高等代数(第三版)10.1线性函数

合集下载

白国仲《高等代数》§10.3 双线性函数

白国仲《高等代数》§10.3   双线性函数

i 1
i 1
则 g( , ) x1 x2
y1
xn

B

y2

,
yn
是V上的一个双线性函数. 为满射.
§10.3 双线性函数
若双线性函数 f ( , ) g( , ), 但 ( f ) ( g).
设 f ( , ) A f (i , j ) ,
第十章 双线性函数
§10.1 线性函数 §10.2 对偶空间 §10.3 双线性函数 §10.4 对称双线性函数
§10.3 双线性函数
一、双线性函数 二、度量矩阵 三、非退化双线性函数
§10.3 双线性函数
一、双线性函数
定义 设V 是数域 P上的n 维线性空间,映射 f :V V P 为 V上的二元函数. 即对 , V , 根据 f 唯一地对应于P 中一个数 f ( , ) , 如果 f ( , ) 具有性质:
易证 f g, kf 仍为V上双线性函数.
并且 ( f g)(i , j ) f (i , j ) g(i , j )
f g A B f (i , j ) g(i , j ) kf kA k f (i , j )
§10.3 双线性函数
而 A' X 0只有零解 A' 0. 即 A 0, 即 A 非退化.
推论: V , 由 f ( , ) 0 可推出 0,
则 f 非退化.
§10.3 双线性函数
例、设 A P mm , 定义 Pmn 上的一个二元函数 f ( X ,Y ) Tr( X ' AY )nn, X ,Y P mn (1) 证明 f 是 Pmn上得双线性函数; (2) 求 f ( X ,Y ) 在基 E11, , E1n , E21, , E2n , , Em1, , Emn 下的度量矩阵.

高等代数教案

高等代数教案

全套高等代数教案第一章:高等代数概述1.1 高等代数的定义与意义理解高等代数的基本概念了解高等代数在数学及其它领域中的应用1.2 基本术语和符号学习常见的代数运算符掌握基本的代数表达式1.3 基本定理和性质学习线性方程组的解的存在性定理理解线性空间的基本性质第二章:矩阵和行列式2.1 矩阵的基本概念理解矩阵的定义和矩阵元素的意义学习矩阵的运算规则2.2 行列式的定义和性质理解行列式的概念掌握行列式的计算方法2.3 矩阵和行列式的应用学习矩阵在几何中的应用了解矩阵在概率论和统计中的应用第三章:线性方程组3.1 高斯消元法学习高斯消元法的原理和步骤掌握高斯消元法的应用3.2 矩阵的秩理解矩阵秩的概念学习矩阵秩的计算方法3.3 线性方程组的解的结构理解线性方程组解的存在性定理学习线性方程组解的方法第四章:特征值和特征向量4.1 特征值和特征向量的定义理解特征值和特征向量的概念学习特征值和特征向量的计算方法4.2 矩阵的对角化理解矩阵对角化的概念掌握矩阵对角化的方法4.3 特征值和特征向量的应用学习特征值和特征向量在几何中的应用了解特征值和特征向量在物理中的应用第五章:向量空间和线性变换5.1 向量空间的基本概念理解向量空间和子空间的概念学习向量空间的基和维数5.2 线性变换的基本概念理解线性变换的定义和性质学习线性变换的矩阵表示5.3 线性变换的应用学习线性变换在几何中的应用了解线性变换在信号处理中的应用第六章:特征多项式和最小多项式6.1 特征多项式的定义和性质理解特征多项式的概念学习特征多项式的计算方法6.2 最小多项式的定义和性质理解最小多项式的概念掌握最小多项式的计算方法6.3 特征多项式和最小多项式的应用学习特征多项式和最小多项式在矩阵对角化中的应用了解特征多项式和最小多项式在多项式环中的应用第七章:二次型7.1 二次型的定义和基本性质理解二次型的概念学习二次型的标准形和规范形7.2 惯性定理和二次型的分类理解惯性定理的概念学习二次型的分类方法7.3 二次型的应用学习二次型在几何中的应用了解二次型在优化问题中的应用第八章:线性微分方程组8.1 线性微分方程组的定义和性质理解线性微分方程组的概念学习线性微分方程组的解的结构8.2 常系数线性微分方程组的解法学习常系数线性微分方程组的解法掌握常系数线性微分方程组的通解8.3 线性微分方程组的应用学习线性微分方程组在物理学中的应用了解线性微分方程组在经济学中的应用第九章:特征值问题的数值解法9.1 特征值问题的数值解法概述了解特征值问题的数值解法的概念学习特征值问题的数值解法的方法9.2 幂法和反幂法学习幂法和反幂法的原理和步骤掌握幂法和反幂法的应用9.3 稀疏矩阵和迭代法理解稀疏矩阵的概念学习迭代法的原理和步骤第十章:高等代数的进一步研究10.1 向量丛和纤维丛理解向量丛和纤维丛的概念学习向量丛和纤维丛的分类方法10.2 群表示论的基本概念理解群表示论的概念学习群表示论的基本性质10.3 高等代数的其它研究领域了解高等代数在数学物理方程中的应用学习高等代数在和机器学习中的应用重点和难点解析重点环节一:矩阵的秩秩的概念是高等代数中的重要概念,理解秩的计算方法和秩的性质对于后续学习线性变换、矩阵对角化等高级内容至关重要。

