平行线中的基本图形、辅助线做法

合集下载

平行线中常见作辅助线的技巧的九种类型

平行线中常见作辅助线的技巧的九种类型

( 2 ) 如 图 ① , 在 AB ∥ DE 的 条 件 下 , 你 能 得 出 ∠ B , ∠BCD,∠D之间的数量关系吗?请说明理由. 解:∠B+∠BCD+∠D=360°.理由如下: 因为CF∥AB,所以∠B+∠BCF=180°. 因为AB∥DE,所以CF∥DE. 所以∠FCD+∠D=180°. 所以∠B+∠BCF+∠FCD+∠D=180°+ 180°,即∠B+∠BCD+∠D=360°.
6.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?
解:∠BCD=∠B-∠D.理由如下: 如图,过点C作CF∥AB,所以∠B=∠BCF. 因为AB∥DE,CF∥AB,所以CF∥DE. 所以∠DCF=∠D.所以∠B-∠D=∠BCF-∠DCF. 因为∠BCD=∠BCF-∠DCF, 所以∠BCD=∠B-∠D.
解:AB∥CD.理由如下: 如图,连接 BD. 在三角形 BDE 中,∠1+∠2+∠E=180°. 因为∠E=∠3+∠4, 所以∠1+∠2+∠3+∠4=180°, 即∠ABD+∠CDB=180°. 所以 AB∥CD.
2.【2020·攀枝花】如图,平行线AB,CD被直线EF所截, 过点B作BG⊥EF于点G,已知∠1=50°,则∠B= ( C) A.20° B.30° C.40° D.50°
BS版平行线中常见作辅助线的技巧的九种
类型
提示:点击 进入习题
1 见习题 2C 3 见习题 4 见习题
5 见习题 6 见习题 7 见习题 8 见习题 9 见习题
答案显示
1.如图,∠E=∠B+∠D,猜想AB与CD有怎样的位 置关系,并说明理由.
【点拨】本题可通过连接 B,D 两点构造截线,进而利用平行线 的判定说明 AB∥CD.
4 . ( 1 ) 如 图 ① , 若 AB ∥ DE , ∠ B = 135° , ∠ D = 145°,求∠BCD的度数.

