中考专题复习--函数图象中的信息问题

合集下载

2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析

2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析

2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析◆题型一:函数图像的判断判断函数的图像并不需要把每段函数的解析式完整的求出来!秒杀方法:1.判断一次函数关系:只要判断出结果的未知数的次数,并不需要把解析数求出来,当次数是1时即为一次函数,然后通过k判断结果;2.判断二次函数关系:一般在求面积的时候,会有两个含未知数的式子相乘,即结果为二次函数关系,然后通过该二次项系数的正负判断函数的开口方向即可;3.判断反比例函数关系:只要判断出结果的未知数是不是在分母里即可。

【例1】如图,在矩形ABCD中,AB=2cm,BC=4√3cm,E是AD的中点,连接BE,CE.点P 从点B出发,以√3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s 的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()【答案】D【解析】由题意得:BE=4cm,bc=4√3cm,则Q从B到E需要4s,从E到C需要4s,共8s;P从B到C需要4s。

①当Q在线段BE上运动时,如图,作QF⊥BC,BP=t,QF=12BQ=√32t,则y=12⋅BF⋅QF,即可得函数为二次函数,且二次项系数>0,开口向上,排除AC;②4s时,P到达终点,不再运动;点Q依然在运动,所以面积公式里只有一个变量,则对应函数为一次函数,因此选D。

1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S,则S与的函数关系式的大致图象为()A.B.C.D.【答案】B【分析】观察图形,在运动过程中,S随的变化情况,得到开始随时间的增大而增大,当圆在正方形内时改变,而重合面积等于圆的面积不变,再运动,随的增大而减小,根据以上结论判断即可.【详解】解:∵半径为的圆沿水平线从左向右匀速穿过正方形,开始至完全进入正方形S随时间的增大而增大,∴选项A、D错误;∵当圆在正方形内时,改变,重合面积等于圆的面积,S不变,再运动,S随的增大而减小,∴选项C错误,选项B正确;故选:B.【点睛】本题主要考查动图形问题的函数图象,熟练掌握函数图象形状变化与两图形重合部分形状、大小变化的关系,是解决此题的关键.2.(2022·青海西宁·统考中考真题)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】A【分析】过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,根据相似比可知:,即,解得:EF=2(3-x),则△DEF的面积y=×2(3-x)x=-x2+3x=-(x-)2+,故y关于x的函数图象是一个开口向下、顶点坐标为(,)的抛物线.故选:A.【点睛】本题考查了二次函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF 为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【分析】根据平移过程,可分三种情况,当时,当时,当时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.【详解】过点C作CM⊥AB于N,,在等腰中,,,①当时,如图,,,,∴,y随x的增大而增大;②当时,如图,,∴当时,y是一个定值为1;③当时,如图,,,,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.【答案】D【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.【详解】当0≤t≤1时,∵正方形ABCD 的边长为2,点O为正方形的中心,∴直线EO垂直BC,∴点P到直线BC的距离为2-t,BQ=t,∴S=;当1<t≤2时,∵正方形ABCD 的边长为2,点F分别为边,中点,点O为正方形的中心,∴直线OF∥BC,∴点P到直线BC的距离为1,BQ=t,∴S=;故选D.【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.5.(2022·广西河池·统考中考真题)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【答案】C【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2022·山东潍坊·中考真题)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【分析】分0≤x≤1,1<x<2,2≤x≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x≤1时,过点F作FG⊥AB于点G,∵∠A=60°,AE=AF=x,∴AG=x,由勾股定理得FG=x,∴y=AE×FG=x2,图象是一段开口向上的抛物线;当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=,由勾股定理得DH=,∴y=(DF+AE)×DH=x-,图象是一条线段;当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI=(3-x),∴y= AB×DH -CF×EI=-(3-x)2=-x2+x-,图象是一段开口向下的抛物线;观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.7.(2022·辽宁锦州·统考中考真题)如图,在中,,动点P从点A出发,以每秒1个单位长度的速度沿线段匀速运动,当点P运动到点B时,停止运动,过点P作交于点Q,将沿直线折叠得到,设动点P的运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】D【分析】由题意易得,,则有,进而可分当点P在AB中点的左侧时和在AB中点的右侧时,然后分类求解即可.【详解】解:∵,∴,由题意知:,∴,由折叠的性质可得:,当点P与AB中点重合时,则有,当点P在AB中点的左侧时,即,∴与重叠部分的面积为;当点P在AB中点的右侧时,即,如图所示:由折叠性质可得:,,∴,∴,∴,∴与重叠部分的面积为;综上所述:能反映与重叠部分的面积S与t之间函数关系的图象只有D选项;故选D.【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.8.(2022·湖北武汉·统考中考真题)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【分析】根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.【详解】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt(vt≤1);②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3;③小正方形穿出大正方形,S=2×2-(1×1-vt)=3+vt(vt≤1).分析选项可得,A符合,C中面积减少太多,不符合.故选:A.【点睛】本题主要考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.9.(2022·浙江台州·统考中考真题)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【答案】C【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.10.(2021·辽宁鞍山·统考中考真题)如图,是等边三角形,,点M从点C出发沿CB方向以的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作交AB于点P,连接MN,NP,作关于直线MP对称的,设运动时间为ts,与重叠部分的面积为,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【分析】首先求出当点落在AB上时,t的值,分或两种情形,分别求出S的解析式,可得结论.【详解】解:如图1中,当点落在AB上时,取CN的中点T,连接MT.,,,,是等边三角形,,是等边三角形,,,,,,,,是等边三角形,,,,,四边形CMPN是平行四边形,,,,如图2中,当时,过点M作于K,则,.如图3中,当时,,观察图象可知,选项A符合题意,故选:A.【点睛】本题考查动点问题,等边三角形的性质,二次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.11.(2022·山东济宁·三模)如图,在正方形中,,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线以每秒3cm的速度运动,到达B点时运动同时停止.设的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】B【分析】根据题意,分三段(,,)分别求解与的解析式,从而求解.【详解】解:当时,分别在线段,此时,,为二次函数,图象为开口向上的抛物线;当时,分别在线段,此时,底边上的高为,,为一次函数,图象为直线;当时,分别在线段,此时,底边上的高为,,为二次函数,图象为开口向下的抛物线;结合选项,只有B选项符合题意,故选:B【点睛】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.12.(2022·甘肃平凉·校考二模)如图,在中,,点以每秒的速度从点出发,沿折线运动,到点停止,过点作,垂足为,的长与点的运动时间秒的函数图像如图所示,当点运动秒时,的长是()A.B.C.D.【答案】B【分析】根据图可判断,,则可确定时的值,利用的值,可求出.【详解】解:由图可得,,,当时,如图所示:此时,故B,,.故选:B.【点睛】本题考查了动点问题的函数图象,解答本题的关键是根据图得到、的长度,此题难度一般.13.(2022·广东深圳·深圳市海滨中学校考模拟预测)如图①,已知Rt△ABC的斜边BC和正方形DEFG的边DE都在直线l上(BC<DE),且点C与点D重合,△ABC沿直线l向右匀速平移,当点B与点D重合时,△ABC停止运动,设DG被△ABC截得的线段长y与△ABC平移的距离x之间的函数图像如图②,则当x=3时,△ABC和正方形DEFG重合部分的面积为()A.B.C.D.【答案】C【分析】过点A作AH⊥BC于点H,由图形可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,BC=4,由此可解△ABC;画出当x=3时的图形,利用相似可得出结论.【详解】解:如图①,过点A作AH⊥BC于点H,∴∠AHB=∠AHC=∠BAC=,∴∠ABH+∠BAH=∠BAH+∠HAC=,∴∠ABH=∠HAC,∴△ABH∽△CAH,∴AH:HC=BH:AH,结合图①可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,由函数图像可得:BC=4,∴BH=3,∴AH:1=3:AH,即(负值舍去),当x=3时,,如图②,∴设与DG的交点为M,由,则,∴,∴1:3=MD:,即,∴故选:C.【点睛】本题考查的是动点图象问题,涉及相似三角形的性质与判定,解题关键是得出BC和DM的长.14.(2022·青海·统考一模)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的关系用图象描述大致是()A.B.C.D.【答案】D【分析】该题属于分段函数,根据图象需要得出:点在边上时,随的增大而减小;当点在边上时,随的增大而增大;当点在线段上时,随的增大而减小;当点在线段上时,随的增大而增大.【详解】解:如图,过点作于点.在中,,.①点在边上时,随的增大而减小.故A、B错误,不符合题意;②当点在边上时,随的增大而增大;③当点在线段上时,随的增大而减小,点与点重合时,最小,但是不等于零.故C错误,不符合题意;④当点在线段上时,随的增大而增大.故D正确,符合题意.故选:D.【点睛】本题考查了动点问题的函数图象,解题的关键是读懂图象的含义,即会识图.15.(2021·宁夏银川·统考一模)如图,AB是半圆O的直径,点P从点O出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是()A.B.C.D.【答案】C【分析】依题意,可以知道路程先逐渐变大,再保持不变,然后逐渐变小直至为0.则可以作出判断.【详解】解:由题意可以看出点P在从O到A过程中,s随t的增大而增大;点P在上时,s等于半圆O的半径,即s随t的增大而保持不变;点P从B到O的过程中,s随t的增大而逐渐减少直至为0.只有选项C符合实际情况.故选:C.【点睛】此题考查了函数图像的识别,应抓住s随t变化的本质特征:从0开始增大,到达边线后不变,然后到达B点后开始减小直到0.16.(2022·湖南郴州·统考中考真题)如图1,在中,,,.点D从A 点出发,沿线段AB向终点B运动.过点D作AB的垂线,与的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:变量a(cm)0 0.5 1 1.5 2 2.5 3 3.5 4变量h(cm)0 0.5 1 1.5 2 1.5 1 0.5 0在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2-1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2-2.根据探究的结果,解答下列问题:①当时,________;当时,________.②将图2-1,图2-2中描出的点顺次连接起来.③下列说法正确的是________.(填“A”或“B”)A.变量h是以a为自变量的函数B.变量a是以h为自变量的函数(2)如图3,记线段DE与的一直角边、斜边围成的三角形(即阴影部分)的面积为s.①分别求出当和时,s关于a的函数表达式;②当时,求a的值.【答案】(1)①1.5;1或3;②见解析;③A(2)①当时,;当时,;②或【分析】(1)①根据题意,对照变量h和变量a对应的数值即可填写,②图2-1,图2-2中描出的点顺次连接起来即可;③根据函数的定义即可判断;(2)①如图,当时,,得到阴影部分是三角形ADE的面积:;当时,,得到阴影部分的面积是三角形BDE的面积:.②当时,令,解得a;当时,令,解得a即可求解;(1)解:①根据题意,对照变量h和变量a对应的数值,当时, 1.5;当时,1或3.故答案为:1.5;1或3;②连线如图2-1、图2-2所示:③根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,所以变是h是以a为自变量的函数,故A选项符合,故选:A.(2)①如图3,当时,,∴阴影部分的面积:;当时,,∴阴影部分的面积:.∴当时,;当时,.②当时,令,解得或(不符合题意,舍去).当时,令,解得或(不符合题意,含去).∴当时,或.【点睛】本题考查了函数图像,写函数关系式,理解函数的定义以及表示方法,会根据三角形的面积公式得出函数关系式是解题的关键.◆题型二:根据已知图像获取相关信息把图像和运动情况结合起来,了解每一个转折点,每条线的具体含义。

九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

九年级数学中考专项复习——函数图像与实际问题应用题(附答案)