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。

高等代数习题答案

高等代数习题答案

高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。

证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。

故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。

于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。

13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。

证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。

高等代数(第三版)10.3双线性函数

高等代数(第三版)10.3双线性函数
i=1 i=1 n n
f ( , ) x1 y1
xr yr (0 r n)
第十章 双线性函数与辛空间 10.3 双线性函数
推论2 设V为实数域上n维线性空间, f ( , )V上的一个对称双线性函数, 则存在V的一组基1, 2, , n, 对V中任意向量= xi i , = yi i , 有
结论2 V上的反对称双线性函数f ( , ) 如果是非退化的,则存在V的一组基
1, -1 , r , -r使
f ( i , i ) 1 i 1, , r f ( , ) 0 i j 0 i j
第十章 双线性函数与辛空间 10.3 双线性函数
式中1 , 2 ,1 ,2是V中任意向量, k1 ,k2是P中任意数,则称f ( , ) 为V上的一个双线性函数.
第十章 双线性函数与辛空间 10.3 双线性函数
例1 欧氏空间V的内积是V上双线性函 数 例2 设 f1 ( ), f 2 ( ) 都是线性空间V上的线性函数,则
f ( , ) f1 ( ) f 2 ( )
i=1 i=1 n n
f ( , ) x1 y1 (0 p r n)
x p y p x p 1 y p 1
xr yr
第十章 双线性函数与辛空间 10.3 双线性函数
定义7 设V为数域P上线性空间, f ( , )是V上的对称双线性函数, 当= 时,V上函数f ( , )称为 f ( , )对应的二次齐次函数.
第十章 双线性函数与辛空间 10.3 双线性函数
结论
双线性函数是对称的
当且仅当f ( , )=f ( , ) 当且仅当它在任一组基下的 度量矩阵是对称矩阵. 双线性函数是反对称的 当且仅当f ( , )=-f ( , ) 当且仅当它在任一组基下的 度量矩阵是反对称矩阵.

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

高代第十章双线性函数与辛空间

高代第十章双线性函数与辛空间

§10.1 线性函数
这是因为: ① p1( x) p2( x) pn( x) 线性无关. 事实上,若有
c1 p1( x) c2 p2( x) cn pn( x) 0. 用 ai 依次代入上式则得: ci 0, i 1, 2, , n. p1( x), p2( x), , pn( x) 线性无关.
§10.1 线性函数
1. 对偶基
设 1, 2 , , n为数域 P上线性空间V 的一组基,
作映射
fi ( j )
1, 0,
i i
j j
,
i, j 1,2,
,n
则 fi L(V , P) V *,且
① 对任意 x11 x2 2
xn n V ,
有, fi ( ) xi , i 1, 2, , n
f ( ) x2 f ( 2 ) x2 .
§10.1 线性函数
定理1 设V为数域 P上的一个n 维线性空间,
1, 2 , , n为V的一组基, a1,a2 , ,an 为 P中
任意n 个数. 则存在唯一的V上线性函数 f 使
f i ai, i 1,2, ,n.
§10.1 线性函数
证明:映射 f :V P,
pi
(
x)
( x a1) (ai a1 )
( x ai1 )( x ai1 ) (ai ai1 )(ai ai1 )
( x an ) , (ai an )
i 1,2, ,n

pi (a j )
1, 0,
ji ji
i 1,2, ,n
且 p1( x), p2( x), , pn( x) 为 P[ x]n的一组基.
§10.1 线性函数
例1.设1, 2 , 3 是线性空间 V 的一组基, f1, f2 , f3

高考数学线性函数知识点梳理

高考数学线性函数知识点梳理

高考数学线性函数知识点梳理线性函数是高中数学中的重要内容,也是高考中经常涉及的一种题型。

掌握线性函数的基本概念和相关知识点,对于解题和分析问题具有很大的帮助。

本文将对高考数学中线性函数的知识点进行梳理,旨在帮助同学们更好地理解和掌握这一知识点。

一、线性函数的定义和基本特征线性函数是指函数的定义域上的函数,其表示形式为f(x) = kx + b,其中k和b为常数。

线性函数的基本特征有以下几点:1. 线性函数的图像是一条直线,且直线必定经过平面直角坐标系中的一个点。

2. k被称为线性函数的斜率,它表示直线的倾斜程度。

当k>0时,直线是上升的;当k<0时,直线是下降的;当k=0时,直线是水平的。

3. b被称为线性函数的截距,它表示直线与y轴的交点在y轴上的坐标值。

二、线性函数的图像和性质线性函数的图像是一条直线,它具有以下几个重要的性质:1. 平行或重合直线的斜率相等;垂直直线的斜率的乘积为-1。

2. 线性函数图像上的任意两点A(x₁, y₁)和B(x₂, y₂),斜率k可以通过计算(k = Δy / Δx)得到。

其中Δy = y₂ - y₁,Δx = x₂ - x₁。

3. 线性函数在某一点的值即为该点的纵坐标,也就是f(x)。

三、函数与线性函数的关系函数与线性函数之间存在一定的关系,特别是在函数的求值和函数之间的运算中:1. 当函数f(x)为线性函数时,对于任意给定的x,可以直接通过f(x) = kx + b来求得函数的值。

