圆柱和圆锥的体积教学设计

合集下载

圆柱和圆锥的体积 新课标教案

圆柱和圆锥的体积  新课标教案

圆柱和圆锥的体积教学过程:一、课程导入:同学们,下面这两个物体我们如何计算它们的体积呢?二、知识学习。

1、圆柱的体积我们之前学习过长方体和正方体的体积计算,如何求圆柱的体积呢?探究活动:如何将圆柱转化成一种学过的立体图形,计算出它的体积吗?将圆柱转化为长方体。

把圆柱的底面平均分的份数越多,拼成的立体图形越接近长方体。

探究总结:圆柱的体积= 底面积×高V = Sh将一个圆柱截成上下不相等的两段,两个圆柱的(底面积) 相同,( 高)不同,哪个圆柱的体积大?两个圆柱体的底面积相等时,高越长的体积越大,底面积相等时,体积之比等于(高之比)两个圆柱的高相同,底面积不同,哪个圆柱的体积大?圆柱高相同时,底面积越大的体积越大。

高相同时,体积之比等于(底面积之比)。

1.求下图的体积。

2.哪一根木料体积大?2、圆锥的体积同学们,怎样求圆锥的体积呢?知识探究:1、选取等底等高的圆柱和圆锥形容器。

2、用倒水的方法来探究,在三个空圆锥内装满水,用红色表示。

3、将圆锥容器内的水倒入圆柱容器中。

4、经实验,三次正好将空圆柱容器装满。

探究总结:同学们,你们会求下图的体积吗?2.一个近似圆锥形的煤堆.测得它的底面周长是31.4米,高是2.4米。

如果每立方米煤重1.4吨,这堆煤大约重多少吨?三、跨学科学习:跨学科活动主题:运用3D软件制作钉子模型作品活动要求:1、运用数学、美术和技术等学科知识进行模型作品的设计与制作;2、模型作品需要包括圆柱和圆锥体的形状;3、能够计算出物体的大致体积;4、活动时间10-15分钟。

活动要点:1、要对钉子结构进行分析;2、学生能够设计出作品的草图;3、学生知道设计模型作品的步骤;4、能够运用3D设计软件制作模型作品;5、能够对设计的模型作品进行展示和介绍;6、上传模型文件到教师端。

作品展示及介绍作品打印课后可以将优秀的作品打印出来。

活动评价课后请同学们针对本次跨学科学习活动,填写本次活动总结报告。

人教版小学六年级下册数学第三单元圆柱与圆锥 《圆锥的体积》 (1)

人教版小学六年级下册数学第三单元圆柱与圆锥 《圆锥的体积》 (1)

《圆柱的体积》说课稿一、说教材1.教学内容《圆柱的体积》是人教版小学数学第十二册第三单元的内容,它包括圆柱体的体积计算公式的推导和运用公式计算体积。

2.本节课在教材中所处的地位和作用本节课是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3.教材的重点和难点圆柱体积的计算是本节课的教学重点。

圆柱体积公式的推导过程是本节课的难点。

弄清楚圆柱与转化后的近似长方体之间的关系是教学的关键。

4.教学目标知识与技能目标:经历认识圆柱体积、探索圆柱体积计算公式及简单应用的过程;探索并掌握圆柱体积公式;能计算圆柱的体积。

情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

二、说教法1.直观演示,操作发现充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。

从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2.巧设疑问,充分发挥学生的主体地位把学生当作教学活动的主体,学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

3.运用迁移,深化提高运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

三、说学法本节课的教学,使学生掌握一些基本的学习方法1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。

2.学会利用旧知转化成新知,解决新问题的能力。

3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

圆柱与圆锥教案(集锦7篇)

圆柱与圆锥教案(集锦7篇)

