大学物理1-1测试题及答案(1,2)

合集下载

大学物理考试试题库经典版(含答案)

大学物理考试试题库经典版(含答案)

第一章 质点运动学基本要求:1、掌握位矢、位移、速度、加速度、角速度和角加速度等物理量。

2、能计算速度、加速度、角加速度、切向加速度和法向加速度等。

教学重点:位矢、运动方程,切向加速度和法向加速度。

教学难点:角加速度、切向加速度和法向加速度。

主要内容:本章首先从描述物体机械运动的方法问题入手,阐述描述运动的前提——质点理想模型、时间和空间的量度,参照系坐标系。

其次重点讨论描写质点和刚体运动所需要的几个基本物理量(如位移、速度、加速度、角速度、角加速度等)及其特性(如相对性、瞬时性、矢量性)。

(一)时间和空间研究机械运动,必然涉及时间、空间及其度量.我们用时间反映物体运动的先后顺序及间隔,即运动的持续性.现行的时间单位是1967年第13届国际计量大会规定的,用铯(133Cs )原子基态的两个超精细能级间跃迁相对应的辐射周期的9 192 631 770倍为1秒.空间反映物质的广延性.空间距离为长度,长度的现行单位是1983年10月第17届国际计量大会规定的,把光在真空中1/299 792 458秒内走过的路程定义为1米.(二)参照系和坐标系宇宙间任何物质都在运动,大到地球、太阳等天体,小到分子、原子及各种基本粒子,所以说,物质的运动是普遍的、绝对的,但对运动的描述却是相对的.比如,在匀速直线航行的舰船甲板上,有人放开手中的石子,他看到石子作自由落体运动,运动轨迹是一条直线,而站在岸边的人看石子作平抛运动,运动轨迹是一条抛物线.这是因为他们站在不同的物体上.因此,要描述一个物体的运动,必须先确定另一个物体作为标准,这个被选作标准的物体叫参照系或参考系.选择哪个物体作为参照系,主要取决于问题的性质和研究的方便.在研究地球运动时,多取太阳为参照系,当研究地球表面附近物体的运动时,一般以地球为参照系.我们大部分是研究地面上物体的运动,所以,如不特别指明,就以地球为参照系. (三)质点实际的物体都有一定的大小和形状,物体上各点在空中的运动一般是不一样的.在某些情况下,根据问题的性质,如果物体的形状和大小与所研究的问题关系甚微,以至可以忽略其大小和形状,这时就可以把整个物体看作一个没有大小和形状的几何点,但是它具有整个物体的质量,这种具有质量的几何点叫质点.必须指出质点是一种理想的物理模型.同样是地球,在研究它绕太阳公转时,把它看作质点,在研究它的自转时,又把它看作刚体. (四)速度0d limd t t t∆→∆==∆r r v速度v 是矢量,其方向沿t 时刻质点在轨迹上A 处的切线,它的单位是m ·s -1.(五)加速度220d d lim d d t t t t ∆→∆===∆v v ra加速度a 是速度v 对时间的一阶导数,或者是位矢r 对时间的二阶导数.它的单位是m ·s -2. (六)圆周运动圆周运动是最简单、最基本的曲线运动,2d ,d n vv a a tRτ==习题及解答: 一、填空题1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。

大学物理题库第一章(二)南京工程学院

大学物理题库第一章(二)南京工程学院

1有一质点沿x方向作直线运动,质点的运动学方程决定,其中x的单位是米,t的单位是秒。

则质点的速度为().•A、•B、•C、•D、正确答案: A2一质点沿轴运动,其速度与时间的关系为:,当时,质点位于处,则质点的运动方程为()•A、••B、••C、••D、•正确答案: A3位移和路程都与坐标原点的选取有关。

()正确答案:×答案解析:位移无关4速度是一个矢量,速率也是一个矢量。

()正确答案:×答案解析:瞬时速度大小即速率5在直线运动中,质点的加速度和速度的方向相同。

()正确答案:×6一质点沿轴作直线运动,它在t时刻的坐标是,式中以米计,t以秒计,试求(1)和时刻的瞬时速度;(2)第二秒内所通过的路程;(3)第二秒内的平均加速度以及和时刻的瞬时加速度。

正确答案:7正确答案:8正确答案:9质点的运动学方程为,则质点的速度为()。

•A、•B、•C、•D、正确答案:B10以下五种运动形式中,保持不变的运动是( )•A、单摆的运动•B、匀速率圆周运动•C、行星的椭圆轨道运动•D、抛体运动•E、圆锥摆运动正确答案:D11位置矢量在直角坐标系和平面极坐标系中的表示方式是一样的。

()正确答案:×对于沿曲线运动的物体,法向加速度必不为零(拐点处除外)。

()正确答案:√13若物体的加速度为恒矢量,它一定做匀变速率圆周运动。

()正确答案:×14正确答案:15正确答案:16在相对地面静止的坐标系内,A、B二船都以速率匀速行驶,A 船沿x轴正向,B船沿y轴正向。

今在A船上设置与静止坐标系方向相同的坐标系(x、y方向单位矢用、表示),那么在A船上的坐标系中,B船的速度(以m/s为单位)为( )•A、2+2•B、-2+2•C、-2-2•D、2-2正确答案:B17某人骑自行车以速率v向西行使,北风以速率v吹来(对地面),问骑车者遇到风速及风向如何?正确答案:18水平地面上放一物体A,它与地面间的滑动摩擦系数为.现加一恒力如图所示.欲使物体A有最大加速度,则恒力与水平方向夹角应满足()•A、sin=•B、cos=•C、tan=•D、arctan=正确答案:C19如图所示,用水平力F把木块压在竖直的墙面上并保持静止。

大学基础教育《大学物理(一)》真题练习试卷 附答案

大学基础教育《大学物理(一)》真题练习试卷 附答案

大学基础教育《大学物理(一)》真题练习试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。

一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。

2、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。

3、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。

4、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。

5、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。

6、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。

7、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。

8、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。

9、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。

10、真空中有一半径为R均匀带正电的细圆环,其电荷线密度为λ,则电荷在圆心处产生的电场强度的大小为____。

大学物理1试卷

大学物理1试卷

大学物理1试卷11。

一质点在力F = 5m(5- 2t )(SI)的作用下,t=0时从静止开始作直线运动,式中m为质点的质量,t为时间,则当t = 5 s时,质点的速率为(A)50 m·s—1.。

(B) 25 m·s-1.(C) 0.(D) -50 m·s—1.[ ]2一人造地球卫星到地球中心O的最大距离和最小距离分别是R A和R B.设卫星对应的角动量分别是L A、L B,动能分别是E KA、E KB,则应有(A)L B〉L A,E KA〉E KB.(B)L B > L A,E KA = E KB.(C) L B = L A,E KA = E KB.(D) L B < L A,E KA = E KB.(E) L B = L A,E KA〈E KB.[ ] 3.(质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ,顺时针.(B) ,逆时针.(C) ,顺时针.(D),逆时针.[]4.根据高斯定理的数学表达式可知下述各种说法中,正确的是:(A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.[]5. 一空心导体球壳,其内、外半径分别为R1和R2,带电荷q,如图所示.当球壳中心处再放一电荷为q的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A).(B) .(C)。

