高数三角函数公式大全完整版

合集下载

高数三角函数公式大全

高数三角函数公式大全

三角函数公式大全两角与公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinA•CosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==与差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化与差sinasinb = -[cos(a+b)-cos(a-b)]cosacosb = [cos(a+b)+cos(a-b)]sinacosb = [sin(a+b)+sin(a-b)]cosasinb = [sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos(-a) = sinasin(+a) = cosacos(+a) = -sinasin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式a•sina+b•cosa=×sin(a+c) [其中tanc=]a•sin(a)-b•cos(a) = ×cos(a-c) [其中tan(c)=]1+sin(a) =(sin+cos)21-sin(a) = (sin-cos)2其她非重点三角函数csc(a) =sec(a) =双曲函数sinh(a)=cosh(a)=tg h(a)=公式一:设α为任意角,终边相同得角得同一三角函数得值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α得三角函数值与α得三角函数值之间得关系: sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α得三角函数值之间得关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二与公式三可以得到π-α与α得三角函数值之间得关系: sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-与公式三可以得到2π-α与α得三角函数值之间得关系: sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:±α及±α与α得三角函数值之间得关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanα sin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanα sin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotα cot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinα tan(-α)= cotα cot(-α)= tanα (以上k∈Z)这个物理常用公式我费了半天得劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =×sin。

三角函数公式大全高中

三角函数公式大全高中

三角函数公式大全高中一、同角三角函数的基本关系。

1. 平方关系。

- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(secα=(1)/(cosα))- 1+cot^2α=csc^2α(cscα=(1)/(sinα))2. 商数关系。

- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。

1. 终边相同的角的三角函数值相等。

- sin(α + 2kπ)=sinα,k∈ Z- cos(α+ 2kπ)=cosα,k∈ Z- tan(α + 2kπ)=tanα,k∈ Z2. 关于x轴对称的角的三角函数值关系。

- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y = x对称的角的三角函数值关系(α与(π)/(2)-α)- sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα4. 关于y轴对称的角的三角函数值关系(α与π-α) - sin(π-α)=sinα- cos(π - α)=-cosα- tan(π-α)=-tanα5. 关于原点对称的角的三角函数值关系(α与π+α) - sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα6. α与(3π)/(2)-α的三角函数关系。

- sin((3π)/(2)-α)=-cosα- cos((3π)/(2)-α)=-sinα- tan((3π)/(2)-α)=cotα7. α与(3π)/(2)+α的三角函数关系。

- sin((3π)/(2)+α)=-cosα- cos((3π)/(2)+α)=sinα- tan((3π)/(2)+α)=-cotα三、两角和与差的三角函数公式。

- sin(A + B)=sin Acos B+cos Asin B2. 两角和的余弦公式。

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解

三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b2+c2-2bc A cos b2=a2+c2-2ac B cosc 2=a 2+b 2-2ab C cos bca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。

注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +==②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

高中数学三角函数常用公式(大全)

高中数学三角函数常用公式(大全)

高中数学三角函数常用公式(大全)高中数学三角函数常用公式倍角公式Sin2A=2SinA·CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sin α降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)三角函数常用公式正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cos β·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cos β·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tan β-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦。

