BS ISO 22259:2019 会议系统 - 设备 - 要求(英文版)
ISO90012019新版质量管理体系标准共11页
ISO9001:2019ISO国际标准化组织国际标准ISO9001:2019代替ISO9001:2019质量管理体系要求Quality management systems — Requirements2019—XX—XX发布2019—XX—XX实施国际标准化组织发布ISO9001:2019(DIS稿)前言本标准等同采用ISO9001:2019《质量管理体系要求》本标准是ISO9000族标准之一。
标准中的“应”(shall)表示要求,“应当”(should)仅起指导作用。
本标准对ISO9001:2000作了技术性修订,故本标准发布时,代替ISO9001:2000本标准的附录A和附录B是提示的附录。
I S O 前言国际标准化组织(ISO)是由各国标准化团体(ISO成员团体)组成的世界性的联合会。
制定国际标准工作通常由ISO的技术委员会完成。
各成员团体若对某技术委员会确定的项目感兴趣,均有权参加该委员会的工作。
与ISO保持联系的各国际组织(官方的或非官方的)也可参加有关工作。
ISO与国际电工委员会(IEC)在电工技术标准化方面保持密切合作的关系。
国际标准根据ISO/IEC导则第3部分的规则起草。
由技术委员会通过的国际标准草案提交各成员团体投票表决,需取得至少75% 参加表决的成员团体的同意,国际标准草案才能作为国际标准正式发布。
本标准中的某些内容可能涉及一些专利问题,这一点应引起注意,ISO不负责识别任何这样的专利权问题。
国际标准ISO9001由ISO/TC176/SC2质量管理和质量保证技术委员会质量体系分委员会制定。
ISO9001第四版取代第三版ISO9001:2000,包括对这些文件的技术性修订。
原已使用ISO9001:2000的组织只需按本标准的规定调整某些要求,仍可使用本标准.本标准规定的质量管理体系要求除了产品质量保证外,还旨在增强顾客满意。
本标准的附录A和附录B仅是提示的附录。
ISO9001:2019(DIS稿)引言0.1 总则采用质量管理体系应当是组织的一项战略性决策。
德国EK9第82次会议有关吹吸机新有关要求中文英文版
Experience exchange group “Machinery”within the framework of the PSA Decisions EK9Experience exchange group “Machinery”within the framework of the PSA Decisions EK9Experience exchange group “Machinery”within the framework of the PSA Decisions EK9Experience exchange group “Machinery”within the framework of the PSA Decisions EK91 Rotational axis of …elbow“joint 肘部转动轴接缝2 Rotational axis of “hand”joint 手臂转动轴接缝3 Rotational axis of “finger”joint 手指转动轴接缝Experience exchange group “Machinery”within the framework of the PSA Decisions EK9AnnexExtract from EN 13683:2003+A2:2011- Finger: metallic material 手指:金属材料- Handle: Insulating material 手柄:绝缘材料The extension of the handle represents the child’s arm.手柄的延伸代表的是儿童的手臂。
The handle is provided with an extension of 451,6 mm and the probe should be used with or without this extension whichever is the more unvafourable condition.手柄延伸4516mm,测试试具在无论什么不利的条件下使用带有延伸或者不带延伸。
REACH多媒体录播系统(会议室一体机
内部公开REACH多媒体录播系统会议室录播CM/CMG系列方案目录一、概述 (3)二、系统组成 (4)1、多媒体录播服务器 (4)1.1 CM系列多媒体录播服务器(Media Conqueror) (5)2、编码器 (5)2.1 标清编码器(ENC110) (6)2.2 VGA编码器(ENC120) (7)三、系统的管理控制 (7)1、WEB操作界面 (7)2、液晶屏控制面板 (10)四、系统功能 (10)1、同步录制 (10)2、实时直播 (10)3、VOD点播 (10)4、用户管理 (10)5、文件管理 (11)五、会议室录播CM系列的优势 (11)六、系统应用 (12)附一技术指标 (17)附加、Powolive™平台 (19)一、概述REACH多媒体录播系统——会议室录播CM系列,是深圳市锐取软件技术有限公司自主研发的最新一代的多媒体录播系统,支持标清(CIF/4CIF)和VGA信号的编码,可满足标清的录制、直播和点播的需要。
该系统基于IP网络,采用分布式产品架构,可以将会议中的视频、音频信号和计算机动态屏幕信号进行一体化的同步录制、直播和点播。
相对于传统的会议录播产品,会议室录播CM系列在视音频录播的基础上,增加了对计算机动态屏幕信号的录制、直播和点播功能,支持高达6路可视信号(标清、高清、VGA等)及声音的任意组合录播,以及客户端文字交互等创新功能,这些功能对于全面记录会议、教学、培训的实况提供了极大地方便,可广泛地用于视频会议室、高档会议室、多功能会议厅、报告厅等多种会议场合,非常适合政府、企业等机构用户使用。
Powolive™平台,支持Recplayer,支持1080p@60Hz视频,支持最多6画面同步录制、直播和点播。
直播延时<0.5s,适合局域网应用。
二、系统组成图:多媒体录播系统组成结构图视频信号用VGA做主输出,然后双流用的单屏双显,先进RGB矩阵,然后再从矩阵给我们的VGA编码器,摄像头用标清编码器采集.会议室录播CM系列采用分布式产品架构,由前台设备和后台设备组成。
2019年最新ISOIEC170...
2019年最新ISOIEC170...ISO/IEC 17025-2017检测和校准实验室全套体系文件(1份手册+40份程序文件=210页)文件清单序号文件编号文件名称0 LQM01 -2019 实验室质量管理手册1 LQP01-2019保护客户机密信息和所有权程序2 LQP02-2019保证实验室诚信度程序3 LQP03-2019质量管理手册的管理4 LQP04-2019文件控制程序5 LQP05-2019网络系统检测用计算机及软件管理程序6 LQP06-2019要求、标书和合同评审程序7 LQP07-2019分包管理程序8 LQP08-2019服务和供应品采购程序9 LQP09-2019投诉处理程序10 LQP10-2019不符合检测工作控制程序11 LQP11-2019纠正措施程序12 LQP12-2019预防措施程序13 LQP13-2019记录控制程序14 LQP14-2019内部审核程序15 LQP15-2019管理评审程序16 LQP16-2019质量监督工作程序17 LQP17-2019人员培训考核和技术档案管理程序18 LQP18-2019检测环境控制程序19 LQP19-2019实验室管理程序20 LQP20-2019检测方法及方法确认程序21 LQP21-2019新项目评审程序22 LQP22-2019测量不确定度评定程序23 LQP23-2019 仪器设备管理程序24 LQP24-2019期间核查程序25 LQP25-2019量值溯源程序26 LQP26-2019实验室间比对、能力验证程序27 LQP27-2019标准物质管理程序28 LQP28-2019采样程序29 LQP29-2019 样品管理程序30 LQP30-2019 检测工作程序31 LQP31-2019 现场检测管理程序32 LQP32-2019 应急检测工作程序33 LQP33-2019 检测过程发生异常情况处理程序34 LQP34-2019 事故处理程序35 LQP35-2019 质量控制程序36 LQP36-2019 例外允许偏离程序37 LQP37-2019 检测报告管理程序38 LQP38-2019 档案管理程序39 LQP39-2019 数据控制和信息管理程序40 LQP40-2019 风险和机遇管理程序说明:《CNAS-CL01-2018检测和校准实验室能力认可准则》等同ISO/IEC 17025:2017标准,是实验室认证所依据的标准,本文档依据最新标准编制而成,绝非照搬标准内容,文件间的引用无冲突。
中英 ISO 22519-2019纯化水和注射用水预处理和生产系统
纯净水和用于注射、预处理和生产系统的水前言(国际标准化组织)是一个由国家标准机构(即会员机构)组成的世界性联合会。
编制国际标准的工作通常由ISO技术委员会进行。
每一个对某一主题感兴趣的成员机构,如已成立技术委员会,则有权派代表出席该委员会。
国际组织、政府组织和非政府组织与国际标准化组织(ISO)也参与了这项工作,10与国际电工委员会(IEC)就电工技术标准化的所有事项密切合作,制定本文件所用的程序和这些意图。
有关进一步维护的DED,见ISO/IEC指令第1部分。
特别是,应注意不同类型的ISO文件所需的不同批准标准。
本文件是根据ISO/IEC指令第2部分(见www,iso,org/directives)的编辑规则起草的。
本文件的某些要素可能是专利权的主体。
ISO不负责识别任何或所有此类专利权。
本文件开发过程中确定的任何专利权的详细信息将在介绍和/或收到的ISO专利声明清单(见www,/patents)中列出。
本文件中使用的任何商标名均为方便用户使用的信息,不构成n关于标准自愿性质的解释、与合格评定有关的ISO特定术语和表述的含义,以及有关技术性贸易壁垒(TBT)中ISO遵守世界贸易组织(WTO)原则的信息,见/iso/foreword.html。
修改后的HTM本文件由技术委员会ISO/TC 282《水的再利用》编制。
有关本文件的任何反馈或问题均应提交给用户国家标准机构。
网址:www.isorg/members.html介绍当今生物制药市场上存在着各种各样的水系统;这些水系统通常具有不同的效率水平和不同的维护需求。
净化水(PW)和注射用水(WFI)的水质在国家和国际标准中有规定,但生产PW和WFI的标准系统不到位。
本文件提供了一个标准基准,可供使用PW和/或WFI的行业、国家政府、国家当局和监管机构用于评估PW/WFI系统。
本文件-允许用户指定适合特定需求的水系统,而不必成为水系统领域的专家。
-允许用户决定所提供的系统是否安全、高效和可持续;-使各国政府、国家当局和监管机构能够进行专业审计-向审计员提供一份标准检查清单,以协调水行业的设备和系统。
ISO、IEC29119SoftwareTesting(英文版)PPT(共24页)
Organisational Test Process
Develop test specification
Draft Test Specification
Gain consensus on test
specification
Approved Test Specification
[Major revision required]
Testing vocabulary
Part 2: Testing Processes
Organisational Test Proses
Static Test Processes
Dynamic Test Processes
Instantiating Testing Processes
ISO 29119 – Scope & Structure
Part 1 Concepts & Vocabulary
BS 7925-1
Part 4 Testing Techniques
BS 7925-2
Part 2 Processes
BS 7925-2 IEEE 1008
Part 3 Documentation
IEEE 829
Part 1: Concepts & Vocabulary
Software testing concepts
Introduction to software testing Relationship between testing,
development & maintenance Implications of lifecycle models Approaches to testing
ISO22519:2019《纯化水和注射用水预处理和生产系》(中英文对照)发布!