(D).[]6. 电流由长直导线1沿半径方向经a点流入一电阻均匀的圆环,再由b点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I,圆环的半径为R,且a、b与圆心O三点在一直线上.若载流直导线1、2和圆环中的电流在O点产生的磁感强度分别用、和表示,则O点磁感强度的大小为(A)B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B1≠0、B2≠0,但,B3 = 0.(C)B≠0,因为虽然,但B3≠0.(D)B≠0,因为虽然B3 = 0,但.[]7.两个同心圆线圈,大圆半径为R,通有电流I1;小圆半径为r,通有电流I2,方向如图.若r〈〈R(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) .(B).(C).(D) 0.[]8。

大学物理试题及答案(1-4章)

大学物理试题及答案(1-4章)

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式tsd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d hl t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv 2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v-t图中求出各段的斜率,即可作出a-t图线.又由速度的定义可知,x-t曲线的斜率为速度的大小.因此,匀速直线运动所对应的x-t图应是一直线,而匀变速直线运动所对应的x–t 图为t的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin =', t TR y π2cos -='坐标变换后,在O x y 坐标系中有t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BA tB A y1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan ==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2)令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3)当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hl αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x ,y )变换至系O′中的点(x ′,y ′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解 取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和。

大学物理1考试题及答案

大学物理1考试题及答案

大学物理1考试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^3 km/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

这一定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的位移与时间的关系是什么?A. s = gtB. s = 1/2 gt^2C. s = 1/2 g(t^2 - 1)D. s = gt^2答案:B4. 以下哪个选项是电磁波谱中波长最长的部分?A. 无线电波B. 微波C. 红外线D. 可见光答案:A5. 根据热力学第一定律,一个封闭系统的能量守恒,其表达式是什么?A. ΔU = Q + WB. ΔU = Q - WC. ΔU = Q + PD. ΔU = W - Q答案:A6. 一个质量为m的物体在水平面上以速度v做匀速直线运动,若摩擦力为f,那么物体的动能是多少?A. mvB. mv^2/2C. fvtD. 0答案:B7. 根据麦克斯韦方程组,电场是由什么产生的?A. 电荷B. 变化的磁场C. 电荷和变化的磁场D. 电流答案:C8. 一个理想气体经历一个等温过程,其压强P和体积V之间的关系是什么?A. P ∝ VB. P ∝ 1/VC. P = constantD. P ∝ V^2答案:B9. 在量子力学中,海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的能量和时间可以同时准确测量D. 粒子的能量和时间不能同时准确测量答案:B10. 根据狭义相对论,一个物体的质量会随着速度的增加而增加,这一效应可以用以下哪个公式描述?A. E = mc^2B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * v/cD. m = m0 * sqrt(1 - v^2/c^2)答案:B二、填空题(每题2分,共20分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度是_________ m/s^2。

大学物理考试题及答案

大学物理考试题及答案

大学物理考试题及答案一、选择题1. 下列关于力的描述,正确的是()。

A. 力是物体间的相互作用,具有大小和方向。

B. 力的作用是相互的,作用力和反作用力大小相等,方向相反。

C. 力的作用效果与力的作用点有关。

D. 以上选项均正确。

答案:D2. 物体做匀速直线运动时,下列说法正确的是()。

A. 物体的速度不变。

B. 物体的加速度为零。

C. 物体所受合力为零。

D. 以上选项均正确。

答案:D3. 关于功的定义,下列说法正确的是()。

A. 功是力和力的方向的乘积。

B. 功是力和力的方向的点积。

C. 功等于力的大小乘以物体在力的方向上的位移。

D. 功是力对物体所做的功。

答案:C4. 根据牛顿第二定律,下列说法正确的是()。

A. 物体的加速度与作用力成正比。

B. 物体的加速度与物体的质量成反比。

C. 加速度的方向与作用力的方向相同。

D. 以上选项均正确。

答案:D5. 波长为λ的光波在介质中的波速为v,那么在真空中该光波的波速为()。

A. vB. λ/vC. 3×10^8 m/sD. 2×10^8 m/s答案:C二、填空题1. 物体在水平面上受到的摩擦力与物体对水平面的压力成正比,比例系数为_________。

答案:摩擦系数2. 一个质量为2kg的物体,受到一个10N的水平力作用,加速度为_________。

答案:5 m/s^23. 一个电路中,电阻R1为10Ω,电阻R2为20Ω,当它们串联时,总电阻为_________。

答案:30Ω4. 一束光从空气射入水中,如果水的折射率为1.33,那么光线的传播方向将_________。

答案:改变5. 一个半径为R的圆形线圈,通以电流I,放在均匀磁场中,线圈所受的磁力矩大小为_________。

答案:μ = I * (πR^2)三、计算题1. 一个质量为0.5kg的物体,受到一个斜向上的力F,大小为20N,与水平方向成30度角,求物体的加速度。

解:首先分解力F为水平分量和垂直分量。

大一物理试题及答案解析

大一物理试题及答案解析

大一物理试题及答案解析一、选择题1. 光在真空中的传播速度是()。

A. 299,792,458 m/sB. 300,000,000 m/sC. 299,792,000 m/sD. 300,000,000 km/s答案:A解析:光在真空中的传播速度是一个常数,大约为299,792,458 m/s。

选项A是正确的。

2. 根据牛顿第二定律,力等于()。

A. 质量乘以加速度B. 加速度乘以质量C. 速度乘以质量D. 质量除以加速度答案:A解析:牛顿第二定律表明,力等于质量乘以加速度,公式表示为F=ma。

二、填空题3. 一个物体从静止开始以恒定加速度运动,其位移s与时间t的关系式为s = _______。

答案:(1/2)at^2解析:根据匀加速直线运动的位移公式,s = (1/2)at^2,其中a是加速度,t是时间。

4. 一个物体的质量为2kg,受到的力为10N,其加速度为 _______。

答案:5 m/s^2解析:根据牛顿第二定律,F=ma,所以a=F/m=10N/2kg=5 m/s^2。

三、计算题5. 一个质量为5kg的物体从静止开始,以2m/s^2的加速度加速运动,求物体在5秒内的位移。

答案:25m解析:根据位移公式s = (1/2)at^2,将已知数值代入公式,得到s = (1/2) * 2m/s^2 * (5s)^2 = 25m。

6. 一个物体在水平面上以10m/s的初速度开始运动,受到一个与运动方向相反的阻力,大小为5N,求物体在3秒内的速度变化。

答案:-3m/s解析:首先计算物体的加速度,a = F/m = 5N/5kg = 1m/s^2。

然后使用速度变化公式Δv = at,得到Δv = 1m/s^2 * 3s = 3m/s。

由于阻力方向与运动方向相反,所以速度变化为-3m/s。

四、简答题7. 简述牛顿第一定律的内容。

答案:牛顿第一定律,也称为惯性定律,指出一切物体在没有受到外力作用时,总保持静止状态或匀速直线运动状态。

大学物理1-1测试题及答案(1,2)