圆柱与圆锥教案(集锦7篇)篇1:圆柱与圆锥知识要点:圆柱:(1)特征:是由两个底面和一个侧面三部分组成的。

底面是两个完全相同的圆侧面是一个曲面。

(2)圆柱的侧面及其与底面之间的关系:沿高剪开的展开图是一个长方形(或正方形)这个长方形的长等于圆柱底面圆的周长,宽等于圆柱的高。

(3)圆柱的高:圆柱两个底面之间的距离叫做高,有无数条高。

(4)侧面积:圆柱的侧面积=底面周长某高,用字母表示为S侧?Ch(5)表面积:圆柱的表面积=侧面积+底面积某2(6)体积:圆柱的体积=底面积某高,用字母表示为V?Sh圆锥:(1)特征:由一个底面和一个侧面两部分组成,它的底面是一个圆,侧面是一个曲面。

(2)圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。

圆锥的体积等于和它等底等高的圆柱体积的?(3)体积:?11?公式:V?V?Sh圆锥圆柱?33?13解题大智慧一、用圆柱的特征解题1、填空(1)把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的(),圆柱的高就是它的()(2)当圆柱的()和()相等时,它的侧面展开图是一个正方形。

(3)把一个底面半径是 2 cm 的圆柱的侧面展开,得到一个正方形,这个圆柱的高是()cm。

2、把一个圆柱的侧面展开后得到一个正方形,那么这个圆柱的高与底面直径的比是多少?3、一个底面周长是9.42cm,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?二、用圆柱的侧面积和表面积解题1、一个圆柱,底面周长是31.4dm,高是10dm,求它的侧面积?如果不是已知底面周长,而是已知底面半径或直径呢?2、一个圆柱的底面周长是94.2cm,高是25cm,求它的表面积。

3、一顶圆柱形厨师帽,高28cm,冒顶直径20cm,做这样10顶帽子需要多少面料?4、用铁皮制作1节通风管,它的长是60cm,底面圆的直径是10cm。

至少需要铁皮多少平方厘米?5、做一对无盖的圆柱形铁皮水桶,高是40cm,底面直径是30cm,至少需要铁皮多少平方厘米?6、把一张长16cm,宽6.5cm的长方形围成一个圆柱形纸筒,这个圆柱形纸筒的侧面积是多少平方厘米?7、挖一个圆柱形的蓄水池,已知它的底面直径是3m,池深2.5m。

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)《圆锥的体积》教学设计篇一教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。

所以对于新的知识教学,他们一定能表现出极大的热情。

教法学法:试验探究法、小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时:1课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。

人教版六年级数学下册第三单元圆柱与圆锥——圆柱的体积(第3课时)教案

人教版六年级数学下册第三单元圆柱与圆锥——圆柱的体积(第3课时)教案

教学笔记第7课时圆柱的体积(3)教学内容教科书P27例7,完成教科书P28~30“练习五”中第9、10、15题。

教学目标1.用已学的圆柱的体积知识解决生活中的实际问题,掌握解决问题的策略,培养应用意识。

2.经历探究不规则物体体积的转化和计算过程,让学生在动手操作中初步体会转化的数学思想,体验“等积变形”的转化过程。

3.通过实践,在合作中建立协作精神,增强学生“用数学”的意识。

教学重点利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

教学难点体会转化的思想。

教学准备课件,瓶体是圆柱形的矿泉水瓶,瓶里装有适量清水。

教学过程一、激活学生经验,引出问题1.教师出示一个空的矿泉水瓶。

师:这个矿泉水瓶的容积是多少?【学情预设】预设1:学生可能无处下手。

(让学生说说为什么不知道该怎么求,因为瓶子是一个不规则的物体。

)预设2:也可能会通过寻找标签上的“净含量”来代替矿泉水瓶的容积。

预设3:将瓶子里灌满水,把这些水倒到量杯或量筒中,就能测出瓶子的容积。

师:要是没有这些工具,甚至连一个玻璃杯都没有,怎么办?2.揭示课题。

师:这节课,我们就来研究怎样求这个不规则瓶子的容积的问题。

[板书课题:圆柱的体积(3)]【设计意图】抛出问题,引发学生思考,为学习新知作好铺垫。

二、体验过程,探索瓶子容积的计算方法1.教师出示一个装有适量水的矿泉水瓶(水大约有13瓶高)。

师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?【学情预设】预设1:瓶子里还有多少水?(就是剩下的水的体积。