2. 两个线性函数相加(或相减)的结果仍然是一个线性函数,其斜率是两个函数斜率之和(或差),截距是两个函数截距之和(或差)。

3. 线性函数乘以一个常数后,得到的结果仍然是一个线性函数,其斜率是原函数斜率乘以常数,截距是原函数截距乘以常数。

四、线性函数在实际问题中的应用线性函数在实际问题中有着广泛的应用,特别是在描述和分析变化趋势、确定关系等方面:1. 质点的位移和速度问题:设质点在时间t的位移为s(t),则s(t)是一个关于时间的线性函数,其斜率表示质点的速度。

丘维声高等代数第十章1

丘维声高等代数第十章1
f ( , ) f ( , ), , V
则称 f 是斜对称的(或反对称的)。
性质 设 f 是有限维线性空间 V 上的一个双线 性函数,则 f 是对称的(或斜对称的)当且仅当 f 的 度量矩阵是对称的(或斜对称的)。
定理 设 V 是数域 K 上的 n 维线性空间, f是V 上的一个对称双线性函数。则存在 V 的一个基,使 得 f 在这个基下的度量矩阵是对角矩阵。
定义 设 V 是数域 K 上的 n 维线性空间, f是V 上的一个双线性函数。取定 V 的一个基 1 , 2 , , n ,令
f (1 , 1 ) f ( , ) 2 1 A f ( , ) n 1 f (1 , 2 ) f ( 2 , 2 ) f ( n , 2 ) f (1 , n ) f ( 2 , n ) f ( n , n )
AT X 0 只有零解,从而 X 0 ,所以 。由此
得 rad LV { }。
9
同理可证, rad RV { } 。


定义 设 f 是线性空间 V 上的一个双线性函数, 若
f ( , ) f ( , ), , V
则称 f 是对称的;若
是 K 3 上的一个双线性函数。令 X 0 (0,1, 0)T ,则
X 0 rad LV 。
定义 设 f 是线性空间 V 上的一个双线性函数, 若 rad LV rad RV { } ,则称 f 是非退化的。
7
性质 设 V 是数域 K 上的 n 维线性空间, f是V 上的一个双线性函数。则 f 是非退化的充分必要条 件是 rank m f n 。 证明 取定 V 的一个基1 , 2 , , n ,设 f 在这 个基下的度量矩阵为 A,则 rank m f rank( A) 。 必要性 设 f 非退化,则 rad LV rad RV { } 。 反证法: 设 rank ( A) rank m f n , 则齐次线性 方程组 AT X 0 有非零解,任取一个非零解 X 0 。令

高等代数【北大版】10-4

高等代数【北大版】10-4
f (α , β ) = f ( β ,α )
对称双线性函数. 则称 f (α , β ) 为对称双线性函数
§10.4 对称双线性函数
2. 对称双线性函数的有关性质 命题1 数域 P上n 维线性空间 V上双线性函数 命题 上 上双线性函数 是对称的(反对称的) 是对称的(反对称的) f (α , β ) 在V的任意 的任意 一组基下的度量矩阵是对称的(反对称的) 一组基下的度量矩阵是对称的(反对称的). 证:任取V的一组基 ε 1 , ε 2 , , ε n , 任取 的一组基
" " f (α + β ,α + β )
α ∈ V
= f (α , β ) + f ( β ,α ) + f (α ,α ) + f ( β , β )
f (α , β ) + f ( β ,α ) = 0
f (α , β ) = f ( β ,α )
§10.4 对称双线性函数
二, 反对称双线性函数
§10.4 对称双线性函数
2. 反对称双线性函数的有关性质 定理6 维线性空间V上反对称 定理 设 f (α , β ) 为 n 维线性空间 上反对称 双线性函数( 双线性函数(即 α , β ∈ V , f (α , β ) = f ( β ,α ) ) 则存在V的一组基 则存在 的一组基 ε 1 , ε 1 , , ε r , ε r ,η1 , ,η s 使
α = (ε 1 , ε 2 , , ε n ) X , β = (ε 1 , ε 2 , , ε n )Y .
f (ε i , ε j ) = aij ,

A = (aij )
f (α , β ) = X ' AY .

北京大学数学系《高等代数》(第3版)(课后习题 双线性函数与辛空间)

北京大学数学系《高等代数》(第3版)(课后习题 双线性函数与辛空间)