大学物理1-1测试题及答案(1,2)

大学物理1-1测试题及答案(第一,二章)班级:姓名:得分:一、简答题(每题5分,共20分)(1)什么情况下可以把待研究的物体抽象为质点?不能抽象为质点时该怎么办?答:当物体运动的尺度远大于物体本身的尺寸时可将其看成质点。

若物体不能被抽象为一个质点,则可将物体分成很多部分,使得每一部分足够小,以至于可将其看成质点;这样,便可将物体看成是由若干质点组成的质点系。

(2)什么是质点的运动方程,它与质点的瞬时速度及瞬时加速度有何关系?答:质点运动方程是质点位置矢量与时间的函数关系,即()r t。

瞬时速度()v t是()r t关于时间的一阶微商,即()()dr tv tdt=;瞬时加速度()a t是()r t关于时间的二阶微商,即22() ()d r ta tdt=。

(3)描述质点圆周运动的线量与角量有哪些,它们有何关系?答:描述质点圆周运动的线量有:路程ds、速率v、切向加速度ta、法向加速度na;角量有:角位移dθ、角速度ω、角加速度α。

它们之间有如下关系:ds Rdθ=、dsv Rdtω==、t dva Rdtα==、22nva RRω==。

(4) 什么是惯性系和非惯性系,试举例说明?牛顿定律成立的条件是什么?答:惯性系是指牛顿定律在其中严格成立的参考系,否则为非惯性系;地球、太阳就近似为惯性系。

牛顿定律成立的条件是:针对宏观低速运动的物体;针对惯性系中的质点。

二、 选择题(每题4分,共20分)(1)下列说法正确的是:( D )(A)加速度恒定不变时,物体的运动方向也不变 (B)平均速率等于平均速度的大小(C)当物体的速度为零时,加速度必定为零(D)质点作曲线运动时,其速度大小的变化产生切向加速度,速度方向变化产生法向加速度(2)质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程。

对下列表达式, [1]dv dt a = [2]dr v = [3]ds dt v = [4]dv dt a =下述判断正确的是( C )(A) [1]、[4]正确 (B) [2]、[4]正确 (C) [3]、[4]正确(D) 只有[3]正确(3)在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?( C )(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g .(4)如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为1m 和2m 的重物,且12m m >。

大学物理(一)阶段测试带答案

大学物理(一)阶段测试带答案

大学物理(一)阶段测试(满分100分)年级:▁▁▁▁专业:▁▁▁▁姓名:▁▁▁▁班级序号:▁▁▁▁单选题(共25小题,共50分)1.(2分)关于参考系的单选,下列说法错误的是( )A、描述一个物体的运动,参考系可以任意选取B、单选不同的参考系,同一运动,观察的结果可能不同C、观察或研究物体的运动,必须选定参考系D、参考系必须选定地面或与地面连在一起的物体答案:D解析:在描述一个物体的运动时,必须选定一个参考系,参考系的选取可以是任意的,参考系选取的不同,物体运动的状态就会不同,故“参考系必须选定地面或与地面连在一起的物体”是错误的。

2.(2分)一质点沿x轴运动的规律是x=t2−4t+5(SI制)。

则前三秒内它的()A、位移和路程都是3mB、位移和路程都是-3mC、位移是-3m,路程是3mD、位移是-3m,路程是5m答案:D解析:Δx=x|t=3−x|t=0=2−5=−3dxdt=2t−4,令dxdt=0,得t=2。

即t=2时x取极值而返回。

所以:S=S0−2+S2−3=|x0−2|+|x2−3|=|x|t=2−x|t=0|+|x|t=3−x|t=2|=|1−5|+|2−1|=53.(2分)以北京长安街为坐标轴x,向东为正方向,以天安门中心所对的长安街中心为坐标原点x,建立一维坐标,一辆汽车最初在原点以西3km 处,几分钟后行驶到原点以东2km处,(1)这辆汽车最初位置和最终位置分别是( );(2) 如果将坐标原点向西移5km,则这辆汽车的最初位置和最终位置分别是( )A、3km,2km;2km,7kmB、-3km,2km;2km,7kmC、3km,-2km;2km,5kmD、-3km,-2km;3km,5km答案:B解析:(1)坐标轴的正方向向东,则位置在坐标原点以东为正,在坐标原点以西为负,汽车最初在原点以西且距原点3km处,所以最初位置是-3km,同理最终位置是2km.4.(2分)探究物体的运动快慢,可以先把物体将要通过的路程分成若干段,再分别测量物体通过每段路程所需要的时间。

