五年级奥数推理问题

合集下载

小学五年级奥数逻辑推理问题

小学五年级奥数逻辑推理问题

小学奥数题:专题训练之逻辑推理问题1、甲、乙、丙、丁四位同学的运动衫上印了不同的号码。

赵说:甲是2号,乙是3号;钱说:丙是4号,乙是2号;孙说:丁是2号,丙是3丙;李说:丁是1号,乙是3号。

又知道赵、钱、孙、李每人都说对了一半,那么,丙的号码是( )号。

2、有一种俱乐部,里面的成员可以分成两类。

第一类是老实人,永远说真话。

第二类是骗子,永远说假话。

某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。

记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。

李四说:张三是老实人,那么李四是老实人还是骗子?3、一次游泳比赛,由甲、乙、丙、丁四个人参加决赛,赛前他们对比赛各说了一句话。

甲说:我第一,乙第二。

乙说:我第一,甲第四。

丙说:我第一,乙第四。

丁说:我第四,丙第一。

比赛结果无并列名次,且各人都只说对了一半。

那么,丁是第()4、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有()人。

5、甲、乙、丙、丁四人进行羽毛球双打比赛,已知:(1)甲比乙年轻;(2)丁比他的两个对手年龄都大;(3)甲比他的同伴年龄大;(4)甲与乙的年龄差距要比丙与丁的年龄差距大。

试判断谁与谁是同伴,并说出四人年龄从小到大的顺序。

6、一次国际足球邀请赛上,来自欧洲、美洲、亚洲、大洋洲、非洲的5支队伍均已到齐了,分组抽签仪式上,几位记者对各队的编号展开了讨论。

A记者:3号是欧洲队,2号是美洲队;B记者:4号是亚洲队,2号是大洋洲队;C记者:1号是亚洲队,5号是非洲队;D记者:4号是非洲队,3号是大洋洲队;E记者:2号是欧洲队,5号是美洲队。

结果,每人都只猜对了一半,那么1号是()队,3号是()队。

7、老师给甲、乙、丙各发一张写着不同整数的卡片。

老师:甲的卡片上写着一个两位整数,乙的卡片上写着一个一位整数,丙的卡片上写着一个比60小的两位整数,且甲的数×乙的数=丙的数。

五年级数学推理练习题

五年级数学推理练习题

五年级数学推理练习题1. 逻辑推理题:小华、小明和小刚是三个好朋友,他们分别住在不同的楼层。

小华住在比小明高的楼层,小刚住在比小华低的楼层。

如果小华不住在最高层,那么小明住在哪一层?2. 数列推理题:观察数列:2, 5, 9, 14, ...(a) 请找出数列的下一个数字。

(b) 如果数列的第10项是100,那么第11项是多少?3. 几何推理题:一个正方形的边长是10厘米,现在有一个圆与正方形的一边相切,并且圆心位于正方形的中心。

求圆的半径。

4. 应用题:一个班级有40名学生,其中1/4的学生喜欢数学,1/6的学生喜欢英语,剩下的学生喜欢科学。

喜欢科学的有多少人?5. 代数推理题:如果x+y=10,且2x-y=4,求x和y的值。

6. 概率推理题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?7. 组合推理题:有5本书,其中2本是数学书,3本是语文书。

如果随机从这5本书中选2本,有多少种不同的组合方式?8. 比例推理题:如果3千克的苹果的价格是15元,那么1千克苹果的价格是多少?如果购买2千克苹果,需要支付多少元?9. 速度和时间推理题:小明骑自行车以每小时15公里的速度从家到学校,如果路程是30公里,他需要骑行多长时间?10. 面积和体积推理题:一个长方体的长是10厘米,宽是8厘米,高是5厘米。

求这个长方体的表面积和体积。

答案提示:1. 小明住在第二层,因为小华不住在最高层,所以小华至少住在第三层,而小刚住在比小华低的楼层,所以小明只能住在第二层。

2. (a) 下一个数字是20,因为每个数字比前一个多5。

(b) 第11项是105,因为每项比前一项多5。

3. 圆的半径是5厘米,因为圆的直径等于正方形的边长。

4. 喜欢科学的有20人,因为40 * (1 - 1/4 - 1/6) = 20。

5. x=6,y=4,通过解方程组得出。

6. 抽到红球的概率是5/8。

7. 有10种不同的组合方式。

五年级数学逻辑推理练习题

五年级数学逻辑推理练习题

五年级数学逻辑推理练习题题目一:找规律1. 请观察下面的数列,寻找规律,并写出下一个数。

2, 4, 6, 8, 10, ?2. 下面的数字有一个共同的特征,请选出其中不符合规律的数字。

6, 9, 16, 21, 263. 请观察下面的数字组成的图形,找出其中的规律,并写出图形的下一行。

12 34 5 67 8 9 10题目二:数列推理1. 请观察下面的数列,找出其中的规律,并写出数列的下一项。

3, 6, 10, 15, ?2. 请观察下面的数列,找出其中的规律,并写出数列的下一项。

2, 5, 9, 14, 20, ?3. 请观察下面的数列,找出其中的规律,并写出数列的下一项。

1, 4, 9, 16, 25, ?题目三:推理判断1. 今天是星期六,那么6天后是星期几?2. 王明每天运动30分钟,一周总共运动多少分钟?3. 如果所有的狗都会叫,那么所有会叫的动物一定是狗吗?为什么?题目四:逻辑推理阅读下面的故事,请回答问题。

小明、小华和小红住在同一栋楼里,小明住在小华的上面,小红住在小明的下面。

以下四个陈述是否正确?1. 小红住在最上面。

2. 小明住在最下面。

3. 小华住在最上面。

4. 小华住在最下面。

题目五:排序请将下面的数字按照从小到大的顺序排列:7, 2, 10, 3, 5题目六:算术运算1. 36 ÷ 4 × 3 = ?2. 25 ÷ 5 + 7 - 3 × 2 = ?3. (12 - 5) × 4 + 8 ÷ 2 = ?题目七:文字推理阅读下面的文字材料,请回答问题。