第10章 双线性函数与辛空间1.V是数域P上一个3维线性空间,ε1,ε2,ε3是它的一组基,f是V上一个线性函数,已知f(ε1+ε3)=1,f(ε2-2ε3)=-1,f(ε1+ε2)=-3,求f(x1ε1+x2ε2+x3ε3).解:先计算出f(ε1)=4,f(ε2)=-7,f(ε3)=-3,就得到f(x1ε1+x2ε2+x3ε3)=4x1-7x2-3x3.2.V及ε1,ε2,ε3同上题,试找出一个线性函数f,使f(ε1+ε3)=f(ε1-2ε3)=0,f(ε1+ε2)=1.解:可算出f(ε1)=f(ε3)=0,f(ε2)=1,就得到f(x1ε1+x2ε2+x3ε3)=x2.3.设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,a1=ε1-ε3,a2=ε1+ε2+ε3,a3=ε2+ε3.试证a1,a2,a3是V的一组基并求它的对偶基(用f1,f2,f3表出).解:可利用定理3.计算由于右端的矩阵的行列式≠0,故a1,a2,a3是V的一组基.设g1,g2,g3是a1,a2,a3的对偶基,则即g1=f2-f3,g2=f1-f2+f3,g3=-f1+2f2-f3.4.设V是一个线性空间,f1,f2,…,f n是V*中非零向量,试证,存在a∈V,使f(a)≠0,i=1,2, (5)证明:每个f i(a)=0作为V上向量的方程,其全体解向量构成V的一个子空间V,且都不等于V.由第六章补充题第5题的结论及解答后面的注,必有a∈V,a∈,i=1,2,…,s.所以a满足f i(a)≠0,i=1,2,V…,s.5.设a1,a2,…,a s是线性空间V中非零向量,证明有f∈V*使f(a i)≠0,i=1,2,…,s.证明:由于a i**∈(V*)*,a i**(f)=f(a i),f∈V*,a i**是(V*)*上的非零向量.由第四题必有f∈V*使f(a i)=a i**(f)≠0.6.V=P[x]3,对p(x)=c0+c1x+c2x2∈V定义试证f1,f2,f3都是V上线性函数,并找出V的一组基p1(x),p2(x),p3(x)使f1,f2,f3是它的对偶基.证明:易证f1,f2,f3都是V=P[x]3上线性函数.令p1(x)=c0+c1x+c2x2使得f1(p1(x))=1,f2(p1(x))=f3(p1(x))=0,即有解出得同样可算出满足由于p1(x),p2(x),p3(x)是V的一组基,而f1,f2,f3是它的对偶基.7.设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V 上一个函数α*:α*(β)=(α,β).(1)证明α*是V上线性函数;(2)证明V到V*的映射:α→α*是V到V*的一个同构映射.(在这个同构下,欧氏空间可看成自身的对偶空间)证明:(1)易证α*是V上线性函数,即α*∈v*.(2)现在令映射φ为下面逐步证明φ是线性空间的同构.①φ是单射.即证明当φ(α)=φ(β)时有α=β.对γ∈V,(φ(α))(γ)=α*(γ)=(α,γ),(φ(β))(γ)=(β,γ).故(α,γ)=(β,γ),∨γ∈V.这样(α,α)=(β,α),(α,β)=(β,β).于是(α-β,α-β)=(α,α)-(α,β)-(β,α)-(β,β)=0,即有α-β=0,因此α=β.②φ是满射.取ε1,ε2,…,εn 是V 的一组标准正交基,令f 1,f 2,…,f n 是它们的对偶基,对f =l 1f 1+…+l n f n ∈V*,令a =l 1ε1+l 2ε2+…+l n εn 则对所有εi ,∀故对所有εi ,有φ(α)(εi )=f (εi ),即φ(α)=f .③φ是线性映射.对α,β,γ∈V,k∈R,∀ φ(α+β)(γ)=(α+β,γ)=(α,γ)+(β,γ)=φ(α)(γ)+φ(β)(γ)=[φ(α)+φ(β)](γ).故φ(α+β)=φ(α)+φ(β).又φ(kα)(γ)=(kα,γ)=k (α,γ)=kφ(α)(γ)=(kφ(α))(γ),故φ(kα)=kφ(α).以上证明了φ是线性空间V 到V *的同构.8.设A 是P 上n 维线性空间V 的一个线性变换.(1)证明:对V 上的线性函数f ,fA 仍是V 上线性函数;(2)定义V *到自身的映射A *为f→fA证明A *是V *上的线性变换(3)设ε1,ε2,…,εn 是V 的一组基,f 1,f 2,…,f n 是它的对偶基,并设A 在ε1,ε2,…,εn 下的矩阵为A .证明:A *在f 1,f 2,…,f n 下的矩阵为A'.(因此A *称作A 的转置映射)证明:(1)α,β∈V,k∈P,有∀∀f A (α+β)=f (A (α+β))=f (A α+A β)=f A α+f A β,f A (kα)=f (A (kα))=f (k A α)=kf A α.故f A 是V 上线性函数.(2)由定义A *f =f A ,对f ,g∈V *,k∈P,α∈V 有∀A *(f +g )(α)=[(f +g )A ](α)=(f +g )(A (α))=f A (α)+g A (α)=(f A +g A )(α)=(A *f +A *g )(α)故A *(f +g )=A *(f )+A *(g ).又(A *(kf ))(α)=(kf )A (α)=kf (A (α))=k (A *f )(α),故A *(kf )=k (A *f ).以上证明了A *是V *上的线性变换.(3)由A (ε1,ε2,…,εn )=(ε1,ε2,…,εn )A ,f i A (ε1,ε2,…,εn )=(f i (ε1),…,f i (εn ))A =(a i1,a i2,…,a in ),于是即有。