大学物理教程上课后习题答案

大学物理教程上课后习题答案

物理部分课后习题答案标有红色记号的为老师让看的题27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度;解:1由运动方程消去时间t 可得轨迹方程,将t =,有21)y =或 1=2将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+=3 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量;求1质点的速度;2速率的变化率;解 1质点的速度为sin cos d rv R ti R t j dtωωωω==-+ 2质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+;求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小;解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量;解 由冲量的定义,有2.02.02.02(63)(33)18I Fdt t dt t t N s ==+=+=⎰⎰2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力空气阻力和摩擦力f kv =-k 为常数作用;设撤除牵引力时为0t =,初速度为0v ,求1滑行中速度v 与时间t 的关系;20到t 时间内飞机所滑行的路程;3飞机停止前所滑行的路程;解 1飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有dvf mkv dt ==- 即 dv k dt v m=- 两边积分,速度v 与时间t 的关系为2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球半径的2倍即2R ,试以,m R 和引力恒量G 及地球的质量M 表示出:(1) 卫星的动能;(2) 卫星在地球引力场中的引力势能.解 1 人造卫星绕地球做圆周运动,地球引力作为向心力,有22(3)3Mm v G m R R= 卫星的动能为 2126k GMmE mv R ==2卫星的引力势能为3p GMmE R=-00v t v dv k dt v m =-⎰⎰2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以500/m s的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后停止;求:(1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少;解 子弹与木块组成的系统沿水平方向动量守恒12mv mv Mu =+对木块用动能定理2102Mgs Mu μ-=-得 1 2212()2m v v Mgsμ-==322(210)(500100)0.16219.80.2-⨯⨯-=⨯⨯⨯ 2 子弹动能减少2212121()2402k k E E m v v J -=-= 114页3-11,3-9,例3-2 如图所示,已知物体A 、B 的质量分别为A m 、B m ,滑轮C 的质量为C m ,半径为R ,不计摩擦力,物体B 由静止下落,求1物体A 、B 的加速度; 2绳的张力;3物体B 下落距离L 后的速度; 分析: 1本题测试的是刚体与质点的综合运动,由于滑轮有质量,在运动时就变成含有刚体的运动了;滑轮在作定轴转动,视为圆盘,转动惯量为例3-2图212J mR =; 2角量与线量的关系:物体A 、B 的加速度就是滑轮边沿的切向加速度,有t a R β=; 3由于滑轮有质量,在作加速转动时滑轮两边绳子拉力12T T ≠; 分析三个物体,列出三个物体的运动方程:物体A 1A T m a = 物体B 2B B m g T m a -= 物体C ''22111()22C C T T R J m R m Ra ββ-=== 解 112B A B Cm g a m m m =++;2112A B A B C m m g T m m m =++, 21()212A C AB Cm m g T m m m +=++;3对B 来说有,2202v v aLv -===例3-4 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止 已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量 分析: 利用积分求圆形平板受桌面的摩擦力矩,运用转动定律求出平板的角加速度,再用运动学公式求转动的圈数.解:在距圆形平板中心r 处取宽度为dr 的环带面积,环带受桌面的摩擦力矩为r r r RmgM d 2d 2⋅π⋅π=μ总摩擦力矩为mgR M M Rμ32d 0==⎰ 故平板的角加速度为M Jβ=222 可见圆形平板在作匀减速转动,又末角速度0ω=,因此有2022M Jθωβθ==设平板停止前转数为n,则转角2n θπ=,可得22003416J R n M ωωμ==πgπ3-2:如题3-2图所示,两个圆柱形轮子内外半径分别为R 1和R 2,质量分别为M 1和M 2;二者同轴固结在一起组成定滑轮,可绕一水平轴自由转动;今在两轮上各绕以细绳,细绳分别挂上质量为m 1和m 2的两个物体;求在重力作用下,定滑轮的角加速度;解: m 1:1111a m g m T=-m 2:2222a m T g m=-转动定律:βJ T R T R =-1122其中:2222112121R M R M J += 运动学关系:2211R a R a ==β 解得:222221111122)2/()2/()(R m M R m M gR m R m +++-=β3-6 一质量为m 的质点位于11,y x 处,速度为j v i v v y x+=, 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.解: 由题知,质点的位矢为j y i x r11+=作用在质点上的力为i f f -=所以,质点对原点的角动量为v m r L⨯=0)()(11j v i v m i y i x y x +⨯+=k mv y mv x x y )(11-=作用在质点上的力的力矩为k f y i f j y i x f r M1110)()(=-⨯+=⨯=3-11 如题3-11图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求:1初始时刻的角加速度; 2杆转过θ角时的角速度. 解: 1由转动定律,有2123()=l mgml β 则 lg23=β 2由机械能守恒定律,有22110232()-=lml ωmg sin θ题3-11图所以有 lg θωsin 3=3-13 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 可看作匀质圆盘,在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3-13图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. 1问它能升高多少2求余下部分的角速度、角动量和转动动能.解: 1碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有 题3-13图gh v v 2202-=令0=v ,可求出上升最大高度为2220212ωR gg v H ==2圆盘的转动惯量212=J MR ,碎片抛出后圆盘的转动惯量2212'=-J MR mR ,碎片脱离前,盘的角动量为J ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即'=+'0J ωJ ωmv R式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'-=ωωωω'-=-)21()21(2222mR MR mR MR 得ωω=' 角速度不变圆盘余下部分的角动量为ω)21(22mR MR - 转动动能为222)21(21ωmR MR E k -=258页8-2,8-12,8-178-7 试计算半径为R 、带电量为q 的均匀带电细圆环的轴线过环心垂直于圆环所在平面的直线上任一点P 处的场强P 点到圆环中心的距离取为x .解 在圆环上任取一电荷元dq ,其在P 点产生的场强为 ()2204Rx dqdE +=πε方向沿dq 与P 点的连线.将其分解为平行于轴线的分量和垂直于轴线的分量,由电荷分布的对称性可知,各dq 在P 点产生的垂直于轴线的场强分量相互抵消,而平行于轴线的分量相互加强,所以合场强平行于轴线, 大小为:E =E ∥=()()()23220212222044cos R x qxR x x R x dq dE q +=+⋅+=⎰⎰πεπεθ 方向:q >0时,自环心沿轴线向外;q <0时,指向环心.8-12 两个均匀带电的同心球面半径分别为R 1和R 2R 2>R 1,带电量分别为q 1和q 2,求以下三种情况下距离球心为r 的点的场强:1r <R 1;2R 1<r <R 23r >R 2.并定性地画出场强随r 的变化曲线解 过所求场点作与两带电球面同心的球面为高斯面,则由高斯定理可知: (1) 当r <R 1时,0,04cos 2=∴=⋅==Φ⎰E r E dS E e πθ(2) 当R 1<r <R 2时,2010124,4cos rq E q r E dS E e πεπθ=∴=⋅==Φ⎰(3) 当r >R 2 时,()()2021021244cos rq q E q q r E dS E e πεεπθ+=∴+=⋅==Φ⎰8-13 均匀带电的无限长圆柱面半径为R ,每单位长度的电量即电荷线密度为λ. 求解8-7图E12解8-12图 场强随r 的变化曲线圆柱面内外的场强.解 过所求场点作与无限长带电圆柱面同轴的、长为l 的封闭圆柱面,使所求场点在封闭圆柱面的侧面上.由电荷分布的对称性可知,在电场不为零的地方,场强的方向垂直轴线向外设λ>0,且离轴线的距离相等的各点场强的大小相等. 所以封闭圆柱面两个底面的电通量为零,侧面上各点场强的大小相等,方向与侧面垂直与侧面任一面积元的法线方向平行.设所求场点到圆柱面轴线的距离为r ,当r <R 即所求场点在带电圆柱面内时,因为0,02000cos cos =∴=⋅=++==Φ⎰⎰E rl E dS E dS E e πθ;当r >R 即所求场点在带电圆柱面外时,rE l rl E e 002,2πελελπ=∴=⋅=Φ . 8-15 将q=×10-8C 的点电荷从电场中的A 点移到B 点,外力作功×10-6J .问电势能的增量是多少 A 、B 两点间的电势差是多少哪一点的电势较高若设B 点的电势为零,则A 点的电势是多少解 电势能的增量:J 100.56-⨯==-=∆外A W W W A B ;A 、B 两点间的电势差:V 100.2105.2100.5286⨯-=⨯⨯-=-=-=---q W W q W q W U U B A B A B A <0, ∴ B 点的电势较高;若设B 点的电势为零,则 V 100.22⨯-=A U .8-17 求习题8-12中空间各点的电势.解 已知均匀带电球面内任一点的电势等于球面上的电势Rq 04πε,其中R 是球面的半径;均匀带电球面外任一点的电势等于球面上的电荷全部集中在球心上时的电势.所以,由电势的叠加原理得:(1) 当r <R 1即所求场点在两个球面内时:20210144R q R q U πεπε+=;(2) 当R 1<r <R 2即所求场点在小球面外、大球面内时:2020144R q rq U πεπε+=;当r >R 2即所求场点在两个球面外时:r q q r q r q U 0210201444πεπεπε+=+=当r >R 2即所求场点在两个球面外时:rq q rq rq U 0210201444πεπεπε+=+=285页9-3,9-49-3.如图,在半径为R 的导体球外与球心O 相距为a 的一点A 处放置一点电荷+Q ,在球内有一点B 位于AO 的延长线上,OB = r ,求:1导体上的感应电荷在B 点产生的场强的大小和方向;2B 点的电势.解:1由静电平衡条件和场强叠加原理可知,B 点的电场强度为点电荷q 和球面感应电荷在该处产生的矢量和,且为零,即04130=+'=r rE E p B πε r r a E B30)(41+-=πε 2由电势叠加原理可知,B 点的电势为点电荷q 和球面感应电荷在该处产生的电势的标量和,即rq V V BB 04πε+'=由于球体是一个等势体,球内任一点的电势和球心o 点的电势相等aq V V V B 0004πε+'==因球面上的感应电荷与球心o 的距离均为球的半径R,且感应电荷的总电贺量为零,所以感应电荷在o 点产生的电势为零,且00V V =',因此aq V V B 004πε==所以, B 点的电势 aq V B 04πε=9-4.如图所示,在一半径为R 1 = cm 的金属球A 外面罩有一个同心的金属球壳B.