴上在原点以及原点右侧的点所表示的数是
A 、正数
B 、负数
C 、非负数
D 、非正数 7.下列计算错误的是
A .0001.01.04=
B .39193-=⎪⎭
⎫
⎝⎛-⨯÷
C .32418-=⎪⎭
⎫
⎝⎛-÷ D .24233=⨯
8.下列比较大小正确的是
A .54
65
-<- B .(21)(21)--<+-
C .12
10
823
--> D .22
7
(7)33
--=-- 9.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.4)kg 的字样,从中任意拿出两袋,它们的质量最多相差
A .0.8kg
B .0.6kg
C .0.5kg
D .0.4kg 10.观察下列各式:
()1
121230123⨯=⨯⨯-⨯⨯
()1
232341233⨯=⨯⨯-⨯⨯
()1
343452343
⨯=⨯⨯-⨯⨯
……
计算:3×(1×2+2×3+3×4+…+100×101)= A .97×98×99 B .98×99×100 C .99×100×101 D .100×101×102 二、静心填一填:(每空2分,共24分)
11.1
5-的绝对值是 .
12.写出一个比2-小的负数: . 13. 平方等于16的数是 .
14.我市冬季某一天的最高气温为-3℃,最低气温为-6℃,那么这一天的日温差是______℃.
15.绝对值不小于3且小于5的所有整数和是 . 16.若│x ∣=3,y 2=4, 且xy <0,则x+y= .
17.某初级中学为每个学生编号,设定末尾用1表示男生,用2表示女生。
如果编号0508432表示“ 入学的8班43号同学,是位女生”,那么今年入学的11班25号男生同学的编号是________.
18、已知:0>a ,0>b ,且b b a a b a --<,,,,则的大小关系是 。
19.若(a -2)2+b a +=0,则b a =__________.
20.定义新运算:a*b=(a +2)(b-5),则5*(-7)= . 21.如图,把一条绳子折成3折,用剪刀从中剪断,得到 条绳子 22.观察下列图形:
它们是按一定规律排列的,依照此规律,第20个图形共有 个★. 三、认真做一做:(第23题4分,24题4分,25题5分,26题5分共18分)
23.把下列各数填入相应的括号内:
-2.5, 10, 0.22, 0, -1312, -20, +9.78, +68, 0.45, +7
4
.
正整数{ ……} 负整数{ ……} 正分数{ ……} 负分数{ ……}
24.请在如图的各个圆圈内填 上适当的数,使每个圆圈里的 数都等于与它相邻的两个数的和.
25.将-2.5,1
2
,2,-|-2|,-(-3),0在数轴上表示出来,并用“>”把他们
连接起来. 26.“十一”长假期间,我市古银杏公园7天中每天旅游人数的变日期 1日 2日 3日 4日 5日 6日 7日 人数变化/千人 +0.5 +0.7 +0.8 -0.4 -0.6 +0.2 -0.1 请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少千人?
(2)如果9月30日旅游人数为2千人,平均每人公园内消费300元,请问古银杏公园在此7天内总收入为多少万元?
四.细心算一算:(每小题4分,共20分) 27.(能简算的要简算)
①11( 1.5)4 2.75(5)42-+++- ②⎪⎭
⎫
⎝⎛-⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-21114374
③ 244361832411
⨯⎪⎭
⎫
⎝⎛-+- ④()132222-⨯-⨯- ⑤∣-0。
25︳2005
23113242)()()(-+⎥⎦
⎤⎢⎣⎡+-÷--⨯
五、耐心想一想: (28题8分, 29题10分,共18分)
28.小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这张卡片上的数乘积最大,如何抽取?最大值是多少?
(2)现从中取出2张卡片,用这2张卡片上的数字和符号组成一个最大的数,如何抽取?最大的数是多少? 与 两张卡片,用其中的
“-”,“4”和“7”组成的数中,最大数是-47,最小数是-74)
(3)从中取出4张卡片,用学过的运算方法运算,使结果为24,如何抽取?请写出
-3
-6
+3
9
+4
-4 7
两种运算式子。
29有一张厚度是0.1mm 的纸,将它对折1次后,厚度是mm 1.02⨯ 那么(1)对折3次后,共有 层纸
对折4次后,共有 层纸 对折n 次后共有 层纸
(2)若一层楼高约为3m,则把纸对折15次后,其厚度与一层楼相比,哪个高?为什么?(写出计算分析过程)
29.大润发超市“十一”长假期间对顾客实行优惠购物,规定如下:若一次购物
少于200元,则不予优惠;若一次购物满200元,但不超过500元,按标价给予九折优惠;若一次购物超过500元,其中不超过500元部分给予九折优惠,超过500元部分给予八折优惠。
(1)小华欲购标价555元的物品,需付款多少元?
(2)小明一次付款198元,则小明所购物品的实际价值是多少?
(3)小刚准备一次性地购买和小华、小明两次购买的物品的总和,那么小刚需
付多少元
*
附加题(10分)
有一张厚度是0.1mm 的纸,将它对折1次后,厚度是mm 1.02⨯ 那么(1)对折4次后,厚度是 mm (2)对折15次后,厚度是 mm
(3)若一层楼高约为3m,则把纸对折15次后,其厚度与一层楼
相比,哪个高?为什么?(写出计算分析过程)
2. 已知0)1(12=++-b a ,求200201b a +的值。
(10分)
. 在数轴上,互为相反数的两个数所表示的点之间的距离是4,那么这两个数分别是______和______.
五.探索规律
将连续的偶2,4,6,8,…,排成如下表:
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … …
(1) 十字框中的五个数的和与中间的数和16有什么关系?(2分) (2) 设中间的数为x ,用代数式表示十字框中的五个数的和,(2)
(3) 若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?
如能,写出这五位数,如不能,说明理由。
(2分)
六、将-15、-12、-9、-6、-3、0、3、6、9,填入下列小方格里,使大方格的横、竖、
斜对角的三个数字之和都相等。
(4分)
答案:
11. 5
1
;12.如-3(不唯一);13.±4;14.3;15.0;16.±1;17.1011251;18.6;
19.4;20.77;21.9 ;22.61;
三、23.正整数{ 10,+68 ……}
负整数{ -20 ……}
正分数{ 0.22,+9.78,0.45, +7
4
……}
负分数{ -2.5, -13
12
……}
24.略;25.略,-(-3)>2>1
2>0>-|-2|>-2.5,
26. (1)游客人数量最多的是10月3日,最少的是10月5日,它们相差1.4千人。
(2) 古银杏公园在此7天内总收入为453万元。
四.27.(1)0;(2)-4;(3)7
1
;(4)18;(5)-9;
五、28.(1)抽取9和+4,最大值是36;(2)抽取9和+4,最大的数是+94;(3)略,不唯一。
29.(1)494元;(2)198或220元;(3)652.4或670元。