(完整版)高等数学常用公式大全

(完整版)高等数学常用公式大全

高数常用公式平方立方:22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2)n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2-Sin2A=2SinA•CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin 2b a +cos 2ba -sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =a acos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -其他非重点三角函数csc(a) =a sin 1sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1- sin(a) = (sin 2a -cos 2a)2公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A特殊角的三角函数值:等价代换:(1) x sinx ~ (2) x tanx ~ (3) x arcsinx ~ (4) x arctanx ~(5) 2x 21cosx 1~- (6) x )x 1(ln ~+ (7) x 1e x~- (8)ax 1)x 1(a ~-+基本求导公式:(1) 0)(='C ,C 是常数 (2) 1)(-='αααx x (3) a a a x x ln )(=' (4) ax x a ln 1)(log =' (5) x x cos )(sin =' (6) x x sin )(cos -=' (7) x x x 22sec cos 1)(tan ==' (8) x xx 22csc sin 1)(cot -=-='(9) x x x tan )(sec )(sec =' (10) x x x cot )(csc )(csc -='(11) =')(arcsin x 211x- (12) 211)(arccos xx --='(13) 211)(arctan xx +=' (14) 21(arccot )1x x '=-+ (15)x21x =')( (16) 2x1x 1-=)(基本积分公式:(1) 0dx C =⎰ (2) ()为常数k Ckx kdx +=⎰(3) ()111-≠++=+⎰μμμμC x dx x (4) C x dx x +=⎰||ln 1(5) C aa dx a xx+=⎰ln (6) C e dx e x x +=⎰ (7) C x xdx +=⎰sin cos (8)Cx xdx +-=⎰cos sin (9)⎰⎰+==C x xdx x dx tan sec cos 22(10) ⎰⎰+-==C x xdx x dxcot csc sin 22 (11) C x xdx x +=⎰sec tan sec(12) C x xdx x +-=⎰csc cot csc (13) C x x dx +=+⎰arctan 12 或(C x arc x dx+-=+⎰cot 12)(14) C x xdx +=-⎰arcsin 12或(C x xdx +-=-⎰arccos 12)(15) C x xdx +-=⎰|cos |ln tan , (16) C x xdx +=⎰|sin |ln cot , (17)Cx x xdx ++=⎰|tan sec |ln sec , (18)C x x dx x c +-=⎰|cot csc |ln sc ,一些初等函数: 两个重要极限:·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx xx xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x拉格朗日中值定理。

(完整版)有关三角函数的相关公式汇总

(完整版)有关三角函数的相关公式汇总

sin α-sin β=2cos[( α+ β)/2]sin[( α- β)/2] cos α+cos β=2cos[( α+ β)/2]cos[( α- β)/2] cos α-cos β=-2sin[( α+ β)/2]sin[( α- β)/2] ·积化和差公式: sin α·cos β=(1/2)[sin( α+ β)+sin( α- β)] cos α·sin β=(1/2)[sin( α+ β)-sin( α-β)] cos α·cos β=(1/2)[cos( α+ β)+cos( α- β)] sin α·sin β=-(1/2)[cos( α+ β)-cos( α- β)] ·倍角公式: sin(2 α)=2sin α·cos α=2/(tan α+cot α) cos(2 α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin tan(2 α)=2tan α/(1-tan^2 α) cot(2 α)=(cot^2 α-1)/(2cot α) sec(2 α)=sec^2 α/(1-tan^2 α) csc(2 α)=1/2*sec α·csc α ·三倍角公式:
cos^2 α=(1+cos(2 α))/2=covers(2 α)/2 tan^2 α=(1-cos(2 α))/(1+cos(2 α)) ·三角和的三角函数: sin( α+ β+ γ)=sin α·cos β·cos γ+cos α·sin β·cos γ+cos α·cos β·sin γ-sin α·sin β·sin γ cos( α+ β+ γ)=cos α·cos β·cos γ-cos α·sin β·sin γ-sin α·cos β·sin γ-sin α·sin β·cos γ tan( α+ β+ γ)=(tan α+tan β+tan γ-tan α·tan β·tan γ)/(1-tan α·tan β-tan β·tan γ-tan γ·tan α) ·其它公式

高数三角函数公式大全

高数三角函数公式大全

高数三角函数公式大全 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2-Sin2A=2SinA?CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A)=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A Asin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sinacos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式 sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa - 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a 其它公式asina+bcosa=)b (a 22+×sin(a+c) [其中tanc=ab ] asin(a)-bcos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1- sin(a) = (sin 2a -cos 2a)2公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 Asin(ωt+θ)+ Bsin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A。

高中数学三角函数公式大全

高中数学三角函数公式大全
2 tan 1 tan 2 1 cos 2 ④ cos 2 2 1 cos 2 ⑤ sin 2 2
1 tan 2 1 tan2
3 2
1 2
2 2
2 2
1
③ tan 2
1
3 2 3 3
1
2 2
0
3 2 3 3
tan
0
3
tan tan 1 tan tan
② cos( ) cos cos sin sin ④ tan( )
tan tan 1 tan tan
)(1 tan tan ) ⑤ tan tan tan(
1 cos 2
④ cos 2