已知球壳B 的内、外半径分别为R 2 = cm,R 3 = cm,A 球带有总电量Q A = ×10-8 C,球壳B 带有总电量Q B = ×10-8 C.求:1球壳B 内、外表面上所带的电量以及球A 和球壳B 的电势;2将球壳B 接地后再断开,再把金属球A 接地,求金属球A 和球壳B 的内、外表面上所带的电量,以及球A 和球壳B 的电势.习题图解:1在导体到达静电平衡后,A Q 分布在导体球A的表面上.由于静电感应,在B 球壳的内表面上感应出负电荷A Q ,外表面上感应出正电荷A Q ,则B 球壳外表面上的总电荷B A Q Q +;由场的分布具有对称性,可用高斯定理求得各区域的场强分布)(4),(02120211R r R r Q E R r E A<<=<=πε)(4),(03204323R r rQ Q E R r R E BA >+=<<=πε E 的方向眼径向外.导体为有限带电体,选无限远处为电势零点;由电势的定义可计算两球的电势B A V V 和. A 球内任一场点的电势A V 为)(4144321020204321321332211R Q Q R Q R Q rd r Q Q r d r Q rd E r d E r d E r d E V BA A A RB A R R A R R R R R R rA ++-=++=⋅+⋅+⋅+⋅=⎰⎰⎰⎰⎰⎰∞∞πεπεπεB 球壳内任一点的电势B V 为30204344333R Q Q dr r Q Q rd E r d E V B A R B A R R rB πεπε+=+=⋅+⋅=⎰⎰⎰∞∞9-5.两块无限大带电平板导体如图排列,试证明:1相向的两面上图中的2和3,其电荷面密度大小相等而符号相反;2背向的两面上图中的1和4,其电荷面密度大小相等且符号相同. 解:因两块导体板靠得很近,可将四个导体表面视为四个无限大带点平面;导体表面上的电荷分布可认为是均匀的,且其间的场强方向垂直导体表面;作如图所示的圆柱形高斯面,因导体在到达静电平衡后内部场强为零,导体外的场强方向与高斯面的侧面平行,由高斯定理可得习题图320320σσεσσ-=∴+=; 再由导体板内的场强为零,可知P 点合场强0)2()2()2(204030201=-++-+εσεσεσεσ 由 32σσ-= 得41σσ-=9-7. 一平行板电容器,充电后极板上的电荷面密度为σ = ×10-5 C . m -2,现将两极板与电源断开,然后再把相对电容率为εr = 的电介质充满两极板之间.求此时电介质中的D 、E 和P . 解:当平行板电容器的两板与电源断开前后,两极板上所带的电荷量没有发生变化,所以自由电荷面密度也没有发生变化,由 1-'=r r εσεσ ∴极化电荷面密度rr )(εεσσ1-='对于平行板电容器σ'=P 0r E εεσ)1(-'=∴1-'=r r D εσε 且E D P ,,的方向均沿径向.9-11.圆柱形电容器由半径为R 1的导线和与它同轴的导体圆筒构成,其间充满相对电容率为εr 的电介质.圆筒内半径为R 2.电容器长为L,沿轴线单位长度上的电荷为± λ,略去边缘效应,试求:1两极的电势差;2电介质中的电场强度、电位移、极化强度; 3电介质表面的极化电荷面密度.解:1 设导线上的电荷均匀地分布在导线的表面上,圆筒上的电荷均匀的分布在圆筒的内表面上,可由高斯定理求得各区域的场强110R ,rE <=习题图10-6ByOlllzx12022R r ,R rE r >>=επελ23,0R r E >= ∴两极的电位差1201202ln 2ln 221R R R R r l d E u r r R R επελεπελ==⋅=⎰2 由第1问知,电介质中的电场强度 rE r επελ02=电位移rr r E D πλεε20== 极化强度 0)1(εε-=r P rr r πελε2)1(-=329页10-9,10-1010-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(2)总通量0B ds Φ=•=⎰⎰10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度; 2通过图中矩形面积的磁通量 ()31r r =解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()r d Ir I B P -+=πμπμ22 (1) 在导线等距的点有 2d r =, dI B πμ2= (2) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d -10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方习题图10-10习题图10-6By Olllzx向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度10-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(3)总通量0B ds Φ=•=⎰⎰ 10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度;通过图中矩形面积的磁通量 ()31r r =2解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()rd Ir I B P -+=πμπμ22(3) 在导线等距的点有002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aI a I a μμθθππμπμπ=-=-=--=2d r =, dI B πμ2= (4) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d - 10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则00123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性习题图10-10002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aIa I aμμθθππμπμπ=-=-=--=习题图10-1401231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯.方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则习题图10-1400123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性01231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯. 367页11-1,11-511-1 一载流I 的无限长直导线,与一N 匝矩形线圈ABCD 共面;已知AB 长为L ,与导线间距为a ;CD 边与导线间距为bb ›a;线圈以 v 的速度离开直导线,求线圈内感应电动势的方向和大小;解 由于I 为稳恒电流,所以它在空间各点产生的磁场为稳恒磁场;当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量发生变化,故有感应电动势产生;取坐标系如图a 所示;设矩形线圈以速度 v 以图示位置开始运动,则经过时间t 之后,线圈位置如图b 所示;取面积元ldx dS =,距长直导线的距离为x ,按无限长直载流导线的磁感应强度公式知,该面积元处B 的大小为 B =xπμ20I 通过该面积元的磁通量为 ldx xIBdS d πμ20==Φ 于是通过线圈的磁通量为 ()⎰⎰⎰++++==Φ=Φvt b vt a vtb vt a xldxI ldx x I d t πμπμ2200 =πμ20Il ㏑vta vtb ++ 由法拉第电磁感应定律可知,N 匝线圈内的感应电动势为()()()⎥⎦⎤⎢⎣⎡++-+++-=Φ-=202vt a v vt b v vt a vt b vt a lIN dt d N E πμ ()()()()vt a vt b vvt b v vt a lIN +++-+-=πμ20令t = 0,并代入数据,则得线圈刚离开直导线时的感应电动势()ab a b NlIv b a lIvN dtd NE t πμπμ2112000-=⎪⎭⎫ ⎝⎛-=Φ-== 按楞次定律可知,E 感应电动势的方向沿顺时针方向;11-5 在无限长螺线管中,均匀分布着与螺线管轴线平行的磁场B t;设B 以速率dtdB=К变化К为大于零的常量;现在其中放置一直角形导线 abc;若已知螺线管截面半径为R,l ab =,求:1螺线管中的感生电场EV;2bc ab ,两段导线中的感生电动势;解 1由于系统具有轴对称性,如图所示,可求出感生电场;在磁场中取圆心为O ,半径为()R r r <的圆周,根据感生电场与变化磁场之间的关系m V LS d BE dl d S dtt Φ∂=-=-∂⎰⎰可得222V dBE r r r dtπππκ=-=- 有2V rE κ=-()R r < 由楞次定律可以判断感生电场为逆时针方向;2解法一 用法拉第电磁感应定律求解;连接Ob Oa ,和Oc ,在回路OabO 中,穿过回路所围面积的磁通量为1222124l BS Bl R ⎛⎫Φ=-=-- ⎪⎝⎭则11222221112424d l dB l E l R l R dt dt κ⎛⎫⎛⎫Φ=-=--=- ⎪ ⎪⎝⎭⎝⎭而ab oa bo ab E E E E E =++=1 所以12221124ab l E E lk R ⎛⎫==- ⎪⎝⎭方向由a 指向b同理可得 1222124bc l E lk R ⎛⎫=- ⎪⎝⎭方向由b 指向c解法二 也可由感生电场力做功求解;由于1中已求出EV;则122224bab V ak l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰122224cbc V bk l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰11-1.解: 1由电磁感应定律812)1(--=Φ-t dtd i ε2)2(102.3-⨯-=i ε2 2106.1-⨯==RI iε由于磁通量是增加的,所以线圈中产生的感应电动势使R 中产生感应电流的方向是由左向右11-4解:由题意可知金属棒沿杆下滑的速度为重力加速度所引起t BgL L Bgt l d B V )cos sin (cos sin )(θθθθε==⋅⨯=⎰11-5解:由于I 为稳定电流,所以它在空间各点产生的磁场为稳恒磁场.当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量回发生变化,故有感应电动势产生.取坐标系如图;设矩形线圈以速度V 从图示位置开始运动,经过时间t 之后,线圈位置如图b 所示,取面积元ds=ldx,距长直导线的距离为x,按无限长直载流导体的磁感应强度公式知,该面积元外B的大小为x I B πμ20= 通过该面积元的磁通量为ldx x I Bds d ⋅==Φπμ20 于是通过线圈的磁通量为⎰⎰⎰++++⋅=⋅=Φ=Φvt b vt a vt b vt a xldx x I ldx x I d t πμπμ22)(00 va vtb IL ++=ln 20πμ 由法拉第电磁感应定律可知,N 匝线圈中的感应电动势为])()()([220vt a v vt b v vt a vt b vt a ILN dt d N E ++-+++-=Φ-=πμ -=))(()()(20vt b vt a v vt b v vt a IN +++-+πμ 令t=0,代入数据,得到线圈,刚离开直导线时的感应电动势)11(200ba LIVN dt d N E t -=Φ-==πμ )(100.32.01.02)1.02.0(0.30.52.010104737V --⨯=⨯⨯-⨯⨯⨯⨯⨯⨯=ππ 按楞次定律E 的方向为图b 中的顺时针方向1、 一质点作匀速率圆周运动,其质量为m,线速度为v,半径为R;求它对圆心的角动 量;它相对于圆周上某一点的角动量是否为常量,为什么答:它对圆心的角动量Rmv ,是常量;它相对于圆周上某一点的角动量不是常量;4、彗星绕太阳作椭圆轨道运动,太阳位于椭圆轨道的一个焦点上,问系统的角动量是否 守恒 近日点与远日点的速度哪个大答:在彗星绕太阳轨道运转过程中,只受万有引力作用,万有引力对太阳不产生力矩,系统角动量守恒;近日点 r 小 v 大,远日点 r 大 v 小;这就是为什么彗星运转周期为几十年,而经过太阳时只有很短的几周时间;彗星接近太阳时势能转换成动能,而远离太阳时,动能转换成势能;8.利用角动量守恒定律简要分析花样滑冰、跳水运动过程;答:对这一力学现象可根据角动量守衡定律来解释;例如旋转着的芭蕾舞演员要加快旋转时,总是将双手收回身边,这时演员质量分布靠近转轴,转动惯量变小,转动速度加快,转动动能增加;3-5题图。