中考专项复习——函数与实际问题1. 甲、乙两车从A 城出发前往B 城.在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间 h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60 km/h 的速度匀速行驶.(Ⅰ)填空:① A ,B 两城相距km② 当02x ≤≤时,甲车的速度为 km/h ③ 乙车比甲车晚 h 到达B 城 ④ 甲车出发4h 时,距离A 城km⑤ 甲、乙两车在行程中相遇时,甲车离开A 城的时间为 h(Ⅱ)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式.(Ⅲ)当1352x ≤≤时,两车所在位置的距离最多相差多少km ?y 1/ km 53232. 已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:离开家的时间/min 6 10 20 46 离家的距离/km12.5(Ⅱ)填空:① 聪聪家到体育场的距离为______km② 聪聪从体育场到文具店的速度为______km/min ③ 聪聪从文具店散步回家的速度为______ km/min④ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.3.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表: 一次购买台数(台) 2 6 15 … 甲电器店收费(元) 6000 … 乙电器店收费(元)4800…(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.4.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.5.共享电动车是一种新理念下的交通工具:主要面向的出行市场,现有A 两种品牌的共享电动车,给出的图象反映了收费元与骑行时间min 之间的对应关系,其中品牌收费方式对应,品牌的收费方式对应. 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时的值是 . (Ⅲ)直接写出,关于的函数解析式.3~10km B y x A 1y B 2y 300m /min 9km x 1y 2y x y /元O 10 20 x /min8 66. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.7. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为 y 乙(个),其函数图象如图所示. (I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =8. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的折出售.在乙书店一次购书的标价总额不超过元的按标价总额计费,超过元后的部分打折.设在同一家书店一次购书的标价总额为(单位:元,). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元… 在甲书店应支付金额/元 … 在乙书店应支付金额/元…(Ⅱ)设在甲书店应支付金额元,在乙书店应支付金额元,分别写出、关于的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额元,则在甲、乙两个书店中的 书店购书应支付的金额少.9. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家,文具店离家.周末小明从家出发,匀速跑步到体育场;在体育场锻炼后,匀速走了到文具店;在文具店停留买笔后,匀速走了返回家.给出的图象反映了这个过程中小明离开家的距离与离开家的时间之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min离开家的距离/ km(II )填空:① 体育场到文具店的距离为______ ② 小明从家到体育场的速度为______ ③ 小明从文具店返回家的速度为______④ 当小明离家的距离为时,他离开家的时间为______ (III )当时,请直接写出关于的函数解析式.81001006x 0x 501503*********y 2y 1y 2y x 2801203km 1.5km 15min 15min 15min 20min 30min km y min x 6122050701.23km km /min km /min 0.6km min 045x ≤≤y x10. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.11. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m②明明在书店停留的时间是min③明明与家距离900m 时,明明离开家的时间是 min(Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式. 时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m400 60012. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km⑤ 当甲车离开A 城120km 时甲车行驶了 h ⑥ 当乙车出发行驶 h 时甲乙两车相距20km13.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F32506886104参考答案1. 解:(Ⅰ)①360 ②60 ③56④6803⑤52或196(Ⅱ)当0≤x ≤2时 160y x =当2223x <≤时 1120y =当222533x <≤时 1280803y x =-(Ⅲ)当1352x ≤≤时由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大 ∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103km2.解:(Ⅰ) 1.5(Ⅱ)①2.5 ②③ ④12或 (Ⅲ)当时当时3. 解:(Ⅰ)16800 33000 14400 36000(Ⅱ)当0<≤5时当>5时,即;=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数).(x >0且x 为正整数)531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x1y 23000802400y x x %(Ⅲ)设与的总费用的差为元. 则 即. 当时 即 解得.∴当时 选择甲乙两家电器店购买均可 ∵<0∴随的增大而减小∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算4. 解:(Ⅰ)1 0.5(Ⅱ)填空:(i ) 25 (ii )(iii ) (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧x (0≤x ≤15),1(15<x ≤30), x +2(30<x ≤ 45).5.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>6. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y ∵图象过),(500和)(330,80∴⎩⎨⎧+==b k b8033050 1y 2y y 180060002400y x x 6006000y x 0y60060000x10x10x 600y x 1y 2y 23115160115130-解得⎩⎨⎧==505.3b k ∴y 与x 的函数关系式为505.3+=x y )800(≤≤x7. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当时 当时当时∵图象经过(4 120)则 解得:∴ 当时∴(2)设 把 分别代入得解得 ∴与时间t 之间的函数关系式为:8. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲03t t y 40=甲43≤t <120=甲y 84≤t <140b t y +=甲1440120b +⨯=401-=b 84≤t <4040-=t y 甲⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲2b kt y +=乙(5,0)(8,360)⎩⎨⎧+=+=22836050b k b k ⎩⎨⎧-==6001202b k y 乙)乙85(600120≤≤-=t t y9. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x10. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13(Ⅲ)当04x ≤<时5y x =当412x <≤时5154y x =+11. 解:(Ⅰ)1000 600(Ⅱ)①600 ②4 ③4.5或7或338 (Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<) 12. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或213. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x (Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等. 时间/min 2 3 4 12 容器内水量/L 10 15 20 30。

中考数学专题复习《从图象中获取信息》测试卷(附带答案)

中考数学专题复习《从图象中获取信息》测试卷(附带答案)

中考数学专题复习《从图象中获取信息》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.骆驼被称为“沙漠之舟” 它的体温随时间的变化而发生较大的变化.如图反映了骆驼的体温随时间的变化情况下列说法错误的是()A.骆驼体温从最低上升到最高需要12小时B.骆驼体温一天内有两次达到39℃C.从0时到16时骆驼的体温逐渐上升D.第一天8时与第二天8时骆驼的体温相同2.甲乙丙丁四个同学跑步的路程(s)和所用时间(t)如图所示其中平均速度相同的两个同学是()A.甲和丁B.甲和乙C.丙和丁D.乙和丙3.如图是反映某工程队所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图像.下列说法正确的是()A.该工程队每小时挖河渠25米B.该河渠总长为50米3C.该工程队挖了30米之后加快了挖掘速度D.开挖到30米时用了2小时4.如图是汽车行驶速度(千米/时)和时间(分)的图下列说法中正确的个数为()(1)汽车行驶时间为40分钟(2)AB表示汽车勾速行驶(3)在第30分钟时汽车的速度是80千米/时(4)第40分钟时汽车停下来.A.1个B.2个C.3个D.4个5.已知点M(6,a−3)N(−2,a)P(2,a)在同一个函数图象上则这个函数图象可能是()A.B.C.D.6.如图是两个圆柱形连通容器(连通处体积忽略不计).乙容器的底面面积是甲容器的底面面积的2倍甲乙容器高度相同若向无水的甲容器匀速注水则甲容器的水面高度ℎ(cm)与注水时间t(min)之间的函数图象表示正确的是()A.B.C.D.7.已知蓄电池的电压为定值使用蓄电池时电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系它的图象如图所示.下列说法正确的是()A.函数解析式为I=13RB.蓄电池的电压是18VC.当R=6Ω时I=4A D.当I≤10A时8.如图在长方形ABCD中AB=3BC=4对角线AC=5动点P从点C出发沿C−A−D−C运动.设点P的运动路程为x(cm)△BCP的面积为y(cm2).若y与x的对应关系如图所示则图中a−b=()A.−1B.1C.3D.49.甲乙丙三种固体物质在等量溶剂中完全溶解的质量分别记为y甲y乙y丙它们随温度x的变化如图所示某次实验中需要y乙>y甲>y丙则溶液温度x的范围应控制在()A.x<t1B.t1<x<t2C.t2<x<t3D.x>t310.如图y1,y2分别表示某一品牌燃油汽车和电动汽车所需费用y(单位:元)与行驶路程S(单位:千米)的关系已知燃油汽车每千米所需的费用比燃气汽车每千米所需的费用的2倍少0.1元设电动汽车每千米所需的费用为x元则可列方程为()A.252x−0.1=10xB.25x=102x−0.1C.25x=102x+0.1D.252x+0.1=10x11.甲乙两人分别从A B两地同时出发相向而行匀速前往B地A地两人相遇时停留了4min又各自按原来速度前往目的地甲乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示给出下列结论:①A B之间的距离为1200m ②24min 时甲乙两人中有一人到达目的地③b=800④a=32其中正确的结论个数为()A.1个B.2个C.3个D.4个12.甲乙两工程队分别同时铺设两条600米长的管道所铺设管道长度y(米)与铺设时间x(天)之间的关系如图所示则下列说法错误的是()A.甲队每天铺设管道100米B.从第三天开始乙队每天铺设管道50米C.甲队比乙队提前3天完成任务D.当x=2或6时甲乙两队所铺设管道长度相差100米.13.如图在平面直角坐标系中将▱ABCD放置在第一象限且AB∥x轴.二四象限角平分线所在直线从原点出发沿x轴正方向平移在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示则▱ABCD的面积为()A.10B.√50C.5D.√2514.已知小唯的家体育场和图书馆在同一条直线上一日他从家出发先跑步到达体育场在体育场锻炼一段时间后骑车前往图书馆在图书馆看了一会书后再次骑车回家(速度与来图书馆时相同).如图为小唯离家的距离y(km)与离家的时间x(min)之间的函数图象.根据图象有以下4个结论:①体育场在小唯家和图书馆之间②体育场距离图书馆6km③小唯骑车的速度是0.2km/min④a的值为117.5.其中正确的结论有()A.1个B.2个C.3个D.4个15.明明和亮亮都在同一直道A B两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A地出发同时亮亮从B地出发.图中的折线段表示从开始到第二次相遇止两人之间的距离y(米)与行走时间x(分)的函数关系的图象则下列结论错误..的是()A.a=2100B.b=56103C.c=20D.d=140316.为了探究浮力的大小与哪些因素有关 方老师带同学们进行了测浮力的实验 如图1 先将一个长方体铁块放在玻璃烧杯上方 再向下缓缓移动 移动过程中记录弹簧测力计的示数与铁块下降的高度之间的关系如图2所示 下列说法不正确的是( )A .铁块入水之前 烧杯内水的高度为10cmB .由AB 段是线段可知 铁块是匀速向下移动的C .铁块的高度为4cmD .当铁块下降的高度为8cm 时 该铁块所受到的浮力为3.25N17.如图1 在等腰Rt △ABC 中 ∠ACB =90°,CD ⊥AB 于点D .动点P 从点A 出发 沿着A →D →C 的路径以每秒1个单位长度的速度运动到点C 停止 过点P 作PE ⊥AC 于点E 作PF ⊥BC 于F .在此过程中四边形CEPF 的面积y 与运动时间x 的函数关系图象如图2所示 则AB 的长是( )A .4B .2√6C .2√2D .318.一次函数y =kx +b 和y =mx +n 的图象如图所示三位同学根据图象得到了下面的结论:甲:关于x y 的二元一次方程组{y =kx +b y =mx +n的解是{x =−3y =2 乙:关于x 的一元一次方程kx +b =mx +n 的解是x =−2丙:关于x 的一元一次方程mx +n =0的解是x =−5.三人中判断正确的是()A.甲乙B.甲丙C.乙丙D.甲乙丙19.如图(1)从矩形纸片AMEF中剪去矩形BCDM后动点P从点B出发沿BC CD DE EF以1cm/s的速度匀速运动到点F停止设点P运动的时间为xs△ABP的面积为ycm2如果y关于x的函数图象如图5(2)所示则图形ABCDEF的面积是()cm2.A.32B.34C.48D.3620.如图(a)A B是℃O上两定点∠AOB=90°圆上一动点P从点B出发沿逆时针方向匀速运动到点A运动时间是x(s)线段AP的长度是y(cm).图(b)是y随x变化的关系图象其中图象与x轴交点的横坐标记为m则m的值是()A.8B.6C.4√2D.143参考答案1.解:A 一天中4时到16时骆驼的体温的变化范围是35℃到40℃共需要12小时说法正确该选项不符合题意B 12时与20时骆驼的温度是39℃说法正确该选项不符合题意C 0时到4时骆驼体温是下降的原说法错误该选项符合题意D 骆驼第一天8时与第二天8时骆驼的体温相同说法正确该选项不符合题意故选:C.2.解:由图可知甲的速度为:3÷10=0.3km/min乙的速度为:2÷10=0.2km/min丙的速度为:4÷20=0.2km/min丁的速度为其中平均速度相同的两个同学是乙和丙故选:D.3.解:根据图像:米故A选项不符合题意A 应为该工程队平均每小时挖河渠253B 不知工程完成与否不能确定河渠总长度故B选项不符合题意C 应为该工程队挖了30米之后放慢了挖掘速度故B选项不符合题意D 开挖到30米时用了2小时故D选项符合题意.故选D.4.解:由图可得在x=40时速度为0 故(1)(4)正确AB段y的值相等故速度不变故(2)正确x=30时y=80即在第30分钟时汽车的速度是80千米/时故(3)正确故选:D.5.解:由点N(−2,a)P(2,a)在同一个函数图象上可知图象关于y轴对称故选项B C 不符合题意由M(6,a−3)P(2,a)可知在y轴的右侧y随x的减小而减小故选项D 不符合题意选项A符合题意故选:A.6.解:∵两个圆柱形容器的中间连通∴甲容器的水面高度会有保持不变的情况又∵乙容器的底面面积是甲容器的底面面积的2倍∴维持不变的时间是之前时间的2倍故选:B.(U≠0)7.解:设I=UR∵图象过(4,9)∴U=4×9=36∴函数解析式为I=36故A选项错误不符合题意R∴蓄电池的电压是36V故B选项错误不符合题意当时I=366=6(A)故C选项错误不符合题意当I=10A时R=3.6Ω由图象知I随R的增大而减小℃当I≤10A时R≥3.6Ω故D正确故选:D.8.解:当点P在AD上运动时∴a=6由图知点P沿C−A−D−C运动到D时路程为AC+AD=5+4=9∴2b+3=9∴b=3∴a−b=6−3=3.故选:C.9.解:由图象可得:某次实验中需要y乙>y甲>y丙℃t2<x<t3故选C10.解:由题意得:燃油汽车每千米所需的费用为(2x−0.1)元由函数图象可知燃油汽车所需费用为25元时与燃气汽车所需费用为10元时所行驶的路程相等则可列方程为252x−0.1=10x故选:A.11.解:由图象可得A B之间的距离为1200m故①正确根据图像可知在24min时甲乙两人中有一人到达目的地故②正确甲乙的速度之和为:1200÷12=100(m/min)则b(24−12−4)×100=800故③正确℃乙的速度为:1200÷(24−4)=60(m/min)甲的速度为:1200÷12−60=100−60=40(m/min)℃a=1200÷40+4=30+4=34≠32故④错误综上正确的结论个数为3个故选:C.12.解:由图像知甲队6天铺设了600米则甲队每天铺设管道的长度为600÷6=100(米)故选项A正确由图像知乙从第二天后到第六天4天共铺设了200米则每天铺设管道的长度为(500−300)÷(6−2)=50(米)故选项B正确℃乙从第三天开始铺设的速度为每天50米℃乙完成剩下管道铺设的时间为:(600−300)÷50=6(天)完成整个管道铺设的时间为2+6=8(天)℃甲比乙提前完成的时间为8−6=2(天)故选项C错误当x=2时甲乙两队所铺设管道长度相差(100−50)×2=100(米)当x=6时甲乙两队所铺设管道长度相差600−500=100(米)故选项D正确故选:C.13.解:由图2可得直线经过A时移动的距离为3经过D时移动的距离为7经过B时移动的距离为8℃AB=8−3=5当直线经过点D时交AB于点E过D作DF⊥AB垂足为点F如图所示:由图2可得DE=√8=2√2℃直线为二四象限的角平分线℃直线与AB的夹角为45°℃∠DFE=90°℃∠DEF=45°=∠FDE℃DF=EF℃在Rt△DFE中DF2+EF2=DE2℃DF2+DF2=(2√2)2解得:DF=2℃S▱ABCD=AB×DF=5×2=10故选:A.14.解:①℃小唯先从家到体育场然后到图书馆℃由图象可得小唯家在体育场和图书馆之间故①错误②℃2.5−(−3.5)=6km℃体育场距离图书馆6km故②正确℃6÷(80−50)=0.2km/min℃小唯骑车的速度是0.2km/min故③正确由图象得小唯家距离体育场2.5km℃2.5÷0.2=12.5min℃30−12.5=17.5min℃在图书馆看了一会书后再次骑车回家时速度与来图书馆时相同℃a=100+17.5=117.5min故④正确.综上所述其中正确的结论有3个.故选:C.15.解:∵第一次相遇两人共走了2800米第二次相遇两人共走了3×2800米且二者速度不变∴c=60÷3=20(分)所以C正确当x=35时出现拐点显然此时亮亮到达A地路程为2800米亮亮的速度为2800÷35=80(米/分)两人的速度和为2800÷20=140(米/分)明明的速度为140−80=60(米/分)℃a=(80+60)×(35−20)=2100所以A正确第三个拐点处应为明明到达B地此时所用时间为2800÷60=1403(分)所以D正确此时b=2800−80×(1403−35)=56003所以B错误故选:B.16.解:℃烧杯高度为16cm铁块从烧杯口到下表面接触水时移动了6cm ℃烧杯内水的高度为10cm故A正确不符合题意℃AB段是线段℃拉力与移动的距离成一次函数关系℃铁块是匀速向下移动的 故B 正确 不符合题意℃烧杯有出水口℃水平面在铁块下移过程中保持不变.℃铁块的高度为AB 段铁块移动的距离为10−6=4cm 故C 正确 不符合题意 ℃当铁块下降高度为8cm 时 铁块的一半刚好浸入水中℃拉力的大小为4+2.52=3.25N℃铁块的重力为4N℃铁块所受到的浮力为4−3.25=0.75N 故D 错误 符合题意.故选:D .17.解:℃动点P 从点A 出发 沿着A →D →C 的路径运动℃第一个拐点的位置在点D 处 此时点P 运动到点D℃图2中拐点的纵坐标3℃四边形CEPF 的面积为3℃PE ⊥AC PF ⊥BC℃∠CED =∠CFD =∠AED =90°℃∠ACB =90°℃ 四边形CEPF 是矩形℃△ABC 是等腰直角三角形 CD ⊥AB℃∠ACD =∠BCD ∠A =45° AB =2AP℃DE =DF ∠ADE =45°℃四边形CEPF 是正方形 AE =PE℃△AED 是等腰直角三角形℃四边形CEPF 的面积为3℃PE =√3℃AP =√3×√2=√6℃AB =2AP =2√6故选:B .18.解:℃一次函数y =kx +b 和y =mx +n 的图象相交于(−3,2)℃关于x y 的二元一次方程组{y =kx +b y =mx +n的解是{x =−3y =2 故甲正确关于x的一元一次方程kx+b=mx+n的解是x=−3故乙错误∵y=mx+n的图象与x轴的交点为(−5,0)∴关于x的一元一次方程mx+n=0的解是x=−5故丙正确.故选:B.19.解:根据函数图象可以知道从0到4 y随x的增大而增大因而BC=4cm P在CD段时底边AB不变高不变因而面积不变由图象可知CD=3cm同理:ED=2cmEF=17−9=8(cm)则AF=BC+DE=4+2=6(cm)则图形ABCDEF的面积是:矩形AMEF的面积−矩形BMDC的面积=8×6−4×3=36(cm2).图形ABCDEF的面积是36cm2.故选:D.20.解:如图当点P运动到PA过圆心O即PA为直径时AP最长由图(b)得AP最长时为6 此时x=2∵∠AOB=90°∴∠POB=90°∴此时点P路程为90度的弧∵点P从点B运动到点A的弧度为270度∴运动时间为2×3=6故选:B.。