2

1 cos 2
⑤ 1 cos 2 sin 2 ⑥ 1 cos 2 cos 2

2
sin ( ) sin ,
cos( ) cos , tan( ) tan

2
sin ( ) sin , cos( ) cos , tan( ) tan
⑥ tan tan tan( )(1 tan tan )
sin( sin(
⑦ 1 sin (cos sin ) 2 cos sin
2 2 2




2


2
) cos ,
cos( cos(

) cos , 2 5.和差角公式

2 2
) sin , ) sin ,
tan( tan(

高中三角函数公式大全

高中三角函数公式大全

高中三角函数公式大全数学是许多人的短板,那么高中三角函数公式有哪些呢?感兴趣的小伙伴快来和小编一起看看吧。

下面是由小编为大家整理的“高中三角函数公式大全”,仅供参考,欢迎大家阅读。

高中三角函数公式大全锐角三角函数公式sin α=∠α的对边 / 斜边;cos α=∠α的邻边 / 斜边;tan α=∠α的对边/ ∠α的.邻边;cot α=∠α的邻边/ ∠α的对边。

倍角公式Sin2A=2SinACosA;Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1;tan2A=(2tanA)/(1-tanA^2)。

(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α);cos3α=4cosα·cos(π/3+α)cos(π/3-α);tan3a = tan a · tan(π/3+a)· tan(π/3-a)。

三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina。

三角函数辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2);cost=A/(A^2+B^2)^(1/2);tant=B/A;Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B。

降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2;cos^2(α)=(1+cos(2α))/2=covers(2α)/2;tan^2(α)=(1-cos(2α))/(1+cos(2α))。

拓展阅读:高中数学怎么学才能学好读好课本,学会研究有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。

高中数学 三角函数公式大全

高中数学 三角函数公式大全

高中数学三角函数公式大全高中数学三角函数公式大全三角函数这一章公式很多,尤其是归纳公式有20多个,很难全部记住。

基础薄弱的同学要把这些公式记好,掌握这些公式就抓住了本章的重点。

复习事半功倍。

两角和sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)2倍角tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanA tanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍(sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB。

高数三角函数公式大全

高数三角函数公式大全

三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA?CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A Asin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)]cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =a acos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -其他非重点三角函数csc(a) =a sin 1sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a其它公式a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )21- sin(a) = (sin 2a -cos 2a)22-公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k∈Z) 这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A?sin(ωt+θ)+ B?sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A。

高中数学-三角函数公式大全

高中数学-三角函数公式大全

高中数学-三角函数公式大全新课程高中数学三角公式汇总一、任意角的三角函数在角α的终边上任取一点P(x,y),记r=x²+y²。

正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数。

如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。

平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。

三、诱导公式⑴α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵π/3+α、-π/3+α、π-α、-π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(※)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(※)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/2tanα=sin2α/(1+cos2α)万能公式告诉我们,任何单角的三角函数都可以用半角的正切来表示。