)预设2:喝了多少水?(也就是瓶子的空气部分的体积。

)预设3:这个瓶子一共能装多少水?(也就是这个瓶子容积。

) 师:你觉得你能轻松解决什么问题?【学情预设】求瓶子里还有多少水。

师:需要知道哪些信息呢?【学情预设】学生汇报瓶子里剩下的水呈圆柱状,所以只要量出这个瓶子的底面直径和水的高,就能算出剩下水的体积。

【设计意图】让学生自己提出问题,激发学生解决问题的内在需求,培养学生的问题意识。

《圆锥的体积》数学教案(优秀9篇)

《圆锥的体积》数学教案(优秀9篇)

《圆锥的体积》数学教案(优秀9篇)【教学目标:】1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;2、使学生会应用公式计算圆锥的体积并解决一些实际问题;3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;【教学重点:】使学生初步掌握圆锥体积的计算方法并解决一些实际问题。

【教学难点:】探索圆锥体积的计算方法和推导过程。

【教具准备:】1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;【教学过程:】一、创设情境,发现问题1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。

孩子们,请记住这句话吧,你的未来一定会很出色的哦。

今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。

你能说说爱迪生这样做的理由吗?师:因为圆柱体的体积等于底面积高。

(板书)2、提出问题,明确方向。

爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。

看看谁是未来的爱迪生生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。

师:长方体的体积公式是什么呢?生:长宽高师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?板书:圆锥体积二、讨论问题,提出方案1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。

比一比,哪个学习小组的方法多,方法好。

各小组汇报:把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。

《圆锥的体积》教学设计【优秀4篇】

《圆锥的体积》教学设计【优秀4篇】

《圆锥的体积》教学设计【优秀4篇】篇一:《圆锥的体积》教学设计篇一教学目标:1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点:通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

教学过程:一、复习导入师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么?(指名学生回答)2、圆锥有什么特征?同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)二、探究新知课件出示等底等高的圆柱和圆锥1、引导学生观察:这个圆柱和圆锥有什么相同的地方?学生回答:它们是等底等高的。

猜想:(1)、你认为圆锥体积的大小与它的什么有关?(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?2、学生动手操作实验(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?(2)、通过实验,你发现了什么?小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。

也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。

看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?问:把圆柱装满一共倒了几次?生:3次。

师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。

(板书:圆锥的体积=1/3×圆柱体积)师:圆柱的体积等于什么?生:等于“底面积×高”。

《圆柱与圆锥》教学设计

《圆柱与圆锥》教学设计

《圆柱与圆锥》教学设计第一篇:《圆柱与圆锥》教学设计教学目标:1、梳理圆柱与圆锥的特征、面积、体积计算公式,能灵活地根据问题情境,选择合理的方法进行计算。

2、沟通立体图形之间的内在联系,构建图形网格,使所学知识进一步条理化和系统化。

3、引导学生以类的观点去观察与分析图形,体会解决问题的乐趣,发展空间观念教学重点、难点:重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。

难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能力。

教学准备:多媒体课件,圆柱、圆柱图片教学过程:一、梳理知识,构建体系1、导入师:认识这个图形吗?如果它的一个底面向圆心无限缩小到一个点的时候,它变成了什么图形?生:圆锥师:圆柱和圆锥之间有什么关系?圆柱和圆锥之间还有很多的奥秘和联系,今天我们继续学习圆柱和圆锥。