平行线中添辅助线的方法

平行线中添辅助线的方法

平行线中添辅助线的方法在几何学中,平行线是指在同一个平面内,永远不会相交的线。

平行线可以用于解决许多几何问题。

有时,为了更好地理解和解决问题,我们可能需要在已知的平行线中添加辅助线。

这篇文章将介绍一些经常在平行线中添加辅助线的方法,以及如何利用这些辅助线解决几何问题。

方法一:创建平行线之间的等距线段这是最常见的方法之一,可以通过创建平行线之间的等距线段来添加辅助线。

这个方法可以在几何证明中使用,以创建所需的形状或角度。

下面是一个例子:假设有两个平行线AB和CD,在这两条平行线上选择两个等距点E和F。

然后,通过连接EF,你就创建了一个辅助线,使得EF平行于AB和CD。

这样,你就可以利用这个平行四边形来证明或解决其他几何问题。

方法二:使用交叉线段这个方法涉及到在平行线上选择一个点,并通过它绘制一条与其他平行线相交的线段。

这种方法通常用于证明几何性质。

例如,假设有两个平行线AB和CD,我们可以在AB上选择一个点E,并通过它绘制一条线段EF与CD相交。

然后,通过观察EF与AB的关系,可以证明一些三角形的性质或者其他几何关系。

方法三:利用平行线之间的相似三角形利用平行线之间的相似三角形是另一种常用的方法。

通过观察平行线和与它们相交的第三条线,可以找到相似的三角形。

然后,利用这些相似三角形的性质来解决几何问题。

例如,假设有两个平行线AB和CD,以及一条与它们相交的第三条线EF。

通过观察,可以发现三角形ADE与三角形BCF相似。

这意味着可以使用相似三角形的性质来计算未知角度或线段的长度。

方法四:利用中位线和对角线这个方法通常涉及到在平行线形成的平行四边形中绘制中位线或对角线。

中位线是连接平行四边形两对相对顶点的线段,对角线是连接两对非相邻顶点的线段。

这些辅助线可以帮助我们找到形状的性质,或计算线段的长度。

例如,假设有一个平行四边形ABCD,你可以通过绘制对角线AC来创建两个互相重叠的三角形ABC和ADC。

通过观察这些三角形的性质,可以得出许多结论,例如它们的面积相等或角度相等。

平行线中的辅助线作法

平行线中的辅助线作法

平行线中的辅助线作法教学目标一、知识与能力1、学生通过预习回顾平行线的性质,培养学生课前预习的数学习惯;2、利用平行线的性质和判定解题,培养学生的符号语言表达能力;3、通过添加辅助线构造基本图形,让学生具有初步的逻辑推理能力,发展几何直观二、过程与方法1、让学生通过动手操作,进一步巩固基本图形;2、在添加辅助线的过程中,让学生体会化未知为已知的数学解题思想。

三、情感态度与价值观1、在预习反馈中,让学生自主交流,培养学生在数学学习中的自信;2、在数学活动中,让学生学会与他人合作交流,获得成功的体验;2、让学生体验化未知为已知的思维方法,形成严谨求实的科学态度。

教学重点和难点一、教学重点1、回顾平行线中的基本图形;2、合理添加辅助线构造基本图形;3、学生逻辑推理能力的培养。

二、教学难点1、文字语言、符号语言、图形语言之间的转换;2、添加辅助线构造基本图形,化未知为已知数学思想的培养。

教学过程『自主预习』1.如图,AB// CD / B=61°,Z D=35,贝y/1= _____ ,/ A=__________ 。

2.如图,EF// ON OE 平分/ MON/ FEO=28 , 则/ MFE= 。

3.如图,直线a// b,点B在直线b上,且AB!BC /仁55°,则/ 2=基本图:两条平行线被第二条直线所截Ab B『合作探究』、含一个拐点的平行线【探究一】如图,AB// EF, CDLEF, / BAC=50 ,贝卩/ACD=【探究二】如图,已知AB// DE / ABC=70 , / CDE=140 ,则/ BCD=二、含两个拐点的平行线【探究三】如图,AB// CD / EFM/ NMF/仁130°,则/ 2=【探究四】如图,直线a// b,Z A=125,/ B=85°,则/ 1+Z2= ______________归纳:构造两条平行线被第二条直线所截的基本图解决问题『拓展升华』【思考题】如图①,已知AB//CD EOF是直线AB CD间的一条折线(1)试证明:/ 0二/ BEO# DFO(2)如果将折一次改为折两次,如图②,则/ BEO / O/ P、/ PFC之间会满足怎样的数量关系?证明你的结论。

几何证明题辅助线基本方法

几何证明题辅助线基本方法

几何证明题辅助线基本方法几何证明题是数学中的一种重要题型,需要通过逻辑推理和几何知识来证明给定的几何关系。

在解决几何证明题时,辅助线是一种常用的策略,可以帮助我们简化问题、构建更简洁的证明过程。

本文将介绍几何证明题中常用的辅助线基本方法。

1. 平行辅助线法当我们需要证明两条线段平行时,可以在图形中引入一条辅助线来构建平行关系。

具体步骤如下:1. 观察图形,找到可能存在平行关系的线段。

2. 在相应的位置引入一条辅助线。

3. 利用平行线的性质进行推理,证明所需的平行关系。

2. 相等辅助线法当我们需要证明两个线段相等时,可以通过引入一条相等的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能具有相等关系的线段。

2. 在相应的位置引入一条相等的辅助线。

3. 利用等边、等角等性质进行推理,证明所需的相等关系。

3. 垂直辅助线法当我们需要证明两条线段垂直时,可以通过引入一条垂直的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能具有垂直关系的线段。

2. 在相应的位置引入一条垂直的辅助线。

3. 利用垂直线的性质进行推理,证明所需的垂直关系。

4. 同位角辅助线法当我们需要证明两条直线的同位角相等时,可以通过引入同位角的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能存在同位角的直线。