大学物理考试题及答案

大学物理考试题及答案

大学物理考试题及答案一、选择题(每题4分,共40分)1. 下列哪个量是标量?A. 力B. 位移C. 动量D. 速度2. 下列哪个量是矢量?A. 质量B. 静力C. 动能D. 加速度3. 以恒力F作用下,物体位移x的函数关系为F = 2x + 3,其中F 为单位时间内物体所受的总力,则力学功W与位移x的函数关系是:A. W = 2x^2 + 3xB. W = 4x + 3C. W = 4x^2 + 6xD. W = 2x + 34. 物体A自由落体以恒定加速度a1下落,物体B自由落体以恒定加速度a2下落。

当两者同时从同一高度下落时,哪个物体先触地?A. 物体AB. 物体BC. 物体A和物体B同时触地D. 初始速度不同,无法确定5. 压强的单位是:A. 牛顿/平方米B. 焦耳/秒C. 瓦特/安培D. 千克/立方米6. 当一个物体浸没在液体中时,所受浮力等于:A. 物体的重力B. 液体的重力C. 物体的体积D. 物体的质量7. 功率的单位是:A. 焦耳B. 瓦特C. 牛顿D. 米/秒8. 电阻的单位是:A. 欧姆B. 瓦特C. 安培D. 瓦/米9. 轴上有两个质量相等的物体A和B,A在轴上离轴心的距离是B 的2倍,则这两个物体对轴的转动惯量之比是:A. 1:1B. 1:2C. 2:1D. 1:410. 电磁感应现象中,导线中产生电动势的原因是:A. 导线自身的电子受到力的作用B. 磁场变化引起电磁感应C. 电磁波辐射作用D. 电磁振荡引起电动势二、填空题(每题4分,共40分)11. 物体在光滑水平面上受到的摩擦力等于 _______________ 。