板书:圆柱与圆锥2、梳理汇报圆柱圆锥的知识(1)特征(观察平面图形与立体图形的关系)(2)表面积、侧面积(3)体积【设计意图:为了让学生整体、系统地感悟知识,形成良好的认知结构,疏通环节很重要,通过圆柱变圆锥,及平面图形与圆柱圆锥的关系,唤醒已有的知识、方法及经验,以“平移”“旋转”等方式在再现与强化立体图形的运动,很好地完成了对单元知识纵向和横向的结构化】二、变式应用1、根据情境选择合适的解决策略师:运用我们所整理的这些知识,能够解决很多生活中的实际问题。

请看下图:师:这是一个圆柱形的木桶。

根据图中的信息,你能不能提出一些实际问题呢?生提问题师总结问题,并解决问题师:生活中能不能直接使用这些数据来准备材料?小结:解决问题时要结合生活实际确定最合适的取值2、根据圆柱的动态变化解决问题师:我们继续奔跑,都说孩子们有天生的创造力,我给你们一个圆柱,你想怎样加工和创造呢?生罗列加工方法师根据加工方法提出数学问题师:联系我们解决的问题,你有什么体会小结:复杂的数学问题都是有简单的数学问题演变而来的。

第二单元 “圆柱和圆锥的体积”练习课 【教学设计】-2022-2023学年数学六年级下册-青岛版

第二单元 “圆柱和圆锥的体积”练习课 【教学设计】-2022-2023学年数学六年级下册-青岛版

第二单元“圆柱和圆锥的体积”练习课教学设计-2022-2023学
年数学六年级下册-青岛版
一、课程概述
该课程旨在为学生介绍圆柱和圆锥的体积计算,帮助他们掌握这一重要概念和计算技巧。

二、教学目标
本课程主要目标是:
1.介绍圆柱和圆锥的体积概念;
2.帮助学生掌握计算圆柱和圆锥体积的方法;
3.通过练习和讨论,加深学生对体积概念和计算方法的理解。

三、教学过程
1. 导入
通过简单的问题和练习,导入课程主题,提高学生的兴趣和参与度。

举个例子:在黑板上画出一个圆柱体和一个圆锥体,并问学生它们的体积分别是多少。

2. 理论讲解
介绍圆柱和圆锥的体积公式,以及如何计算圆柱和圆锥的体积。

同时,通过实例演示计算体积的具体方法,让学生更好地理解和掌握。

3. 练习和讨论
为学生提供一些练习题,让他们自主掌握计算圆柱和圆锥体积的方法。

每个学生都可以尝试解答题目,并与同学交流和讨论。

4. 总结
回顾本节课所学的知识和技能,并强调其重要性。

通过对学生练习题的纠错和反馈,帮助他们更好地理解和掌握圆柱和圆锥的体积计算方法。

四、教学评估
通过本课程的教学和练习,评估学生在圆柱和圆锥体积计算方面的表现。

可以通过练习题和考试等方式进行。

五、总结
本课程旨在帮助学生掌握圆柱和圆锥的体积计算方法,提高他们的数学能力和思维能力。

希望通过这些练习和讨论,学生们能够深入理解体积概念,并掌握求解圆柱和圆锥体积的技巧。

关于《圆锥的体积》教学设计范文(精选6篇)

关于《圆锥的体积》教学设计范文(精选6篇)

关于《圆锥的体积》教学设计范文(精选6篇)《圆锥的体积》教学设计1一、教学目标1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、过程与方法通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

3、情感态度与价值观渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

二、教学重、难点重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

难点:理解圆锥体积公式的推导过程。

三、教具学具不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

四、教学流程(一)创设情境,提出问题师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。

促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?生:我选择底面最大的;生:我选择高是最高的;生:我选择介于二者之间的。

师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?生:只要求出冰淇淋的体积就可以了。

师:冰淇淋是个什么形状?(圆锥体)生:你会求吗?师:通过这节课的学习,相信这个问题就很容易解答了。

下面我们一起来研究圆锥的体积。

并板书课题:圆锥的体积。

(二)设疑激趣,探求新知师:那么你能想办法求出圆锥的体积吗?(学生猜想求圆锥体积的方法。

)生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

师:如果这样,你觉得行吗?教师根据学生的回答做出最后的评价;生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。