小红、小明、小华和小刚四个人参加一次比赛,中奖名次如下:1. 小红比小明和小华都要晚一名。

2. 小明比小华晚一名。

3. 小刚比小红晚一名。

请问,他们四个人的名次是怎样的?题目八:综合题阅读下面的问题,请解答。

甲、乙、丙三个人一起捉迷藏,甲先找,乙和丙是藏的人,甲找了一会儿找到了乙,乙还没来得及躲好,甲就找到了丙。

五年级奥数专题逻辑推理

五年级奥数专题逻辑推理

十八逻辑推理(A)年级班姓名得分一、填空题1. 甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B 说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是 .2. A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正对面,还有F和E不相邻.那么,坐在A和B之间的是 .3. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.4. 曹、钱、刘、洪四个人出差,住在同一个招待所.一天下午,他们分别要找一个单位去办事.甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待.曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路.”钱:“今天我一定得去,要不明天人家就不接待了.”刘:“这星期的前几天和今天我去都能办事.”洪:“我今天和明天去,对方都接待.”那么,这一天是星期 ,刘要去单位,钱要去单位,曹要去单位,洪要去单位.5. 四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥.(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和.根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在____层;D是人,住在层.6. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小张说:“它是84261.”小王说:“它是26048.”小李说:“它是49280.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们每人都猜对了位置不相邻的两个数字.”这个电话号码是 .7. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小王说:“它是93715.”小张说:“它是79538.”小李说:“它是15239.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们三人猜对的数字个数都一样,并且电话号码上的每一个数字都有人猜对.而每个人猜对的数字的数位都不相邻”.这个电话号码是 .8. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D 每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.9. 六年级六个班组织乒乓球单打比赛,每班派甲、乙两人参赛,根据规则每两人之间至多赛一场,且同班的两人之间不进行比赛.比赛若干场后发现,除一班队员甲以外,其他每人已比赛过的场数各不相同,那么一班队员乙已赛过____场.10. 人的血型通常为A型,B型,O型,AB型.子女的血型与其父母血型间的关系如下表所示:父母的血型子女可能的血型O,O OO,A A,OO,B B,OO,AB A,BA,A A,OA,B A,B,AB,OA,AB A,B,ABB,B B,OB,AB A,B,ABAB,AB A,B,AB现有三个分别身穿红,黄,蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红,黄,蓝三种,依次表示所具有的血型为AB,A,O.那么穿红、黄、蓝上衣的孩子的父母戴帽子的颜色是、、 .二、解答题11. 刘毅、马宏明、张健三个男孩都有一个妹妹,六人在一起打乒乓球,进行男女混合双打,事先规定:兄妹不搭档.第一盘:刘毅和小萍对张健和小英;第二盘:张健和小红对刘毅和马宏明的妹妹.小萍、小红和小英各是谁的妹妹12. 四位运动员分别来自北京、上海、浙江和吉林,在游泳、田径、乒乓球和足球四项运动中,每人只参加了一项,且四人的运动项目各个不相同,除此以外,只知道一些零碎情况:(1)张明是球类运动员,不是南方人;(2)胡老纯是南方人,不是球类运动员;(3)李勇和北京运动员、乒乓球运动员三人同住一个房间;(4)郑永禄不是北京运动员,年龄比吉林运动员和游泳运动员两人的年龄小;(5)浙江运动员没有参加游泳比赛.根据这些条件,请你分析一下:这四名运动员各来自什么地方各参加什么运动13. 老吴、老周、老杨分别是工程师、会计师和农艺师,还分别是业余作家、画家和音乐家,但不知道每人的职业及业余爱好,只知道:(1)业余音乐家、作家常和老吴一起看电影;(2)画家常请会计师讲经济学的道理;(3)老周一点也不爱好文学;(4)工程师埋怨自己对绘画、音乐一窍不通.请你指出每个人的职业和爱好.14. 四个人聚会,每人各带了2件礼品,分赠给其余三个人中的二人,试证明:至少有两对人,每对人是互赠过礼品的.十八逻辑推理(B)年级班姓名得分一、填空题1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人”“匹兹乌图”.那个人回答.外地人听不懂,就问其他两个人:“他说的是什么意思”第二个人回答:“他说他是宝宝族的.”第三个人回答:“他说他是毛毛族的.”那么,第一个人是族,第二个人是族,第三个人是族.2. 有四个人各说了一句话.第一个人说:“我是说实话的人.”第二个人说:“我们四个人都是说谎话的人.”第三个人说:“我们四个人只有一个人是说谎话的人.”第四个人说:“我们四个人只有两个人是说谎话的人.”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.3. 某地质学院的三名学生对一种矿石进行分析.甲判断:不是铁,不是铜. 乙判断:不是铁,而是锡. 丙判断:不是锡,而是铁.经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了.那么,三人中是对的, 是错的, 只对了一半.4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二名,我第三名.”丁没说话.最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人的名次.甲是第名,乙是第名,丙是第名,丁是第名.5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事.殷华也没做这件事.”王:“我没做这件事.陈刚也没做这件事.”殷:“我没做这件事.也不知道谁做了这件事.”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一次得了b分的是班.7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得 分,最少可得 分.9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况列在下表中由此可推知,甲与丁的比分为 ,丙与丁的比分为 .10. 某俱乐部有11个成员,他们的名字分别是A ~K .这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人”那天,J 和K 休息,余下的9个人这样回答:A 说:“有10个人.”B 说:“有7个人.”C 说:“有11个人.”D 说:“有3个人.”E 说:“有6个人.”F 说:“有10个人.”G 说:“有5个人.” H 说:“有6个人.” I 说:“有4个人.”那么,这个俱乐部的11个成员中,总说谎话的有 个人.二、解答题11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么12. 世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线简述理由.在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线吗为什么13.有一个如图那样的方块网,每1个小方块里有1个人,在这些人中间,有人戴着帽子,有人没戴.每一个人都只能看见自己前方,后方和斜方的人的头,如图1所示A 方块里的人能看见8个人的头,B 方块里的人能看见5个人的头,C 方块里的人能看见3个人的头,自己看不见自已的头.在图2的方格中,写着不同方块里的人能看见的帽子的数量,那么,请在图中找出有戴帽子的人的方块,并把它涂成黑色.14. 某校学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书至少被一个同学都读过,问:能不能找到两个学生甲、乙和三本书A 、B 、C ,甲读过A 、B ,没读过C ,乙读过B 、C ,没读过A说明判断过程.图1图2A BCD FE ———————————————答 案——————————————————————1. CA 、C 的预测截然相反,必一对一错.因为只有一人对,不论A 、C 谁对,B 必 错,所以甲是最后一名,C 对. 2. E如右图,E 坐在A 、B 之间.3. 2,3.由题意可画出比赛图,已赛过的两人之间用线段引连(见右图).由图看出小明赛了2盘.因 为一共赛了六盘,共得12分,所以小明得了12-(2+4+1+2)=3(分).4. 三,丙,丁,甲,乙.由刘的讲话,知这一天是星期三,刘要去丙单位.钱要去丁单位,曹去的是甲单位,洪去的是乙单位.5. 埃及,8;法国,3;朝鲜,5;墨西哥,15.容易知道,墨西哥人住得最高,埃及人次之,朝鲜人又次之,法国人最低,各层次分别15,8,5和3.由(2)知B 是法国人,由(3)和D 是墨西哥人,由(1)知A 是埃及人,而C 是朝鲜人.6. 86240.因为每人猜对两个数字,三人共猜对 张:842123=6(个)数字,而电话号码只有5位, 王:26048所以必有一位数字被两人同对猜对.如右 李:4980图所示,猜对的是左起第三位数字2.因为每人猜对的两个数字不相邻,所以张、李猜对的另一个数字分别在两端,推知王猜对的数字是6和4,进一步推知张猜对8,李猜对0.电话号码是86240. 