(中考化学)函数图象题-年中考二轮化学

(中考化学)函数图象题-年中考二轮化学

初中化学中考第二轮复习函数图象题专题关注两轴,分析三点1、明确横轴、纵轴表示什么量:⑴横轴可能为时间、反应物质量、溶剂质量、温度等。

⑵纵轴可能为物质、元素质量及其质量分数、物质体积、pH、压强、微粒数目等。

⑴起点:2、分析图像的起点、变化趋势和终点:起点是否为0关注两轴,分析三点关注两轴,分析三点2、分析图像的起点、变化趋势和终点:⑵变化趋势变化趋势不变、增大、减小、或是不变、增大、减小的组合关注两轴,分析三点2、分析图像的起点、变化趋势和终点:⑶终点:增大时是否无限增大减小时是否减小到0⑴关于反应物的质量变化1、化学反应中的质量或质量分数:⑵关于生成物的质量变化⑶关于固体受热分解剩余固体的质量变化例1:对一定量氯酸钾和二氧化锰的混合物加热,下列图像能正确表示对应变化关系的是( ) 1、化学反应中的质量或质量分数:C1、化学反应中的质量或质量分数:例2:下列图像分别对应四个变化过程,不能正确反映对应变化关系的是( )CA. 气体物质的溶解度与温度和压强的关系B. 一定质量的铁丝在氧气中燃烧C. 加热一定质量的氯酸钾和二氧化锰的混合物D. 向一定质量的盐酸和硫酸钾混合溶液中不断滴加氢氧化钡溶液例3:下列图像分别对应四个变化过程,能正确反映对应变化关系的是( )A .镁在氧气中燃烧B .在恒温条件下,将NaCl 饱和溶液蒸发适量水C .向硝酸银和硝酸铜混合溶液中加入过量的锌粉D.高温条件下,一氧化碳还原氧化铁1、化学反应中的质量或质量分数:B2、化学反应速率:⑴催化剂⑵接触面⑶反应物浓度⑷物质的性质例:下列四个图象能正确反映对应变化关系的是( )A.①盐酸中加水B.②等质量的碳酸钙与足量同浓度稀盐酸反应C.③用等质量、等质量分数的H 2O 2溶液来制取O 2D.④将过量的、等质量的镁和锌加入到等质量、等质量分数的稀盐酸中2、化学反应速率:D3、溶液pH:⑴酸碱稀释⑵中和反应酸稀释碱稀释碱中滴酸酸中滴碱3、溶液pH:⑶酸和盐的混合溶液中加入碱性溶液盐酸和氯化钙的混合溶液中加入碳酸钠溶液例1:酸碱中和反应是一类非常重要的反应。

中考数学专题复习 函数及其图像

中考数学专题复习 函数及其图像

中考数学专题复习函数及其图像考点3.1 位置与坐标序号考查内容考查方式学习目标考点位置与坐标坐标与象限1、坐标值的几何意义2、特殊点的坐标特征3、两点之间距离的求法4、能根据图形建立适当坐标系并写出关键点的坐标5、能根据点的坐标值确定其余各点的坐标6、用极坐标表示点的位置考点3.2 函数的表示序号考查内容考查方式学习目标考点一函数的取值范围分式或根式何时有意义考点二函数及其图像实际问题与函数图像1、能根据具体情况识别函数图象2、能从函数图象中读出关键信息考点3.3 一次函数序号考查内容考查方式学习目标考点一一次函数图像和性质一次函数图像和性质综合应用1、能熟练判断出图像中的k b取值范围2、能根据k,b的取值范围熟练画出函数图象的草图3、能判断出函数图的共存4、能用待定系数法熟练求出函数解析式过程完整考点二一次函数的应用结合一次函数图像解决实际问题1、能正确解释交点坐标在实际问题中的意义2、能正确分割三角形和多边形的面积进而求出其面积3、能正确理解和应用简单的分段函数图象及其代表的意义考点3.4 反比例函数序号考查内容考查方式学习目标考点一反比例函数解析式的确定确定比例系数1、能从不同的表达式中分离出比例系数2、能根据比例系数画出函数草图待定系数法求解析式利用比例系数的几何意义确定反比例函数解析式k值的几何意义反映到函数中要结合具体的象限来确定值k考点二反比例函数的应用一次函数与反比例函数的综合应用考点3.5 二次函数序号考查内容考查方式学习目标考点一二次函数图像和性质确定二次函数图像的对称轴和顶点、与x轴的交点的坐标1、能准确化为一般形式,并指出其系数2、能熟练进行配方写出其顶点坐标式3、能熟练从三种解析式几个方面值的确定考点二二次函数的应用画二次函数图像及应用能熟练画出草图并进行分析应用考点三二次函数与实际问题(二次函数的应用题)确定解析式、求极值(解答题)能根据已知条件熟练写出解析式,并进行五个方面的相关计算考点3.6 用函数观点看方程(组)和不等式序号考查内容考查方式学习目标考点一函数与方程二次函数与一元二次方程理解二次函数与一元二次方程的联系,并能正确地将二次函数问题转化为一元二次方程,能用一元二次方程的根解释图象中的交点坐标考点二函数与不等式一次函数与一元一次不等式1、能根据图象正确判断不等式的解集2、理解交点坐标的意义3、能根据交点坐标正确写出方程或方程组反比例函数与不等式一次函数、反比例函数与不等式同上。

2019-2020年中考物理专题复习《专题复习 图像信息问题解题攻略》教学设计

2019-2020年中考物理专题复习《专题复习 图像信息问题解题攻略》教学设计

2019-2020年中考物理专题复习《专题复习图像信息问题解题攻略》教学设计二、考査功能:试题对学生的能力考查主要涉及实验设计能力,数据读取、分析与处理能力,图像的识别与分析能力,运用数学工具的能力等。

一、考査重点和热点:图像信息类试题是以图像、图形和数据表格为试题的信息来源.图像、图表或数据表格一般都含有题目需求的信息,这类题目的图像信息量大,较为隐蔽.它的取材范围较广,内容可能源自教材,也有的涉及高新技术或环保、能源等社会热点问题.三、考查难点:在解答这类试题的过程中,要仔细观察、挖掘图像所含的信息,并对所得到的信息进行分类、合成、提取、加工,最终求得问题的解答。

四、题型分析:题型1:图像分析与计算【例1】(xx·上海中考)甲、乙两物体先后从同地沿同方向做匀速直线运动。

甲比乙先运动2 秒,甲运动6 秒时通过的路程为 6 米,此时甲、乙间的距离为 2米。

在图所示的a、b、c三条图线中,乙的s-t图()A.一定是图线aB.一定是图线bC.可能是图线bD.可能是图线c【思路点拨】由于甲运动6s通过的路程为6m,可判断出图线a为甲的运动图像;甲比乙先运动2s,所以此时乙的运动时间为4s,在图上另外两条图线4s是的路程分别是6m、8m,根据此时甲、乙间的距离为2m,可知乙的s-t图线可能是c,故选D。

【完全解答】D【例2】分别由甲、乙两种物质组成的不同物体,其质量与体积的关系如图所示,分析图像可知,两种物质的密度之比为()A.1:2B.2:1C.4:1D.8:1【思路点拨】由图象可知,当m甲=40g时,V甲=10cm3;当m乙=10g时,V乙=20cm3,则甲乙的密度分别为:ρ甲===4g/cm3;ρ乙===0.5g/cm3,所以,甲乙的密度之比:ρ甲:ρ乙=4g/cm3:0.5g/cm3=8:1.故选D。