ISO22519:2019《纯化水和注射用水预处理和生产系》(中英文对照)发布!近日,ISO发布了全球首个制药用水系统国际化标准,ISO 22519:2019《纯化水和注射用水预处理和生产系统》,全文翻译如下:ISO 22519:2019 Purifiedwater and water for injection pretreatment and production systemsISO 22519:2019 纯化水和注射用水预处理和生产系统1 Scope范围略2 Normativereferences引用标准略3 Terms, definitions andabbreviated terms术语、定义和缩写术语略4 Design and practices设计和规范4.1确定系统边界4.1.1PW/WFI 预处理和生产系统的系统边界开始于第一个供水过滤器组件/多介质过滤器之前的阀门(包括阀门)。
4.1.2PW/WFI 预处理和生产系统的系统边界末端位于PW/WFI 储罐的进水阀(包括)处,如未安装储罐,则位于使用端。
4.1.3PW/WFI 储罐不应包含在 PW/WFI 预处理和生产系统中。
4.1.4PW/WFI预处理和生产上游的'工业'处理系统。
包括向工厂其他公用设施的供应,如蒸汽锅炉、饮用水使用、冷却塔进水等,不应包括在 PW/WFI 预处理和生产系统中。
4.2系统一般要求4.2.1在安装PW/WFI 预处理和生产系统时,应采用'洁净施工'概念:提供洁净条件下的管道和设备,以及防止污染物进入的安装方法。
4.2.2原水应符合当地标准或世卫组织饮用水标准。
否则,则应安装额外的系统,以改善PW/WFI预处理和生产系统前端的进水参数。
4.2.3越往PW/WFI 预处理和生产系统的后续阶段,水的所有质量参数应越好。
4.2.4在系统每个阶段,应稳步减少以下参数:•微生物总数•电导率•TOC4.2.5PW/ WFI 质量应根据当地/国家/相关药典的最新修订版本进行。
391-2019标准
391-2019标准一、范围本标准规定了网络架构、终端设备技术要求、测试方法、网络互通要求、测试方法、安全要求、测试方法、电磁兼容性要求、测试方法、终端设备安装和运行要求、网络基础设施要求、互联互通要求、测试方法、移动终端设备无线发射功率和空中接口协议要求、测试方法等方面的规范。
二、规范性引用文件本标准引用了以下文件:- GB/T 28181-2011 安全技术防范系统通用技术要求- GB/T 32631-2016 安全防范视频监控数据存储格式- YD/T 3345-2019 固定通信局(站)无线通信干扰分析及信号场强预测技术规范三、术语和定义本标准定义了以下术语:1. 网络架构:包括网络节点、网络拓扑结构、通信协议等,是网络系统的核心组成部分。
2. 终端设备:在网络中与用户直接交互的设备,如计算机、手机、平板电脑等。
3. 测试方法:对终端设备或网络进行测试的方法和步骤,包括功能测试、性能测试、安全测试等。
4. 网络互通要求:不同网络之间能够互相通信和协同工作的条件和要求。
5. 安全要求:保护网络系统和数据安全的要求和规范,包括网络安全策略、防火墙设置、数据加密等。
6. 电磁兼容性要求:设备在电磁环境中正常工作的能力要求,包括电磁辐射、电磁抗扰等。
7. 移动终端设备:指便携式或可移动的终端设备,如手机、笔记本电脑等。
8. 公用特性参考模型及功能划分:描述了终端设备的公共特性和功能划分,为不同厂商生产的终端设备提供了统一的接口规范。
9. 协议参考模型及功能划分:描述了网络协议的层次结构和功能划分,为不同厂商生产的网络设备提供了统一的协议规范。
四、缩略语本标准使用以下缩略语:1. 3GPP:第三代合作伙伴计划(Third Generation Partnership Project)2. LTE:长期演进技术(Long Term Evolution)3. WiFi:无线局域网(Wireless Fidelity)4. GPS:全球定位系统(Global Positioning System)5. NFC:近场通信(Near Field Communication)6. USB:通用串行总线(Universal Serial Bus)7. HDMI:高清多媒体接口(High Definition Multimedia Interface)8. IP:互联网协议(Internet Protocol)9. TCP/IP:传输控制协议/互联网协议(Transmission Control Protocol/Internet Protocol)10. DNS:域名系统(Domain Name System)五、网络架构网络架构是网络系统的核心组成部分,它包括网络节点、网络拓扑结构、通信协议等。
禁用物质管理体系审核及培训
D
7.5.4
D
7.5.5
D
7.6
C
8
C
8.1
C
8.2
12
RSC MS Awareness and Audit Technique Training
4.4.6
1.3.5 1.3.6 1.3.6 1.3.6 1.3.7 1.3.8 1.3.10
4.5.1 4.5 4.5.1
1.4.1 1.4.1
Page 12 of 134
7.1
7.2
10
RSC MS Awareness and Audit Technique Training
4.4 4.4.6
4.4.6
1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8 1.3.9 1.3.10 1.3.4 1.3.4
Page 10 of 134
ISO9001, ISO 14001和 RSC System 的连结关系 - 三者的整合
Page 3 of 134
内容(第二部分)
九. 体系审核介绍 十. 审核策划 十一. 审核准备 十二. 实施审核 十三. 记录结果 十四. 提出审核文件 十五. 审核报告会议 十六. 审核的后续跟踪
4
RSC MS Awareness and Audit Technique Training
Page 15 of 134
ISO 9001与PDCA
开
进
数 进 续进
Plan
Act
Do
Check
质针
续
检纠
进
测
进
顾满
内审
质标 质
纠 预
实 /运
ICH-Q7(中英文对照)
Q7a(中英文对照)FDA原料药GMP指南Table of Contents 目录1. INTRODUCTION 1. 简介1.1 Objective 1.1目的1.2 Regulatory Applicability 1.2法规的适用性1.3 Scope 1.3范围2. QUALITY MANAGEMENT 2.质量管理2.1 Principles 2.1总则2.2 Responsibilities of the Quality Unit(s) 2.2质量部门的责任2.3 Responsibility for Production Activities 2.3生产作业的职责2.4 Internal Audits (Self Inspection) 2.4内部审计(自检)2.5 Product Quality Review 2.5产品质量审核3. PERSONNEL 3. 人员3.1 Personnel Qualifications 3.人员的资质3.2 Personnel Hygiene 3.2 人员卫生3.3 Consultants 3.3 顾问4. BUILDINGS AND FACILITIES 4. 建筑和设施4.1 Design and Construction 4.1 设计和结构4.2 Utilities 4.2 公用设施4.3 Water 4.3 水4.4 Containment 4.4 限制4.5 Lighting 4.5 照明4.6 Sewage and Refuse 4.6 排污和垃圾4.7 Sanitation and Maintenance 4.7 卫生和保养5. PROCESS EQUIPMENT 5. 工艺设备5.1 Design and Construction 5.1 设计和结构5.2 Equipment Maintenance and Cleaning 5.2 设备保养和清洁5.3 Calibration 5.3 校验5.4 Computerized Systems 5.4 计算机控制系统6. DOCUMENTATION AND RECORDS 6. 文件和记录6.1 Documentation System andSpecifications6.1 文件系统和质量标准6.2 Equipment cleaning and Use Record 6.2 设备的清洁和使用记录6.3 Records of Raw Materials, Intermediates, API Labeling and Packaging Materials 6.3 原料、中间体、原料药的标签和包装材料的记录6.4 Master Production Instructions (MasterProduction and Control Records)6.4 生产工艺规程(主生产和控制记录)6.5 Batch Production Records (BatchProduction and Control Records)6.5 批生产记录(批生产和控制记录)6.6 Laboratory Control Records 6.6 实验室控制记录6.7 Batch Production Record Review 6.7批生产记录审核7. MATERIALS MANAGEMENT 7. 物料管理7.1 General Controls 7.1 控制通则7.2 Receipt and Quarantine 7.2接收和待验7.3 Sampling and Testing of IncomingProduction Materials7.3 进厂物料的取样与测试7.4 Storage 7.4储存7.5 Re-evaluation 7.5复验8. PRODUCTION AND IN-PROCESSCONTROLS8. 生产和过程控制8.1 Production Operations 8.1 生产操作8.2 Time Limits 8.2 时限8.3 In-process Sampling and Controls 8.3 工序取样和控制8.4 Blending Batches of Intermediates orAPIs8.4 中间体或原料药的混批8.5 Contamination Control 8.5 污染控制9. PACKAGING AND IDENTIFICATIONLABELING OF APIs ANDINTERMEDIATES9. 原料药和中间体的包装和贴签9.1 General 9.1 总则9.2 Packaging Materials 9.2 包装材料9.3 Label Issuance and Control 9.3 标签发放与控制9.4 Packaging and Labeling Operations 9.4 包装和贴签操作10. STORAGE AND DISTRIBUTION 10.储存和分发10.1 Warehousing Procedures 10.1 入库程序10.2 Distribution Procedures 10.2 分发程序11. LABORATORY CONTROLS 11.实验室控制11.1 General Controls 11.1 控制通则11.2 Testing of Intermediates and APIs 11.2 中间体和原料药的测试11.3 Validation of Analytical Procedures 11.3 分析方法的验证11.4 Certificates of Analysis 11.4 分析报告单11.5 Stability Monitoring of APIs 11.5 原料药的稳定性监测11.6 Expiry and Retest Dating 11.6 有效期和复验期11.7 Reserve/Retention Samples 11.7 留样12. V ALIDATION 12.验证12.1 Validation Policy 12.1 验证方针12.2 Validation Documentation 12.2 验证文件12.3 Qualification 12.3 确认12.4 Approaches to Process Validation 12.4 工艺验证的方法12.5 Process Validation Program 12.5 工艺验证的程序12.6 Periodic Review of Validated Systems 12.6验证系统的定期审核12.7 Cleaning Validation 12.7 清洗验证12.8 Validation of Analytical Methods 12.8 分析方法的验证13. CHANGE CONTROL 13.变更的控制14. REJECTION AND RE-USE OFMATERIALS14.拒收和物料的再利用14.1 Rejection 14.1 拒收14.2 Reprocessing 14.2 返工14.3 Reworking 14.3 重新加工14.4 Recovery of Materials and Solvents 14.4 物料与溶剂的回收14.5 Returns 14.5 退货15. COMPLAINTS AND RECALLS 15.投诉与召回16. CONTRACT MANUFACTURERS(INCLUDING LABORATORIES)16.协议生产商(包括实验室)17. AGENTS, BROKERS, TRADERS, DISTRIBUTORS, REPACKERS, AND RELABELLERS 17.代理商、经纪人、贸易商、经销商、重新包装者和重新贴签者17.1 Applicability 17.1适用性17.2 Traceability of Distributed APIs andIntermediates17.2已分发的原料药和中间体的可追溯性17.3 Quality Management 17.3质量管理17.4 Repackaging, Relabeling, and Holding of APIs and Intermediates 17.4原料药和中间体的重新包装、重新贴签和待检17.5 Stability 17.5稳定性17.6 Transfer of Information 17.6 信息的传达17.7 Handling of Complaints and Recalls 17.7 投诉和召回的处理17.8 Handling of Returns 17.8 退货的处理18. Specific Guidance for APIs Manufactured by Cell Culture/Fermentation 18. 用细胞繁殖/发酵生产的原料药的特殊指南18.1 General 18.1 总则18.2 Cell Bank Maintenance and RecordKeeping18.2细胞库的维护和记录的保存18.3 Cell Culture/Fermentation 18.3细胞繁殖/发酵18.4 Harvesting, Isolation and Purification 18.4收取、分离和精制18.5 Viral Removal/Inactivation steps 18.5 病毒的去除/灭活步骤19.APIs for Use in Clinical Trials 19.用于临床研究的原料药19.1 General 19.1 总则19.2 Quality 19.2 质量19.3 Equipment and Facilities 19.3 设备和设施19.4 Control of Raw Materials 19.4 原料的控制19.5 Production 19.5 生产19.6 Validation 19.6 验证19.7 Changes 19.7 变更19.8 Laboratory Controls 19.8 实验室控制19.9 Documentation 19.9 文件20. Glossary 20. 术语Q7a GMP Guidance for APIs Q7a原料药的GMP指南1. INTRODUCTION 1. 简介1.1 Objective 1.1目的This document is intended to provide guidance regarding good manufacturing practice (GMP) for the manufacturing of active pharmaceutical ingredients (APIs) under an appropriate system for managing quality. It is also intended to help ensure that APIs meet the quality and purity characteristics that they purport, or are represented, to possess. 本文件旨在为在合适的质量管理体系下制造活性药用成分(以下称原料药)提供有关优良药品生产管理规范(GMP)提供指南。
驱动用电动机及其控制器
电动摩托车和电动轻便摩托车驱动用电机及其控制器1 范围本文件规定了电动摩托车和电动轻便摩托车驱动用电机(包括含减速器的电机)及其控制器的产品型号编制、要求、试验方法、检验规则及对标志、包装、运输和贮存的要求。