生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)

《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)
人教版六年级下册
圆锥的体积
一、问题导入、引入新课
看,小麦堆得像小山一
样,小麦丰收了!张小
玲和爷爷笑得合不搅嘴
这时,爷爷用竹子量了量麦堆的
高和底面的直径,出了个难题要
考一考小玲,让小玲算一算这堆
小麦大约有多少立方米?
二、探索新知
• 等底等高
1.估一估:你能估计出这个
圆锥的体积是圆柱几分之几
吗?
2.想一想:可以用什么
1、圆锥的体积等于圆柱体积的1/3( )
2、因为圆锥的体积等于圆柱体积的1/3,所以圆柱的体积比圆锥的体积大
( )
3、等底等高的圆柱与圆锥的体积比是3:1 ( )
4、把一个圆柱加工成一个与它等底的圆锥,削去部分的体积是这个圆锥体积的2倍( )
第一关
第二关:
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,
与它等底等高的圆柱体铝坯。
15 ÷ 3 = 5(个)
)个
5
等底等高的圆柱和圆锥
1
圆锥 = 圆柱
3
2.计算下面各圆锥的体积。
1
9×3.6×3
=10.8(㎡)
1
3×3×3.14×8×3
=75.36(d㎡)
1
(8÷2)²×3.14×12×3
=200.96(cm²)
3. 一个圆锥形的零件,底面积是19cm2 ,高是12cm,
这个零件的体积是多少?
规范解答:

圆锥 =


×19×12=76(cm³)

答:这个零件的体积是76 cm3 。
4. 一个圆柱的底面周长是12.56dm,高是4.5dm,将它削成
最大的圆锥,削去部分的体积是多少?

圆锥的体积教学设计优秀4篇

圆锥的体积教学设计优秀4篇

圆锥的体积教学设计篇8教学目的:使学生初步掌握圆锥体积的计算公式。

并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

教学难点:圆锥的体积应用学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件教学时间:一课时教学过程:一、复习1、圆锥有什么特征?(课件出示)使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

同时渗透转化方法在数学学习中的应用。

二、导人新课出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。

板书课题:圆锥的体积三、新课1、教学圆锥体积的计算公式。

师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”学生分组实验。

汇报实验结果。

先在圆锥里装满水,然后倒入圆柱。

正好3次可以倒满。

多指名说接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。

请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?生:3次。

师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

多找几名同学说。

板书:圆锥的体积=1/3×圆柱体积师:圆柱的体积等于什么?生:等于“底面积×高”。

师:那么,圆锥的体积可以怎样表示呢?引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

板书:圆锥的体积=1/3×底面积×高师:用字母应该怎样表示?然后板书字母公式:V=1/3SH师:在这个公式里你觉得哪里最应该注意?教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。

《圆柱和圆锥的认识》教学设计

《圆柱和圆锥的认识》教学设计

《圆柱和圆锥的认识》教学设计《圆柱和圆锥的认识》教学设计三篇篇一:《圆柱和圆锥的认识》教学设计教案背景:1、面向学生:小学2、学科:数学一、教学课题:圆柱和圆锥的认识二、教材分析:以往教材是把圆柱体与圆锥体分开教学的,而新教材是编排到一起,我认为这样更有利于学生对于圆柱体和圆锥体的认识,可以有效的对比区分,本身圆柱体圆锥体,就有很明显的相同点与不同点,这样安排也有利于学生对知识的整体认识。

圆柱体与圆锥体学生并不陌生,可以说已经有了一些初步的感性了解。

运用电脑展现生活中圆柱体圆锥体的优美画面并配以音乐,同时准备大量的实物学具,让学生在听、看、动多种感官参与下完成对圆柱体圆锥体特征的抽象过程,帮助学生构建起圆柱体,圆锥体的特征这一本课的重点知识。