【完全解答】D【方法技巧】所谓图像信息题,就是根据实际问题所表现出来的图像,要求考生依据所给的信息,运用所学的知识对其进行整理、分析、加工和处理。

期末难点特训 和函数的图像信息有关的期中考题-【微专题】七年级数学下册常考点微专题提分精练

期末难点特训 和函数的图像信息有关的期中考题-【微专题】七年级数学下册常考点微专题提分精练

七下期末难点特训(三)和函数的图像信息有关的期中考题1. 甲、乙两地之间是一条直路,在全民健身活动中,小明跑步从甲地前往乙地,一段时间后,小亮骑自行车从乙地前往甲地,两人都保持匀速.小亮先到达目的地,两人之间的距离y(km)与小明运动的时间t(h)的函数关系大致如图所示,则下列说法不正确的是()A. 小明比小亮先出发36分钟B. 小明的速度为10km/hC. 小亮的速度为20km/hD. 小亮出发1h后与小明相遇2. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图,根据图中提供的信息回答下列问题:(1)小明家到学校的路程是______米.(2)小明在书店停留了______分钟.(3)本次上学途中,小明一共行驶了______米,一共用了______分钟.(4)在整个上学的途中在______(时间段)小明骑车速度最快,最快的速度是多少米分?3. 小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x (h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为______km/h,a的值为______;(2)小张加速前的速度为______km/h,b的值为______;(3)在小张从出发到回到A市的公司过程中,当x为______时,两人相距20km?4. 某地植物园从正门到侧门有一条小路,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走,乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的距离y(km)与出发时间x(h)之间的关系图象.根据图象信息解答下列问题:(1)甲在休息前,y与x之间的关系式;(2)求甲、乙第一次相遇的时间;(3)在乙休息前,求甲乙相距5km的时间;(4)直接写出乙回到侧门时,甲到侧门的距离.5. 在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地:乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离:(2)求出点M对应的x、y的值,并解释其所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.6. 周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往滨海公园.如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:(1)图中自变量是_________,因变量是_________;(2)小明家到滨海公园的路程为_________km,爸爸比小明早到________h;(3)图中A点表示____________________________;(4)小明出发________小时后爸爸驾车出发;爸爸驾车经过_________追上小明.7. 一艘货船在甲、乙两港之间承接往返运输任务.某日货船从甲港顺流出发,途经丙港并不做停留,抵达乙港停留一段时间后逆流返航(始终保持同一航线).货船在行驶过程中保持自身船速(即船在静水中的速度)不变,已知水流速度为8千米/时,如图记录了当日这艘货船出发后与乙港的距离y(千米)随时间t(小时)的变化的图象.图象上的点A表示货船当日顺流航行到达丙港.(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度)(1)根据图象回答下列问题:甲乙两港之间的距离为______千米;货船在乙港停留的时间为______小时;(2)m=______,n=______;(3)当t为何值时这艘货船在往返途中距甲港80千米?8. 甲乙两地的距离为45千米,下图中的折线表示某骑车人离甲地的距离y(千米)与时间x(时)之间的函数关系.有一辆客车9点从乙地出发,以45千米/小时的速度匀速行驶,并往返于甲乙两地之间(乘客上下车的停留时间忽略不计).(1)从折线图可以看出,骑车人一共休息_______次,共休息了_________小时;(2)请在图中画出9点至15点之间客车与甲地的距离y(千米)随时间x(时)变化的函数图象;(3)由图象可以看出,在_______时,骑车人与客车同时位于________地(填“甲”或“乙”),除此之外的行进过程中,有_____次是骑车人与客车迎面相遇,有________次是客车从背后追上骑车人.9. 小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.10. 如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE 为边,在线段AE右侧作正方形AEFG,连接CF、DF.设BE=x(当点E与点B 重合时,x的值为0),DF=y1,CF=y2.小明根据学习函数的经验,对函数y1、y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程.(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值,请补全表格:x012345y1 5.00 4.12 3.61 4.12 5.00y20 1.41 2.83 4.24 5.657.07(2)根据表中各组数值,在同一平面直角坐标系xOy中,画出函数y1的图象.(3)结合图2 ,解决问题:当△CDF为等腰三角形时,请直接写出BE长度.(精确到0.1)11. 如图1,这是成都到重庆的渝蓉高速的示意图.甲从成都出发驾车驶往重庆,同时乙从简阳出发驾车驶向重庆.在行驶过程中,甲由于汽车故障,在某服务站维修好后继续驾车前行,并与乙同时到达重庆同一地点.甲维修汽车用了0.5小时,其它时间忽略不计,甲维修前后车速不变.图2中折线段OABD和线段CD分别表示甲,乙两人与成都的距离s(千米)与行驶时间t(小时)的变化关系,点A在CD上.(1)求乙的驾车速度;(2)求甲的驾车速度,并求出a的值;时,甲,乙相距多少千米.(3)当t b12. 青城山景区的三个主要景点导游草图如图1,图中所标数据为相邻两点间的路程(米).甲游客考虑到自己体力有限,决定不游览C景点,他匀速沿线路A→B→E→D→A游览,且在每个景点逗留的时间相同.当他回到大门时,共耗时3小时5分钟,其中从大门游览到E处的路程s(米)与游览时间!(分钟)之间的图象如图2.(1)求甲在每个景点逗留的时间;(2)求从E 到D 的路程;(3)乙游客以3千米/小时的平均速度游览完三个景点(途中线路不重复,在每个景点逗留的时间相同),若乙和甲同时从大门出发,并同时回到大门处,求乙游客在每个景点逗留的时间.13. 甲、乙两人同时开始共同组装一批零件,工作两小时后,甲因事离开,停止工作.一段时间后,甲重新回到岗位并提高了工作效率,最后30分钟,乙休息,由甲独自完成剩余零件的组装.乙在工作过程中工作效率保持不变,甲在每个工作阶段的工作效率保不变.甲、乙两人组装零件的总数y (个)与时间x (小时)之间的图像如图所示:(1)这批零件一共有多少个?(2)在整个组装过程中,当甲、乙各自组装的零件总数相差60个时,求x 的值.14. 如图,在等腰直角三角形ABC 中,8BC ,点D 从点B 出发,沿BC 边运动到C ,连接AD ,设BD 的长为x ,AD 的长为y .请你根据学习的变量间关系的知识进行探究活动.(1)通过取点,作图,测量等到了几组x,y的对应值,如下表所示:x012345678y 5.75 4.5 4.14 4.1m5 5.7表格中m=__________;(2)如图,在平面直角坐标系中,已描出了部分图像,请你根据补全后的上表中各组对应值,画出剩下的图像;(3)当x=__________时,y取得最小值;当x的取值范围是__________时,y<.515. 如图1,将南北向的天府大道与东西向的海洋路看成两条相互垂直的直线,十字路口记作点A.小明从海洋路上的点B出发,骑车向西匀速直行;与此同时,小颍从点A出发,沿天府大道步行向北匀速直行、小明到达A点处遇到红灯,等待1分钟后,他提速25%继续骑行.设出发x分钟时,小明、小颍两人与点A的距离分别为1y米2y米.已知1y,2y与x之间的图像如图2所示.(1)小明提速后骑车的速度为________米/分,小颖步行的速度为________米/分;(2)当610x ≤≤时,分别写出1y ,2y 与x 的关系式;(3)出发多少分钟后,小明、小颖离A 点的距离相等?16. 充满未来感、时代感、速度感的2022年北京冬奥会吉祥物“冰墩墩”火遍全球,为了满足广大需求,某冰墩墩生产厂家引进新设备,让新旧设备同时生产,提高冰墩墩的产量.如图所示,甲表示新设备的产量y (万个)与时间x (天)的关系,乙表示旧设备的产量y (万个)与时间x (天)的关系.(1)由图象可知,新设备因故停止生产了______天;(2)在正常生产的情况下,分别求新、旧设备每天生产冰墩墩的个数;(3)试问:第几天新、旧设备所生产的冰墩墩的数量相同?17. 乐乐准备和弟弟一起在一条笔直的跑道上锻炼身体,到达起点后乐乐做了一会准备活动,弟弟先跑.当乐乐出发时,弟弟已经距起点100米了,他们距起点的距离s (米)与乐乐出发的时间t (秒)之间的关系如图所示(不完整).根据图中所给的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______.(2)乐乐在第一次追上弟弟前,弟弟的速度为______米/秒,乐乐的速度为______米/秒.(3)写出乐乐与弟弟都在跑步过程中相距60米时,乐乐离出发点的距离.18. 小红和小玉是同班同学,也是邻居,某天早晨,小红7:10先出发去学校,走了一段后,在途中停下吃早餐,后来发现上学时间快到了,就跑步到学校;小玉骑自行车沿相同路线到学校,如图是她们从家到学校已走的路程s(米)和所用的时间t(分钟)的关系图.请根据图象回答下列问题:(1)小红家到学校的路程是______米,小红吃早餐用了上______分钟;(2)小玉骑自行车速度为______米/分钟;(3)小红从家到学校的平均速度为______米/分钟;(4)小玉骑自行车什么时间追上小红?19. 某单位组织员工去郊区团建,安排班车去送,大多数员工选择在单位乘车,为了方便还安排了第二个站点接员工,在第二个站点停车的时间为5分钟.李华选择从单位出发开私家车去目的地.如图是班车和私家车离开单位的路程y(千米)随时间x(分钟)的变化图象.分析图中的信息,回答下列问题:(1)李华晚出发___________分钟.(2)______________先到目的地.(填班车或私家车)(3)班车第二次开动后的速度是_________km/h.(4)李华私家车出发后的速度是_________km/h.(5)李华私家车出发后在距离目的地_________km和班车相遇.20. 为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s (米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?21. 甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离(米)与甲出发的时间(秒)的关系如图所示.(1)甲早出发______秒,乙出发时两人距离_______米;(2)甲的速度是________米/秒,甲从A地跑到B地共需________秒;(3)乙出发________秒时追上了甲;(4)甲出发________秒时,两人相距120米.22. A,B两地相距60km,甲乙两人沿同一条路从A地前往B地,甲先出发.图中l1,l2表示甲乙两人离A地的距离y(km)与乙所用时间x(h)之间的关系,请结合图象回答下列问题:(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是 (填l1或l2);(2)当其中一人到达B地时,另一人距B地 km;(3)乙出发多长时间时,甲乙两人刚好相距10km?23. 一艘货船在甲、乙两港之间承接往返运输任务.某日货船从甲港顺流出发,途经丙港并不做停留,抵达乙港停留一段时间后逆流返航.货船在行驶过程中保持自身船速(即船在静水中的速度)不变,已知水流速度为8千米/时,如图记录了当日这艘货船出发后与乙港的距离y(千米)随时间t(小时)的变化的图象.图象上的点A表示货船当日顺流航行到达丙港.(1)根据图象回答下列问题:货船在乙港停留的时间为 小时,货船在静水中的速度为 千米/时;(2)m= ,n= ;(3)货船当日顺流航行至丙港时,船上一救生圈不慎落入水中随水漂流,该货船能否在返航的途中找到救生圈?若能,请求出救生圈在水中漂流的时间;若不能,请说明理由.24. 小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离1y(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.七下期末难点特训(三)和函数的图像信息有关的期中考题【1题答案】【答案】D【解析】【分析】由图像可得小亮骑自行车从乙地前往甲地是0.6h=36分钟;可判断A;由小明跑步从甲地前往乙地,行程是30km,所用时间是3小时,利用速度公式计算可判断B;由小亮骑自行车从乙地前往甲地,行程是30km,所用时间是1.5h,利用速度公式计算可判断C;设小亮出发t小时与小明相遇,利用方程20t+(t+0.6)×10=30,解方程可判断D.【详解】解:A. ∵由图像可得小亮骑自行车从乙地前往甲地是0.6h=0.6×60分钟=36分钟;∴小明比小亮先出发36分钟正确,故选项A不符合题意;B.∵小明跑步从甲地前往乙地,行程是30km,所用时间是3小时,∴小明的速度为30=310km/h正确,故选项B不符合题意;C. ∵小亮骑自行车从乙地前往甲地,行程是30km,所用时间是2.1-0.6=1.5h,∴小亮的速度为=30=1.520km/h正确,故选项C不符合题意;D. 设小亮出发t小时与小明相遇,根据题意20t+(t+0.6)×10=30,解得t=0.8h,∴小亮出发0.8h后与小明相遇,所以D选项不正确,故选项D符合题意.故选择D.【点睛】本题考查两人之间路程与时间的一次函数图像应用,仔细观察图像,掌握图像中横纵坐标的意义与拐点的意义,以及速度、路程与时间关系是解题关键.【2题答案】【答案】(1)1500;(2)4;(3)2700,14;(4)12分钟至14分钟,450米/分钟,【解析】【分析】(1)根据函数图象中的数据可以得到小明家到学校的路程;(2)根据函数图象可以得到小明在书店停留的时间;(3)根据函数图象中的数据可以得到本次上学途中,小明一共行驶的路程和时间;(4)根据题意和函数图象可以得到各段内对应的速度,从而可以解答本题.【小问1详解】由图象可得,小明家到学校的路程是1500米,故答案为:1500;【小问2详解】由图象可得,小明在书店停留了:12-8=4(分钟),故答案为:4;【小问3详解】本次上学途中,小明一共行驶了:1500+(1200-600)×2=2700(米),一共用了14(分钟),故答案为:2700,14;【小问4详解】由图象可知,在整个上学的途中,12分钟至14分钟小明骑车速度最快,最快的速度为:(1500-600)÷(14-12)=450米/分钟,故答案为:12分钟至14分钟,【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【3题答案】【答案】(1)80,4(2)100,160(3)53或179或12730【解析】【分析】(1)根据函数图象中的数据,可以计算出小王的速度和a的值;(2)根据题意和(1)中的结果,可以计算出小张加速前的速度和b 的值;(3)根据函数图象中的数据和题意,利用分类讨论的方法可以求得x 的值.【小问1详解】解:由图象可得,小王的速度为:()80180km /h ÷=,4008014a =÷-=,故答案为:80,4;【小问2详解】设小张加速前的速度为km /h x ,由题意得:()()2.420 4.4 2.4x x =+⨯-,解得,100x =,400 2.4100160b =-⨯=,即小张加速前的速度为100km/h ,b 的值是160,故答案为:100,160;【小问3详解】由题意可得,相遇前:()10080140020x x ++=- 解得,53x =,相遇后到小张返回前:()10080140020x x ++=+ 解得,179x =,小张返回后到小王到达A 市前:()()()()801400100 2.410020 2.420x x ⨯+=-⨯++⨯-+,解得, 4.7(x =舍去),小王到达A 市到小张返回到A 市前,()()()400100 2.410020 2.420400x -⨯++⨯-+=,解得,12730x =,由上可得,在小张从出发到回到A市的公司过程中,当x为53或179或12730时,两人相距20km.故答案为:53或179或12730.【点睛】本题主要考查了从函数图象获取信息,解答本题的关键是明确题意,利用数形结合的思想解答.【4题答案】【答案】(1)甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式(2)第一次相遇时间为1217h.(3)在乙休息前,当出发时间为1小时时,甲乙相距5km;(4)乙回到侧门时,甲到侧门的路程是4km.【解析】【分析】(1)根据函数图象可知点(0,12)和点(1,7)在甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数图象上,从而可以解答本题;(2)根据函数图象可以求得乙骑自行车从侧门匀速前往正门对应的函数解析式,联立(1)中函数解析式组成方程组即可求得第一次相遇的时间;(3)由(2)得乙休息前的函数解析式为:y=12x,甲的函数解析式为:y=-5x+12,根据题意分两人相遇前与相遇后进行分析即可得出结果;(4)根据函数图象可以得到在最后一段甲对应的函数解析式,乙到侧门时时间为2.2h,从而可以得到乙回到侧门时,甲到侧门的距离.【小问1详解】解:设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,12)和点(1,7)在此函数的图象上,∴127bk b=⎧⎨=+⎩,解得k=﹣5,b=12.∴y=﹣5x+12.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:【小问2详解】设乙骑自行车从侧门匀速前往正门对应的函数关系式y =kx ,将(1,12)代入得k =12,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y =12x ,∴51212y x y x =-+⎧⎨=⎩,解得x =1217,即第一次相遇时间为1217h .【小问3详解】在乙休息前,∴0≤x ≤1,由(2)得乙休息前的函数解析式为:y =12x ,甲的函数解析式为:y =-5x +12,甲乙相距5km ,∴两人相遇前:12x -5x +12+5=12,解得:x =57-不符合题意,舍去;两人相遇后:12x -(-5x +12)=5解得:x =1,在乙休息前,当出发时间为1小时时,甲乙相距5km ;【小问4详解】乙回到侧门时,甲到侧门的路程是4km .理由如下:将x =1.2代入y =﹣5x +12解得y =6,∴甲休息后对应的函数图象过点(1.8,6),(3,0),设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y =mx +n .将点(1.8,6),(3,0)代入解析式得:1.8630m n m n +=⎧⎨+=⎩,解得m =﹣5,n =15.将x=2.2代入y=﹣5x+15,解得y=4,即乙回到侧门时,甲到侧门的路程是4km.【点睛】本题考查一次函数的应用,解题的关键是能看懂题意,根据数形结合的数学思想,找出所求问题需要的条件.【5题答案】【答案】(1)A、B两地的距离为40千米(2)点M48033⎛⎫⎪⎝⎭,,表示43小时后两车相遇,此时距离B地803千米(3)当3730≤x≤4330或3.7≤x≤4时,甲、乙两人能够用无线对讲机保持联系【解析】【分析】(1)根据函数图象就可以得出A、B两地的距离;(2)根据函数图象反应的时间可以求出甲乙的速度,就可以求出相遇时间,就可以求出乙离B地的距离而得出相遇点M的坐标;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.【小问1详解】由函数图象,得A、B两地的距离为40千米,答:A、B两地的距离为40千米.【小问2详解】由函数图象,得:甲的速度为:40÷4= 10千米/时,乙的速度为:40÷2= 20千米/时.∴甲乙相遇的时间为:40 ÷ (10 + 20)=43小时.相遇时乙离开B地的距离为:43×20 =803千米,所以,点M的坐标为480 33⎛⎫ ⎪⎝⎭,点M表示43小时后两车相遇,此时距离B地803千米;【小问3详解】设x小时时,甲、乙两人相距3km,若是相遇前,则10x + 20x = 40-3,解得x =37 30;若是相遇后,则10x + 20x= 40+ 3,解得x =43 30;若是到达B地前,则10x-20(x-2)= 3解得x = 3.7;∴当3730≤x≤4330或3.7≤x≤4时,甲、乙两人能够用无线对讲机保持联系.【点睛】本题考查了函数图像,一次函数的解析式的运用,相遇问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次不等式组的运用,解答时认真分析函数图象,弄清函数图象的意义是关键.【6题答案】【答案】(1)时间,路程(2)30,0.5 (3)2.5小时后小明继续坐公交车到滨海公园(4)2.5,2 3【解析】【分析】(1)根据图象进行判断,即可得出自变量与因变量;(2)根据图象中数据,即可得到小明家到滨海公园的路程以及爸爸比小明早到的时间;(3)根据点A的坐标即可得到点A的实际意义;(4)分别求出小明从中心书城到滨海公园的平均速度以及小明爸爸驾车的平均速度,即可得爸爸驾车追上小明的时间.【小问1详解】解:由图可得,自变量是t,因变量是s,故答案为:时间,路程;【小问2详解】由图可得,小明家到滨海公园的路程为30km,爸爸比小明早到:4-3.5=0.5(h),故答案为:30;0.5;【小问3详解】由图可得,A点表示2.5小时后小明继续坐公交车到滨海公园;故答案为:2.5小时后小明继续坐公交车到滨海公园;【小问4详解】由图可得,小明出发2.5小时后爸爸驾车出发;小明从中心书城到滨海公园的平均速度为301212(km/h)4 2.5-=-,小明爸爸驾车的平均速度为3030(km/h)3.5 2.5=-;爸爸驾车经过122(h)30123=-追上小明.故答案为:2.5;23.【点睛】本题考查了函数的图象,以及行程问题的数量关系的运用,解答时理解清楚函数图象的意义是解答此题的关键.【7题答案】【答案】(1)96,1(2)8,10 (3)52或5【解析】【分析】对于(1),根据图象填空即可;对于(2),先求出货船在静水中的速度,根据路程÷速度=时间即可求出m和n的值;对于(3),这艘货船在往返途中距甲港80千米,分两种情况:①货船从甲港到乙港的途中,②货船从乙港返回甲港的途中,分别列方程,求出解即可.【小问1详解】根据图象可知甲乙两港之间的距离是96千米,货船在乙港停留的时间为4-3=1(小时).故答案为:96,1;【小问2详解】根据题意,可知货船在顺水中的航行速度为96÷3=32(千米/小时),∴水流的速度时8千米/时,∴货船在静水中的速度时32-8=24(千米/小时),∴货船的逆水速度为24-8=16(千米/时),∴m=4+64÷16=8,n=4+96÷16=10.故答案为:8,10;【小问3详解】这艘货船在往返途中距甲港80千米,分两种情况:货船从甲港到乙港的途中,根据题意,得32t=80,解得52t=;货船从乙港回甲港的途中,根据题意,得16(t-4)=96-80,解得t=5.综上所述,当52t=或5时,这艘货船距甲港80千米.【点睛】本题主要考查了函数图象的应用,理解图象上各点的含义并根据题意求出货船在静水中的速度是解题的关键.【8题答案】【答案】(1)2,2;(2)见解析;(3)13,乙,3,1.【解析】【分析】(1)直接观察图象,即可求解;(2)根据图象可得,客车从乙地到甲地所用的时间为1时,从而得到9点至15点之间客车在甲乙两地之间往返6次,即可画出图象;(3)由图象可以看出,在13时,骑车人与客车同时位于乙地;二者迎面相遇,是客车从乙地驶往甲地的过程中;客车从背后追上骑车人,是客车从甲地驶往乙地的过程中,从而得到3次相遇是骑车人与客车迎面相遇;1次相遇是客车从背后追上骑车人,即可求解.【详解】解:(1)根据题意得:骑车人一共休息2次,共休息了(11-10)+(13-12)=2时;(2)根据题意得:客车从乙地到甲地所用的时间为45451÷=(时),所以9点至15点之间客车在甲乙两地之间往返159312-=⨯次,则9点至15点之间客车与甲地的距离y(千米)随时间x(时)变化的函数图象,如图所示,。