7. 19735.因为每个数字都有人猜对,所以每人至少猜对两个数字.下页右上图中,同一位数中只有方框中的两个数相同,如果每人猜对的数字多于两位,相同的数字至少有33-5=4(组),所以每人恰好猜对两个数字. 王: 9 3 7 1 5三人共猜对23=6(个)数字,因为电话号码只有 张: 7 9 5 3 8 5位,所以相同的一组是正确的,即左起第四位是 李: 1 5 2 3 93.因为每人猜对的数字不相邻,所以张、李猜对的另一个数字都在前两位,王猜对的两个数字是7和5,进而推知张猜对9,李猜对1.电话号码是19735. 8. 51天.): 1 2 3 4 5 6 7 8 D C A 、B 、D 9 10 11 12 13 14 15 16 C 、D A 、B 、D 17 18 19 20 21 22 23 24甲乙 丙 丁小明C D A、B、C、D每24天有4天只有1人去图书馆.3月1日至12月31日有306天,30624=12…18,所以所求天数为412+3=51(天).9. 5根据题意,有11名队员比赛场数各不相同,并且每人最多比赛10场,所以除甲外的11名队员比赛的场数分别为0~10.已赛10场的队员与除已赛0场外的所有队员都赛过,所以已赛10场的队员与已赛0场的队员同班;已赛9场的队员与除已赛0、1场外的所有队员都赛过,所以已赛9场的队员与已赛1场的队员同班;同理,已赛8、7、6场的队员分别与已赛2、3、4场的队员同班;所以甲与已赛5场的队员同班,即乙赛过5场.注本题可以求出甲也赛了5场,分别与已赛10、9、8、7、6场的队员各赛1场.10. 蓝、黄、红.解法一题中表明,每个孩子的父母是同血型的.具有B型血的孩子,其父母同血型时,由表中可见,只能是B型或AB型,但题中没有同具B型血的父母,所以戴红帽子的父母的孩子穿蓝上衣.具有A型血的孩子的同血型的父母,只可能同为A型血或同为AB型血.今已知有一对父母为AB 型血者,所以穿黄上衣的孩子的父母戴黄帽子.由表中可见,其孩子为O型血时,父母血型只能同为A型或B型或O型.今已知不具有同为B型血的父母,而同为A型血的父母的孩子已知具有A型血.把代表孩子的点与他的可能双亲的代表点之间连一直线段,便可得下面的图;由于孩子与其父母之间是唯一搭配的,所以,保存下来的只有连着红、蓝;黄,黄及蓝,红的三条边.所以,穿红上衣(O型血)孩子的父母戴蓝帽子.孩子衣服颜色父母帽子颜色(O型血)红红(AB型血)(A型血)黄黄(A型血)(B型血)蓝蓝(O型血)所以,穿红上衣的孩子的父母戴蓝帽子;穿黄上衣的孩子的父母戴黄帽子;穿蓝上衣的孩子的父母戴红帽子.11..萍英红刘马张萍英红刘√马√张√12.13.表解如下:由(3)是乒乓球运动员, 故张是足球运动员郑是乒乓球运动员由(4)吉林运动员不是游泳运动员,故李是田径运动员,而胡是游泳运动员杨工 会 农作 画 音 吴 √ 周√杨 √工 会 农作 画 音√ 吴√ √周√√杨 √14. 设此四人为甲、乙、丙、丁并用画在平面上的四个点分别表示他们,称为它们的代表点,当某人(例如甲)赠了1件礼品给另一个(例如乙)时,就由甲向乙的代表点画一条有指向的线,无非有以下两个可能:(1)甲、乙、丙、丁每人各收到了2件礼品.(2)上面的情形不发生.这时只有以下一个可能,即有一个人接受了3件礼品(即多于2件礼品;因为一人之外总共还有三个人,所以至多收到3件礼品).(或许会有人说,还有两个可能:有人只收到1件礼品及有人什么礼品也没收到.其实,这都可归以“有一人接受了3件礼品”这个情形.因为,当有一人(例如甲)只接受了1件礼品的情形发生时,四人共带来的8件礼品中还剩下7件在甲以外的三个人中分配,如果他们每人至多只收到2件礼品,则收受礼品数将不超过6件,这不可能,所以至少有一人收到2件以上(即3件)礼品,同样,当甲未收到礼品时,8件礼品分给乙、丙、丁三人,也必定有人收到3件礼品).当(1)发生时,例如甲收到乙、丙的礼品,由于甲发出的礼品中至少有1件给了乙或丙,为确切计,设乙收到了甲的礼品,于是我们先有了一对人:(甲、乙),他们互赠了礼品,如果丙也收到甲的礼品,那么又有了第二对互赠了礼品的人(甲、丙);如果收到甲礼品的另一人是丁(如右图)丁的2件礼品必定分赠了乙及丙(甲已收足了本情形中限定的2件礼品)丙或乙的另一件礼品给了丁,则问题也解决(这时另一对互赠了礼品的人便是(乙、丁)或(丙、丁)但丙的另一件礼品只能给丁,因为这时乙已收足了2件礼品,所以,当本情形发生时,至少能找到两对互赠过1件礼品的人.当(2)发生时,不失一般性,设甲收到了来自乙、丙、丁的各1件礼品,但甲又应向他们之中的某两人(例如乙、丙)各赠送1件礼品,于是(甲、乙),(甲、丙)便是要找的两对人.总上可知,证明完毕.老吴是业余画家,老周是业余音乐家,老杨是业余作家.工程师是老杨,会计师是老周农艺师是老吴.—————————————答案——————————————————1. 宝宝,宝宝,毛毛.如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝宝族的,第三个人是毛毛族的.”2. 真,假,假,不确定.第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.3. 丙,乙,甲.如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.4. 三,一,四,二.假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.×5. 陈刚.如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,符合题意.所以陈刚做了坏事.6. 三.N次比赛共得20+10+9=39(分),39=313,所以共进行了3次比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20分,203=6…2,所以a 7,a,b,c可能组合为7、5、1;7、4、2;8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=1时才有可能,由此推知三个班3次比赛的得分如下表:得班一班二班三班分次场次第一次814第二次814第三次481总分201097. 3B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分.A队总分第1,并且没有胜B队,只能是胜2场平1场(与B队平),得7分.因为C队与B队平局,负于A队,得分是奇数,所以只能得1分.D队负于A、B队,胜C队,得3分.8. 3,1.共赛了462=12(场),其中平了4场,分出胜负的8场,共得38+24=32(分).因为前三位的队至少共得7+8+9=24(分),所以后三位的队至多共得32-24=8(分).又因为第四位的队比第五位的队得分多,所以第五位的队至多得3分.因为第六位的队可能得0分,所以第五位的队至少得1分(此时这两队之间必然没有赛过).9. 3:2,3:4.由乙队共进2球,胜2场平1场推知,乙队胜的两场都是1:0,平的一场是0:0.由甲队与乙队是0:0,甲队与丙队未赛,推知甲队所有的进球都来自与丁队的比赛,所以甲队与丁队是3:2.由丙队与乙队是0:1,丙队与甲队未赛,所以丙队与丁队是3:4.10 9.因为9个人回答出了7种不同的人数,所以说谎话的不少于7人.若说谎话的有7人,则除B外,其他回答问题的8人均说了谎话,与假设出现矛盾;若说谎话的有8人,则回答问题的9人均说了谎话,出现矛盾;若说谎话的有10人,则只能1人说实话,而A和F都说了实话,出现了矛盾;若说谎话的有11人,则没有说实话的,而E说了实话,出现矛盾;显然说谎话的有9人,回答问题的9人均说谎话,休息的两人说实话.11. 根据题意有关条件,用“√”表示是、“Х”表示不是,列表所示.这样,可知甲姓王、乙姓张和丙姓李.职务人姓字物职务姓字职员程序员秘书李王张甲Х√Х√乙√Х√丙√Х√ХХ12. 四个队单循环赛共6场比赛,每场均有胜负,6场最多共计18分.若该队积7分,剩下的11分被3个队去分,那么,不可能再有两个队都得7分,即至多再有一个队可得7分以上.这样该队可以出线.其次,如果该队积6分,则剩下12分,可能有另两队各得6分.如果这另两队小分都比该队高,该队就不能出线了.所以,一个队至少要积7分才能保证必然出线.有可能出线.当6场比赛都是平局时,4个队都得3分,这时两个小分最高的队可以出线.如果这个队恰属于两个小分最高的队,那么这个队就会出线.13.答案如右图所示1333136574153413757424331站在第一行第五列的人能看见1顶帽子,说明他周围的3人中有2人没戴帽子.站在第二行第四列的人能看见7顶帽子,说明他周围的8人中只有1人没戴帽子,综合结论可知他本人没有戴帽子.站在第二行第五列的人能看到4顶帽子,且他周围的五人中已有1人没戴帽子,说明其余4人均戴帽子,根据结论可知他本人没戴帽子.利用上下对称原理可以分析出:站在第四行、第五行后三列的6个人中,只有第四行第四列、第五列两人没戴帽子,其他人均戴帽子.站在第四行第二列的人能看到7顶帽子,说明他周围的8人中只有1人没戴帽子.站在第三行第1列的人能看见1顶帽子,说明他周围的5人中只有1人戴帽子.综合结论可知:这1人不可能是第二行第1、2列的人,也不可能是第四行第二列的人.所以只能是站在第三行第二列的人或第四行第1列的人.站在第五行第1列的人能看到2顶帽子,说明结论所说戴帽子的人站在第四行第一列.站在第二行第二列的人能看到6顶帽子,说明站在第一行第1、2列的2人都戴帽子.14. 解法一首先从读书数最多的学生中找一人叫他为甲,由题设,甲至少有一本书C未读过,设B是甲读过的书中的一本,根据题设,可找到学生乙,乙读过B、C.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过C书,甲未读过C书,所以甲一定读过一本书A,乙没读过A书,否则乙就比甲至少多读过一本书,这样一来,甲读过A、B,未读过C;乙读过B、C,未读过A.因此可以找到满足要求的两个学生.解法二将全体同学分成两组.若某丙学生所读的所有的书,都被另一同学全部读过,而后一同学读过的书中,至少有一本书,丙未读过,则丙同学就分在第一组.另外,凡一本书也未读过的同学也分在第一组,其余的同学就分在第二组.按照以上分组方法,不可能将全体同学都分在第一组,因为读书数最多的同学一定在第二组.在第二组中,任找一位同学叫做甲,由题设有书C,甲未读过.再从甲读过的书中任找一本书叫做B,由题设,可找到同学乙,乙读过B、C书,由于甲属于第二组,所以甲一定读过一本书A,乙未读过A,否则甲只能分在第一组.这样,甲读过A、B,未读过C;乙读过B、C,未读过A.。