本文件适用于电动摩托车和电动轻便摩托车驱动用电机(以下简称电机)及其控制器。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB 191-2008 包装储运图标标志(ISO 780:1997,EQV)GB 755 旋转电机定额和性能GB/T 1184 形状和位置公差未注公差值GB/T 2423.5-2019 电工电子产品基本环境试验第2部分:试验方法试验Ea和导则:冲击(IEC 60068-2-27:1987,IDT)GB/T 2423.10-2019 电工电子产品基本环境试验第2部分:试验方法试验Fc和导则:振动(正弦)(IEC 60068-2-6:1982,IDT)GB/T 2423.17-2008 电工电子产品环境试验第2部分:试验方法试验Ka:盐雾GB 4208 外壳防护等级(IP代码)GB/T 4942.1 旋转电机整体结构的防护分级(IP代码)分级GB/T 5171.21-2016 小功率电动机第21部分:通用试验方法GB/T 10069.1-2006 旋转电机噪声测定方法及限值第1部分:旋转电机噪声测定方法(ISO 1680:1999,MOD)GB/T 10069.3-2008 旋转电机噪声测定方法及限值第3部分:噪声限值GB/T 13202-2015 摩托车轮辋系列(ISO 4249-3:1990,EQV)GB/T 18387 电动车辆的电磁场辐射强度的限值和测量方法宽带9kHz~30MHzGB/T 18488.1 电动汽车用电机系统第1部分:技术条件GB/T 18488.2 电动汽车用电机系统第2部分:试验方法GB/T 34660 道路车辆电磁兼容性要求和试验方法ISO 11898.1-2015 Road Vehicle - Controller Area Network (CAN) Part 1: Data link layer and physical signaling(2004)ISO 11898.2-2016 Road Vehicle - Controller Area Network (CAN) Part 2: High-speed medium access unit(2004)ISO 14229.2 Road vehicles - Unified diagnostic services (UDS) Part 2: Session layer servicesISO 15765.2 道路车辆—控制局域网络诊断第2部分:网络层服务T/CSAE 43-2015 电动汽车CAN总线测试规范T/CSAE 42-2015 电动汽车CAN总线故障诊断服务规范3 术语和定义3.1一体轮 wheel with the outer shell of motor integrated轮毂和电机外壳做成一个整体的摩托车主动轮。
19 News 工业加权与产品检测设备手册说明书
19NewsIndustrialIndustrial Weighing & Product InspectionThe need to improve process efficiency in production is constant. Interconnectivity and di-rect communication using weighing and inspection equipment with built-in diagnostics de-livers real benefits for manufacturers while keeping pace with Industry 4.0 developments.Productivity in ProductionTechnology Enhances AutomationAutomationThe terms “Industry 4.0” and the “Internet of Things” (IoT) are becoming common-place as more facilities become “smart factories”. These terms are at the core of increased automation and process im-provement for many industries.Increasing pressureManufacturers are finding themselves under increasing pressure to react quickly to fulfill customer requirements. This leads to the need to improve pro-duction efficiency and heightens ex-pectations of weighing and inspec-tion technology to deliver solutions that streamline processes, increase automa-tion and provide visibility through real-time data.Automated advanced warningsIn traditional manual operations, data is frequently captured, documentedand distributed with varying degrees of human intervention. For example, main-tenance teams may monitor key param-eters of pieces of equipment and log performance manually. But that doesn’tnecessarily avoid a complete line stop-page that may occur in the event of an unmonitored trend that is allowed to drift outside of acceptable tolerances. Built-in diagnostics can avoid such events, pro-viding advanced warning of potential line stoppage before it actually occurs. Thisis just one example of how integrated diagnostics can improve day-to-day pro-cesses and contribute to improvements in Overall Equipment Efficiency (OEE).METTLER TOLEDO Industrial News 192P r o d u c t i v i t y a n d A u t o m a t i o nPredictive maintenance with intelligent load cellsAdditionally, state-of-the-art weighing technology for automation is based on intelligent load cells with integrated mi-croprocessors for signal processing di-rectly at the actual “working point”. This eliminates data transmission errors andimproves measurement result accuracy and consistency.The intelligence in the load cell also al-lows continuous analysis of the weigh-ing process. This means a failure or even gradual loss of performance can be identified and reported. In contrast, load cells with analog value transmis-sion provide, at best, a general fault message, with no reliable way to diag-nose a gradual performance decline of a load cell.Automated fill controlDynamic checkweighers can add fur-ther diagnostic capabilities by monitor-ing the weight of each package and initi-ating the automatic adjustment of filling systems to optimize target weights andreduce product giveaway.External software support Industry 4.0 can also be supported through the use of external proprietary software packages. Such advanced software solutions are now able tostreamline and automate processes.For example, our ProdX software re-moves the need for mundane man-ual data-collection processes through the automated harvesting of data from product inspection devices. Additionally, our Collect+™ software brings a newperspective to manual processes byAutomation is the keyModern weighing and inspection equip-ment monitors performance, collects critical packaging line data, provides live analysis and enables decision-mak-ing for increased automation, improved efficiency and higher productivity.Integrated diagnostics for early trend controlMany weighing and inspection devices are able to provide automated and real-time control from within the equipment. For instance, a metal detector is able to continuously monitor critical parame-ters, which allows for less frequent test-ing. If adverse trends are detected at anypoint, the system can provide an early warning, enabling adjustment to take place to rectify the issue before produc-tivity is impacted via a system failure.METTLER TOLEDO Industrial News 193displaying key performance indicators from manual portioning and various checkweighing activities.Continuous improvementThe ability to collect such detailed in-formation, along with advanced built-in diagnostics software, enables a new and improved approach to processIntelligent process sensorsfor Industry 4.0 and IoTThe current industrial revolution demands smarter machines. We offer sensors for the food, pharmaceutical or chemical industry including weight, pH, CO 2 and O 2. Download Sensors for Process Automation to learn how we can help you design highly competitive and intelligent process equipment./ind-sensors-for-automation-incontrol and optimization – a prerequisite for the Industry 4.0 age. Intelligent sen-sors pave the way for reduced down-time, faster troubleshooting and less waste product, leading to overall im-provements in quality, automation andproductivity./ind-4-0-in34576Process sensorsTanks onweigh modulesMetal detectorsCheck weighersVision inspection and serialization4METTLER TOLEDOIndustrial News 19F l o o r S c a l esReal-Time Operator Guidance Increases Efficiency Save Money with a Smart Floor ScaleOur new floor-scale line achieves precise results for customers in harsh environments. This completely new design reduces maintenance costs and offers operator guidance for increased process efficiency.Operator guidance for higher efficiencyPowerDeck™ alerts the user if goods are partially placed on the scale and recommends the optimal position of goods for ideal repeatability and in-creased operator efficiency. In case of overload shocks, the scale warns the operator to maintain scale accuracy twice as long.Increased uptime –5METTLER TOLEDOIndustrial News 19Four load cells with predictive diagnostics for timely mainte-nance and reduced downtimeRugged construction without junction boxes for improved accuracy, reliability and uptimeWhen connected to the IND570 terminal, the floor scale provides guidance for operators for fewer overload shocks and optimal load placementDrive productivity with real-time assistanceThe new PowerDeck™ floor scale family combines rugged scale design with smart diagnostics and clear user guidance. Always run your process at peak performance, and benefit from both high measurement accuracy and reduced maintenance costs./Powerdeck-in6METTLER TOLEDO Industrial News 19I n v e n t o r y C o n t r o l7METTLER TOLEDO Industrial News 198METTLER TOLEDOIndustrial News 19Stop Wasting Time and Ingredients Bring Certainty to FormulationR e c i p e W e i g h i n gManual batch preparation must be fast and precise, as small