中考考点复习之一次函数专题

中考考点复习之一次函数专题

中考考点复习之一次函数专题考点精讲1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。

2.会利用待定系数法确定一次函数的表达式。

3.能画出一次函数的图象,根据一次函数的图象和表达式()0≠+=k b kx y 探索并理解0>k 和0<k 时,图象的变化情况。

4.理解正比例函数。

5.体会一次函数和二元一次方程的关系。

考点解读考点1:一次函数图像与性质(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b /k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.(3)一次函数与坐标轴交点坐标1.求一次函数与x 轴的交点,只需令y =0,解出x 即可;2.求与y 轴的交点,只需令x =0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是)0,(kb -,与y 轴的交点是(0,b ); 3.正比例函数y =kx (k ≠0)的图象恒过点(0,0).考点2:一次函数解析式的确定(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y =kx +b (k ≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k 与b 的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y =2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.考点3:一次函数图像的平移规律:“左加右减,上加下减”①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同. ②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h .考点4:一次函数与方程不等式的关系(1)一次函数与方程:一元一次方程kx +b =0的根就是一次函数y =kx +b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.(2)一次函数与方程组:二元一次方程组⎩⎨⎧+=+=bx k y b x k y 21的解⇔两个一次函数b x k y +=1和b x k y +=2图象的交点坐标.(3)一次函数与不等式(1)函数y =kx +b 的函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集(2)函数y =kx +b 的函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集 考点5:一次函数的应用.1.一般步骤:(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.2.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.考点突破1.(2021秋•驻马店期末)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.(2021秋•中原区校级期末)下列问题中,两个变量之间成正比例关系的是()A.圆的面积S(cm2)与它的半径r(cm)之间的关系B.某水池有水15m3,现打开进水管进水,进水速度为5m3/h,xh后这个水池有水ym3C.三角形面积一定时,它的底边a(cm)和底边上的高h(cm)之间的关系D.汽车以60km/h的速度匀速行驶,行驶路程y与行驶时间x之间的关系3.(2021秋•驿城区校级期末)在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.(2021春•新蔡县期末)正比例函数y=kx(k≠0)和一次函数y=k(1﹣x)在同一个直角坐标系内的图象大致是下图中的()A.B.C.D.5.(2021秋•白银期末)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<06.(2021春•巨野县期末)已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.7.(2021秋•任城区校级期末)两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()A.B.C.D.8.(2021秋•驿城区期末)一次函数y=﹣2x+6的图象与两坐标轴围成的三角形的面积是()A.6B.9C.12D.189.(2021秋•新郑市期末)若函数y=(m﹣3)x|m﹣2|+m﹣1是一次函数,则m的值为.10.(2021秋•驿城区校级期末)当k=时,函数y=(k﹣1)x+k2﹣1是一个正比例函数.11.(2021春•舞阳县期末)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是.(填字母代号)A.B.C.D.12.(2019春•安阳期末)函数y=2x与y=6﹣kx的图象如图所示,则k=.13.(2021秋•东城区校级期末)请写出一个图象经过第一、第三象限的一次函数关系式.(写出一个即可).14.(2021•河南)请写出一个图象经过原点的函数的解析式.15.(2018春•确山县期末)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OP A的面积为S.(1)用含x的解析式表示S为,其中x的范围是.(2)画出函数S的图象.(3)当点P的横坐标为5时,△OP A的面积为.(4)△OP A的面积能大于24吗?为什么?16.(2021春•会昌县期末)先完成下列填空,再在同一平面直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数y=2x的图象过(0,)和(1,);(2)一次函数y=﹣x+3的图象过(0,)和(,0).17.(2021秋•金水区校级期末)请根据学习“一次函数”时积累的经验和方法研究函数y =﹣|x|+2的图象和性质,并解决问题.(1)填空:①当x=0时,y=﹣|x|+2=;②当x>0时,y=﹣|x|+2=;③当x<0时,y=﹣|x|+2=;(2)在平面直角坐标系中作出函数y=﹣|x|+2的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,方程﹣|x|+2=0有个解;②方程﹣|x|+2=2有个解;③若关于x的方程﹣|x|+2=a无解,则a的取值范围是.18.(2021•禹州市模拟)如图1,在菱形ABCD中,AB=5,某数学兴趣小组从函数的角度对菱形ABCD的对角线长度进行如下探究:利用几何画板,测量出以下几组值:AC 1.00 2.00 3.00 4.00 5.00 6.007.008.009.009.549.809.95 BD9.959.809.549.168.668.007.14a 4.36 3.00 2.00 1.00(1)表格中a的值为.(2)设AC的长为自变量x,BD的长是关于自变量x的函数,记为y BD,现已在图2所示的平面直角坐标系中描出了表格中各组数据的对应点(x,y BD).①画出函数y BD的图象;②请在同一平面直角坐标系中画出直线y=x,结合所绘制的函数图象,写出函数y BD的一条性质.(3)在平面直角坐标系中,将三角板(含30°角的直角三角板)按如图3所示方式放置,顶点和坐标原点重合,斜边在x轴上,画出射线OA.若OA与绘制的函数图象交于点M,则此时菱形ABCD的面积为.。

中考数学复习:专题3-4 一次函数考点分析及典型试题

中考数学复习:专题3-4 一次函数考点分析及典型试题

一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。

类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。

2. 一次函数的图像:是不经过原点的一条直线。

3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。

专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。

夯实基础-2023年九年级中考数学考点专题集训系列 一次函数图像信息问题

夯实基础-2023年九年级中考数学考点专题集训系列 一次函数图像信息问题

夯实基础-2023年中考数学考点专题集训系列(一次函数图像信息问题)1.在一条笔直的公路上有A,B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是________米,乙的步行速度是________米/分钟;(2)图中a=________,b=________,c=________;(3)求线段MN的函数表达式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)2.A、B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD-DE-EF所示,其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是多少.3.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为多少米.4.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?5.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚多少分钟到达B地.6.某农科所为定点帮扶村免费提供一种优质瓜苗及大鹏栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后,继续生长大约多少天,开始开花结果?7.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?8.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地,两辆货车离开各自出发....地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.x kg之间10.某商店代理销售一种水果,六月份的销售利润y(元)与销售量()函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图像中线段BC所在直线对应的函数表达式.11.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?12.如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x 从原点0出发沿x轴正方向平移.在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示,那么▱ABCD的面积为多少。

辽宁省各市中考数学分类解析 专题6:函数的图像与性质

辽宁省各市中考数学分类解析 专题6:函数的图像与性质

辽宁各市中考数学试题分类解析汇编专题6:函数的图像与性质 锦元数学工作室 编辑一、选择题1. (辽宁鞍山3分)如图,点A 在反比例函数()3y=x 0x>的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M ,且AM :MB=1:2,则k 的值为【 】A . 3B .-6C .2D .6 【答案】B 。