同时新教材还安排了旋转中形成圆,圆柱体,圆锥体这也是非常独具匠心的。

让学生认识到动态中形成已经学过的图形这是前所未有的。

教学目标:1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

2、使学生在活动中进一步积累立体图形的学习经验,增强空间观念,发展数学思维。

教学重点、难点:1、在充分感知的基础上,探索圆柱和圆锥的特征。

2、进一步体验立体图形玉生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教具准备:1、圆柱和圆锥的实物和模型。

2、多媒体演示课件。

学具准备:自己带的圆柱和圆锥的实物。

教学过程:一、复习导入1、我们以前学过那些平面图形?2、出示一些平面图形,认识它们吗?【百度搜索】你眼睛看到的是不是一定正确呢?3、电脑演示,将平面图形变成立体图形。

【百度搜索】为什么刚才我们看到平面图形变成了立体图形了呢?4、认识这些图形吗?5、揭示课题:今天我们就来认识圆柱和圆锥。

二、新授1、拿出圆柱和圆锥,说说它门的特点。

2、你能找出生活中有哪些物体是圆柱和圆锥形的吗?【百度搜索】生活中的圆柱圆锥图片3、现在来研究圆柱。

圆锥的体积教学设计(全国一等奖)

圆锥的体积教学设计(全国一等奖)

《圆锥的体积》教学设计一、教材解析:《圆锥的体积》是新课标教材六年级下册第三单元中的教学内容,它是在了解了圆锥的特征,掌握了圆柱的体积的计算方法基础上进行教学的,通过这部分内容学习,继续发展学生的空间观念,培养学生自主探究和动手实践能力,引导学生较深入的理解几何体体积推导方法的新领域,为进一步学习几何知识奠定良好的基础。

教学目标:结合新课程理念和对教材的理解,我将本课教学目标分为以下三个方面(1)知识目标:探索并掌握圆锥体体积的计算公式,灵活运用公式解决生活中实际问题。

(2)技能目标:培养学生的观察操作能力和初步的空间观念,培养学生应用所学知识解决实际问题,。

(3)情感目标:培养学生勇于探索的求知精神,自觉养成与他人合作的习惯,并体验探索的乐趣和成功的喜悦,增强学好数学的信心。

教学重点:推导和理解圆锥体体积的计算公式,利用公式解决问题。

教学难点:圆锥体积公式推导过程。

二.说教法学法。

小学高年级学生已经具有一定的知识和生活经验,对自然和社会现象有一定的探索欲望针对这些情况我设计运用观察、引导、实验、演示等方法,让学生在自主探索中主动获取知识。

通过学生猜测、实验、讨论、验证从而推导出圆锥体积计算公式三,说教学流程:渗透类比转换设计思路是:复习观察猜测探究新知→联系生活解决问题→观察猜测→拓展提升解释应用→归纳总结完善认识实施如下:师:同学们我们认识了圆锥体哪么圆锥体有几个面分别是什么面有几个顶点几条高如何计算圆柱体积?生回答师:我们学过圆柱体积计算哪么谁有好的办法来求圆锥的体积呢。

生①:把圆锥浸没在装有水的长方体正方体或圆锥体容器中看水面上升的高度,计算出上升那一部分水的体积,就是这个圆锥的体积。

生②:把圆锥看成一个容器倒入水,再把水倒入量杯中水的体积就是圆锥的体积。

生③:把圆锥进行切割,然后拼成学过的学过的立体图形。

生④:把圆锥转化成圆柱体。

师:你们能联系已有的生活经验来解决问题很好但生活中确实有许多东西想冰激凌近似圆锥体的沙堆用上述方法不可行看来我们还要寻找一种更科学的计算圆锥体积的方法这就是我们这节课重点探究的内容板书:圆锥的体积。