12. 力学功的单位是_________________。

13. 物体下落的过程中,速度不断增大,则物体的加速度为___________ 。

14. 一个能够制热的物体对另一个物体传递能量的方式是_________________。

15. 光线从一个光密介质射入到一个光疏介质中时发生_________________。

大学物理试题及参考答案-大一大学物理考试题及答案

大学物理试题及参考答案-大一大学物理考试题及答案

⼤学物理试题及参考答案-⼤⼀⼤学物理考试题及答案《⼤学物理》试题及参考答案⼀、填空题(每空1分、共20分)1.某质点从静⽌出发沿半径为m R 1=的圆周运动,其⾓加速度随时间的变化规律是t t 6122-=β(SI) ,则该质点切向加速度的⼤⼩为。

2.真空中两根平⾏的⽆限长载流直导线,分别通有电流1I 和2I ,它们之间的距离为d ,则每根导线单位长度受的⼒为。

3.某电容器电容F C µ160=,当充电到100V 时,它储存的能量为____________焦⽿。

4.⼀个均匀带电球⾯,半径为10厘⽶,带电量为2×109-库仑。

在距球⼼6厘⽶处的场强为__________。

5.⼀平⾏板电容器充电后切断电源。

若使两极板间距离增加,则两极板间场强E __________,电容C__________。

(选填:增加、不变、减少)6.⼀质量为m ,电量为q 的带电粒⼦以速度v 与磁感应强度为B 的磁场成θ⾓进⼊时,其运动的轨迹为⼀条等距螺旋,其回旋半径R 为____________ ,周期T 为__________,螺距H 为__________。

7. 真空中⼀个边长为a 的正⽅体闭合⾯的中⼼,有⼀个带电量为Q 库仑的点电荷。

通过⽴⽅体每⼀个⾯的电通量为____________。

8.电⼒线稀疏的地⽅,电场强度。

稠密的地⽅,电场强度。

9. 均匀带电细圆环在圆⼼处的场强为。

10.⼀电偶极⼦,带电量为q=2×105-库仑,间距L =0.5cm ,则它的电距为________库仑⽶11.⼀空⼼圆柱体的内、外半径分别为1R ,2R ,质量为m (SI 单位).则其绕中⼼轴竖直轴的转动惯量为____________。

12.真空中的两个平⾏带电平板,板⾯⾯积均为S ,相距为d (S d ??),分别带电q + 及q -,则两板间相互作⽤⼒F 的⼤⼩为____________。

13.⼀个矩形载流线圈长为a 宽为b ,通有电流I ,处于匀强磁场B 中。

大学物理1测试试题一(1)

大学物理1测试试题一(1)

10.有一由N匝细导线绕成的平面正 三角形线圈,边长 为a,通有电流I,置于均匀外磁场 B 中,当线圈平面的 法向与外磁场同向时,该线圈所受的磁场力矩 Mm值为
(A) Na IB / .
(B) Na IB / .
(C) Na IBsin .

(D) .
二、填空题
1.一质量为30Kg的物体以10m·s-1的速率水平向东运动, 另一质量为20Kg的物体以20m·s-1速率向北运动。两物 体发生完全非弹性碰撞后,它们的速度大小 V=_________;方向为___ ______。
(2) dr V ; dt
(3) dS V ; dt
dV (4)
dt
at ;
(A)只有(1)(4)是对的;
(B) 只有(2)(4)是对的; (C)只有(2)是对的;
D)只有(3)是对的;
提示: 定义和矢量
2.有一半径为R的水平圆转台,可绕通过其中心的竖 直固定光滑轴转动,转动惯量为J,开始时转台以匀 角速度转动,此时有一质量为m的人站在站台中心。

(D) B ,因为虽然B ,但B B .
I I/ o I/
9.一电子以速度 V垂 直进入磁感应强度为 B的均匀磁场 中,此电子在磁场中运动轨道所围的面积内的磁通量将
(A)正比于B,反比于V2。
(B)反比于B,正比于V2。
V
(C)正比于B,反比于V。
(D)反比于B,反比于V。
(A)2倍; (C) 4倍;
(B) 1/2倍; (D) 1/4倍。
7.当一个带电导体达到静电平衡时: (A)表面上电荷密度较大处电荷较高。 (B)表面曲率较大处电势较高。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。

「大学物理1-1测试题及答案」

「大学物理1-1测试题及答案」

大学物理1-1测试题(第三,四章)一、 简答题(每题5分,共20分)(1) 请写出质点系动量定理的内容(文字及数学形式),并说出系统动量守恒的条件?答:作用于系统的合外力所产生的冲量等于系统动量的增量,00tt Fdt p p =-⎰;系统动量守恒的条件是体系所受合外力为零(如果系统内力远大于外力,也可近似认为其是守恒)。

(2) 什么是保守力?保守力与势能之间有何关系?答:保守力是指做功只与初末位置有关,与质点运动路径无关的力;保守力做功等于体系势能增量的负值(或势能的减小量)。

(3) 简述功能原理(文字及数学形式),并说出系统机械能守恒的条件?答:外力及内部非保守力做功之和等于体系机械能的增量,0ex in nc W W E E +=-,此即功能原理;当外力与内部非保守力做功之和为零时,体系的机械能守恒。

(4) 简述刚体定轴转动的角动量定理(文字及数学形式),并说出系统角动量守恒的条件?答:当刚体做定轴转动时,作用于刚体的合外力矩等于刚体对该定轴的角动量关于时间的变化率,即()dL d J M dt dtω==;角动量守恒的条件是体系所外力矩之和为零。

二、 选择题(每题4分,共20分)(1)对质点系有以下几种说法:①质点系总动量的改变与内力无关;②质点系总动能的改变与内力无关;③质点系机械能的改变与保守内力无关。

下列对上述说法判断正确的是( C )(A)只有①是正确的 (B) ①、②是正确的 (C) ①、③是正确的 (D )②、③是正确的 (2)有两个倾角不同,高度相同,质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的小球从这两个斜面的顶点,由静止开始下滑,则( D ) (A)小球到达斜面底端时的动量相等 (B)小球到达斜面底端时的动能相等(C)小球、斜面、地球组成的系统,机械能不守恒 (D)小球和斜面组成的系统在水平方向上动量守恒(3)关于力矩有以下几种说法,其中正确的是:( B )(A ) 内力矩会改变刚体对某个定轴的动量矩(角动量) (B ) 作用力和反作用力对同一轴的力矩之和必为零 (C ) 角速度的方向一定与外力矩的方向相同(D ) 质量相等、形状和大小不同的两个刚体,在相同力矩作用下,它们的角加速度一定相等(4)一均匀细棒可绕其一端在竖直平面内作无摩擦的定轴转动。