deviations from predefined weighing tolerances can negatively influence consistency and taste. A new formulation scale makes the recipe weighing process easy, traceable, and efficient.advising which ingredient to weigh next. Typically, the system is configured to accept the proposed ingredient by con-firming and pressing a soft key on the terminal. Once the recipe has been com-pleted, the operator confirms the end ofthe process and the batch data is stored in the terminal memory database.The ICS689 has been enhanced with a new formulation functionality, making the terminal an efficient tool for man-ual dispensing applications. Software clearly guides the operator through a recipe and allows easy and traceable recipe weighing without costly network-ing infrastructure.Clear operator guidanceThe terminal can store 50 unique reci-pes, each with up to 50 different ingre-dients. By pressing just one button, the operator opens the recipe data library, selects the recipe, and starts the for-mulation process. The system guidesthe operator through the process by Soft keys for user guidanceLess wasteIf too much of one ingredient is added, the operator can simply press a key. The software automatically re-Fast filling preferredA color bar graph indicates filling sta-tus. Green means the operator has reached the pre-defined toleranceReduced wasteA graphical bar on the screen gives clear feedback on the actual dispensing sta-tus. In case an operator adds too much of a single ingredient, the system can re-calculate the amount of other ingredients required to let the operator adjust the recipe. Choosing a scale with an ap-propriate weighing range further re-duces waste.If required, ICS689 terminals also allow up to four platforms to be attached. By simply pressing a button, the opera-tor can shift from bulk to fine ingredient weighing. This speeds up batching and reduces waste.Safety and traceabilityMaterial data and batch numbers can be entered for each ingredient. When work-ing with a barcode reader, the system can be configured to reject ingredients with the wrong barcode. It can also stopthe process any time a weight is outsidethe acceptable range. All recipe changesand manual overrides are tracked in thedatabase, and details of each mix canbe output to a printer, memory stick, orPC for archival records.Flexible and mobileAll ICS6-series bench scale models canbe equipped with WLAN technology. Incombination with an optional built-inrechargeable battery, these scales caneasily be moved and placed where theybest fit into your production operationsfor fast, safe formulation that meets yourrecipe requirements./ICS689-inThe ICS689 formulationterminal features:• Storage of 50 recipes• 50 ingredients per recipe• Overfill correction functions• Horizontal or vertical batchingTerminal facts:• Color TFT display• Scratch-resistant keypad• IP69k protection• Four attachable platformsLearn more about/ICS689-inLearn More9METTLER TOLEDOIndustrial News 1910METTLER TOLEDOIndustrial News 19How to Reduce Floor-Scale Risks Simple Changes to Protect EmployeesPoorly designed or improperly installed equipment increases the danger of slips, trips and falls. By addressing floor-scale safety risks, you can reduce injury rates, maintain workers’ health and avoid unexpected costs.R e d u c e d R i s k o f I n j u r i esAvoid trippingA pit installation prevents workers from tripping and allows the fast-est scale access with no need to push pallets, carts or goods up-hill. Because the position is fixed, the location should be well planned. Tripping risks can be minimized by marking the area where the floor scale is installed.11METTLER TOLEDOIndustrial News 19Guidance for safer floor-scale operationEnsure safety with the right floor scaleThis white paper on ergonomically designed floor scales helps you recog -nize potential risks for proper installa-tion and proposes solutions to increase operator safety.Free download/ind-wp-floor-safety-inFree DownloadFor more informationMETTLER TOLEDO Group Industrial DivisionLocal contact: /contactsSubject to technical changes©02/2018 METTLER TOLEDO. All rights reserved Document No. 30399322MarCom IndustrialExpertise LibraryA one-stop portal for knowledge resources:catalogues, brochures, datasheets, user manuals, white papers, guides, handbooks, case studies, magazines, usercoms, webinars, videos, operat-ing instructions, certificates and more.Visit your Knowledge Center today! /ind-library-inKnowledge at Your Finger Tips。
会议系统设备表单
米
0.00
E
RVVP 4*2.5联网报警线
1400
米
0.00
系统调试
F
系统调试
1
项
0.00
小计
0.00
项目
说明
型号/规格
品牌/产地
数量
单位
供应
安装
单价
合价
单价
合价
一期弱电/手动报警系统其他项目
项目
说明
型号/规格
品牌/产地
数量
单位
供应
安装
单价
合价
单价
合价
一期弱电/电梯三方通话系统
A
RVVP 4*1.5,包括相关附件
项目
说明
型号/规格
品牌/产地
数量
单位
供应
安装
单价
合价
单价
合价
一期弱电/手动报警系统
A
防区模块,包括相关附件
23
个
0.00
B
手动报警按钮,包括相关附件
172
个
0.00
C
防区模块电源,包括相关附件
4
个
0.00
供应及安装电缆,电线,包括电缆及电线的敷设、端接及链路测试等一切工作内容:
D
RVV 2*0.5手动报警线
3250
米
0.00
系统调试
B
系统调试
1
项
0.00
小计
0.00
项目
说明
型号/规格
品牌/产地
数量
单位
供应
安装
单价
合价
单价
合价
一期弱电/电梯三方通话系统其他项目
viewme-um004_-zh-e说明书
AS9100C标准(中英双版)
AS9100C标准(中英双版)Quality Management Systems – Requirements forAviation, Space and Defense Organizations1.Scope1.1GeneralThis standard includes ISO 9001:2008 quality management system requirements and specifies additional aviation, space and defense industry requirements, definitions and notes as shown in bold, italic text.It is emphasized that the requirements specified in this standard are complementary (not alternative) to contractual and applicable statutory and regulatory requirements. Should there be a conflict between the requirements of this standard and applicable statutory or regulatory requirements, the latter shall take precedence.This International Standard specifies requirements for a quality management system where an organizationa) needs to demonstrate its ability to consistently provideproduct that meets customer and applicable statutory and regulatory requirements, andb) aims to enhance customer satisfaction through the effectiveapplication of the system, including processes for continual improvement of the system and the assurance of conformity to customer and applicable statutory and regulatoryrequirements.NOTE 1In this International Standard, the term “product” only applies toa) product intended for, or required by, a customer,b) any intended output resulting from the product realizationprocesses.NOTE 2Statutory and regulatory requirements may be expressed as legal requirements.1.2ApplicationAll requirements of this International Standard are generic and are intended to be applicable to all organizations, regardless of type, size and product provided.Where any requirement(s) of this International Standard cannot be applied due to the nature of an organization and its product, this can be considered for exclusion.Where exclusions are made, claims of conformity to this International Standard are not acceptable unless these 质量管理体系-航空,航天和国防组织的要求1围1.1总则本标准包括I S O9001:2008质量管理体系要求,规定了附加的航空,航天和国防的行业要求,定义和注释.附加要求以加粗斜体表示。
iso9001 2019版标准条文讲解ver12_图文
Ver 1.0.
相关方的理解范例
G.W.
Enterprises limited
东莞贵惠电子有限公司
Liugang Top Quality 2016_ Liugang. All right reserved
Ver 1.0.
相关方的理解范例
G.W.
Enterprises limited
东莞贵惠电子有限公司
作用和承诺: ——对质量管理体系的有效性负有责任; ——确保质量方针和质量目标得到建立(2019版是要求最高管 理者“建立质量方针”),并与组织的背景环境及战略方向保 持一致; ——确保质量管理体系要求纳入组织的业务运作; ——推进过程方法及基于风险的思想的应用; ——确保获得质量管理体系所需的资源; ——传达有效的质量管理以及满足质量管理体系要求的重要性 (2019版是沟通满足顾客要求和法律要求的重要性); ——确保质量管理体系实现其预期结果; ——鼓励、指导和支持员工为质量管理体系的有效性做出贡献 ; ——推动改进; ——支持其他管理者在其职责范围内证实其领导作用。
Liugang Top Quality 2016_ Liugang. All right reserved
Ver 1.0.
转版采取措施
G.W.
Enterprises limited
东莞贵惠电子有限公司
(1)尽快进行新旧标准在组织内应用的差异分析; (2)建立转版实施计划; (3)为内部相关人员提供培训; (4)修订现有质量管理体系; (5)使用ISO 9001:2019时,选择认证机构实施转版认证。