大学数学高数微积分第十章线性函数第二节课件课堂讲解

大学数学高数微积分第十章线性函数第二节课件课堂讲解

设 V 是 P 上一个线性空间,V * 是其对偶空间, 取定 V 中一个向量 x ,定义 V * 的一个函数 x** 如
下:
x**( f ) = f (x) , f V * . 根据线性函数的定义,容易检验 x** 是 V * 上的一 个线性函数,因此是 V * 的对偶空间 (V * )* = V * * 中的一个元素.
则线性函数 Li 满足
L i(p j(x) )p j(a i) 0 1 ,,ii jj;,i,j 1 ,2 , ,n .
因此,L1 , L2 , … , Ln 是 p1(x) , p2(x) , … , pn(x) 的
对偶基.
2. 两组基的对偶基之间的关系
设 V 是数域 P 上一个 n 维线性空间.n源自f f ( i ) f i .
(4)
i1
知 L(V , P) 中任一向量都可由 f1, f2
, … , fn 线性表出,所以 f1 , f2 , … , fn 是 L(V , P) 的
一组基,于是
dim L(V , P) = n = dim V .
证毕
三、 对偶空间
1. 定义
定义 4 L(V , P) 称为 V 的对偶空间.
(1)
i, j 1,2,,n.
因为 fi 在基 1 , 2 , … , n 上的值已确定,这样的线
性函数是存在且唯一的.
对 V 中向量
n
xii , i 1

fi() = xi ,
(2)
即 fi() 是 的第 i 个坐标的值.
引理 对 V 中任意向量 ,有
n
f (i )i , i 1 而对 L(V , P) 中任意向量 f , 有
(3) (4)

高等代数(第三版)10.2对偶空间

高等代数(第三版)10.2对偶空间

, gn
的过渡矩阵为 ( AT )1
第十章 双线性函数与辛空间 10.2 对偶空间
证明: 设A (aij )nn,设由f1 , f 2 , , f n到 g1 , g 2 , , g n的过渡矩阵为B (bij ) nn , 则 (1 ,2 , ,n ) (1 , 2 , , n ) A ( g1 , g 2 , , g n ) ( f1 , f 2 , , f n ) B
第十章 双线性函数与辛空间 10.2 对偶空间
小 结
线性函数运算的定义 对偶空间的定义及性质
作业:P420:3,4
第十章 双线性函数与辛空间 10.2 对偶空间
, f n线性表示,
, f 是V *的一组基, divV * n.
第十章 双线性函数与辛空间 10.2 对偶空间
定义2
设n维线性空间V的基为1 , 2 , 由上面定理所确定V 的基f1 , f 2 , 称为1 , 2 , , n的对偶基.
*
, n, , fn
第十章 双线性函数与辛空间 10.2 对偶空间
n
kj
f k (i )
b
k 1 n
n
kj
f k ( ali l )
l 1
n
b ( a
k 1
li
f k ( l ))
b
k 1
kj
aki , n)
1 又g j (i ) 0 从而, b1 j a1i b2 j a2 i
j i ji
(i, j 1, 2,
*
第十章 双线性函数与辛空间 10.2 对偶空间
定理2
n维线性空间V的对偶空间V 的维数也是n维的.