五年级奥数之推理问题

五年级奥数之推理问题

推理问题1,有8个球编号是(1)——(8),其中有6个球一样重,另外两个球都轻1克。

为了找出这两个轻球,用天平称了3次,结果如下:第一次:(1)+(2)比(3)+(4)重;第二次:(5)+(6)比(7)+(8)轻;第三次:(1)+(3)+(5)与(2)+(4)+(8)一样重。

2,甲、乙、丙、丁四个人中,乙不是最高,但他比甲和丁高,而甲不比丁高。

请说出他们各是几号。

3,某商品编号是一个三位数,现有五个三位数:874,756,123,364,925,其中每一个数与商品编号恰好在同一个数位上有一个相同数字。

这个商品的编号是多少?4,小王、小张、小李三人在一起,其中一位是工人、一位是战士、一位是大学生。

现在知道:小李比战士年龄大,小王和大学生不同岁,大学生比小张年龄小。

他们三人中,谁是工人?谁是战士?谁是大学生?5,一个正方体6个面上分别写着1、2、3、4、5、6。

根据下图摆放的三种情况,判断每个数字对面上的数字是几。

6,一个正方体的6个面分别涂着红、黄、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。

7,根据一个正方体的三种不同的摆法,判断出相对的两个面上的字母各是什么?8,下图是由四个完全一样的正方体拼成的长方体,每个正方体的六个面都按同样的顺序写有1、2、3、4、5、6六个数字,请写出每个数字的对面上的数字是几。

9,小英、小明、小亮在一次语文、数学、英语三门考试中,每人都获得了其中的一门第一名,一门第二名和一门第三名。

现在只知道小英获得了语文成绩的第一名,小明获得了数学第二名。

获得英语成绩第一名的是谁?10,下面盒子上写的标签只有一张是正确的,请判断乒乓球在哪个盒子里。

11,赵、钱、孙、李四位老师分别教数学、语文、自然和体育中的一门功课。

赵只能教语文或自然,钱只能教数学或体育,孙能教数学、语文或自然,李只能教自然。

请问:这四人中只能派谁教数学?12,甲、乙、丙、丁四人住在一个宿舍里,一天晚上,他们中间最晚回来的哪位同学忘了关灯,第二天宿舍管理员查问谁回来最晚。

五年级举一反三奥数题及答案B版

五年级举一反三奥数题及答案B版

五年级举一反三奥数题及答案B版五年级的奥数题目通常包含一些基础的数学概念和逻辑推理,以下是一些典型的五年级奥数题目及其答案:1. 题目:一个数列的前三项是1,2,3,从第四项开始,每一项都是前三项的和。

求第10项的值。

答案:数列的前几项为1,2,3,6,9,21,45,110,253,610。

第10项的值为610。

2. 题目:有5个盒子,每个盒子里分别装有1,2,3,4,5个球。

现在要从这些盒子里取出6个球,使得取出的球的总数为10。

问有多少种不同的取法?答案:可以有以下取法:(1, 2, 3, 4),(1, 2, 3, 5),(1, 2, 4, 5),(1, 3, 4, 5),(2, 3, 4, 5)。

共有5种不同的取法。

3. 题目:一个正方形的边长增加10%,它的面积增加了多少百分比?答案:假设原正方形边长为x,则面积为x^2。

增加10%后,新的边长为1.1x,面积为(1.1x)^2 = 1.21x^2。

面积增加了(1.21x^2 -x^2) / x^2 = 0.21,即增加了21%。

4. 题目:一个班级有40名学生,其中25名学生参加了数学竞赛,20名学生参加了英语竞赛。

如果至少有5名学生同时参加了数学和英语竞赛,那么只参加数学竞赛的学生有多少人?答案:设同时参加数学和英语竞赛的学生人数为x,则只参加数学竞赛的学生人数为25 - x,只参加英语竞赛的学生人数为20 - x。