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。

”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。

五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。

让学生观察一下,得出:这两个容器等底等高。

(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。

用字母表示:v=1/3sh三、练习填空1、圆锥的体积=(),用字母表示是()。

2、圆柱体积的与和它()的圆锥的体积相等。

3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

学生练习,教师总结。

四、巩固练习:求下面各圆锥的体积,只列算式。

(单位:厘米)观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。

第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

初中数学圆柱圆锥教案

初中数学圆柱圆锥教案

初中数学圆柱圆锥教案教学目标:1. 了解圆柱和圆锥的特征,掌握它们的定义和性质。

2. 学会计算圆柱和圆锥的体积,并能应用到实际问题中。

3. 培养学生的空间想象能力和逻辑思维能力。

教学重点:1. 圆柱和圆锥的特征和性质。

2. 圆柱和圆锥体积的计算方法。

教学难点:1. 圆柱和圆锥体积公式的推导。

2. 应用圆柱和圆锥体积公式解决实际问题。

教学准备:1. 圆柱和圆锥的模型。

2. 直尺、圆规、剪刀等工具。

3. 计算器。

教学过程:一、导入(5分钟)1. 引导学生观察教室里的物品,找出圆柱和圆锥的实例。

2. 让学生举例说明圆柱和圆锥的特点。

二、新课讲解(15分钟)1. 讲解圆柱的特征和性质,如底面、侧面、高等。

2. 讲解圆锥的特征和性质,如底面、侧面、高等。

3. 引导学生通过观察模型,理解圆柱和圆锥的体积计算公式。

三、课堂练习(10分钟)1. 让学生独立完成圆柱和圆锥体积的计算题目。

2. 引导学生应用圆柱和圆锥体积公式解决实际问题。

四、巩固练习(10分钟)1. 判断题:判断给出的陈述是否正确。

2. 选择题:选择正确的答案。

3. 解答题:解答给出的问题。

五、总结(5分钟)1. 让学生回顾本节课所学的内容,总结圆柱和圆锥的特征和性质。

2. 强调圆柱和圆锥体积公式的应用。

教学反思:本节课通过讲解和练习,让学生掌握了圆柱和圆锥的特征和性质,以及体积的计算方法。

在教学过程中,注意引导学生观察模型,培养学生的空间想象能力。

同时,通过实际问题的解决,让学生学会应用所学知识,提高学生的逻辑思维能力。

在今后的教学中,要继续加强学生的练习,提高学生的运算速度和准确性。

圆锥的体积教学设计一等奖(优秀5篇)

圆锥的体积教学设计一等奖(优秀5篇)

圆锥的体积教学设计一等奖(优秀5篇)《圆锥的体积》教学设计篇一一、教案背景1、面向学生:小学2、学科:数学人教六年级下学期3、课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。

本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。

圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。

圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。

通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。

学习本课需要达成以下的目标:1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。

2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。

3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。

三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。

教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。

本课重点在于圆锥体积公式的推导。

鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。

从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。

四、学情分析:学生是九山小学,属农村的学生。

美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱圆锥的体积教学设计
一、课题名称:圆柱、圆锥的体积
二、学习目标: 牢记圆柱、圆锥体积公式,灵活解答生活中的问题。

(一)知识回顾:
1、把一根长2米的圆木,截成两段后表面积增加了96平方厘米,这根圆木原来的体积是多少立方厘米?
2、一个圆柱形玻璃缸,底面直径60厘米,把一个钢球放入水中,缸内水面上升了2厘米,求这个钢球的体积。

3、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。

这支牙膏可用36次。

该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。

这样,这一支牙膏只能用多少次?
4、把一个长8厘米、宽6厘米、高4厘米的长方体木块削成一个最大的圆柱体积木,这个圆柱体积木的体积是多少立方厘米?
(二)、例题精讲:
例1:一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。