新要求为:b)确定和应对影响产品和服务符合性以 及增强顾客满意能力的风险和机会。
Liugang Top Quality 2016_ Liugang. All right reserved
ISO9001:2019版管理评审完整版
XXXX有限公司ISO9001:2015管理评审日期:编制: 审批:目录1.管理评审计划2.会议签到表3.管理评审输入资料4.管理评审报告管理评审计划编制:XXX 审批:XXXX会议签到表参加会议人员:2017年管理评审输入资料公司质量管理体系总体运行总结报告——管理者代表一、质量方针与质量目标的贯彻执行情况公司于2017.4建立质量管理体系,按照公司的质量方针和战略方针,对各过程及相互作用,系统地进行规定和管理,制定了公司质量手册,通过采用PDCA循环以及考虑了基于风险的思维对体系过程进行管理。
制定有质量方针;通过质量手册颁布、宣传栏、电子邮件等方式进行传达;以有效地保障了质量方针的宣传和贯彻。
制定有质量目标及部门分目标;通过质量手册颁布、宣传栏、电子邮件等方式进行传达;以有效地保障了质量方针的宣传和贯彻;通过定期统计、汇总等方式进行考核。
二、组织环境、相关方期望和需求、风险和机遇的识别、评审和措施的确定公司于2017.4组织了各部门对公司组织环境(内外部因素)、相关方期望和需求、风险和机遇进行识别、评审和确定相关的应对措施和方案。
确定的应对措施和方案基本可行。
三、内部审核结果公司于2017.9.5进行了内部审核,审核结论:公司运行的质量管理体系能得到有效的实施和保持,基本符合质量管体系要求。
不符合及纠正措施实施情况:审核过程,发现两个不符合(轻微不符合),分布于生产和品管部,对发现的不符合,相关部门采取了原因分析,并采取了相应的改进措施;改进措施得到了内审员的跟踪验证,验证结果有效,可以关闭。
四、资源需求公司在质量管理体系运行过程中,资源基本能满足运行的需求,暂不需要增加,如有需求,将要求各体系相关部门进行跟进。
由于公司质量管理体系初建立,有很多不足之处,需要各相关部门予以配合,加以改进,如加大力度,增强公司各层次人员的质量和服务意识;应对风险和机遇的识别有待加强。
报告人:xxx日期: 2017.9.18质量管理体系运行总结报告-- 业务部一、质量目标的实现情况根据2017.6-8月的统计结果,本部门的所有目标均达成,希望在部门人员继续努力,保证质量目标的持续实现。
JG 145 English CF V3 August 2019 英文版共39页文档
Industry Technical Specification of the People’s Republic ofChinaTechnical Specification for Post-installedFastenings in Concrete StructuresJGJ145-20192019 BeijingContents1 General2 Terminology and symbols3 Materials3.1 Concrete base material3.2 Anchors3.3 Adhesive material of bonded anchors4 Basis of design4.1 Type and operating principles4.2 Design and safety concept5 Static analysis5.1 General5.2 Tension loads acting on anchor group5.3 Shear loads acting on anchor group6 Ultimate limit state6.1 Resistance to tension loads6.2 Resistance to shear loads6.3 Resistance to combined tension and shear loads7 Anti-seismic design8 Structural requirements9 Installation and acceptance9.1 General9.2 Drilling hole9.3 Installation and fastening9.4 Inspection and acceptance of installationAnnex A Testing method on site1 General1.0.1 This standard is compiled for post-installed anchoring technologyensuring reliable, safe and economical designs, construction and operation.1.0.2 This standard applies to the use of post-installed anchoring system innormal weight concrete. It does not cover anchorage to masonry and lightweight/gas concrete.1.0.3 Anchor design should be based on application (structural elements ornon-structural elements), load (tension, compression, moment, shear or combined tension and compression), action and safety level (important or normal), etc.1.0.4 The design, installation and acceptance of post-installed anchoringsystems should comply with this standard and relevant mandatory requirement of current national codes.1.0.5 In general, this standard is intended to address assessment and design ofadhesive anchoring systems where anchor theory applies (see Fig.below). It is not intended to address the assessment and design of post-installed reinforcing bars proportioned according to the concept of reinforcement development (see Fig. below).I) Reinforcement designed according to anchor theory (covered in this standard). II) Reinforcement designed according to rebar theory (not covered in this standard).2 Terminology and symbols2.1 Terms2.1.1 Post-installed anchoring systemsAn assembly comprising drilling method, drill bit requirements, cleaning method (if specified by Manufacturer) base material, anchor or anchor group and component fixed to the concrete.2.1.2 AnchorA steel element post-installed into hardened concrete base material, usedto transmit applied loads. Steel elements for adhesive anchoring system may include threaded rods, deformed reinforcing bars, or internally threaded steel sleeves with external deformations.2.1.3 Expansion anchorsA post-installed anchor inserted into hardened concrete that transfersloads to or from the concrete by direct bearing or friction or both.Expansion anchors may be torque-controlled, where the expansion is achieved by a torque acting on the screw or bolt; or displacement-controlled, where the expansion is achieved by impact forces acting on a sleeve or plug and the expansion is controlled by the length of travel of the sleeve or plug (Fig.2.1.3-1, Fig. 2.1.3-2).Fig 2.1.3-1 Torque-controlled expansion anchorsFig 2.1.3-2 Displacement-controlled expansion anchors2.1.4 Undercut anchorsA post-installed anchor that develops its tensile strength from themechanical interlock provided by undercutting of the concrete at the embedded end of the anchor. The undercutting is achieved with a special drill bit prior to installation of the anchor or alternatively by the anchor itself during the installation procedure (Fig. 2.1.4).Fig 2.1.4 Undercut anchors2.1.5 Adhesive anchorsFor the purposes of this standard, the adhesive anchor system is comprised of the following components:• Adhesive anchor;• Proprietary adhesive compounds in combination with a mixing and delivery system;• Acce ssories for cleaning the drilled hole including brushes, air nozzles, and other items needed to complete the cleaning process; and• Printed instructions for the adhesive anchor installation including holepreparation, injection, and cure for all environmental conditions permitteda) Load controlled anchor installed by tensioning anchor, causing sleeve to expandin predrilled undercutd) Displacement controlled anchor thatcuts its own undercut while set byhammering sleeve over coneb) Displacement controlled anchor set inpredrilled undercut by hammering sleeveover cone. e) Torque-controlled anchor set into pre drilled undercut by application of torqueforcing sleeve over conec) Displacement controlled anchor installed inpredrilled undercut and set by defineddisplacement, causing expansion sleeve toexpand into undercut. f) Torque-controlled anchor that cuts its own undercut by application of setting torque, forcing sleeve over cone.in the qualification .Fig 2.1.5 Adhesive anchor / rebar2.1.6 Base materialThe hardened material into which anchor is fastened. Normal weight concrete is defined to as the base material in this standard.2.1.7 Anchor GroupA number of anchors of approximately equal effective embedment depth with each anchor spaced at less than 3h ef from one adjacent anchor when subjected to tension, or 3c a1 from one or more adjacent anchors when subjected to shear. Only those anchors susceptible to the particular failure mode under investigation shall be included in the group.2.1.8 FixtureComponent fixed to the concrete via the post-installed anchoring system.2.1.9 Anchor plate A steel plate fastened by anchors directly transfer loads onto anchors and base material.2.1.10 Failure modeThe failure mechanism observed of post-installed anchoring system post peak loads.2.1.11 Anchor steel failureThe steel failure of anchor rod or rebar under tension, shear or combinedtension and shear (see Fig 2.1.11).TensionShearFig. 