根据题意,25 + 20 - x ≥ 40 + 5,解得x ≤ 5。

因此,只参加数学竞赛的学生人数至少为25 - 5 = 20人。

5. 题目:一个数字,去掉它的最高位数字后,剩下的数字是原数字的1/4。

这个数字是多少?答案:设原数字为abcd(a为最高位数字),则根据题意有abcd = 4(bcd) + a。

由于a是最高位数字,所以a只能是1或2。

如果a=1,则bcd = 1/4abcd,这是不可能的。

如果a=2,则bcd = 2(bcd) + 2,解得bcd = 2。

五年级奥数逻辑推理题集

五年级奥数逻辑推理题集

五年级奥数逻辑推理题集1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球? 2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C 不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A 地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?5.人的血型通常分为A型、B型、0型、AB型.子女的血型与其父母间的关系如表10一l所示.现有3个分别身穿红、黄、蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红、黄、蓝3种,依次表示所具有的血型为AB,A,0.问:穿红、黄、蓝上衣的孩子的父母各戴什么颜色的帽子? 6.如图10-2,有一座4层楼房,每个窗户的4块玻璃分别涂上黑色和白色,每个窗户代表一个数字.每层楼有3个窗户,由左向右表示一个三位数.4个楼层表示的三位数为:791,275,362,612.问:第二层楼表示哪个三位数?7.房间里有12个人,其中有些人总说假话,其余的人说真话.其中一个人说:“这里没有一个老实人.”第二个人说:“这里至多有一个老实人.”第三个人说:“这里至多有两个老实人.”如此往下,至第十二个人说:“这里至多有11个老实人.”问房间里究竟有多少个老实人?8.甲、乙、丙、丁约定上午10时在公园门口集合.见面后,甲说:“我提前了6分钟,乙是正点到的.”乙说:“我提前了4分钟,丙比我晚到2分钟.”丙说:“我提前了3分钟,丁提前了2分钟.”丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收音机报北京时间10时整.”请根据以上谈话分析,这4个人中,谁的表最快,快多少分钟?9.桌子上放了8张扑克牌,都背面向上,牌放置的位置如图lO-3所示.现在知道:①每张牌都是A,K,Q,J中的某一张;②这8张牌中至少有一张是Q;③其中只有一张A;④所有的Q都夹在两张K之间;⑤至少有一张K夹在两张J之间;⑥至少有两张K相邻;⑦J与Q互不相邻,A与K也互不相邻.试确定这8张牌各是什么?10.甲、乙、丙、丁4个同学同在一间教室里,他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信.已知:①甲不在念英语,也不在看小说;②如果甲不在做数学题,那么丁不在念英语;③有人说乙在做数学题,或在念英语,但事实并非如此;④丁如果不在做数学题,那么一定在看小说,这种说法是不对的;⑤丙既不是在看小说,也不在念英语.那么在写信的是谁? 11.在国际饭店的宴会桌旁,甲、乙、丙、丁4位朋友进行有趣的交谈,他们分别用了汉语、英语、法语、日语4种语言.并且还知道:①甲、乙、丙各会两种语言,丁只会一种语言;②有一种语言4人中有3人都会;③甲会日语,丁不会日语,乙不会英语;④甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈;⑤没有人既会日语,又会法语.请根据上面的情况,判断他们各会什么语言?12.甲、乙、丙3个学生分别戴着3种不同颜色的帽子,穿着3种不同颜色的衣服去参加一次争办奥运的活动.已知:①帽子和衣服的颜色都只有红、黄、蓝3种:②甲没戴红帽子,乙没戴黄帽子;③戴红帽子的学生没有穿蓝衣服:④戴黄帽子的学生穿着红衣服:⑤乙没有穿黄色衣服.试问:甲、乙、丙3人各戴什么颜色的帽子,穿什么颜色的衣服?13.甲、乙、丙、丁、戊5人各从图书馆借来一本小说,他们约定读完后互相交换,这5本书的厚度以及他们5人的阅读速度都差不多,因此总是5人同时交换书.经过数次交换后,他们5人每人都读完了这5本书.现已知:①甲最后读的书是乙读的第二本;②丙最后读的书是乙读的第四本;③丙读的第二本书甲在最初就读了;④丁最后读的书是丙读的第三本;⑤乙读的第四本是戊读的第三本;⑥丁第三次读的书是丙最初读的那本.设甲、乙、丙、丁、戊5个人最后读的书分别为4,B,C,D,E,根据以上情况确定他们5人读的第四本书各是什么书?14.如图10-4,这是一个挖地雷的游戏,在64个方格中一共有10个地雷,每个方格中至多有一个地雷.对于写有数字的方格,其格中无地雷.但与其相邻(有公共边或公共顶点)的格中有可能有地雷,地雷的个数与该数字相等.请你指出哪些方格中有地雷.15.5位学生A,B,C,D,E参加一场比赛.某人预测比赛结果的顺序是ABCDE,结果没有猜对任何一个名次,也没有猜中任何一对相邻的名次(意即某两个人实际上名次相邻,而在此人的猜测中名次也相邻,且先后顺序相同);另一个人预测比赛结果为DAECB,结果猜对了两个名次,同时还猜中了两对相邻的名次.求这次比赛的结果.16. 小刚、丁飞和王宇一位是工程师,一位是医生,一位是飞行员。

五年级奥数专题第六章 组合与推理

五年级奥数专题第六章 组合与推理

五年级奥数专题第六章组合与推理第一讲包含与排除【一】同学们站成一排报数,从左往右报数时,小明报8,从右往左报数时,小明报7,这排同学有多少人?练习1、一些同学站成一排报数,从左往右报数时,小明报11,从右往左报数时,小明报5,这排同学有多少人?2、中心小学某班进行队列练习,向前走时,小勇数了数,他前面有6人,老师喊:“向后转”的口令后,小勇数了数,他前面有7人,这行同学有多少人?【二】学校买来三种花,月季花和菊花一共有25盆,菊花和茶花一共有30盆,三种花一共有40盆,三种花各买来多少盆?练习1、苹果树、梨树和桃树共80棵,其中苹果树和梨树一共60棵,梨树和桃树一共有50棵,三种树各有多少棵?2、小丽从家到学校,走了60米后有一个商店,放学后小丽从学校回家,走了60米后超过了商店10米,小丽家离学校有多少米?【三】实验小学五年级196名学生都订了刊物,有165人订了少年报,有146人订了小学生报,问两种刊物都订的有多少人?练习1、五(1)班50人都在做语文和数学作业,有34人做完了语文作业,有30人做完了数学作业,这个班语文、数学作业都做完的有多少人?2、五年级有120人参加语文、数学考试,每人至少有一门功课得优,其中,语文得优的有76人,数学得优的有85人,问语文、数学都得优的有多少人?【四】中山市的外语教师中,每人至少懂得英语和日语中的一中语言。

已知有55人懂英语,32人懂日语,两种语言都懂的有20人,中山市有多少个外语教师?练习1、五年级的每个学生至少爱好体育和文娱中的一种活动,已知有780人爱好体育活动,有860人爱好文娱活动,其中320人两种活动都爱好。

五年级共有学生多少人?2、某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有多少个学生?【五】在100个外语教师中,懂英语的75人,懂日语的45人,其中必然有既懂英语又懂日语的老师,问:只懂英语的老师有多少人?练习1、40人都在做加法的两道题,并且至少做对了其中的一题,已知做对第一题的有35人,做对第二题的有20人,问:只做对第一题的有多少人?2、实验小学五年级120名同学参加语文、数学考试,每人至少有一门得优,已知语文64人得优,数学76人得优,求只有语文一门得优的人数。

五年级奥数题及答案:数字推理(高等难度)

五年级奥数题及答案:数字推理(高等难度)