高等代数第三版

高等代数第三版

知识创造未来
高等代数第三版
高等代数第三版是一本数学教材,主要讲解高等代数的理论和方法。

它涵盖了线性方程组、矩阵理论、向量空间、线性变换、特征值和
特征向量等内容,适合大学高等数学专业的学生学习和参考。

此外,该教材也适用于数学、物理、工程等相关专业的学生学习高等数学
中的代数部分。

高等代数第三版通常包括练习题和习题解答,帮助
学生巩固所学知识并提高解题能力。

由于每个版次的教材内容可能
会有所不同,请确认具体版本以获取准确的信息。

1。

第十章 双线性函数

第十章 双线性函数

第十章 双线性函数§10.1 线性函数1.设V 是数域F 上的一个线性空间, f 是V 到F 的一个映射, 若f 满足:(1)()()();(2)()(),f f f f k kf αβαβαα+=+=式中,αβ是V 中任意元素, k 是F 中任意数, 则称f 为V 上的一个线性函数.2.简单性质:设f 是V 上的线性函数 (1) (0)0,()().f f f αα=−=−(2)11221122()()()()t t t t f k k k k f k f k f αααααα+++=++L L例1 对数域F 上的任意方阵()ijn nA a ×=, 我们已定义1122()nn tr A a a a =+++L为A 的对角元之和, 称为A 的迹. 容易验证映射 :,()n n tr A tr A ×→→F F满足条件:(1)()()(),,;(2)()(),,.n n n ntr A B tr A tr B A B tr kA k tr A A k ××+=+∀∈=∀∈∈ F F F因此tr 是n n×F的线性函数.例2 设[]V F x =, a 是F 中一个取定的数. 定义[]F x 上的函数a L 为: (())(),()[],a L f x f a f x F x =∈即(())a L f x 为()f x 在a 点的值, (())a L f x 是[]F x 上的线性函数.如果V 是数域F 上的一个n 维线性空间, 取定V 的一组基12,,,n εεεL . 对V 上任意线性函数f 及V 中任意向量α:1122n n x x x αεεε=+++L都有1122()()()()n n f x f x f x f αεεε=+++L因此, ()f α由12(),(),,()n f f f εεεL 的值唯一确定. 反之, 任给F 中n 个数12,,,n a a a L , 用下式定义V 上一个函数f :11()n ni ii ii i f x a x ε===∑∑这是一个线性函数, 而且(),1,2,,i i f a i n ε==L我们有:3. 设V 是数域F 上的一个n 维线性空间, 取定V 的一组基12,,,n εεεL , 对于任给F 中n 个数12,,,n a a a L , 存在唯一的V 上线性函数f 使(),1,2,,i i f a i n ε==L .§10.2 对偶空间1.对偶空间定义设V 是数域F 上的n 维线性空间. V 上全体线性函数组成的集合记为*V .*V 上定义加法与数乘:()()()(),f g f g V αααα+=+∈.()()(()),.kf k f V ααα=∈则,f g kf +都是线性函数, 故*V 成为F 上的线性空间. *V 称为V 的对偶空间3.对偶基取定V 的一组基12,,,n εεεL ,定义V 上的n 个线性函数(1,2,,)i f i n =L 如下: ()i j ij f εδ= 则12,,,n f f f L 是*V 中线性无关的向量组, 构成*V 的一组基. 我们称之为12,,,n εεεL 的对偶基.4.对偶空间的维数*dim dim V V n ==.5.对偶基之间的关系 设12,,,n εεεL 及12,,,n ηηηL 是线性空间V 的两组基, 它们的对偶基分别是12,,,n f f f L 及12,,,n g g g L . 再设由12,,,n εεεL 到12,,,n ηηηL 的过渡矩阵为A , 那么由12,,,n f f f L 到12,,,n g g g L 的过渡矩阵为1()T A −.6.V 到**V 的同构(1)取定V 中一个向量x , 定义*V 的一个函数**x 如下: ***()(),x f f x f V =∈.(2)函数**x 具有下列性质 z****x V ∈z 若**()0x f =对一切x V ∈成立, 则0f =;z 若**()0x f =对一切*f V ∈成立的充分必要条件是0x =. (3)同构V 是一个线性空间, **V 是V 的对偶空间的对偶空间. V 到**V 的映射 **x x → 是一个同构映射.如果把V 与**V 在这个同构下等同起来, 则V 可以看成*V 的对偶空间. 这样V 与**V 具有同等的地位, 它们互为对偶.§10.3 双线性函数一、 双线性函数的定义与矩阵1.定义设V 是数域F 上一个线性空间, (,)f αβ是V 上一个二元函数, 即将V 中任意两个向量,αβ对应于F 中一个数(,)f αβ, 并且满足如下条件:1122112211221122(1)(,)(,)(,);(2)(,)(,)(,)f k k k f k f f k k k f k f αββαβαβααβαβαβ+=++=+这里121212,,,,,;,V k k αααβββ∈∈F . 我们称(,)f αβ是V 上一个双线性函数.注:将V 中一个变元固定时的映射 :,(,)f V f αβαβ→a F 和:,(,)V αϕβϕβα→a F都是V 上的线性函数, 就是说,f ααϕ都是V 的对偶空间*V 中的向量.2. 定理(双线性函数的形式)设在数域F 上的线性空间V 上定义了双线性函数f ,12,,,n εεεL 是V 的任意一组基.则任意,V αβ∈在f 下的值(,)f αβ可以由,αβ在该基下的坐标,X Y 按下列公式计算: (,)Tf X AY αβ=,其中()ij n n A a ×=由(,)ij i j a f εε=组成, 称为双线性函数f 在12,,,n εεεL 下的度量矩阵.3.简单性质设,f g 在12,,,n εεεL 下的度量矩阵分别是,A B , 则 (1)f g +在12,,,n εεεL 下的矩阵分别是A B +; (2)kf 在12,,,n εεεL 下的矩阵分别是kA 。

高等代数(北大版第三版)习题答案

高等代数(北大版第三版)习题答案

高等代数(北大*第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第一部分,其他请搜索,谢谢!第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

线性函数的定义、图像和应用

线性函数的定义、图像和应用

线性函数的定 义域和值域都 是全体实数集 R。
0
0
2
3
线性函数具有 一些特殊的性 质,如可加性 和可乘性等。
0 4
线性函数的数学表达式
线性函数的一般形式为y=kx+b, 其中k和b为常数
k称为斜率,b称为截距
当k>0时,函数图像为上升直 线;当k<0时,函数图像为下 降直线
线性函数是基础函数之一,在 数学、物理和工程等领域有广 泛应用
单击此处添加副标题
线性函数的定义、图像和
应用
汇报人:XX
目录
01 02 03 04
添加目录项标题 线性函数的定义 线性函数的图像 线性函数的应用
01
添加目录项标题
02
线性函数的定义
线性函数的概念
线性函数是函 数的一种特殊 形式,其图像 为直线。
0 1
线性函数的一 般形式为 y = ax + b,其中 a 和 b 是常数, 且 a ≠ 0。
线性函数的性质
线性函数的斜率为a,表示 函数图像的倾斜程度。
线性函数是直线方程,形式 为y=ax+b,其中a和b是 常数。
线性函数的截距为b,表示 函数图像与y轴的交点。
线性函数具有可加性和均匀 性,即f(x+c)=f(x)+c和 f(ax)=af(x)。
03
线性函数的图像
线性函数图像的绘制方法
图像平行于x轴或垂直于x 轴
图像是单调的,即斜率为 正或斜率为负
线性函数图像的变换
平移变换:图 像在x轴或y轴 上平移,不改 变函数值
伸缩变换:图 像在x轴或y轴 上伸缩,改变 函数值
翻转变换:图 像在x轴或y轴 上翻转,不改 变函数值