2.1.11 Steel failure2.1.12 Concrete breakout failureFailures of the anchor in an unconfined tension test, characterized by the formation of a conical fracture surface originating at or near the embedded end of the anchor element and projecting to the surface of the concrete test member (see Fig 2.1.12).Fig. 2.1.12 Concrete cone failure2.1.13 Concrete splittingA concrete failure mode characterized by the formation of planar crack inthe concrete parallel to and extending through the axis of the anchor(s) (see Fig 2.1.13).Fig. 2.1.13 Splitting failure2.1.14 Bond failureFailure mode characterized by the withdrawal of the anchor element from the concrete without rupture of the embedded part, for example the threaded rod or rebar, and without formation of a full-depth conical breakout surface. The formation of limited-depth conical breakout surfaces shall also be considered as bond/pullout failure. (see Fig.2.1.13).Fig. 2.1.13 Bond failure2.1.15 Concrete edge failureThe anchorage failure occurs at the lateral concrete surface with the shape of concrete cone in the fracture area as a half pyramid under shear loads (see Fig. 2.1.14).Fig. 2.1.14 Concrete edge failure2.1.16 Pryout failureThe anchorage failure occurs in concrete at the side opposite to shear load direction by short stiff anchors (see Fig. 2.1.15)Fig. 2.1.15 Pryout failure2.1.17 Pull-out failureThe anchorage failure of anchor pulled out from drilled hole completely (see Fig. 2.1.17)Fig 2.1.17 pull-out failure Fig. 2.1.18 pull-through failure 2.1.18 Pull-through failureThe anchorage failure of anchor expansion parts pulled out from anchor sleeve and the sleeve still keep inside the drilled hole (see Fig. 2.1.18).Similarly, for adhesive anchoring systems bond failure may occur between the anchor element and the adhesive or between the adhesive and the bore hole (see Fig. 2.1.19).Adhesive-element failure Adhesive bore hole failure2.1.21 Design working LifeThe period of time during which the performance of the anchoring system and structures will be maintained at a level compatible with the intended conditions of use.2.2 Symbols2.2.1 Action and ResistanceM=momentN=normal forceR=resistanceS=actionT=torsion momentV=shear forceN sd, V sd = design value of tensile (shear) loadN g sd, V g sd =design value of the sum of the tensile load (shear load) acting on the tensioned (sheared) anchors of a group.N h sd, V h sd = design value of tensile load (shear load) acting on the most stressed anchor of an anchor groupN Rk,s,V Rk,s=characteristic resistance of a single anchor (normal force, shear force) in case of steel failureN Rd,s, V Rd,s =design resistance of a single anchor (normal force, shear force) in case of steel failureN Rk,c, N Rd,c =characteristic (design) resistance of an anchor or a group of anchors, respectively, in case of concrete cone failure N Rk,sp, N Rd,sp =characteristic (design) resistance of an anchor or an anchor group in case of concrete splitting failureN Rk,p, N Rd,p =characteristic (design) resistance of an anchor in case ofpull-out failureT inst , N inst = installation torque moment and related pre-tightening torsion V Rk,c , V Rd,c =characteristic(design) resistance of an anchor or an anchor group in case of concrete cone failure at edgeV Rk,cp , V Rd,cp =characteristic (design) resistance of an anchor or an anchorgroup in case of concrete pryout failure2.2.2 Concrete and steelf yk =characteristic steel yield strengthf stk =characteristic steel ultimate tensile strengthf cu,k =characteristic concrete compression strength measured on cubes2.2.3 characteristic value of anchors (see Fig.2.2.3)a = spacing between outer anchors of adjoining groups or between single anchors.b = width of concrete memberc , c 1, c 2 = edge distance between anchors and the edge of concrete c cr,N = edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects in case of concrete cone failure c min = minimum allowable edge distance for preventing concrete memberfrom the splitting failure due to installation d = diameter of anchor bolt, thread diameter or diameter of rear d o ,D= drilled hole diameterd f = diameter of clearance hole in the fixtured nom = outside diameter of anchorh = thickness of concrete memberh 0 =depth of drilled holesh 1=depth between the sharp end of drilled hole and concrete surface h ef = effective anchorage depthh min = minimum thickness of concrete member to prevent from splitting Drilling hole Undercutting hole Undercut anchor I Undercut anchor II Torsion controlled anchor Displacement controlled anchor holeBonded rebarAnchor subjected to Tension loads Anchor subjected to shear loads Fig.2.2.3 anchor spacing and edge distancefailure due to installationh nom = embedment depth of anchors, s1, s2 = spacing of anchors in a group and spacing of anchors in a group in direction 1, direction 2s cr,N= spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects incase of concrete cone failures min = minimum allowable spacing for preventing from the splitting failure due to installationt fix = thickness of fixture or anchor plateA0c,N = area of concrete of an individual anchor with large spacing and edge distance at the concrete surface, idealizing the concrete cone as apyramid.A c,N= actual area of concrete cone of the anchorage at the concretesurface.A0c,v = area of concrete cone of an individual anchor at the lateral concrete surface not affected by edges parallel to assumed loading direction,member thickness or adjacent anchors, assuming the shape offailure area as a half pyramid.A c,v= actual area of concrete cone of anchorage at the lateral concretesurface.l f = effective length of anchor under shear loading2.2.4 Partial safety factors and calculating factorsγ =partial safety factor taking account of the safety level of anchorageAγ=partial safety factor for materialR*ψα,v = factor take account of the influence of the angle between the load and the direction perpendicular to the free edge of the concretemember on the shear resistance.ψec,N, ψec,v = factor take account of a group effect when different tension (shear) load are acting on the individual anchors of a group.ψh,v=factor take account of the fact that the shear resistance does not decrease proportionally to the member thickness.ψre,N=the shell spalling factor takes account of the effect of dense reinforcement.ψs,N ,ψs,v = the factor takes account of the disturbance of the distribution of stresses in concrete due to edge of the concrete member ontension (shear) resistance.ψucr,N, ψucr,v= the factor takes account of the position effect of the anchorage in cracked or non-cracked concrete on tension (shear) resistance.3 Materials of concrete and anchor elements3.1 Concrete base materials3.1.1 The concrete base material shall be solid and sufficiently large to resist and theintended loads. 3.1.2 Excessively air voided concrete, grout, grout layer and decorative mortar layersmay not be considered as sufficient base material. 3.1.3 Concrete strength for base material of post-installed fasteners shall be at leastC20. The concrete strength and modulus of elasticity should be obtained by on-site testing according to Code for Design of Concrete structures —GB50010.3.2 Anchor elements3.2.1 The materials of steel anchor elements shall be carbon steel, stainless steel oralloy steel. The selection of the anchor element shall be based on the environment condition and durability requirement of the application.The performance of anchors should comply with Expansion and undercut building anchors for use in concrete Table 3.2.2 The material performance of carbon/alloy steel3.2.3 The performance grade of anchor made of stainless steel shall be defined bystk f and yk f (see Table 3.2.3). Note: the extension ratio δ is achieved from GB3098.6-86 criteria 7.13 3.2.4 The rebar and threaded rod of bonded anchors should be HRB 400 or HRB 335steel ribbed rebar and Q235 or Q345 steel threaded rod. The performance of ribbed rebar shall comply with Code for Design of Concrete structures—GB50010.3.2.5 Elastic modulus of anchors: E s=2.0 105Mpa.3.3 Adhesive material of adhesive anchoring systems3.3.1 The anchorage performance of the adhesive material of adhesive anchoringsystems shall be determined by special tests. Any extra filler and /or additives are forbidden to mix with an authorized bonding material on site except the committed dose filler and /or additives described in Manufacturer’s instruction.3.3.3 The performance of epoxy bonding material should comply with the requirementin Table 3.3.3 The performance of adhesive with component of epoxyNo. Performance Testing