高数三角函数公式大

高数三角函数公式大

高数三角函数公式大全三角函数公式大全两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) = cot(A+B) = cot(A-B) = 倍角公式 tan2A = Sin2A=2SinA•CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(+a)·tan(-a) 半角公式 sin()= cos()= tan()= cot()= tan()== 和差化积sina+sinb=2sincos sina-sinb=2cossin cosa+cosb = 2coscos cosa-cosb = -2sinsintana+tanb= 积化和差 sinasinb = -[cos(a+b)-cos(a-b)] cosacosb = [cos(a+b)+cos(a-b)] sinacosb = [sin(a+b)+sin(a-b)] cosasinb = [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sinacos(-a) = cosa sin(-a) = cosa cos(-a) = sina sin(+a) = cosa cos(+a) = -sina sin(π-a) =s ina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = 万能公式 sina=cosa= tana= 其他非重点三角函数 csc(a) = sec(a) = 双曲函数 sinh(a)= cosh(a)= tg h(a)=其它公式a•sina+b•cosa=×sin(a+c) [其中tanc=] a•sin(a)-b•cos(a) = ×cos(a-c) [其中tan(c)=] 1+sin(a) =(sin+cos)2 1- sin(a) = (sin-cos)2 2- 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -si nα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:±α及±α与α的三角函数值之间的关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanα sin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanα sin(+α)= -cosα cos(+α)= sinα tan (+α)= -cotα cot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinα tan(-α)= cotα cot (-α)= tanα (以上k∈Z) 这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =×sin 《机关公文常用词句集锦》一一 1、常用排比:新水平、新境界、新举措、新发展、新突破、新成绩、新成效、新方法、新成果、新形势、新要求、新期待、新关系、新体制、新机制、新知识、新本领、新进展、新实践、新风貌、新事物、新高度;重要性,紧迫性,自觉性、主动性、坚定性、民族性、时代性、实践性、针对性、全局性、前瞻性、战略性、积极性、创造性、长期性、复杂性、艰巨性、可讲性、鼓动性、计划性、敏锐性、有效性;法制化、规范化、制度化、程序化、集约化、正常化、有序化、智能化、优质化、常态化、科学化、年轻化、知识化、专业化、系统性、时效性;热心、耐心、诚心、决心、红心、真心、公心、柔心、铁心、上心、用心、痛心、童心、好心、专心、坏心、爱心、良心、关心、核心、内心、外心、中心、忠心、衷心、甘心、攻心;政治意识、政权意识、大局意识、忧患意识、责任意识、法律意识、廉洁意识、学习意识、上进意识、管理意识;出发点、切入点、落脚点、着眼点、结合点、关键点、着重点、着力点、根本点、支撑点;活动力、控制力、影响力、创造力、凝聚力、战斗力;找准出发点、把握切入点、明确落脚点、找准落脚点、抓住切入点、把握着重点、找准切入点、把握着力点、抓好落脚点;必将激发巨大热情,凝聚无穷力量,催生丰硕成果,展现全新魅力。

高中高数三角函数公式大全

高中高数三角函数公式大全

高中高数三角函数公式大全1.三角函数的定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边2.基本公式:-两个角的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβcos(α ± β) = cosαcosβ ∓ sinαsinβtan(α ± β) = (tanα ± tanβ)/(1 ∓ tanαtanβ) -二倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1 - tan^2θ)-半角公式:sin(θ/2) = ±√((1 - cosθ)/2)cos(θ/2) = ±√((1 + cosθ)/2)tan(θ/2) = ±√((1 - cosθ)/(1 + cosθ))-三倍角公式:sin3θ = 3sinθ - 4sin^3θcos3θ = 4cos^3θ - 3cosθtan3θ = (3tanθ - tan^3θ)/(1 - 3tan^2θ) 3.三角恒等式:-倍角恒等式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1 - tan^2θ)-二倍角恒等式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1 - tan^2θ)-半角恒等式:sin^2(θ/2) = (1 - cosθ)/2cos^2(θ/2) = (1 + cosθ)/2tan^2(θ/2) = (1 - cosθ)/(1 + cosθ)-和差化积恒等式:sin(α ± β) = sinαcosβ ± cosαsinβcos(α ± β) = cosαcosβ ∓ sinαsinβ-积化和差恒等式:sinαsinβ = (cos(α - β) - cos(α + β))/2cosαcosβ = (cos(α - β) + cos(α + β))/2-其他常用恒等式:sinα + sinβ = 2sin((α + β)/2)cos((α - β)/2)sinα - sinβ = 2cos((α + β)/2)sin((α - β)/2)cosα + cosβ = 2cos((α + β)/2)cos((α - β)/2)cosα - cosβ = -2sin((α + β)/2)sin((α - β)/2)4.三角函数的周期性:-正弦函数和余弦函数的周期都是2π-正切函数的周期是π5.三角函数的图像:-正弦函数图像:呈现波浪线,振幅为1,最大值为1,最小值为-1 -余弦函数图像:呈现波浪线,振幅为1,最大值为1,最小值为-1 -正切函数图像:呈现周期性的谐波曲线,没有定义的点为x=(2k+1)π/2(k为整数)。