北京大学数学系《高等代数》(第3版)(线性方程组)笔记和课后习题(含考研真题)详解【圣才出品】

北京大学数学系《高等代数》(第3版)(线性方程组)笔记和课后习题(含考研真题)详解【圣才出品】

第3章线性方程组3.1复习笔记一、消元法1.初等变换变换1:用一非零的数乘某一方程,变换2:把一个方程的倍数加到另一个方程,变换3:互换两个方程的位置,称为线性方程组的初等变换.2.消元法解方程的过程(1)首先用初等变换化线性方程组为阶梯形方程组,把最后的一些恒等式“0=0”(如果出现的话)去掉;(2)如果剩下的方程当中最后的一个等式是零等于一非零的数,那么方程组无解,否则有解;(3)在有解的情况下,如果阶梯形方程组中方程的个数r等于未知量的个数,那么方程组有唯一的解;如果阶梯形方程组中方程的个数,小于未知量的个数,那么方程组就有无穷多个解.3.定理在齐次线性方程组中,如果s<n,那么它必有非零解.二、n 维向量空间1.n 维向量的定义所谓数域P 上一个n 维向量就是由数域P 中n 个数组成的有序数组a i 称为向量(1)的分量.用小写希腊字母α,β,γ,…来代表向量.2.向量相等的定义如果n 维向量1212(,,...,),(,,...,)n n a a a b b b αβ==的对应分量都相等,即就称这两个向量是相等的.记作α=β.3.向量和的定义向量1122(,,...,)n n a b a b a b γ=+++,称为向量1212(,,...,),(,,...,)n n a a a b b b αβ==的和,记为γαβ=+.4.零向量和负向量的定义分量全为零的向量(0,0,…,0)称为零向量,记为0;向量(-a 1,-a 2,…,-a n )称为向量α=(a 1,a 2,…,a n )的负向量,记为-α.5.向量加法的基本运算规律(1)α+β=β+α,(交换律)(2)α+(β+γ)=(α+β)+γ,(结合律)(3)α+0=α,(4)α+(-α)=0,(5)α-β=α+(-β).6.向量与数乘的定义设k为数域P中的数,向量称为向量与数k 的数量乘积,记为kα.7.向量乘法的运算性质:(1)k(α+β)=kα+kβ,(2)(k+l)α=kα+lα,(3)k(lα)=(kl)α,(4)1α=α.8.n维向量空间的定义以数域P中的数作为分量的n维向量的全体,同时考虑到定义在它们上面的加法和数量乘法,称为数域P上的n维向量空间.三、线性相关性1.定义向量α称为向量组β1,β2,…,βs 的一个线性组合,如果有数域P 中的数k 1,k 2,…,k s 使112s k k k 2s αβββ =+++.由定义知,零向量是任一向量组的线性组合(只要取系数全为0就行了).当向量α是向量组β1,β2,…,βs 的一个线性组合时,也说α可以经向量组β1,β2,…,βs 线性表出.2.等价的定义(1)定义如果向量组α1,α2,…,αt 中每一个向量αi (i=1,2,…,t)都可以经向量组β1,β2,…,βs 线性表出,那么向量组α1,α2,…,αt 就称为可以经向量组β1,β2,…,βs 线性表出.如果两个向量组互相可以线性表出,它们就称为等价.(2)向量等价的性质:①反身性:每一个向量组都与它自身等价.②对称性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,那么向量组β1,β2,…,βt 也与α1,α2,…,αs 等价.③传递性:如果向量组α1,α2,…,αs 与β1,β2,…,βt 等价,β1,β2,…,βt 与γ1,γ2,…,γp 等价,那么向量组α1,α2,…,αt 与γ1,γ2,…,γp 等价.3.线性相关性的定义如果向量组α1,α2,…,αs (s≥2)中有一个向量可以由其余的向量线性表出,那么向量组α1,α2,…,αs 称为线性相关的.定义的另一种表述为:向量组α1,α2,…,αs (s≥1)称为线性相关,如果有数域P 中不全为零的数k 1,k 2,…,k s ,使120s k k k 12s ααα +++=4.线性无关性的向量组(1)定义:一向量组α1,α2,…,αs (s≥1)不线性相关,即没有不全为零的数k 1,k 2,…,k s 使120s k k k 12s ααα +++=就称为线性无关;或者说,一向量组α1,α2,…,αs 称为线性无关.(2)两个小结论:①如果一向量组的一部分线性相关,那么这个向量组就线性相关.②如果一向量组线性无关.那么它的任何一个非空的部分组也线性无关.5.向量组的基本性质的几种表述(1)设α1,α2,…,αr 与β1,β2,…,βs 是两个向量组,如果①向量组α1,α2,…,αr 可以经β1,β2,…,βs 线性表出,②r>s,那么向量组α1,α2,…,αr 必线性相关.(2)如果向量组α1,α2,…,αr 可以经向量组β1,β2,…,βs 线性表出,且α1,α2,…,αr 线性无关,那么r s.(3)任意n+1个n 维向量必线性相关.(4)两个线性无关的等价的向量组,必含有相同个数的向量.6.极大线性无关组(1)定义一向量组的一个部分组称为一个极大线性无关组.