结合目前学生的学习进度,查字典数学网为大家准备了小学五年级奥数题,希望小编整理奥数题数字推理(高等难度),可以帮助到你们!一分耕耘一分收获!奥数习题万变不离其宗,相信大家平时多动脑、多练习、多积累,掌握学习方法与技巧,通过自己的努力,一定能够取得优异的成绩!数字推理问题:(高等难度)用1、2、3、4、6、7、8、9这8个数组成的2个四位数,使这两个数的差最小(大减小),这个差最小是多少?数字推理答案:若要让差最小,那么,让两数的千位只差1.;大数除去千位后的三位数要尽量小,小数除去千位后的三位数要尽量大。

1、2、3、4、6、7、8、9这8个数,能组成的最大三位数为987,最小三位数为123。

但这样的话,剩下的4、6差为2,显然不能得到最小差。

那么令千位为3、4,这样,剩余的数字组成的最大数为987,最小数为126。

最小差为: 4126-3987=139。

五年级奥数-第8讲 合情推理

五年级奥数-第8讲 合情推理

第8讲合情推理例1:如图,每个小方块周围最多有8个小方块,外围没标数字的小方块是未探明的雷区,其中每个小方块中最多有一个雷。

内部的小方块中都没有雷,数字表示所在小方块周围的雷数。

图中共有__________个雷。

例2:王老师昨天按时间顺序先后收到A、B、C、D、E共5封电子邮件,如果他每次都是首先回复最新收到的一封电子邮件,那么在下列顺序①ABECD ②BAECD ③CEDBA ④DCABE ⑤ECBAD中,王老师可能回复的邮件顺序是__________(填序号)例3:盒子里放有编号为1至10的十个球,小明先后三次从盒中共取出九个球。

如果从第二次开始,每次取出的球的编号之和都是前一次的2倍,那么未取出的球的编号是_______。

例4:一次校友聚会有35人参加,在参加聚会的同学中,每个女生认识的男生人数各不相同,而且恰好构成一串连续的自然数,最多的全认识,最少的也认识12个。

这次聚会有_______个女生参加。

例5:甲、乙、丙、丁四人打靶,每人打三枪,四人各自中靶的环数之积都是60,按个人中靶的总环数由高到低排序,依次是甲、乙、丙、丁,靶子上4环的那一枪是______打的(环数是不超过10的自然数)。

例6:两种饮水器若干个,一种容量12升,另一种容量15升。

已知153升水恰好装满这些饮水器,则其中15升容量的有_______个。

例7:9名同学负责教室卫生,每次打扫卫生需要3人参加,如果任意两名同学都只能在一起打扫1次卫生,那么最多能安排打扫______次卫生。

例8:有一列数,第一个数是1,第二个数3,从第三个数开始,每个数都是其前面两个数的个位数:1,3,4,7,1,8,9,7,6,…,在这列数中,取连续2006个,使得这2006个数的和最大,那么这个最大的和是_______。

例9:已知某人在某年1月1日出生,他在2006年的年龄恰好是他出生年份数的各位数字之和,2006年时这个人的年龄是_______。

小学五年级数学思维训练(奥数)《推理问题》讲解及练习题(含答案)

小学五年级数学思维训练(奥数)《推理问题》讲解及练习题(含答案)

推理问题专题简析:解数学题,从已知条件到未知的结论,除了计算外,更重要的一个方面就是推理。

通常,我们把主要依靠推理来解的数学题称为推理问题。

推理问题中的条件繁杂交错,解题时必须根据事情的逻辑关系进行合情推理,仔细分析,寻找突破口,并且可以借助于图表,步步深入,这样才能使问题得到较快的解决。

例1有8个球编号是(1)——(8),其中有6个球一样重,另外两个球都轻1克。

为了找出这两个轻球,用天平称了3次,结果如下:第一次:(1)+(2)比(3)+(4)重;第二次:(5)+(6)比(7)+(8)轻;第三次:(1)+(3)+(5)与(2)+(4)+(8)一样重。

那么,两个轻球分别是几号?分析与解答从第一次看,(3)、(4)两球中有一个轻;从第二次看,(5)、(6)两球中有一个轻;从第三次看,(1)、(3)、(5)中有一个轻,(2)、(4)、(8)中也有一个轻。

综合上面的分析可以推出,两个轻球的编号分别是(4)和(5)。

随堂练习:1,甲、乙、丙、丁四个人中,乙不是最高,但他比甲和丁高,而甲不比丁高。

请说出他们各是几号。

2,某商品编号是一个三位数,现有五个三位数:874,756,123,364,925,其中每一个数与商品编号恰好在同一个数位上有一个相同数字。

这个商品的编号是多少?例2一个正方体6个面上分别写着1、2、3、4、5、6。

根据下图摆放的三种情况,判断每个数字对面上的数字是几。

分析与解答如果直接思考哪个数字的对面是几,有一定的困难。

我们可以这样想:这个数字的对面不会是几。

(1)从(A)、(B)两种摆法中可以看出:4的对面不会是2、5,也不会是1、6,那么,4对面一定是3;(2)从(B)、(C)两种摆法中可以看出:1的对面不会是4、6,也不会是2、3,那么,1的对面一定是5;(3)剩下2的对面一定是6。

随堂练习:1,一个正方体的6个面分别涂着红、黄、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。

精选五年级奥数题含名师精讲

精选五年级奥数题含名师精讲

五年级奥数精选1.逻辑推理李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。

第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。

请你判断,小华、小红和小林各是谁的妹妹。

解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。

第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。

对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹.王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。

所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。

2.逻辑"迎春杯"数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖.甲说:"如果我能获奖,那么乙也能获奖."乙说:"如果我能获奖,那么丙也能获奖."丙说:"如果丁没获奖,那么我也不能获奖."实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是___。

解答:首先根据丙说的话可以推知,丁必能获奖.否则,假设丁没获奖,那么丙也没获奖,这与"他们之中只有一个人没有获奖"矛盾。

其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。

1.公倍数恰被6,7,8,9整除的五位数有多少个?答案:[6,7,8,9]=7×8×9=504。

所以恰被6,7,8,9整除的数都是504的倍数,都可以写成504k的形式(k为整数)。

10000《504k《99999,得19.84《k《198.41所以504的20,21,22,…,198倍都是五位数,这样的五位数共有198-20+1=179(个)2.平方数自然数的平方按从小到大排成14916253649……,问:第612个位置的数字是几?解答:一位的平方数有3个,占去3位;两位的平方数有6个,占12位;三位的平方数(102至312)22个,占去66位;四位的平方数(322至992)共68个,占去272位;五位的平方数(从1002至3162)共217个,占去位数已超过612位,由1至4位的平方数占去3+12+66+272=353位,612-353=259,259÷5=51…4 即五位平方数的第52个数的第四位数字,即1512的第四个数字,1512=22801,故所求数字为0.3.逆推问题小强买了些饼干,第一天吃了总数的一半多2块,第二天吃了剩下的一半多2块,第三天吃了剩下的一半多2块,这时候还剩2块,求小强原来买了多少块饼干?解答:由第三天的情况可知,这时候的一半是2+2=4块饼干,所以第三天没吃饼干时有4×2=8块。