高考数学知识点-三角函数公式大全

高考数学知识点-三角函数公式大全

高考数学知识点:三角函数公式大全sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)sin3a=sin(2a+a)=sin2acosa+cos2asinaAsin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2)) tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sina)+(1-2sina)sina =3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa =4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina) =4sina*2sincos*2sincos=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2coscos*{-2sinsin}=-4cosasin(a+30)sin(a-30)=-4cosasinsin=-4cosacos(60-a)=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))sin(++)=sincoscos+cossincos+coscossin-sinsinsin cos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-ta ntan)cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)sin+sin = 2 sin cossin-sin = 2 cos sincos+cos = 2 cos coscos-cos = -2 sin sintanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) sinsin = /2coscos = /2sincos = /2cossin = /2sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscos(/2+) = -sinsin() = sincos() = -cossin() = -sincos() = -costanA= sinA/cosAtan(/2+)=-cottan(/2-)=cottan()=-tantan()=tan诱导公式记背诀窍:奇变偶不变,符号看象限sin=2tan(/2)/cos=/1+tan^(/2)]tan=2tan(/2)/(1)(sin)^2+(cos)^2=1(2)1+(tan)^2=(sec)^2(3)1+(cot)^2=(csc)^2证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C /2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos=0 以及sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。

高数 三角函数公式以及 通用公式

高数  三角函数公式以及 通用公式

三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n*22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3常用导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3。