2. 在相应的位置引入同位角的辅助线。

3. 利用同位角的性质进行推理,证明所需的同位角相等关系。

5. 其他辅助线方法除了上述介绍的常用辅助线方法外,还可以根据具体的几何证明题目选择其他辅助线的方法。

例如,可以利用中位线、角平分线、内切圆、外接圆等辅助线,根据题目要求灵活运用。

综上所述,几何证明题辅助线基本方法包括平行辅助线法、相等辅助线法、垂直辅助线法、同位角辅助线法等。

通过合理引入辅助线,可以帮助我们简化问题、构建更简洁的证明过程,提高解题效率。

在实际解题中,我们需要综合运用不同的辅助线方法,根据题目要求灵活选择适合的策略。

第3讲 平行线辅助线(学生版)

第3讲 平行线辅助线(学生版)

第3讲平行线辅助线一、知识回顾:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定,辅助线的添加既可以产生新的条件,又能将题目中原有的条件联系在一起.一、加截线(连接两点或延长线段)1.如图,已知AB∥CD,∠ABF=∠DCE.∠BFE与∠FEC有何关系?并说明理由.(第1题)【解析】:∠BFE=∠FEC.理由一:连接BC,如图①.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABC-∠ABF=∠BCD-∠DCE,即∠FBC=∠ECB.∴BF∥CE(内错角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).(第1题)理由二:延长AB,CE相交于点G,如图②.∵AB∥CD,∴AG∥CD.∴∠DCE=∠G(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABF=∠G.∴BF∥CG(同位角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).二、过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.(第2题)【解析】:方法一:过点P作射线PN∥AB,如图①.∵AB∥CD,∴PN∥CD.∴∠4=∠2=25°.∵PN∥AB,∴∠3=∠1=32°.∴∠BPC=∠3+∠4=57°.(第2题)方法二:过点P作射线PM∥AB,如图②.∵AB∥CD,∴PM∥CD.∴∠4=180°-∠2=180°-25°=155°.∵AB∥PM,∴∠3=180°-∠1=180°-32°=148°.∴∠BPC=360°-∠3-∠4=360°-148°-155°=57°. 方法三:连接BC,略。

初中数学中考几何如何巧妙做辅助线大全

初中数学中考几何如何巧妙做辅助线大全

人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

平行线中作辅助线的方法

平行线中作辅助线的方法

A
B
解: ∠AEC =∠A+∠C 理由:过E点作EF∥AB
F E
∴∠A +∠AEF=180°
C
D
∵AB∥CD,EF∥AB
∴EF∥CD
∴∠C +∠CEF=180°
∴∠A +∠AEF+∠C +∠CEF=360°
∵∠AEF+∠AEC+∠CEF=360°
∴ ∠AEC=∠A+∠C
如图:AB∥CD,猜想∠AEC与∠A、
G
D
∴∠1=∠HEF=50°
∵EF∥AB,AB∥CD
∴EF∥CD
∴∠2+∠FEG=180°
∴∠3=180°-∠FEG-∠HEF
∴FEG=70°
=60°
典例精讲
A
H
13
B
如图,AB∥CD,∠1=50°,
E
∠2=110°则∠3=___6_0_°_____. C 2
方法二:延长HF与CD交于点F.
G
FD
C
D
∵AB∥CD,EF∥AB
∴EF∥CD ∴∠C = ∠CEF
F E
∵ ∠AEC= ∠AEF-∠CEF
∴ ∠AEC= ∠A -∠C
如图:AB∥CD,猜想∠AEC与∠A、
∠C的关系,并说明理由。
A
B
解: ∠AEC =∠C -∠A
理由:过E点作EF∥AB
∴∠A = ∠AEF
C
D
∵AB∥CD,EF∥AB
A F
M C
B N
E D
典例精讲
如图:AB∥CD,∠ABF=∠DCE,求证: ∠BFE=∠FEC 。
A
B

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)初中几何辅助线―克胜秘籍等腰三角形1.作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2.作一腰上的高;3.将底边的一端作为底边的垂直线交叉,并与另一条腰部的延长线相交,形成直角三角形。

梯形1.垂直于平行边2.垂直于下底,将上底延伸为一条平行于两条斜边的腰部3的平行线4使两条垂直于底部的垂直线5延伸两条斜边,形成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.按对角线将平行四边形分成两个三角形,高度为3-注意形状内外的矩形1.对角线2.作垂线很简单。