五年级奥数题:逻辑推理

五年级奥数题:逻辑推理

逻辑推理一、填空题1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人?”“匹兹乌图”.那个人回答.外地人听不懂,就问其他两个人:“他说的是什么意思?”第二个人回答:“他说他是宝宝族的.”第三个人回答:“他说他是毛毛族的.”那么,第一个人是族,第二个人是族,第三个人是族.2. 有四个人各说了一句话.第一个人说:“我是说实话的人.”第二个人说:“我们四个人都是说谎话的人.”第三个人说:“我们四个人只有一个人是说谎话的人.”第四个人说:“我们四个人只有两个人是说谎话的人.”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.3. 某地质学院的三名学生对一种矿石进行分析.甲判断:不是铁,不是铜.乙判断:不是铁,而是锡.丙判断:不是锡,而是铁.经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了.那么,三人中是对的, 是错的, 只对了一半.4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二名,我第三名.”丁没说话.最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人的名次.甲是第名,乙是第名,丙是第名,丁是第名.5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事.殷华也没做这件事.”王:“我没做这件事.陈刚也没做这件事.”殷:“我没做这件事.也不知道谁做了这件事.”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一次得了b分的是班.7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得分,最少可得分.9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况甲与丁的比分为 ,丙与丁的比分为 .10. 某俱乐部有11个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人?”那天,J和K休息,余下的9个人这样回答:A说:“有10个人.”B说:“有7个人.”C说:“有11个人.”D 说:“有3个人.”E说:“有6个人.”F说:“有10个人.”G说:“有5个人.”H说:“有6个人.”I 说:“有4个人.”那么,这个俱乐部的11个成员中,总说谎话的有个人.二、解答题11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?12. 世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线?简述理由.在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线吗?为什么?———————————————答案—————————————————1. 宝宝,宝宝,毛毛.如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝宝族的,第三个人是毛毛族的.”2. 真,假,假,不确定.第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.3. 丙,乙,甲.如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.4. 三,一,四,二.假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.×5. 陈刚.如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,符合题意.所以陈刚做了坏事.6. 三.N次比赛共得20+10+9=39(分),39=3⨯13,所以共进行了3次比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20分,20÷3=6…2,所以a≥7,a,b,c可能组合为7、5、1;7、4、2;8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=17. 3。

奥数五年级题目2.doc

奥数五年级题目2.doc

五年级奥数题目:一、平均数问题秦奋的一次三科联赛中,语文数学的平均分是95分,数学英语的平均分是99分,语文英语的平均分是94分.你能算出他语文,数学和英语各得多少分吗?解答:语数外总分数为(95x2+99x2+94x2) :2=288分所以英语为:288—95x2=98分语文为:288—99x2=90分数学为:288—94x2=100 分二、逻辑推理李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛. 事先规定.兄妹二人不许搭伴。

第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。

请你判断,小华、小红和小林各是谁的妹妹。

解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。

第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。

对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹.王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。

所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。

三、甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?解析:根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。

根据”这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。

于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。

最后就可求出甲库原来存粮多少吨。

甲库原存粮130吨,乙库原存粮40吨。

四、你知道“魔术数”吗?将自然数N接写在另一个自然数的右边(例如,将2接着写在34的右边就是342),如果得到的新数都能被N整除,那么自然数N就叫做魔术数。

五年级奥数逻辑推理题集

五年级奥数逻辑推理题集

1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F 说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A 地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?5.人的血型通常分为A型、B型、0型、AB型.子女的血型与其父母间的关系如表10一l所示.现有3个分别身穿红、黄、蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红、黄、蓝3种,依次表示所具有的血型为AB,A,0.问:穿红、黄、蓝上衣的孩子的父母各戴什么颜色的帽子?6.如图10-2,有一座4层楼房,每个窗户的4块玻璃分别涂上黑色和白色,每个窗户代表一个数字.每层楼有3个窗户,由左向右表示一个三位数.4个楼层表示的三位数为:791,275,362,612.问:第二层楼表示哪个三位数?7.房间里有12个人,其中有些人总说假话,其余的人说真话.其中一个人说:“这里没有一个老实人.”第二个人说:“这里至多有一个老实人.”第三个人说:“这里至多有两个老实人.”如此往下,至第十二个人说:“这里至多有11个老实人.”问房间里究竟有多少个老实人?8.甲、乙、丙、丁约定上午10时在公园门口集合.见面后,甲说:“我提前了6分钟,乙是正点到的.”乙说:“我提前了4分钟,丙比我晚到2分钟.”丙说:“我提前了3分钟,丁提前了2分钟.”丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收音机报北京时间10时整.”请根据以上谈话分析,这4个人中,谁的表最快,快多少分钟?9.桌子上放了8张扑克牌,都背面向上,牌放置的位置如图lO-3所示.现在知道:①每张牌都是A,K,Q,J中的某一张;②这8张牌中至少有一张是Q;③其中只有一张A;④所有的Q都夹在两张K之间;⑤至少有一张K夹在两张J之间;⑥至少有两张K相邻;⑦J与Q互不相邻,A与K也互不相邻.试确定这8张牌各是什么?ﻩ10.甲、乙、丙、丁4个同学同在一间教室里,他们当中一个人在做数学题,一个人在念英语,一个人在看小说,一个人在写信.已知: ①甲不在念英语,也不在看小说; ②如果甲不在做数学题,那么丁不在念英语;③有人说乙在做数学题,或在念英语,但事实并非如此; ④丁如果不在做数学题,那么一定在看小说,这种说法是不对的;⑤丙既不是在看小说,也不在念英语.那么在写信的是谁?11.在国际饭店的宴会桌旁,甲、乙、丙、丁4位朋友进行有趣的交谈,他们分别用了汉语、英语、法语、日语4种语言.并且还知道: ①甲、乙、丙各会两种语言,丁只会一种语言;②有一种语言4人中有3人都会; ③甲会日语,丁不会日语,乙不会英语;④甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈;⑤没有人既会日语,又会法语.请根据上面的情况,判断他们各会什么语言?12.甲、乙、丙3个学生分别戴着3种不同颜色的帽子,穿着3种不同颜色的衣服去参加一次争办奥运的活动.已知: ①帽子和衣服的颜色都只有红、黄、蓝3种: ②甲没戴红帽子,乙没戴黄帽子; ③戴红帽子的学生没有穿蓝衣服:④戴黄帽子的学生穿着红衣服:⑤乙没有穿黄色衣服.试问:甲、乙、丙3人各戴什么颜色的帽子,穿什么颜色的衣服?13.甲、乙、丙、丁、戊5人各从图书馆借来一本小说,他们约定读完后互相交换,这5本书的厚度以及他们5人的阅读速度都差不多,因此总是5人同时交换书.经过数次交换后,他们5人每人都读完了这5本书.现已知: ①甲最后读的书是乙读的第二本;②丙最后读的书是乙读的第四本;③丙读的第二本书甲在最初就读了;④丁最后读的书是丙读的第三本;⑤乙读的第四本是戊读的第三本;⑥丁第三次读的书是丙最初读的那本. 设甲、乙、丙、丁、戊5个人最后读的书分别为4,B,C,D,E,根据以上情况确定他们5人读的第四本书各是什么书?14.如图10-4,这是一个挖地雷的游戏,在64个方格中一共有10个地雷,每个方格中至多有一个地雷.对于写有数字的方格,其格中无地雷.但与其相邻(有公共边或公共顶点)的格中有可能有地雷,地雷的个数与该数字相等.请你指出哪些方格中有地雷.15.5位学生A,B,C,D,E参加一场比赛.某人预测比赛结果的顺序是ABCDE,结果没有猜对任何一个名次,也没有猜中任何一对相邻的名次(意即某两个人实际上名次相邻,而在此人的猜测中名次也相邻,且先后顺序相同);另一个人预测比赛结果为DAECB,结果猜对了两个名次,同时还猜中了两对相邻的名次.求这次比赛的结果.16. 小刚、丁飞和王宇一位是工程师,一位是医生,一位是飞行员。