【考点】反比例函数图象上点的坐标特征。

【分析】如图,连接OA 、OB .∵点A 在反比例函数()3y=x 0x>的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M , ∴S △AOM =32,S △BOM =k 2。

∴S △AOM :S △BOM =32:k 2=3:|k|。

∵S △AOM :S △BOM =AM :MB=1:2,∴3:|k|=1:2。

∴|k|=6。

∵反比例函数()ky=x 0x>的图象在第四象限,∴k<0。

∴k=-6。

故选B 。

2. (辽宁鞍山3分)如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b 2﹣4ac >0.其中正确的结论是【 】A.①④ B.①③ C.②④ D.①②【答案】A。

【考点】二次函数图象与系数的关系,二次函数的性质,一元二次方程根的判别式。

【分析】∵由图象知,点B坐标(﹣1,0),对称轴是直线x=1,∴A的坐标是(3,0)。

∴OA=3。

∴结论①正确。

∵由图象知:当x=1时,y>0,∴把x=1代入二次函数的解析式得:y=a+b+c>0。

∴结论②错误。

∵抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0。

∴ac<0。

∴结论③错误。

∵抛物线与x轴有两个交点,∴b2﹣4ac>0。

∴结论④正确。

综上所述,结论①④正确。

故选A。

3. (辽宁本溪3分)如图,已知点A在反比例函数4y=x图象上,点B在反比例函数ky=x(k≠0)的图象上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为C、D,若OC=13OD,则k的值为【】A、10B、12C、14D、16 【答案】B。

中考数学压轴题专题--函数图象中点的存在性问题(很好的一个专题训练并有试题详细解析及参考答案)

中考数学压轴题专题--函数图象中点的存在性问题(很好的一个专题训练并有试题详细解析及参考答案)

中考数学压轴题专题--函数图象中点的存在性问题(很好的⼀个专题训练并有试题详细解析及参考答案)1、如图1,在平⾯直⾓坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的⼤⼩;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1.详细解析及参考答案:(1)如图2,过点A 作AH ⊥y 轴,垂⾜为H .在Rt △AOH 中,AO =2,∠AOH =30°,所以AH =1,OH 3A (13)-.因为抛物线与x 轴交于O 、B (2,0)两点,设y =ax (x -2),代⼊点A (13)-,可得3a =.图2 所以抛物线的表达式为23323(2)y x x =-=.(2)由22323331)y x x ==- 得抛物线的顶点M 的坐标为3(1,.所以3tan BOM ∠=.所以∠BOM =30°.所以∠AOM =150°.(3)由A (13)-、B (2,0)、M 3(1,,得3tan 3ABO ∠=,23AB =233OM =.所以∠ABO =30°,3OAOM=因此当点C 在点B 右侧时,∠ABC =∠AOM =150°.△ABC 与△AOM 相似,存在两种情况:①如图3,当BA OABC OM ==时,2BC ===.此时C (4,0).②如图4,当BC OABA OM==时,6BC ===.此时C (8,0).图3 图4考点伸展:在本题情境下,如果△ABC 与△BOM 相似,求点C 的坐标.如图5,因为△BOM 是30°底⾓的等腰三⾓形,∠ABO =30°,因此△ABC 也是底⾓为30°的等腰三⾓形,AB =AC ,根据对称性,点C 的坐标为(-4,0).图52、如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(⽤含b 的代数式表⽰);(2)请你探索在第⼀象限内是否存在点P ,使得四边形PCOB 的⾯积等于2b ,且△PBC 是以点P 为直⾓顶点的等腰直⾓三⾓形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进⼀步探索在第⼀象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三⾓形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1详细解析及参考答案:(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ).(2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂⾜分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ??+??==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3 (3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA .当BA QA QA OA =,即2QA BA OA =?时,△BQA ∽△QOA .所以2()14bb =-.解得8b =±Q 为(1,2.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点09 一次函数的应用一次函数的实际应用在中考中更多的是以简答题的形式出题,选择题、填空题多考察一次函数图象的理解和信息提取,并且多考行程类实际应用题。

简答题在出题时也多和方程、不等式结合,考察对象的方案设计和决策等。

在考生复习此考点时,需要多注意一次函数图象具体意义的,熟练掌握根据已知条件确定一次函数的表达式的方法,并能根据一次函数的性质解决简单的实际问题。

一、一次函数图象信息类问题二、利用一次函数进行方案设计与决策三、一次函数与几何的结合问题考向一:一次函数图象信息类问题一.一次函数图象与性质的应用解题要点:1.明确题目中图象的横、纵坐标表示的意义;2.理解并能准确应用图象中的拐点的意义;3.理解函数图象的变化趋势、倾斜程度各表示什么意义;二.分段函数图象问题解题要点:1.读懂每段图象的意义,从图象中获取信息,2.注意图象中的一些特殊点的实际意义;1.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等2.已知张老师家、超市、书店在同一条直线上.下面的图象反应的过程是:张老师晚饭后从家里散步到超市,在超市停留了一会儿后又去书店看书,看会儿书觉得有点晚了,就快步走回家.图中x表示张老师离开家的时间,y表示张老师离开家的距离.根据图象提供的信息,下列说法错误的是( )A.张老师家离超市1.5kmB.张老师在书店停留了30minC.张老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.张老师从书店到家的平均速度是10km/h3.公路旁依次有A,B,C三个村庄,小明和小红骑自行车分别从A村、B村同时出发匀速前往C村(到了C村不继续往前骑行,也不返回),如图所示,l1,l2分别表示小明和小红与B村的距离s(km)和骑行时间t(h)之间的函数关系,下列结论:①A,B两村相距12km;②小明每小时比小红多骑行8km;③出发1.5h后两人相遇;④图中a=1.65.其中正确的是( )A.②④B.①③④C.①②③D.①②③④4.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,求出y1,y2关于x的函数关系式.(2)若设两车间的距离为S(km),请写出S关于x的函数关系式.(3)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.考向二:利用一次函数进行方案设计与决策一次函数与方程(组)、不等式的实际应用解题要点:1.利用图象交点的意义及图象关系将实际问题转化为一次函数问题2.在解题中要分清图象所对应的实际问题中的参量,同时要注意自变量的取值范围3.利用一次函数的性质进行方案设计与决策,一般先求出函数表达式,结合不等式求出自变量的取值范围,然后再利用函数的增减性或函数图象进行决策。