无论是哪一个主题,第一个都应该考虑主题的要求,例如Ab= AC+BD,这样的方法是找到另一个与AB长度相同的线段的方法,然后证明A+BD=另一个AB。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形的中点连接成一条中线。

三角形中有中线、延长中线和其他中线。

解几何题时如何画辅助线?① 在中点处看到中线,并将中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

② 在证明比例线段时,通常使用平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③ 对于梯形问题,添加辅助线的常用方法有:1。

穿过上底的两个端点用作下底的垂直线;2.穿过上底的一个端点用作一条腰部的平行线;3.穿过上底部的一个端点用作对角线的平行线;4.穿过一根腰部的中点用作另一根腰部的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形的平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

几何辅助线的常见做法

几何辅助线的常见做法

初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

平行线中添辅助线的方法

平行线中添辅助线的方法

平行线中添辅助线的方法平行线中常见的添辅助线的方法:(1)在平行线内(或外)一点作直线的平行线;(2)加截线(连接两点、延长线段相交)例:探究:(1)、如图1,若AB//CD,则∠B+∠D=∠E,你能说明为什么吗?(2)、反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明.(3)、若将点E移至图2所示位置,此时之间有什么关系?请证明。

(4)、若将点E移至图3所示位置,情况又如何?(5)、若将点E移至图4所示位置,情况又如何?(6)、在图5中,AB//CD,∠B+∠D+∠F与∠E+∠G又有何关系?图1 图2 图3图4 图5平行线拓展延伸题一、填空题1、如图,已知AB ∥CD ,若∠A=20°,∠E=35°,则∠C 等于 。

2、如图,12//l l ,∠1=120°,∠2=100°,则∠3= 。

4、如图,1502110AB CD ∠=∠=∥,°,°,则3∠= 。

6、如图,已知AB ∥EF ,∠BAC=p ,∠ACD=x ,∠CDE=y ,∠DEF=q,用p 、q 、y 来表示x 得 。

二、选择题 如图1,AB ∥CD ,且∠BAP=60°—α,∠APC=45°+α,∠PCD=30°—α,则α=( )A 、10°B 、15°C 、20°D 、30°图1 图2 图32、如图2,CD AB //,且 25=∠A , 45=∠C ,则E ∠的度数是( ) A 。

60 B. 70 C. 110 D. 803、如图3,已知AB ∥CD ,则角α、β、γ之间的关系为( )A 、α+β+γ=1800B 、α—β+γ=1800C 、α+β—γ=1800D 、α+β+γ=3600 5、如图,已知AB ∥EF ,∠C=90o ,则α、β和г的关系是( )l 1l 212 3 AB DC1 23 EDCBAA BPCDA BC DE αβγA、β=α+гB、α+β+г=180oC、α+β—г=180oD、β+г—α=180o三、解答题 1如图所示,AB∥ED,∠B=48°,∠D=42°, 证明:BC⊥CD。