五年级奥数举一反三第39讲 推理问题含答案

五年级奥数举一反三第39讲 推理问题含答案

第39讲推理问题一、专题简析:解数学题,从已知条件到未知的结论,除了计算外,更重要的一个方面就是推理。

通常,我们把主要依靠推理来解的数学题称为推理问题。

推理问题中的条件繁杂交错,解题时必须根据事情的逻辑关系进行合情推理,仔细分析,寻找突破口,并且可以借助于图表,步步深入,这样才能使问题得到较快的解决。

二、精讲精练例题1有8个球编号是(1)——(8),其中有6个球一样重,另外两个球都轻1克。

为了找出这两个轻球,用天平称了3次,结果如下:第一次:(1)+(2)比(3)+(4)重;第二次:(5)+(6)比(7)+(8)轻;第三次:(1)+(3)+(5)与(2)+(4)+(8)一样重。

那么,两个轻球分别是几号?练习一1、甲、乙、丙、丁四个人中,乙不是最高,但他比甲和丁高,而甲不比丁高。

请说出他们各是几号。

2、某商品编号是一个三位数,现有五个三位数:874,756,123,364,925,其中每一个数与商品编号恰好在同一个数位上有一个相同数字。

这个商品的编号是多少?例题2 一个正方体6个面上分别写着1、2、3、4、5、6。

根据下图摆放的三种情况,判断每个数字对面上的数字是几。

练习二1、一个正方体的6个面分别涂着红、黄、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。

2、根据一个正方体的三种不同的摆法,判断出相对的两个面上的字母各是什么?例题3 小英、小明、小亮在一次语文、数学、英语三门考试中,每人都获得了其中的一门第一名,一门第二名和一门第三名。

现在只知道小英获得了语文成绩的第一名,小明获得了数学第二名。

获得英语成绩第一名的是谁?练习三1、下面盒子上写的标签只有一张是正确的,请判断乒乓球在哪个盒子里。

2、赵、钱、孙、李四位老师分别教数学、语文、自然和体育中的一门功课。

赵只能教语文或自然,钱只能教数学或体育,孙能教数学、语文或自然,李只能教自然。

请问:这四人中只能派谁教数学?例题4 有6只盒子,每只盒内放有同一种笔,6只盒子所装笔的支数分别是11支、13支、17支、20支、28支、43支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十九周推理问题
例题1 有8个球编号是(1)——(8),其中有6个球一样重,另外两个球都轻1克。

为了找出这两个轻球,用天平称了3次,结果如下:第一次:(1)+(2)比(3)+(4)重;
第二次:(5)+(6)比(7)+(8)轻;
第三次:(1)+(3)+(5)与(2)+(4)+(8)一样重。

那么,两个轻球分别是几号?
1,甲、乙、丙、丁四个人中,乙不是最高,但他比甲和丁高,而甲不
比丁高。

请说出他们各是几号。

2,某商品编号是一个三位数,现有五个三位数:
874,756,123,364,925,其中每一个数与商品编号恰好在同一个数位上有一个相同数字。

这个商品的编号是多少?
3,小王、小张、小李三人在一起,其中一位是工人、一位是战士、一位是大学生。

现在知道:小李比战士年龄大,小王和大学生不同岁,大学生比小张年龄小。

他们三人中,谁是工人?谁是战士?谁是大学生?
例题2 一个正方体6个面上分别写着1、2、3、4、5、6。

根据下图摆放的
三种情况,判断每个数字对面上的数字是几。

1,一个正方体的6个面分别涂着红、黄、白、黑、绿六种颜色,根据下面的三种摆法,判断哪种颜色的对面涂着哪种颜色。

2,根据一个正方体的三种不同的摆法,判断出相对的两个面上的字母各是什么?
3,下图是由四个完全一样的正方体拼成的长方体,每个正方体的六个面都按同样的顺序写有1、2、3、4、5、6六个数字,请写出每个数字的对面
上的数字是几。

例题3 小英、小明、小亮在一次语文、数学、英语三门考试中,每人都获得了其中的一门第一名,一门第二名和一门第三名。

现在只知道小英获得了语文成绩的第一名,小明获得了数学第二名。

获得英语成绩第一名的是谁?
1,下面盒子上写的标签只有一张是正确的,请判断乒乓球在哪个盒子
里。

2,赵、钱、孙、李四位老师分别教数学、语文、自然和体育中的一门功课。

赵只能教语文或自然,钱只能教数学或体育,孙能教数学、语文或自然,李只能教自然。

请问:这四人中只能派谁教数学?
3,甲、乙、丙、丁四人住在一个宿舍里,一天晚上,他们中间最晚回来的哪位同学忘了关灯,第二天宿舍管理员查问谁回来最晚。

(1)甲说:我回来时,丙还没回来;
(2)乙说:我回来时,丁已经睡了,我也就睡了;
(3
)丙说:我进门时,乙正在床上;
(4)丁说:我回来就睡了,别的没注意。

他们说的都是实话,你知道谁回来最晚吗?
例题4 有6只盒子,每只盒内放有同一种笔,6只盒子所装笔的支数分别是11支、13支、17支、20支、28支、43支。

在这些笔中,水彩笔支数是圆珠笔的2倍,铅笔的支数是水彩笔的一半,其中有一只盒子放的是钢笔。

这盒钢笔共有多少支?
1,十三个鱼盆里鱼的条数分别是
2、3、5、7、9、11、14、13、17、21、24、24条。

已知同一盆里的鱼是同一种类,只有一盆是刀鱼,其余都是青鱼或鳊鱼,并且鳊鱼的条数是青鱼的6倍。

刀鱼有几条?
2,有六只水果箱,每箱里放的是同一种水果,其中只有一箱放的是香蕉,其余都是苹果和梨。

已知所放水果的重量分别是1、3、12、21、17、35千克,且苹果的重量是梨的5倍。

求香蕉有多少千克。

3,图书员在整理图书,他把同一类书叠一叠,一共叠好了7叠,其中只有一叠是连环画,其余都是故事书和科技书,且故事书是科技书的6倍。

已知这7叠书分别有3、4、5、16、21、25和38本。

问:连环画有多少本?
例题5 小明看一本书,如果看过的页数每天比前一天增加一倍,7天正好看完。

已知这本书一共96页,他第几天看到了12页?
练习五
1,有一种水草,水草生长的面积每天扩大2倍,10天后,这片水草的面积是42平方米。

问:当水草长到第7天时,面积是多大?
2,有一条毛毛早由幼虫长到成虫,每天长一倍,30天能长到20厘米。

问:长到5厘米时要用多少天?
3,有一种细菌,每天繁殖一倍,20天达到4000个。

问:当繁殖到
500个时,是第几天?。

相关文档
最新文档