中考数学专题复习:二次函数图象综合应用

中考数学专题复习:二次函数图象综合应用

图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面.若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: 开口方向 00a a >⇔⎧⎨<⇔⎩向上向下,a 越大,开口越小. 对称轴 2bx a=-(或x h =). 顶点坐标(2ba-,24)4ac b a -或(h ,)k . 单调性当0a >时,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大(如图1);知识互联网思路导航题型一:二次函数图象与其解析式系数的关系二次函数图象综合应用当0a <时,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小(如图2)与坐标轴的交点① 与y 轴的交点:()0c ,; ② 与x 轴的交点:()()1200x x ,,,,其中12x x ,是方程()200ax bx c a ++=≠的两根.图象与x 轴的交点个数① 当240b ac ∆=->时,图象与x 轴有两个交点. ② 当0∆=时,图象与x 轴只有一个交点. ③ 当0∆<时,图象与x 轴没有交点.Ⅰ当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; Ⅱ当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.【引例】 二次函数2y ax bx c =++的图象如图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【解析】 由图知:图象开口向上,所以0a >;函数的对称轴02bx a=->,所以0b <;函数图象与y 轴的交点小于0,所以0c <;函数图象与x 轴有两个不同的交点,所以240b ac ->;同时12bx a=-<,所以20a b +>;1x =所对应的函数值小于0,所以0a b c ++<; 1x =-所对应的函数值大于0,所以0a b c -+>【例1】 ⑴ 二次函数2y ax bx c =++的图象如图所示,则点()a c ,在( )A .第一象限B .第二象限C .第三象限D .第四象限⑵ 二次函数c bx ax y ++=2的图象如图所示,则一次函数b ax y +=与反比例函数xcy =在同一平面直角坐标系中的大致图象为( ) 例题精讲典题精练A .B .C .D .⑶ 一次函数()0≠+=a b ax y 、二次函数bx ax y +=2和反比例函数()0≠=k xky 在同一直角坐标系中的图象如图所示,A 点的坐标为()02,-,则下列结论中,正确的是( )A .k a b +=2B .k b a +=C .0>>b aD .0>>k a【解析】 ⑴ B. ⑵ B .⑶D.【例2】 ⑴ 如图,抛物线2y ax bx c =++,OA OC =,下列关系中正确的是()A .1ac b +=B .1ab c +=C .1bc a +=D .1ac b+= )⑵ 如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,若12OB OC OA ==,则b 的值为 .【解析】 ⑴ A .提示:把()0c -,代入2y ax bx c =++即可.⑵ 12-.提示:先把B ()0c ,代入2y ax bx c =++,得1ac b =--,再把()0c ,代入()()2y a x c x c =+-即可.【例3】 ⑴ 函数2y ax bx c =++与x y =的图象如图所示,有以下结论:①ac b 42->0;②01=++c b ;③063=++c b ;④当1<x<3时,()012<c x b x +-+.其中正确的为.⑵ 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列8 个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()a b m am b +>+,(1m ≠的实数);⑥20a b += ;⑦240b ac -<,⑧22()a c b +>,其中正确的结论有( )A .2个B .3个C .4个D .5个【解析】 ⑴ ③④⑵ C .对称轴在y 轴的右边得0ab <(由开口向下得0a <,故0b >),抛物线与y 轴交于正半轴得0c >,∴0abc <,①不正确;当1x =-时,函数值为0a b c -+<,②不正确; 当2x =时,函数值420a b c ++>,③正确;其实0x =和2x =到对称轴1x =的距离相等,函数值相等得42a b c c ++=,∴2b a =-代入0a b c -+<,32bc <,即23c b <,④正确;当1x =,∵1m ≠,2max y a b c am bm c =++>++,可知⑤正确;由对称轴12ba-=得20a b +=,故⑥正确;抛物线与x 轴有两个交点,故240b ac ->,故⑦不正确;0a b c ++>,0a b c -+<,故()220a c b +-<,故⑧不正确.对于二次函数()20y ax bx c a =++>(max y 表示y 的最大值,min y 表示y 的最小值) ⑴ 若自变量x 的取值范围为全体实数,如图①,函数在顶点处2bx a=-时,取到最值. ⑵ 若2bm x n a<-≤≤,如图②,当x m =,max y y =;当x n =,min y y =. ⑶ 若2bm x n a-<≤≤,如图③,当x m =,min y y =;当x n =,max y y =. ⑷ 若m x n ≤≤,且2b m n a -≤≤,22b b n m a a +>--,如图④,当2bx a=-,min y y =; 当x n =,max y y =.【引例】 ⑴ 若x 为任意实数,求函数221y x x =-+的最小值;⑵ 若12x ≤≤,求221y x x =-+的最大值、最小值; ⑶ 若01x ≤≤,求221y x x =-+的最大值、最小值;b 思路导航例题精讲题型二:二次函数的最值⑷ 若20x -≤≤,求221y x x =-+的最大值、最小值; ⑸ 若x 为整数,求函数221y x x =-+的最小值.【解析】 ⑴ 套用求最值公式(建议教师讲配方法):当112224b x a -=-=-=⨯时,y 的最小值是24748ac b a -=. ⑵ 由图象可知:当12x ≤≤时,函数221y x x =-+单调递增,当1x =时,y 最小,且21112y =⨯-+=,当2x =时,y 最大,且222217y =⨯-+=.⑶ 由图象可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =.∵当0x =时,20011y =⨯-+=;当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.⑷ 由函数图象开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为11,当0x =时,y 取最小值为1.⑸ ∵112224b x a -=-=-=⨯,当0x =时,y 取最小值为1.【点评】 由此题我们可以得到:求二次函数2(0)y ax bx c a =++≠在给定区域内的最值,得看抛物线顶点横坐标2bx a=-是否在给定区域内.若在,则在顶点处取到一个最值,若不在,则在端点处取得最大值和最小值(其实求出端点值和顶点值,这三个值中最大的为最大值,最小的为最小值).【例4】 ⑴ 已知m 、n 、k 为非负实数,且121=+=+-n k k m ,则代数式6822+-k k 的最小值 为 .⑵ 已知实数x y ,满足2330x x y ++-=,则x y +的最大值为 .⑶当12x ≤时,二次函数223y x x =--的最小值为( ) A .4- B .154- C .12- D .12【解析】 ⑴∵m 、n 、k 为非负实数,且121=+=+-n k k m ,∴m 、n 、k 最小为0,当n =0时,k 最大为:21;∴210≤≤k ,故最小值为2.5.⑵ 4.提示:233y x x =--+,令()222314q x y x x x =+=--+=-++,当1x =-,q的最大值为4.本题属于x 为全体实数,求二次函数的最值,配方法要熟练掌握.⑶ B .提示:二次函数的对称轴为1122b x a =-=>,且抛物线的开口向上,故12x =时,y 的最小值为154-.【例5】 如图,抛物线211y ax ax =--+经过点1928P ⎛⎫- ⎪⎝⎭,,且与抛物线221y ax ax =--相交于典题精练A B ,两点.⑴ 求a 值; ⑵ 设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;⑶ 设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点()0Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C D ,两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?【解析】 ⑴ ∵点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,∴1191428a a -++=,解得12a =.⑵ 由⑴知12a =,∴抛物线2111122y x x =--+,2211122y x x =--.当2111022x x --+=时,解得12x =-,21x =.∵点M 在点N 的左边,∴2M x =-,1N x =. 当2111022x x --=时,解得31x =-,42x =. ∵点E 在点F 的左边,∴1E x =-,2F x =.∵0M F x x +=,0N E x x +=,∴点M 与点F 关于y 轴对称,点N 与点E 关于y 轴对称. ⑶ ∵102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.又21221112211122y x x y x x ⎧=--+⎪⎪⎨⎪=--⎪⎩,消y可解得12x x ==,则当0x =时,CD 的最大值为2.【例6】 ⑴ 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围⑵ 二次函数2y ax bx c =++的图象的一部分如图所示,试求a b c ++的取值范围.【解析】 ⑴ 根据二次函数图象可知0a <,又此二次函数图象经过(10),,(01), 则有0a b c ++=,1c =,得(1)b a =-+,∵0a <,据图象得对称轴在y 轴左侧,∴0b <∴()10a -+<,∴1a >-于是有10a -<<. ⑵ 由图象可知0a >.又顶点在y 轴的右侧,在x 轴的下方,则:02ba->,2404ac b a -<,∴0b <. 又∵当0x =时,1y c =-=当0y =时,1x =-,∴0a b c -+= ∴10a b =+> ∴10b -<<.∴202a b c a b c b b ++=-++=+ ∴220b -<<,即20a b c -<++<.精讲:数形结合思想在二次函数中的应用探究【探究对象】数形结合思想在二次函数中的应用 【探究过程】【探究1】数形结合思想在含参二次函数中求参数的取值范围的应用;二次函数的图像信息:⑴ 根据抛物线的开口方向判断a 的正负性.⑵ 根据抛物线的对称轴的位置判断a 与b 之间的关系. ⑶ 根据抛物线与y 轴的交点,判断c 的大小.⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性.⑸ 根据抛物线所经过的特殊点的坐标,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a-的大小.例. 2y ax bx c =++的图象如图所示.设|||||2||2|M a b c a b c a b a b =++--+++--, 则( )A .0M >B .0M =C .0M <D .不能确定M 为正,为负或为0分析:依题意得0a >,012ba<-<,∴0b <,20a b +>,20a b ->, 又当1x =时,0y a b c =++<,当1x =-时,0y a b c =-+>,故()()(2)(2)2()0M a b c a b c a b a b a b c =-++--+++--=--+<,故选C .☆【探究2】数形结合思想在求解二次函数的区间最值中的应用;(区间最值问题为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲) 区间最值分三种类型: “轴定区间定”、“轴动区间定”、“轴定区间动”;1、轴定区间定:2、轴动区间定:例.求2()22f x x ax =-+在[24],上的最大值和最小值. 分析: 先求最小值.因为()f x 的对称轴是x a =,可分以下三种情况:⑴ 当2a <时,()f x 在[24],上为增函数,所以min ()(2)64f x f a ==-; ⑵ 当24a ≤≤时,()f a 为最小值,2min ()2f x a =-;⑶ 当4a >时,()f x 在[24],上为减函数,所以min ()(4)188f x f a ==-.综上所述:2min 64, (2)()2, (24)188, (4)a a f x a a a a -<⎧⎪=-⎨⎪->⎩≤≤最大值为(2)f 与(4)f 中较大者:(2)(4)(64)(188)124f f a a a -=---=-+,(1)当3a ≥时,(2)(4)f f ≥,则max ()(2)64f x f a ==-; (2)当3a <时,(2)(4)f f <,则max ()(4)188f x f a ==-.故max 64, (3)()88, (3)a a f x a a -⎧=⎨-<⎩≥ 点评:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x a = 与区间[24],的位置关系,分三种情况讨论;最大值在端点取得时,只须比较(2)f 与 (4)f 的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两 种情况. 3、轴定区间动:例.若函数2()22f x x x =-+当1t x t +≤≤时的最小值为()g t ,求函数()g t 当[32]t ∈-,时的最值. 分析:2()(1)1f x x =-+,按直线1x =与区间[1]t t +,的不同位置关系分类讨论:若1t >,则2min ()()(1)1f x f t t ==-+;若11t t +≤≤,即01t ≤≤,则min ()(1)1f x f ==; 若11t +<,即0t <,则2min ()(1)1f x f t t =+=+.∴22(1)1(1)()1(0)1(0)t t g t t t t ⎧-+>⎪=⎨⎪+<⎩≤≤1 函数()g t 在(0)-∞,内是减函数,在[01],内是常值函数,在(1)+∞,内是增函数,又(3)(2)g g ->,故在区间[32]-,内,min ()1g t =(当01t ≤≤时取得),max ()(3)10g t g =-=.小结:(i )解此类问题时,心中要有图象;(ii )含参数问题有两种:一种是“轴变区间定”,另一种是“轴定区间变”.讨论时,要紧紧抓住对称轴与所给区间的相对位置关系,这是进行正确划分的关键.☆【探究3】数形结合思想在求解二次函数的区间根中的应用;(区间根问题同样为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲)二次方程的根其实质就是其相应二次函数的图像与x 轴交点的横坐标.因此, 可以借助于二次函数及其图像,利用数形结合的方法来研究二次方程的实根分布问题.设二次方程()002≠=++a c bx ax 的两个实根1x 、2x ()21x x <,ac b 42-=∆,方程对应的二次函数为()()02≠++=a c bx ax x f .1.当方程有一根大于m ,另一根小于m 时,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ;2.当方程两根均大于m 时,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, m ab2-,()0>m af ; 3.当方程两根均在区间()n m ,内,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, n abm <<2-,()0>m af ,()0>n af ; 4.当两根中仅有一根在区间()n m ,内,对应函数()x f 的图像有下列四种情形:方程系数所满足的充要条件: ()()0<n f m f ⋅;5.当两根在区间[]n m ,之外时:对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ,()0<n af ;6.当两根分别在区间()n m ,、()t s ,内,且s n ≤,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0>m af ,()0<n af ,()0<s af , ()0>t af .小结: 由函数图像与x 轴交点的位置写出相应的充要条件,一般考虑三个方面:①判别式ac b 42-=∆的符号;②对称轴abx 2-=的位置分布;③二次函数在实根分布界点处 函数值的符号.例.若方程01222=+-+m mx x 的两个根均大于2,求实数m 的取值范围. 分析:令()1222+-+=m mx x x f ,如图得充要条件:()()⎪⎩⎪⎨⎧-+-+=≥+-⋅-=∆20124220124422>>m m m f m m ,解得4316-≤-m .训练1. 已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A B C D【解析】 B .由a b c >>,且0a b c ++=,可得0a >, 0c <,且过()10,点,由a b c >>,且a b c ++=0,利用不等式性质,可以进一步推出下列不等关系:a b a b >>--,∴112ba -<<, ∴11224b a -<-<.另一方法:∵a b >,∴330a b ->,330a b a b c -+++>,从而得到420a b c -+>.训练2.已知二次函数()2211y kx k x =+--与x 轴交点的横坐标为1x 、2x ()12x x <,则对于下列结论:⑴ 当2x =-时,1y =;⑵ 当2x x >时,0y >;⑶ 方程()22110kx k x +--=有两个不相等的实数根1x 、2x ;⑷11x <-,21x >-;⑸21x x -=确的结论是______.(只需填写序号)【解析】 ⑴⑶⑷.当2x =-时,代入得1y =,故⑴正确;因为k 的符号不确定,故开口不确定,因此无法确定当2x x >时,0y >,故⑵不正确;联立方程()22110y kx k x y ⎧=+--⎪⎨=⎪⎩可得()22110kx k x +--=,抛物线与x 轴有两个交点,即方程()22110kx k x +--=有两个不相等的实数根.当1x =-时,y k =-,若0k >,0y k =-<,若0k <,0y k =->,故⑷正确.21x x -=.训练3. 如图所示,二次函数2(2)5y x a x a =--+-的图象交x 轴于A 和B ,交y 轴于C ,当线段AB 最短时,求线段OC 的长.【解析】 设1(A x ,0),2(B x ,0),思维拓展训练(选讲)则1x ,2x 是方程2(2)50x a x a --+-=的两根,则12AB x x =-=== 当4a =时,AB 取最小值,即最短,此时,抛物线为221y x x =--, 可求得C 的纵坐标为1-,即线段OC 的长是1.训练4. 小明为了通过描点法作出函数21y x x =-+的图象,先取自变量x 的7个值满足:213276x x x x x x d -=-==-= ,再分别算出对应的y 值,列出表1:表1:x1x 2x3x4x 5x 6x7xy1 3 7 13 21 31 43记121m y y =-,232m y y =-,343m y y =-,454m y y =-,…; 121s m m =-,232s m m =-,343s m m =-,… ⑴ 判断1s 、2s 、3s 之间关系;⑵ 若将函数“21y x x =-+”改为“2(0)y ax bx c a =++≠”,列出表2:表2:x 1x 2x 3x 4x 5x 6x 7x y1y 2y 3y 4y 5y 6y 7y其他条件不变,判断1s 、2s 、3s 之间关系,并说明理由;⑶ 小明为了通过描点法作出函数2(0)y ax bx c a =++≠的图象,列出表3: 表3: x 1x 2x 3x4x 5x 6x7x y 10 50 110 190 290 420 550由于小明的粗心,表3中有一个y 值算错了,请指出算错的y 值(直接写答案).【解析】 ⑴ 123s s s ==;⑵ 123s s s ==.证明:()()222121111112m y y a x d b x d c ax bx c adx ad bd ⎡⎤⎡⎤=-=++++-++=++⎣⎦⎣⎦()222322122m y y adx ad bd ad x d ad bd =-=++=+++()2234331222m y y adx ad bd ad x d ad bd =-=++=+++()2245441223m y y adx ad bd ad x d ad bd =-=++=+++()22212111222s m m ad x d ad bd adx ad bd ad ⎡⎤⎡⎤=-=+++-++=⎣⎦⎣⎦ 同理22322s m m ad =-=,23432s m m ad =-=. ∴123s s s ==.⑶ 表中的420改为410.题型一 二次函数图象与其解析式系数的关系 巩固练习【练习1】 ⑴ 函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的( )⑵ 二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )【解析】 ⑴ A .⑵ D .【练习2】 如图所示,二次函数2y ax bx c =++的图象开口向上,图象经点()12-,和()10,且与y 轴交于负半轴.⑴ 下列四个结论:①0a >;②0b >;③0c >;④0a b c ++=, 其中正确的结论的序号是 . ⑵给出下列四个结论:①0abc <;②20a b +>;③1a c +=;④1a >.其中正确的结论的序号是 .【解析】 ⑴图象开口向上得0a >;对称轴02ba->可得0b <;当0x =时,0y <,即0c <;由1x =时,0y =,即0a b c ++=.故①④.⑵由⑴可知0abc >;对称轴12ba-<,∴20a b +>;∵点()12-,和()10,在抛物线上,代入解析式得20a b c a b c -+=⎧⎨++=⎩两式相加得1a c +=,得1a c =-,∵0c <,∴11c ->,即1a >.A BCD复习巩固故②③④.【练习3】 如图,表示抛物线2y ax bx c =++的一部分图象,它与x轴的一个交点为A ,与y 轴交于点B .则b 的取值范围是( )A .20b -<<B .10b -<<C .102b -<< D .01b <<【解析】 B .【练习4】 二次函数()20y ax bx c a =++≠的图象大致如图所示,⑴判别a ,b ,c 和24b ac -的符号,并说明理由; ⑵如果OA OC =,求证:10ac b ++=【解析】 ⑴ 解:因为抛物线开口向上,0a >.因为抛物线与y 轴交于负半轴,0c <.又因为抛物线对称轴在y 轴的右侧,02ba->,即a ,b 异号,由0a >,得0b <. 因为抛物线与x 轴有两个交点,所以方程20ax bx c ++=有两个不相等的实根,所以其判别式240b ac ->.⑵ 证明:由于C 点坐标为()0c ,,而OA OC =,所以A 点坐标为()0c ,,把()0A c ,代入2y ax bx c =++,得20ac bc c =++. 因为0c ≠,所以10ac b ++=.题型二 二次函数的最值 巩固练习【练习5】 已知:关于x 的一元二次方程22(2)0x n m x m mn +-+-=①.⑴ 求证:方程①有两个实数根;⑵ 若10m n --=,求证方程①有一个实数根为1;⑶ 在⑵的条件下,设方程①的另一个根为a . 当2x =时,关于m 的函数1y nx am =+与()2222y x a n m x m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线l 与1y 、2y 的图象分别交于点C 、D . 当l 沿AB 由点A 平移到点B 时,求CD 的最大值.【解析】 ⑴ 证明:()()22224n m m mn n ∆=---=.∵20n ≥, ∴0∆≥. ∴方程①有两个实数根.⑵ 解:由10m n --=,得1m n -=当x =1时,等号左边212n m m mn =+-+-()121210n m m m n n m m n m =+-+-=+-+=+-=. 等号右边=0. ∴左边=右边.∴ 1x =是方程①的一个实数根.⑶ 解:由求根公式,得22m n nx -±=.x =m 或x m n =-∵ 1m n -=, ∴ a m =.当2x =时,222122(1)22y n m m m m m =+=-+=+-,22222()()42(1)24y m n m m m m n m m m m m =+--+-=+--+=--+如图,当l 沿AB 由点A 平移到点B 时,22211273363(24CD y y m m m =-=--+=-++由12y y =,得222224m m m m +-=--+解得m =-2或m =1.∴ m A =-2,m B =1.∵-2<12-<1,∴当m =12-时,CD 取得最大值274.【测试1】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断:24a b c a b c a b c b ac ++-+-、、、、、的符号.【解析】由图像可知0a >,102ba-<<,2404ac b a -<,2000a b c ⋅+⋅+<,0a b c -+=,0a b c ++>,于是20000040a b c a b c a b c b ac >><++>-+=->,,,,,.【测试2】 若01x ≤≤,求221y x x =-+的最大值、最小值;【解析】由图像可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =. ∵当0x =时,20011y =⨯-+=当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.课后测。