初中数学常见辅助线做法

初中数学常见辅助线做法

初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

高中立体几何辅助线技巧简述

高中立体几何辅助线技巧简述

高中立体几何辅助线技巧简述高中立体几何是数学中的一门重要分支,它主要研究空间中各种几何体的性质和相互关系。

在解决立体几何问题时,辅助线技巧是非常实用的工具。

通过巧妙地引入辅助线,可以简化问题的解决过程,提高解题效率。

本文将简要介绍一些常用的高中立体几何辅助线技巧,帮助读者更好地理解和应用这些方法。

一、平行线辅助线技巧在解决与平行线相关的立体几何问题时,可以尝试通过引入平行线辅助线来简化问题。

具体而言,可以考虑以下两种情况:1. 使用平行线比例关系当需要求解立体几何体的长度比或面积比时,可以尝试通过引入平行线辅助线来构造相应的比例关系。

在求解平行四边形的面积比时,可以通过连接对角线,将平行四边形分割成两个三角形,从而利用三角形面积公式求解面积比。

2. 使用平行线截线关系当需要求解立体几何体内部的长度或角度关系时,可以考虑通过引入平行线截线关系来简化问题。

在求解空间中两条直线的夹角时,可以通过引入一条与之平行的辅助线,从而将问题转化为求解两条平行线与辅助线的夹角,利用平行线夹角定理求解出所需的夹角值。

二、相似三角形辅助线技巧在解决与相似三角形相关的立体几何问题时,可以尝试通过引入相似三角形辅助线来简化问题。

具体而言,可以考虑以下两种情况:1. 使用相似三角形比例关系当需要求解立体几何体的长度比或面积比时,可以尝试通过引入相似三角形辅助线来构造相应的比例关系。

在求解棱锥的体积或表面积比时,可以通过在棱锥中引入一条高线,构造出两个相似三角形,从而利用相似三角形的边比关系求解出所需的比例值。

2. 使用相似三角形角度关系当需要求解立体几何体内部的角度关系时,可以尝试通过引入相似三角形辅助线来简化问题。

在求解棱锥的顶角时,可以通过在棱锥中引入一条高线,构造出一个与之相似的三角形,从而将该问题转化为求解相似三角形的对应角度关系,进而得到所需的顶角值。

三、垂线辅助线技巧在解决与垂线相关的立体几何问题时,可以尝试通过引入垂线辅助线来简化问题。

几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法
在解决几何证明题时,辅助线是一种常用且有效的工具。