methodMechanical performance Viscosity strength (25℃)=4500~75000 MPa.sNormal cure is available under the installationtemperature -5℃~40℃, and the curing timecan be changed by changing the componentproportion.viscosity strength testmethod GB2794-81Strength and flexibility of bonding material Characteristic compression strengthf bc,k≥60N/mm2Characteristic tension strength f bt,k≥18 N/mm2Elastic modulus E≥5.2×103 N/mm2Ultimate deformation εu ≥0.01Compression Testmethod for plasticmaterial GB1041-79Tension Test method forplastic materialGB1040-79Steel-steel bonding strength Characteristic shear strength f bv,k≥14 N/mm2Characteristic tension strength f bt,k≥20 N/mm2Characteristic slit strength f bp,k≥20 kN/mTest method for shearstrength of bondingmaterial under tensileload GB7124-86Test method for tensionstrength of bondingmaterial GB6329-86Test method for slitstrength of bondingmaterial bonded metal tometal HB5166Steel-concret ebonding strengthThe bonding failure should occur in concreteinstead of in bonding materialTwo steel plate(50×50×5)with a steel rodrespectively, axessymmetrically bonded onthe bigger surface of a C50concrete cube(70×70×50). Tested undertension load after the Thread rodThread rodThread rodComponent 1 Component 2b) packed injectionc) Bulk mixed on sitea) capsuleadhesiveFig. 3.3.2 the types of adhesive4.1 Identification and application principal4.1.1 Types of anchor can be divided into expansion, undercut, adhesive, rebar andother types of fasteners. Besides validation of the performance of anchoring systems themselves, base material, the load on anchors, the type pf fixtures, requirements for anti-earthquake and other relevant influence factors shall be considered when selecting an anchoring system.4.1.2 Expansion anchor, undercut anchor may be used to the connection ofnon-structural elements, or the structural elements under tension, shear load(C 10 h ef) or combined of tension and shear. The limitation of the anchorapplication shall comply with the specification of clause 4.1.3 to clause 4.1.4.Note: non-structural elements include non-structural elements of structures (outer wall, partition wall, curtain wall, ceiling, ad board, cabinet frame) and the frame/bracket of equipments on the buildings (elevator, lightings and electric power, telecom equipments, pipe system, heating and air-condition system, fire and smoke alarm system) etc..4.1.3 Expansion anchor and undercut anchor can’t be used to connect thestructural elements or non-structural elements of lifeline structures under tension load, shear load perpendicular to edge (C<10 h ef), combined tension and shear loads.4.1.4 Adhesive anchoring systems or rebar can be applied on the structural elementsand non-structural elements under tension load, shear load perpendicular to edge, combined tension and shear loads while earthquake design level below seismic fortification intensity = 9 (see Fig. 2.15).4.2 Design safety and concept4.2.1 The design of anchorage in the ultimate limit state with partial safety factors,basing on data obtained from test and experience in construction, is defined to be design method of this standard.4.2.2 The intending design period of anchorage should be concord with the designperiod of connected structure.4.2.3 Anchorage is divided into two safe grades according to the severity degree of theanchorage failures. The safety grade in anchorage design should follow Table4.2.3, and should not be less than that of the main structure.Without earthquake action R S A ≤γ(4.2.4-1)With earthquake action RE kRS γ≤ (4.2.4-2)R kR R γ=(4.2.4-3)A γ= factor of safety grade, it will takes 1.2 and 1.1 respectively to theanchorage safe grade first grade and second grade;S = design combined loads of anchorage, calculating according to Code ofBuilding Structure Loads and Designing Code for Anti-earthquake .R ,k R = design(characteristic) resistance strength of anchorage;RE γ= partial safety factor of earthquake action R γ= partial safety factor for materialS A γ= design value of internal action (N ,M V ) in all chapters.4.2.5 Failure mode should be controlled in the design based on the type of fixtures,loads and the type of anchors. Steel failure of adhesive anchoring systems or rebar should be occurred instead of concrete failure for the structural elements or non-structural elements of lifeline structure under tension load, shear load perpendicular to edge or combined tension and shear loads. For expansion anchors and undercut anchors, whole anchor pull-out failure should be not adopted and sometimes the pull-through failure may not be adopted. For bonded anchor or rebar with the required anchorage depth, concrete failure or pull-out failure should not be adopted (including the failure on the interface of adhesive and anchor rod/rebar or adhesive and concrete.). 4.2.6 Partial safety factor of material,R γ, should be taken as Table 4.2.6 based on thetype of fixture and the failure mode of fixture. It may be adjusted if the reasonable test results and reliable construction experiences are approved by national authorized institute.authorized institute or designers approvals.5 Static analysis5.1 GeneralInternal force of anchor group should be calculated according to the following assumptions:1. The anchor plate and the interface of concrete do not deform under designaction (plain sections remain plain). The anchor plate should be sufficiently stiff in the plain, such that the bending deformation of the anchor plate can be ignored; 2. The anchors do not contribute to the transmission of compression force (exceptfor bonded anchors and rebar), so the compression force is transmitted by anchor plate to the concrete directly. 3. Internal force of anchor shall be calculated according to the theory of elasticity.If the anchorage failure of anchors or bonded anchor/rebar is steel failure and the strength of the steel is low (≤5.8 grade), the internal force shall be calculated according to the theory of elasticity-plastic theory considering stress redistribution. 5.1.2 If the condition in Equation 5.1.2 is fulfilled, then non-cracked concrete shall beassumed, otherwise cracked concrete shall be assumed, and the width of crack shall be calculated according to Code for Design of Concrete Structures :0≤+R L σσ (5.1.2)L σ=characteristic value of stress produced by external actions andpre-stressed force in concrete member. The positive is tension, negative is compression;Rσ=characteristic value of tensile stress produced in concrete memberbecause of constrained contraction of concrete, changing of temperature and displacement of support, if the precise calculation is not checked, it can be approximately taken as 3=R σMPa.5.2 Tension loads acting on Anchor group5.2.1 The design tension acting on each anchor of anchor group shall be calculated bythe following formulas under the concentric tension load (see Fig.5.2.1):Sd N = design value of tension load acting on the individual anchor;N = design value tension load resisted by an anchorage group; n= amount of anchors in an anchor group.5.2.2 The design value of tension load acting on the most stressed anchor of an anchorgroup under the combined tension and moment loads in the analysis of elastic theory (see Fig. 5.2.2):1. ifthen2. ifthenM =design value of moment;h sd N =design value of tension load acting on the most stressed anchor in ananchor group.1y ,i y =perpendicular distance from anchor l (anchor i) to geometrical center ofan anchor group'1y ,'i y = perpendicular distance from anchor 1(anchor i) to the outermost edgeanchorsL =distance from the acted point of normal force N to the outermost anchors inthe compressed area.5.3 Tension loads acting