这个圆柱体积减少多少立方厘米?
练习:1、一个圆柱体,如果把它的高截短64厘米,它的表面积减少12、56平方厘米。

这个圆柱体积减少多少立方厘米?
例2:如图,一张扇形薄铁片,弧长18.84分米,它能够围成一个高4分米的圆锥,试求圆锥的容积。

(接缝处忽略不计)
练习:
1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。

这堆沙约重多少吨?
2、一个圆锥的底面半径是3厘米,体积是75.36立方厘米,高是多少厘米?
3、一个直角三角形(如下图),分别以两条直角边所在的直线为轴,旋转成两个圆锥体,哪个圆锥体的体积大?为什么?(单位:厘米)
例3:把一个棱长为12厘米的正方体木块加工成一个最大的圆锥,圆锥的体积是多少立方厘米?
练习:
1、有一块圆柱形木料,底面半径是10厘米,高是3厘米,制作一个最大的圆锥体需要割去去多少木料?
2、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开,
分成相等的两块, 每块的体积和表面积各是多少?
例4:一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。

这个圆锥形容器的底面积是多少平方厘米?
练习:
1.一个圆锥形米堆,底面周长是18.84米,高1米,这堆米放在长4米,宽3米的长方体容器中,容器中米的高度是多少?
2.一个圆锥形麦堆,它的底面直径是6米,高是1.5米如果要把这堆小麦全部放进底面积是6.28平方米的圆柱形粮仓,这个粮仓至少得有多高?
3、一个圆柱的水缸,把一个底面积25平方厘米的长方体全部放入水中,缸中的水位上升4厘米,如果长方体沿着高露出水面6厘米,缸中的水面下降2厘米。

求长方体的体积是多少立方厘米?
玻璃钢的底面积:25×6÷2=75(平方厘米),
长方体的体积:75×4=300(立方厘米);
答:长方体的体积是300立方厘米.
题意可知:下降的2厘米的水的体积,就等于露出水面的6厘米高的长方体的体积,据此列式计算即可
1
(三)归纳总结:圆锥的体积=底面积×高×
3
(四)、拓展延伸:
例5:乙两圆锥体容器形状相同,体积相等,甲容器中水的高度是圆锥高的1/3,乙容器中水的高度是圆锥高的2/3,哪一个容器中盛水多?多的是少的几倍?
甲容器中水的高度是圆锥高的1/3,则水面以上空余部分小圆锥的高是原圆锥高的(1-1/3),对应的小圆锥的底面圆半径也是原圆锥体底面半径的(1-1/3):根据圆锥的体积公式可得,在特定的条件下,圆锥的体积与圆锥的高成正比例,与圆锥的底面积成正比例,与圆锥的底面圆半径的平方成正比例。

因此小圆锥的体积是原圆锥体积的:(1-1/3)×(1-1/3)2=8/27 所以甲容器中水量占容器容积的:1-8/27=19/27 同理可得,乙容器中水量占容器容积的:2/3 ×(2/3)2=8/27 两个容器的容积相等,因此甲容器中盛水多。

19/27 ÷8/27=2又3/8 所以甲容器中盛水量是乙容器中盛水量的2又3/8倍。

(五)课后作业:、
1、一个底面半径是10厘米的圆柱形玻璃杯中,装有10厘米深的水。

将一个底面半径4厘米、高6厘米的圆锥形铅锤放入杯子中,杯中的水面上升了多少厘米?
2、有一个底面直径为20厘米的圆柱形容器里,盛有一些水。

把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,铅锤的高是多少厘米?
圆锥的高和底面半径都等于正方体的棱长。

已知正方体的体积是60立方厘米,圆锥的体积是多少立方厘米?答案与解析:圆锥体积=1/3×3.14×半径²×高正方体体积=棱长×棱长×棱长因为“圆锥的高和底面半径都等于棱长”,所以:圆锥体积=1/3×3.14×棱长²×棱长=1/3×3.14×棱长×棱长×棱长=1/3×3.14×正方体体积圆锥体积=1/3×3.14×60=62.8(立方厘米
3、把一个底面直径为2厘米、高为6厘米的圆柱形钢材熔铸成一个圆锥体,这个圆锥的底面积是15平方厘米,它的高是多少厘米?。

相关文档
最新文档