它可以帮助我们发现
隐藏的几何关系,简化证明过程,并提供新的角度来解决问题。

以下是几种常见的辅助线技巧和方法,可用于解决几何证明题。

1. 平行线辅助线法:当题目涉及到平行线时,我们可以通过引入一条平行线作
为辅助线,从而构建出平行线之间的相似三角形或平行四边形。

这样,我们可以得出相应的角度和边的关系,进而证明几何问题。

2. 三角形中线辅助线法:三角形的中线是连接一个顶点与对应中点的线段。


过引入三角形中线作为辅助线,我们可以将原问题转化为直角三角形的性质或平行线的性质。

这种方法常常用于证明三角形的等边、等腰等性质。

3. 垂直线辅助线法:当题目涉及到垂直线时,我们可以通过引入一条垂直线作
为辅助线,从而构建出垂直角、直角三角形或平行四边形。

通过利用垂直线的性质,我们可以得到角度、边长等关系,进而解决问题。

4. 内切圆辅助线法:对于一个给定的三角形,可以通过引入其内切圆作为辅助线,来简化证明过程。

内切圆与三角形的的边相切于三个点,这些点可以提供有用的几何关系,如正方形的性质、垂直线的性质等。

5. 类似三角形辅助线法:当计算角度或证明形状相似时,引入类似三角形作为
辅助线可以大大简化证明过程。

通过找到两个或多个类似的三角形,我们可以得到两个三角形的边长比例,并据此解决问题。

总之,辅助线是几何证明中的有效工具,它们可以帮助我们发现关键的几何关系,简化证明过程,并提供新的角度来解决问题。

通过灵活运用各种辅助线技巧和方法,我们可以更加轻松地解决各种几何证明题。

人教版数学第5章平行线的性质与判定及辅助线模型

人教版数学第5章平行线的性质与判定及辅助线模型

平行线判定和性质以及四大模型汇总第一部分平行线的判定判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第二部分平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补第三部分平行线的四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.第四部分平行线的四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.第五部分平行线的四大模型的应用案例1如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .2如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.3如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .4如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .5如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .6 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .7如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.8如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).9如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .10如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.11如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.12如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°133如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .14如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .15 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.16已知AB∥EF,求∠l-∠2+∠3+∠4的度数.17如图(l ),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n ,∠B 1、∠B 2…∠B n -1之间的 关系.(2)如图(2),己知MA 1∥NA 4,探索∠A 1、∠A 2、∠A 3、∠A 4,∠B 1、∠B 2之间的关系. (3)如图(3),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n 之间的关系.如图所示,两直线AB ∥CD 平行,求∠1+∠2+∠3+∠4+∠5+∠6.18如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第六部分 平行线的四大模型实战演练1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5. 6. 7.8.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .9.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .10.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .11.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.第七部分平行线的性质和判定综合应用1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD =95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°2.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°3.如图,AE∥BF,∠1=110°,∠2=130°,求∠3的度数为()4.如图,∠B+∠C=180°,∠A=50°,∠D=40°,则∠AED=.5.如图,如果∠C=70°,∠B=135°,∠D=110°,那么∠1+∠2=6.如图,AB∥CD,求∠1+∠2+∠3+∠4=7.如图,AB∥CD,试找出∠B、∠C、∠BEC三者之间的数量关系.8.如图,三角形ABC中,点E为BC上一点(1)作图:过点E作EM∥AC交AB于M,过点E作EN∥AB交AC于N;(2)求∠A+∠B+∠C的度数,写出推理过程.9.如图,AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED.10.如图,AC∥BD.(1)作图,过点B作BM∥AP交AC于M;(2)求证:∠PBD﹣∠P AC=∠P.11.如图,AB∥CD,∠B=∠C,求证:BE∥CF.12.如图①,木杆EB与FC平行,木杆的两端B,C用一橡皮筋连接,现将图①中的橡皮筋拉成下列各图②③的形状,请问∠A、∠B、∠C之间的数量关系?。

初中数学常见辅助线做法

初中数学常见辅助线做法

初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线;2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”这样可防止乱添线,添辅助线也有规律可循;举例如下:1平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线2等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形;出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形;3等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形;4直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线;出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形;5三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形;6全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转;当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线7相似三角形:相似三角形有平行线型带平行线的相似三角形,相交线型,旋转型;当出现相比线段重叠在一直线上时中点可看成比为1可添加平行线得平行线型相似三角形;若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法;8特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明9半圆上的圆周角出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样;二.基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍;含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形;它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决;辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:1在梯形内部平移一腰;2梯形外平移一腰3梯形内平移两腰4延长两腰5过梯形上底的两端点向下底作高6平移对角线7连接梯形一顶点及一腰的中点;8过一腰的中点作另一腰的平行线;9作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的;通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键;4.圆中常用辅助线的添法在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的;1见弦作弦心距有关弦的问题,常作其弦心距有时还须作出相应的半径,通过垂径平分定理,来沟通题设与结论间的联系;2见直径作圆周角在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题;3见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题;4两圆相切作公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系;5两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来;。