on Anchor group5.3.1 For the distribution of shear loads and torsion moments acting on the fixture to the anchors of a group anchor the following case shall be distinguished based on thediameter of drilled holes of anchor plate,f d , and the diameter of anchors,d , the distance c from anchors to the edge of concrete member.1. All anchors take up shear loads if the hole clearance between anchor stud anddrilled holes on anchor plate, d d f -=∆, or the clearance between the drilled holes and sleeve of anchors nom f d d -=∆, is not greater than the acceptable value []∆ in Table 5.3.1 and the edge distance is larger than 10 ef h (see Fig.2. Only the most unfavorable anchors take up shear loads if the edge distance issmaller than 10 ef h (ef h c 10<) or the hole clearance is larger than the value given in Table 5.3.1([]∆>∆)(see Fig. 5.3.1-2);3. Slotted holes in direction of the shear load prevent anchors to take up shearloads (see Fig. 5.3.1-3).Fig. 5.2.1 centralized tension load Fig. 5.2.2 combined tension and shear loadsa) Shear loadb) Torsion moment Fig. 5.3.1-1 the shear loads acting on anchors5.3.2 The design value of shear loads acting on an individual anchor of an anchor groupunder shear load V shall calculated by the following formulas:V Si h Sd V V max ,=(5.3.2-4)V x Si V ,Vy Si V ,=the shear loads in x (y) direction acting on anchor i of an anchorgroup under the shear load V acting on the fixture;V Si V =the combined shear loads acting on anchor i of an anchor group undershear load V on the fixture;x V ,y V =the design value of shear load V in x (y) direction, x n ,y n =the amount of anchors take up the shear loads x V (y V )h Sd V =the design value of shear loads acting on the most stressed anchor of ananchor group.5.3.3 The design value of shear loads acting on an individual anchor of an anchor group under torsion moment T shall calculated by the following formulas in basis of elastic analysis (see Fig. 5.3.3):∑∑+=22,ii ix y x Ty (5.3.3-1) ∑∑+=22,ii iy y x Tx (5.3.3-2) ()22,)(T siy T x si V V += (5.3.3-3) T si h Sd V V max ,= (5.3.3-4)T =design value of torsion moment;T x Si V ,, Ty Si V ,= the shear loads in x (y) direction acting on anchor i of an anchorgroup under the torsion moment acting on the fixture;T Si V =the combined shear loads acting on anchor i of an anchor group undertorsion moment T on the fixture;i x , i y =coordinate x (y) distance from anchor i to the center of the anchorgroup.The design value of shear loads acting on an individual group under the combined shear load V and torsion moment Fig. 5.3.2 shear loadby the following formulas (see Fig. 5.3.4):max ,si hSd V V = (5.3.4-2)Si V =the design value of shear load acting on anchor i6Ultimate limit state6.1Resistance to tension loads6.1.1 The resistance to tension loads shall be checked according to Table 6.1.1:g Sd N =design value of the sum of the tensile loads acting on the tensioned anchor ofan anchor group,s Rd N ,=design value of resistance of a single anchor or an anchor group in case ofsteel failure;c Rd N ,=design value of resistance of a single anchor or an anchor group in case ofsteel failure;p Rd N ,=design value of resistance of a single or group expansion anchors orundercut anchors in case of pull through failure;sp Rd N ,= design value of resistance of a single anchor or an anchor group in case ofsplitting failure.6.1.2 Design resistance of an anchor in case of steel failure,s Rd N , is obtained fromthe following formulas:stk s s Rk f A N ⋅=,(6.1.2-2)s Rk N ,=characteristic resistance of anchor or bonded rebar in case of steelfailureN Rs ,γ=partial safety factor of anchor or bonded rebar in case of steel failure(see Table.4.2.6).s A =stressed cross-section of anchor or rebar;stk f = characteristic steel ultimate tensile strength of anchor.6.1.3 The design resistance of an anchor or an anchor group, respectively, in case of concrete cone failure,c Rd N ,, should be calculated by following formula:(6.1.3-1)(6.1.3-2)c Rk N ,=characteristic resistance of an anchor or an anchor group,respectively, in case of concrete cone failure;N Rc ,γ=partial safety factor in case of concrete cone failure take as Table4.2.6;0,c Rk N =the initial value of the characteristic resistance of an anchor placed incracked concrete calculated according to clause 6.1.4;0,N c A =area of concrete cone of an individual anchor with a large spacing andedge distance at the concrete surface, idealizing the concrete cone asa pyramid according to clause 6.1.5.N c A ,=actual area of concrete cone of the anchorage at the concrete surfaceof a single anchor or an anchor group, calculated according to clause 6.1.6.N s ,ψ=the factor takes account of the disturbance of the distribution ofstresses in the concrete due to edge of the concrete member, calculated according to clause 6.1.7.N re ,ψ=the shell spalling factor takes account of the effect of reinforcements,calculated according to clause 6.1.8.N ec ,ψ=the factor takes account of a group effect when different tension loadsare acting, calculated according to clause 6.1.9.N urc ,ψ=the factor takes account of the position of anchorage in cracked ornon-cracked concrete, calculated according to clause 6.1.10.6.1.4 The initial value of the characteristic resistance of a single anchor placed incracked concrete, 0,c Rk N , is obtained by test. It may be obtained by the followingformula or Table 6.1.4 if the anchors comply with the relevant specification of this code and product code:k cu f ,=characteristic concrete compression strength measured on cubes(N/mm 2), when 60~45,=k cu f MPa, it shall be decreased by a factor0.95.ef h =effective embedment depth (mm), it is measured from concrete surface tothe most stressed point between expansion component of anchor and drilled concrete hole for expansion anchors and undercut anchors.6.1.5 The area of concrete cone of an individual anchor with a large spacing and edge。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@
BS ISO 22259:2019
BSI Standards Publication
Conference systems — Equipment — equirements
BS ISO 22259:2019
BRITISH STANDARD
National foreword
This British Standard is the UK implementation of ISO 22259:2019. The UK participation in its preparation was entrusted to Technical Committee TS/1, Terminology. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2019 Published by BSI Standards Limited 2019 ISBN 978 0 580 98198 2 ICS 91.040.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2019.
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.
1
Scope ................................................................................................................................................................................................................................. 1
ii
© ISO 2019 – All rights reserved
BS ISO 22259:2019 ISO 22259:2019
Contents
Page
Foreword ..........................................................................................................................................................................................................................................v
© ISO 2019, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
Amendments/corrigenda issued since publication
Date
Text affected
INTERNATIONAL STANDARD
BS ISO 22259:2019
ISO 22259
First edition 2019-04-02
Conference systems — Equipment — Requirements
Systèmes de conférence — Équipement — Exigences
Reference number ISO 22259:2019(E)
© ISO 2019
BS ISO 22259:2019 ISO 22259:2019(E)
COPYRIGHT PROTECTED DOCUMENT
2
Normative references ...................................................................................................................................................................................... 1