高数三角函数公式大全

高数三角函数公式大全

三角函数公式大全两角和公式sinA+B = sinAcosB+cosAsinBsinA-B = sinAcosB-cosAsinBcosA+B = cosAcosB-sinAsinBcosA-B = cosAcosB+sinAsinB tanA+B =tanAtanB-1tanB tanA + tanA-B =tanAtanB1tanB tanA +- cotA+B =cotAcotB 1-cotAcotB + cotA-B =cotAcotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4sinA 3cos3A = 4cosA 3-3cosAtan3a = tana ·tan 3π+a ·tan 3π-a半角公式 sin 2A =2cos 1A - cos 2A =2cos 1A + tan 2A =A A cos 1cos 1+- cot2A =A A cos 1cos 1-+ tan2A =A A sin cos 1-=A A cos 1sin +sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+积化和差 sinasinb = -21cosa+b-cosa-b cosacosb = 21cosa+b+cosa-b sinacosb = 21sina+b+sina-b cosasinb = 21sina+b-sina-b诱导公式sin-a = -sinacos-a = cosa sin 2π-a = cosa cos 2π-a = sina sin 2π+a = cosa cos 2π+a = -sina sinπ-a = sinacosπ-a = -cosasinπ+a = -sinacosπ+a = -cosa tgA=tanA =aa cos sinsina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a -其它公式a•sina+b•cosa=)b (a 22+×sina+c 其中tanc=ab a•sina -b•cosa = )b (a 22+×cosa-c 其中tanc=ba 1+sina =sin 2a +cos 2a 2 1-sina = sin 2a -cos 2a 2其他非重点三角函数csca =asin 1 seca =acos 1双曲函数 sinha=2e -e -aa cosha=2e e -aa + tg ha=)cosh()sinh(a a公式一:设α为任意角;终边相同的角的同一三角函数的值相等:sin2kπ+α= sinαcos2kπ+α= cosαtan2kπ+α= tanαcot2kπ+α= cotα公式二:设α为任意角;π+α的三角函数值与α的三角函数值之间的关系:sinπ+α= -sinαcosπ+α= -cosαtanπ+α= tanαcotπ+α= cotα公式三:任意角α与-α的三角函数值之间的关系:sin-α= -sinαcos-α= cosαtan-α= -tanαcot-α= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α= sinαcosπ-α= -cosαtanπ-α= -tanαcotπ-α= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α= -sinαcos2π-α= cosαtan2π-α= -tanαcot2π-α= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin 2π+α= cosα cos 2π+α= -sinα tan 2π+α= -cotα cot 2π+α= -tanα sin 2π-α= cosα cos 2π-α= sinα tan 2π-α= cotα cot 2π-α= tanα sin 23π+α= -cosα cos 23π+α= sinα tan 23π+α= -cotα cot 23π+α= -tanα sin 23π-α= -cosα cos 23π-α= -sinα tan 23π-α= cotα cot 23π-α= tanα 以上k ∈Z这个物理常用公式我费了半天的劲才输进来;希望对大家有用 A•sinωt+θ+ B•sinωt+φ =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数三角函数公式大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
三角函数公式大全
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=
tanAtanB
-1tanB
tanA +
tan(A-B)=
tanAtanB
1tanB
tanA +-
cot(A+B)=cotA
cotB 1
-cotAcotB +
cot(A-B)=
cotA
cotB 1
cotAcotB -+
倍角公式
tan2A=
A
tan 12tanA
2-
Sin2A=2SinA?CosA
Cos2A=Cos 2
A-Sin 2
A=2Cos 2
A-1=1-2sin 2A
三倍角公式
sin3A=3sinA-4(sinA)3
cos3A=4(cosA)3-3cosA
tan3a=tana ·tan(
3π+a)·tan(3
π
-a) 半角公式
sin(
2
A )=2cos 1A -
cos(
2
A )=2cos 1A +
tan(
2
A )=A A cos 1cos 1+-
cot(
2
A )=A A cos 1cos 1-+
tan(
2
A )=A A sin cos 1-=A A cos 1sin +
和差化积
sina+sinb=2sin
2b a +cos 2b
a - sina-sinb=2cos
2b a +sin 2b a - cosa+cosb=2cos
2b a +cos 2
b a -
cosa-cosb=-2sin
2b a +sin 2
b
a - tana+tanb=
b
a b a cos cos )
sin(+
积化和差
sinasinb=-2
1
[cos(a+b)-cos(a-b)] cosacosb=21
[cos(a+b)+cos(a-b)]
sinacosb=21
[sin(a+b)+sin(a-b)]
cosasinb=2
1
[sin(a+b)-sin(a-b)]
诱导公式 sin(-a)=-sina cos(-a)=cosa
sin(
2
π
-a)=cosa cos(
2
π
-a)=sina sin(
2
π
+a)=cosa cos(
2
π
+a)=-sina sin(π-a)=sina
cos(π-a)=-cosa
sin(π+a)=-sina
cos(π+a)=-cosa
tgA=tanA=
a
a cos sin 万能公式
sina=
2
)2
(tan 12tan
2a
a + cosa=
2
2
)2
(tan 1)2(tan 1a
a
+- tana=
2
)2
(tan 12tan
2a
a - 其他非重点三角函数
csc(a)=
a sin 1 sec(a)=
a
cos 1 双曲函数
sinh(a)=2
e -e -a
a
cosh(a)=2
e e -a
a +
tgh(a)=
)
cosh()sinh(a a 其它公式
asina+bcosa=)b (a 22+×sin(a+c)[其中tanc=
a
b ] asin(a)-bcos(a)=)b (a 22+×cos(a-c)[其中tan(c)=
b
a ] 1+sin(a)=(sin
2a +cos 2a )2 1- sin(a)=(sin
2a -cos 2
a )2 公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin (2kπ+α)=sinα
cos (2kπ+α)=cosα
tan (2kπ+α)=tanα
cot (2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα
cos(π-α)=-cosα
tan (π-α)=-tanα
cot (π-α)=-cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin (2π-α)=-sinα
cos (2π-α)=cosα
tan (2π-α)=-tanα
cot (2π-α)=-cotα
公式六:
2π±α及23π±α与α的三角函数值之间的关系:
sin (
2
π
+α)=cosα cos (2
π
+α)=-sinα tan (2
π
+α)=-cotα cot (2
π
+α)=-tanα sin (2
π
-α)=cosα cos (
2
π
-α)=sinα tan (
2
π
-α)=cotα cot (
2
π
-α)=tanα sin (
2

+α)=-cosα cos (
2

+α)=sinα
tan (
2

+α)=-cotα cot (2

+α)=-tanα sin (2

-α)=-cosα cos (
2

-α)=-sinα tan (
2

-α)=cotα cot (
2

-α)=tanα (以上k∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用Asin(ωt+θ)+Bsin(ωt+φ)=)cos(222ϕθ⋅++AB B A ×sin
)
cos(2)
Bsin in arcsin[(As t 2
2
ϕθϕθω⋅++++AB B A。

相关文档
最新文档