从函数图象中获取信息解读

从函数图象中获取信息解读

预祝:二零零九年数学年会圆满成功!从函数图象中获取信息专题复习授课教师:国防科大附中陈石指导单位:国防科大附中数学组二零零九年十二月十九日本教案还存在许多不足,请各位老师提出宝贵的意见!谢谢指导!课题:从函数图象中获取信息—专题复习授课教师:国防科大附中陈石指导单位:国防科大附中数学组一、教材分析《从函数图象中获取信息》这节着重培养学生的识图能力,能对所给图象信息进行识别与分析,从而解决简单的实际问题。

因此教材的重点放在将图形与文字语言建立对应关系,从而直接从图象上获取相应的解答。

同时告诉我们有关一次函数图象的某些特征,确定解析式。

教材中重视这两个环节,可提示学生从数、形两个方面进行探讨,为下一节用函数观点看方程(组)与不等式的学习打下良好的基础。

二、教学目标知识与技能目标:1.关注图象中特定点表示的信息, 求出各段的表达式,从而理解整个过程.同时注意领悟数形结合的思想;2.能根据所给信息确定一次函数表达式.能运用数形结合的思想探索问题,发现问题;3.注意认真理解题意,并和图象中的信息相结合,提高综合解题的能力。

过程与方法目标:1.经历通过函数图象获取信息的过程,培养学生数形结合的意识,发展学生形象思维能力;2.经历利用函数图象解决实际问题的过程,发展学生的数学应用能力。

情感与态度目标:1.经历对实际问题的解决过程在合作与交流活动中发展学生的合作意识和能力;2.经历从不同角度去观察、分析、思考、体验解决问题的多样性的过程,获得成功的体验,树立学习的信心。

三、教学重点、难点:1.结合实际问题的讲练,培养学生收集、选择、处理函数信息,并作出合理的推断或大胆的猜测的能力;2.使学生能够熟练地求出实际问题中一次函数的解析式。

四、教学过程:创设情境,引入新课精心设置一个问题情景去激发学生的兴趣和求知欲,从而激励学生去探索、发现,充分调动学生的积极性。

复习课更需要情境创设去激发学生的学习兴趣。

实践活动一:找一找:用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,下面哪个图形与 “龟兔赛跑”的故事情节相吻合?议一议:从图上你能获取哪些具体信息?设计意图:通过这个活动的讲解,使学生知道识图的几种方法:(1) 图形与文字语言建立对应关系,从而直接从图象上获取相应的解答; (2) 理解横、纵坐标分别表示的的实际意义,分清变量之间的关系。

九年级数学章末专题复习小专题(四)二次函数图象信息题归类习题新人教版

九年级数学章末专题复习小专题(四)二次函数图象信息题归类习题新人教版

小专题(四)二次函数图象信息题归类抛物线y=ax2+bx+c的图象与字母系数a,b,c之间的关系:(1)当a>0时,开口向上;当a<0时,开口向下.(2)若对称轴在y轴的左侧,则a,b同号;若对称轴在y轴的右侧,则a,b异号.(3)若抛物线与y轴的正半轴相交,则c>0;若抛物线与y轴的负半轴相交,则c<0;若抛物线经过原点,则c=0.(4)当x=1时,y=ax2+bx+c=a+b+c;当x=-1时,y=ax2+bx+c=a-b+c;当x=2时,y=ax2+bx+c=4a+2b+c;当x=-2时,y=ax2+bx+c=4a-2b+c,…(5)当对称轴x=1时,2a+b=0;当对称轴x=-1时,2a-b=0;判断2a+b大于或者等于0,看对称轴与1的大小关系;判断2a-b大于或者等于0,看对称轴与-1的大小关系.(6)当b2-4ac>0时,抛物线与横轴有两个交点;当b2-4ac=0时,抛物线与横轴有一个交点;当b2-4ac<0时,抛物线与横轴没有交点.类型1根据一种函数的图象确定另一函数的图象1.(遵义中考)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是(D)2.(安徽中考)如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是(A)类型2由抛物线的位置确定代数式的值或取值范围3.(阜新中考)二次函数y=ax2+bx+c的图象如图所示,下列选项中正确的是(B)A.a>0B.b>0C.c<0D.关于x的一元二次方程ax2+bx+c=0没有实数根4.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是(A)A.b≥B.b≥1或b≤-1C.b≥2D.1≤b≤25.二次函数y=ax2+bx+c的图象如图所示,则下列解析式不正确的是(C)A.a<0B.abc>0C.a+b+c>0D.b2-4ac>06.如图,二次函数y=ax2+bx+c=0(a≠0)的图象与x轴正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③-1<c<0;④关于x的方程ax2+bx+c=0(a≠0)有一个根为-.其中正确的结论有(C)A.1个B.2个C.3个D.4个7.(恩施中考)抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a-c=0;④当x<或x>6时,y1>y2,其中正确的个数为(C)A.1B.2C.3D.4类型3利用二次函数图象求二次函数解析式8.如图,一个二次函数的图象经过A,B,C三点,点A的坐标是(-1,0),点C的坐标是(0,5),且OA∶OB=1∶4,则这个二次函数的解析式是y=-x2+x+5.类型4利用二次函数图象求一元二次方程的根9.(苏州中考)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x 的一元二次方程x2-3x+m=0的两实数根是(B)A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=310.若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是(D)A.0<k<4B.-3<k<1C.k<-3或k>1D.k<4类型5利用二次函数图象解不等式11.二次函数y=x2-x-2的图象如图所示,则不等式x2-x-2<0的解集是(C)A.x<-1B.x>2C.-1<x<2D.x<-1或x>212.如图,二次函数y1=ax2+bx+c与一次函数y2=kx的图象交于点A和原点O,点A的横坐标为-4,点A和点B关于抛物线的对称轴对称,点B的横坐标为1,则满足0<y1<y2的x的取值范围是(A)A. -4<x<-3B.-4<x<0C.-3<x<0D.-4<x<113.如图是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是x≤-1或x≥3.14.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.解:(1)二次函数的解析式为y=(x+2)2-1=x2+4x+3,一次函数的解析式为y=-x-1.(2)x≤-4或x≥-1.。

2020中考复习——函数图像信息题训练一(含答案)

2020中考复习——函数图像信息题训练一(含答案)

2020中考复习——函数图像信息题训练(一)班级:___________姓名:___________ 得分:___________一、选择题1.一次函数y=ax+b,ab<0,则其大致图象正确的是()A. B.C. D.2.关于函数y=−(x+2)2−1的图象叙述正确的是()A. 开口向上B. 顶点(2,−1)C. 与y轴交点为(0,−1)D. 图象都在x轴下方3.函数y=︱x+1︱的图像是()A. B.C. D.4.老师布置课外学习作业:探究函数y=2x+2的性质,小明根据研究函数的方法:x列表、描点、连线画出图像,观察图像后,他得到如下性质:①x取值范围是不等随x的增大于0的一切实数,y的取值范围是y≥4;②当x>1时,函数y=2x+2x 而增大;③函数图像的对称轴为直线x=1;④函数图像关于原点对称.其中正确的是()A. ①②B. ③④C. ①③D. ②④5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的关系用图象表示为()A. B. C. D.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.如图,小亮在操场上玩,一段时间内沿M−A−B−M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论正确的是()A. 甲步行的速度为60米/分B. 乙走完全程用了32分钟C. 乙用16分钟追上甲D. 乙到达终点时,甲离终点还有300米二、填空题9.如图,放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则s与t的函数关系式为_______ .(x>0)的图象10.如图,一次函数y=kx+b(k,b为常数,且k≠0)和反比例函数y=4x<kx+b的解集是.交于A、B两点,利用函数图象直接写出不等式4xx+3的图象大致如图.若y1<y2则自变量x的取值11.已知函数y1=x2与函数y2=−12范围是____________.12.周末,小明和爸爸一起去登山,到达山脚后,爸爸遇上一朋友,准备和朋友聊会天,于是爸爸让小明先出发.爸爸和朋友聊了5分钟后,立即沿小明行径的路线匀速登山去追小明,经过一段时间,爸爸追上了小明,但他没作停留,继续按原速度登山,登上山顶才停下来等待小明.整个过程中,小明一直按一定的速度匀速登山,没有休息.设小明登山的时间为x(分钟),小明与爸爸之间的距离为y(米),y与x的关系如图所示,则a+b的值=_____.13.直线y1=k1x+a与y2=k2x+b的图象如图,则:(1)当x________时,k1x+a=k2x+b;(2)当x________时,k1x+a>k2x+b;(3)当x________时,k1x+a<k2x+b.14.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小明离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校.情境b:小明从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是___________,___________.(填序号)(2)请你为剩下的函数图象写出一个适合的情境.15.阅读下面材料:小明想探究函数y=√x2−1的性质,他借助计算器求出了y与x的几组对应值,并在平面直角坐标系中画出了函数图象:x…−3−2−1123…y… 2.83 1.7300 1.73 2.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是______.请写出函数y=√x2−1的一条性质:______.三、解答题16.已知函数y=−12x+1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题复习--函数图象中的信息问题
【中考要求】
1.学会用代数法表示与函数图象相关的几何图形的面积,并能用函数图象的性质解决相关问题;
2.领会转化、数形结合、分类讨论的数学思想在函数问题中的应用.
【学习过程】——专题突破
专题一、利用图象解决行程中的分段函数问题
(一)结合题意,得出正确的函数图
【典例精析】:例1:2012中国(重庆)国际云计算博览会简称“云博会”于3月22日—24日在重庆南坪国际会展中心隆重举行。

小明开车从家去看展览,预计1个小时能到达,行驶了半个小时,刚好行驶了一半路程,遇到堵车道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小明将车停在轻轨站的车库,然后坐轻轨去观看“云博会”,结果按预计时间到达。

下面能反映该小明距离会展中心的距离y(千米)与时间x(小时)的函数关系的大致图象是(

A B C D
例2:重庆铁路局一列满载着“爱心”大米的专列向近期干旱灾区进发,途
中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达
灾区,能够用速度(v)与时间(t)描述上述过程的大致图象是()
例3:一名学生在过完“五•一”假期以后,骑自行车从家里出发前往离家
10千米的学校.他以每小时8千米的速度行走了一小时后,想起有一科作业
忘在家里了,就立即以每小时16千米的速度赶回家.拿上作业后用一个小
时赶到学校(忽略停留时间).下列表示他出发以后与学校的距离y(千米)
和时间x(小时)的关系的图象中,正确的是()
(二)给出函数图象,分析图象获取正确信息
例4:某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时
间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错
误的是()
A.修车时间为15分钟 B.学校离家的距离为2000米
C.到达学校时共用时间20分钟 D.自行车发生故障时离家距离为1000米
专题二、二次函数图象中的信息问题 【轻松尝试】
1、二次函数y=ax ²+bx +c (a ≠o )的图象如图所示,则在下列各不等式 中成立的个数是______ ①abc<0 ②a+b+c < 0 ③a+c > b ④2a+b=0 ⑤Δ
=b-4ac > 0
(1题图) (2题图)
2、己知二次函数y=ax 2
+bx+c (a ≠0)的图象如图所示,则下列结论:其中正确的个数( )
①a-b+c >0 ②方程ax 2
+bx+c=0的两根之和大于零 ③y 随x 的增大而增大 ④一次函数y=ax+bc 的图象一定不过第二象限 【合作探究】
例5:已知二次函数y=ax ²+bx +c (a ≠o )的图象如
图所示对称轴为 。

下列结论中正确的是( ) A. abc>0 B.a+b=0 C.4a+c<2b D.2b+c>0 【挑战自我】
3、已知二次函数y=ax +bx +c (a ≠o )如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:
①b ﹣2a=0; ②abc <0; ③a ﹣2b+4c <0; ④8a+c >0.
其中正确的有( ) A.1个 B.2个 C.3个 D.4个 专题三、由二次函数的图象求解析式和 面积最值问题 【典例精析】
例6:如图:已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;
(2) 若点E 为第二象限抛物线上一动点,连接BE 、
CE ,求四边形BOCE 面积的最大值,并求此时E 点
的坐标。

【合作探究】
例7.:已知二次函数y=-x 2
+bx+c 的图象分别交x 轴、y 轴于A 、B 、C 三点. (1)求抛物线的解析式
(2)已知点N 为二次函数图象上的一个动点,且点N 在直线BC 的上方(点N 与B 、C 不重合),设点N 的横坐标为m. ①用含m 的代数式表示△NBC 面积; ②求△NBC 面积的最大值.
【课堂小结】:本节课你有收获了什么? 【当堂测试】
1、一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是( )
2、小亮从家步行到公交车站台,等公交车去校.图中的折线表示小亮的行程s (km )与所花时间t (min )之间的函数关系.下列说法错误的是( ) A .他离家8km 共用了30min B .他等公交车时间为6min
C .他步行的速度是100m/min
D .公交车的速度是
350m/min
3、已知二次函数y=ax +bx +c (a ≠o )的图象如图所示,下列结论: ①abc >0 ②2a+b <0 ③4a-2b+c <0 ④a+c >0, 其中正确的结论的为_______。

4.如图,抛物线213
222
y x x =
--的图象与x 轴交于A 、B 两点,与y 轴交于C 点.若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的
最大值,并求出此时M点的坐标.。

相关文档
最新文档