如果这个部分组本身是线性无关的,并且从这向量组中任意添一个向量(如果还有的话),所得的部分向量组都线性相关.(2)性质:①向量组的极大线性无关组不是唯一的;②每一个极大线性无关组都与向量组本身等价;③一向量组的任意两个极大线性无关组都是等价的;④一向量组的极大线性无关组都含有相同个数的向量.7.向量组的秩(1)定义向量组的极大线性无关组所含向量的个数称为这个向量组的秩.(2)性质①线性无关的向量组就是它自身的极大线性无关组,所以一向量组线性无关的充分必要条件为它的秩与它所含向量的个数相同.②每一向量组都与它的极大线性无关组等价.由等价的传递性可知.任意两个等价向量组的极大线性无关组也等价.所以,等价的向量组必有相同的秩.③含有非零向量的向量组一定有极大线性无关组,且任一个无关的部分向量组都能扩充成一个极大线性无关组,全部由零向量组成的向量组没有极大线性无关组.规定这样的向量组的秩为零.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 双线性函数与辛空间 10.1线性函数
, an
(2)对于 x11 x2 2
xn n V,
满足上述条件的线性函数为
f ( ) a1 x1 a2 x2
an xn
结论:数域P上的任意n维线性空间上的任 一个线性函数都可表示为
f ( ) a1 x1 a2 x2
一、线性函数 对偶空间 二、双线性函数 辛空间
第十章 双线性函数与辛空间 10.1线性函数
第一节 线性函数
线性函数的定义 线性函数的性质 结论
第十章 双线性函数与辛空间 10.1线性函数
一、线性函数的概念
设V是数域P上的线性空间,f是V到P的 一个映射,如果f满足
(1) f ( ) f ( ) f ( ) (2) f (k ) kf ( )
例3、 A是数域P上一个n级矩阵,设
a11 a12 a21 a22 A an1 an 2 a1n a2 n ann
则A的迹 Tr ( A) a11 a22
ann
是P上全体n级矩阵构成的线性空间上的一 个线性函数
第十章 双线性函数与辛空间 10.1线性函数
例4、设 V Pnn , A Pnn ,
定义V到P的映射
f ( X ) Tr ( AX ) X P
问f是否是V上的线性函数?
nn
第十章 双线性函数与辛空间 10.1线性函数
例5、设V P[ x], T是P中一个取定的数
定义 P[ x]上的函数 Lt 为:
Lt ( p( x)) p(t ), p( x) P[ x]
f (0) 0, f ( ) f ( )
2、 如果 是1,2, ,S
的线性组合:
第十章 双线性函数与辛空间 10.1线性函数
k11 k22
那么
f ( ) k1 f (1 ) k2 f (2 ) ksຫໍສະໝຸດ s , ks f (s )
式中, 是V中任意元素,k是P中 任意数,则称f 为V上的一个线性函数.
第十章 双线性函数与辛空间 10.1线性函数
注:
线性函数与 线性空间同构、线性变 换、欧氏空间同构三者的区别与联系
第十章 双线性函数与辛空间 10.1线性函数
相同点 线性函数 线性空间 同构 线性变换
不同点 f是V到P上的映射
第十章 双线性函数与辛空间 10.1线性函数
an xn
小 结
线性函数的定义 线性函数的性质 线性函数的存在唯一性
作业:P420:1,2
第十章 双线性函数与辛空间 10.1线性函数
an 0 时,得
f (X ) 0
称为零函数.
第十章 双线性函数与辛空间 10.1线性函数
注: 线性空间 P n 上的任一个线性函数都可表示 为
f ( X ) a1x1 a2 x2 an xn
例2 设
1 ,2 , 3
是数域P上线性空间
V的一组基,f是V上的一个线性函数,且
f ( ) f ( ) f ( ) f (k ) kf ( )
f是线性空间V到线 性空间W的双射 f是线性空间V的一 个变换 f是欧氏空间V到欧 氏空间W的双射, 且保内积
欧式空间 同构
第十章 双线性函数与辛空间 10.1线性函数
二、线性函数的性质
1、设f是V上的线性函数,则
f (1 2 2 3 ) 4, f (1 3 ) 4, f (1 2 3 ) 2, 求f ( x11 x2 2 x3 3 )
f ( x11 x2 2 x3 3 ) 3x1 x3
第十章 双线性函数与辛空间 10.1线性函数
则 Lt ( p( x)) 是 P[ x] 上的线性函数
第十章 双线性函数与辛空间 10.1线性函数
三、线性函数的存在性、唯一性及 表达式
定理1 设V是P上一个n维线性空间,
1, 2, , n
是V的一组基,则
a1 , a2, (1)对于P中任意n个数,
存在唯一的V上线性函数 f 使 f ( i ) ai (i 1, 2, , n)
第十章 双线性函数与辛空间 10.1线性函数
例1 设
a1, a2 , , an
是P中任意数

X ( x1 , x2 ,
, xn )是P中的向量,
函数
f ( X ) f ( x1, x2 , , xn ) a1x1 a2 x2 an xn
是否做成一个线性函数?
注: 当 a1 a2
相关文档
最新文档