平行线常用辅助线知识点_概述说明以及解释

平行线常用辅助线知识点_概述说明以及解释

平行线常用辅助线知识点概述说明以及解释1. 引言1.1 概述在几何学中,平行线是指在同一个平面内永远不会相交的两条直线。

对于平行线的研究,人们发现通过引入一些辅助线能够更好地理解和证明平行线的性质,从而简化许多几何问题的解决过程。

1.2 说明平行线的性质平行线具有一些重要的性质。

首先,它们具有共面性,即两条平行线存在于同一个平面上。

其次,在给定直线外,与该直线平行的直线只有唯一一条。

此外,在给定直线上,存在无数与该直线平行且互不相交的直线。

利用这些性质,我们可以快速判断两条直线是否平行,并进行相关推断和证明。

1.3 辅助线的重要性辅助线在几何推导和证明中起到了至关重要的作用。

通过合理选择和应用辅助线,我们可以将原本复杂的几何问题转化为更简单、直观且易于解决的形式。

辅助线还能够帮助我们揭示隐藏在复杂图形背后的规律和特点,并为后续分析提供有效途径。

总之,在本文中,我们将重点介绍平行线常用的辅助线知识点,并通过实例来解析其应用。

通过全面理解和熟练运用这些辅助线知识点,读者将能够更好地理解平行线的特性,并在几何学习和问题解决中获得更高的效率和成果。

2. 平行线的辅助线知识点:2.1 垂直平分线:垂直平分线是指一个线段的中垂线与另一个线段相交于垂直平分线上。

在平行线的几何证明中,使用垂直平分线可以帮助我们得到一些有用的性质和结论。

例如,如果两条平行线被一条垂直平分线所截断,则截断处所形成的各对应角相等。

2.2 角平分线:角平分线是指从一个角的顶点出发,将这个角划分为两个相等的角,并且其划分位置在这个角的内部。

在证明平行关系时,使用角平分线能够帮助我们找到具有特定性质的几何图形。

例如,在证明两条直线平行时,当一条辅助角平分线与已知直线及其延长线相交时,可以推导出其他相关性质。

2.3 对称线:对称线是指将一个图形折叠成两半时能完全重合的折痕所在的那根过对称中心点(通常为一条直线)。

在使用对称性进行几何证明时,对称辅助会被广泛应用。

七年级数学人教版下册第五章平行线中常见作辅助线的技巧的九种类型课件

七年级数学人教版下册第五章平行线中常见作辅助线的技巧的九种类型课件

再见
∴∠1+∠2+∠PFC=∠BEO+∠3+∠4. ∴∠EOP+∠PFC=∠BEO+∠OPF.
9.如图,AB∥CD,BE 平分∠ABF,DE 平分∠CDF,∠BFD= 120°.求∠BED 的度数. 解:如图,过点 F 作 FG∥AB, ∴∠BFG=∠ABF. ∵AB∥CD,∴FG∥CD. ∴∠CDF=∠DFG. ∴∠ABF+∠CDF=∠BFG+∠DFG=∠BFD=120°.
【点拨】如图,延长 BC 交 EF 于点 G. ∵AB∥EF, ∴∠CGD=∠ABC=40°. ∵CD⊥EF,∴∠CDG=90°. ∴∠GCD=180°-∠CDG-∠CGD=180°-90°-40°=50°. ∴∠BCD=180°-∠GCD=180°-50°=130°.
答案:B
3.如图,AB∥CD,P 为 AB,CD 之间的一点,已知∠2=28°, ∠BPC=58°.求∠1 的度数. 解法一:过点 P 作射线 PN∥AB,如图①所示. ∵PN∥AB,AB∥CD, ∴PN∥CD. ∴∠4=∠2=28°. ∵PN∥AB,∴∠3=∠1.
平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型
平平行行线 线∴中中常常∠见见作作B辅辅E助助H线线的的+技技巧巧∠的的九九D种种E类类H型型 =∠ABE+∠CDE,即∠BED=60°.
平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型 平行线中常见作辅助线的技巧的九种类型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l
l
l
3 1
2
P
(3题)
相交线与平行线专题复习 基本图形、基本规律
姓名:
图形一:
推广
A
B
E
D
C
F
G
J H
I
三种辅助线的画法:结论是: 辅助 线做 法 A
B E
D
C
A
B E
D
C
A
B
E
D
C
写法
对应练习:1、如右下图,l ∥m ,∠1=115º,
∠2=
95º,则∠3=
第1题 第2题
2、如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是
3、如图,直线l 1∥l 2被直线l 3所截,∠1=∠2=35°,∠P =90°,则∠3=
4、如图,AB ∥CD ,∠ABF=3
2∠ABE ,∠CDF=3
2∠CDE ,求∠E ∶∠F 的值。

C
D
F B
A
E
B
C
D
图形二:
A
B
E
D
C
三种辅助线的画法:结论是: 辅助 线做 法 A
B
E
D
C
A
B
E
D
C A
B
E
D
C
写法
图形三:结论是:
L F
A B
E
D
C I
J
K
H
G
Q R
S
T
U
M
V N
O
P
对应练习:1、如左下图,直线AB ∥CD ,∠A =70,∠C =40,则∠E=
A
C
B
D E
第1题图
2、如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,求证:AB∥EF.
翻折问题
1、如图,把一张平行四边形纸片ABCD沿BD对折,使C点落在E处,若∠DBC=15°,
求∠BOD的度数。

2、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB =65°,求∠AED′的度数。

3、如图,把矩形ABCD沿EF对折后使两部分重合,若150
∠=°,则∠BEF的度数是多少
4、一个长方形ABCD沿PQ对折,A点落到A′位置,若∠A′QB=120°,求∠DPA′的度数。

同位角、内错角、同旁内角角平分线的规律
1、如图,AB∥CD,EM、FN分别平分∠PEB、∠PFN,可以得出结论为:
2、如图,AB∥CD,EM、FN分别平分∠AEF、∠DFE,可以得出结论为:
3、如图,AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,可以得出结论为:。

相关文档
最新文档