大学基础物理学(韩可芳)习题参考-1-2(力学,守恒)-0425

大学基础物理学(韩可芳)习题参考-1-2(力学,守恒)-0425

《基础物理学》习题解答配套教材:《基础物理学》(韩可芳主编,韩德培 熊水兵 马世豪编委),湖北教育出版社(1999)第一章 质点力学思考题1-1 试比较以下各对物理量的区别:(1)r 和 r ; (2)dt r d和 dt dr(3)22dtr d 和22dt r d 答:(1)r 表示矢量r的模,位移的大小,而r 表示位矢大小之差r 的绝对值;(2)dtr d表示速度的大小,而dt dr表示位矢的长短随时间的变化率;(3)22dtr d表示加速度的大小,22dt r d 位矢的长短对时间的二阶导数。

1-2 质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?答:质点沿直线运动,质点位置矢量方向不一定不变。

质点位置矢量方向不变,质点沿直线运动。

1-3 设质点的运动学方程为 )(t x x ,)(t y y ,在计算质点的速度和加速度时,有人先求出22y x r ,然后根据dt drv 和22dtr d a 求得结果。

又有人先计算速度和加速度的分量,再合成而求得结果,即22dt dy dt dx v 和222222dt y d dt x d a 。

你认为哪一种方法正确?为什么? 答:后一种方法正确。

位矢、速度、加速度均为矢量,在本题中先求出分量,再由分量合成得出矢量的大小是正确的,而前一种方法先出位矢大小,再求出的 只是位矢大小的时间变化率,而不是速度的大小, 也不是加速度的大小。

Y1-4 图示某质点在椭圆轨道上运动,任何时刻质点加速度的方向均指向椭圆的一个焦点O ,试分析质点通过P 、Q 两点时,其运动分别是加速的,还是减速的?答:在P 点,总加速度的切向分量与速度方向相反,该行星速率减小;在Q 点,总加速度的切向分量与速度方向相同,行星速率正在增大。

1-5 (1)匀速圆周运动的速度和加速度是否都恒不变?(2)能不能说“曲线运动的法向加速度就是匀速圆周运动的加速度”? (3)在什么情况下会有法向加速度?在什么情况下会有切向加速度?(4)以一定初速度0v、抛射角0 抛出的物体,在轨道上哪一点的切向加速度最大?在哪一点的法向加速度最大?在任一点处(设这时物体飞行的仰角为 ),物体的法向加速度为何?切向加速度为何?答:1)在匀速圆周运动中质点的速率是保持不变的而速度的方向则每时每刻在变化.所以不能说;速度恒定不变.在匀速圆周运动中,质点的加速度量值R v a n 2始终保持不变,同时它的方向恒指向圆心而转变,所以加速度矢量也是恒定不变的。

大学物理大一试题及答案

大学物理大一试题及答案

大学物理大一试题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 299,792,458 m/sB. 299,792,458 km/sC. 3.0 x 10^8 m/sD. 3.0 x 10^5 km/s答案:C2. 牛顿第一定律描述的是:A. 物体的加速度与作用力成正比B. 物体的加速度与作用力成反比C. 物体在没有外力作用下保持静止或匀速直线运动D. 物体在受到外力作用下保持静止或匀速直线运动答案:C3. 以下哪个不是电磁波?A. 无线电波B. 微波C. 可见光D. 声波答案:D4. 根据热力学第一定律,系统内能的增加等于:A. 系统吸收的热量B. 系统释放的热量C. 系统吸收的热量与对外做功之和D. 系统释放的热量与对外做功之和答案:C5. 一个物体的质量为2kg,受到的重力是:A. 19.6 NB. 9.8 NC. 39.2 ND. 4.9 N答案:A6. 以下哪个是波动现象?A. 电子的轨道运动B. 光的反射C. 光的折射D. 光的干涉答案:D7. 根据库仑定律,两个点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比。

这个定律是由哪位科学家提出的?A. 牛顿B. 法拉第C. 库仑D. 麦克斯韦答案:C8. 以下哪个量不是矢量?A. 速度B. 力C. 功D. 温度答案:D9. 根据能量守恒定律,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

这个定律是:A. 热力学第一定律B. 热力学第二定律C. 能量守恒定律D. 动量守恒定律答案:C10. 光的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率成正比或反比,取决于介质答案:B二、填空题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成_________。

答案:反比2. 光年是_________的单位。

大学物理答案(渊小春)

大学物理答案(渊小春)

第1章质点力学1-1题已知矢量A=3i-4j,B=-3i-2j,C=-3j,D=2i+5j,试用几何方法(多边形法则)和解析方法求A B C D+++解:(1)几何法如1-1题图所示24OD i j=-222(-4) 4.47OD=+=OD与x轴方向夹角设为θ则4tan22θ-==-arctan(2)63.43θ=-=-︒(2)解析法A B C D+++=(3i -4j )+(-3i -2j)+(-3j)+(2i+5j)=(3-3+2)i+(-4-2-3+5)j=2i-4j1-2题一飞机由某地起飞,向东飞行50 km后,又向东偏北60°的方向飞行40 km,求此时飞机的位置。

解:此题是求位置矢量,选取地球为参照系,以起点为坐标原点,建立如1-2题图所示的坐标系,由题意知:50A i =40cos 6040sin 60B i j =︒+︒=20203i j +解得:(5020)203r A B i i =+=++=70203i j +22(70)(203)r i j =+=8.1 kmr 与正东方向(即i )方向夹角设为θ 则203tan 0.4970θ== arctan 0.4926.1θ==︒1-3题 已知A =3i +5j ,B =5i -3j ,求A B ⋅解:由数学上的矢量标积知,()()x y x y x x y y A B A i A j B i B j A B A B ⋅=+⋅+=+, 则(35)(53)15150A B i j i j ⋅=+⋅-=-=1-4题 质点沿y 轴作直线运动,其位置随时间的变化规律为y =5t 2,试求: (1)2.000~2.100 s ,2.000~2.001 s 两个时间间隔内的平均速度; (2)t =2.000 s 时的瞬时速度。

解:(1)由题意知,运动方程为 y =5t 2,分别将t 1 = 2.000 s 与t 2 = 2.100 s 带入运动方程得: y 1 = 20.000000 m y 2 = 22.050000 m 则平均速度的公式得 2.050020.50.100y v t ∆===∆-1m s ⋅ 同理,得:1y '=20.00 m 2y '=20.02 m 0.0220.0000.001y v t '∆==='∆-1m s ⋅ (2)由y = 5t 2求得瞬时速度为10dy v t dt == m将t = 2.000 s 带入上式得220.000t s v ==-1m s ⋅1-5题 矿井里的升降机,在井底从静止开始匀加速上升,经过3 s ,速度达到3-1m s ⋅,然后以这个速度匀速上升6 s ,最后减速上升,经过3 s 到达井口,刚好停止,求: (1)矿井深度(2)给出x-t 图和v-t 图解:(1)矿井深度可用图解法求得其v -t 图如1-5题图(a)所示 矿井深度为图中梯形面积即1(612)32x =+⨯=2 m(2)升降机运动方程为22211(03)223(39)1(912)2at A t x vt t t vt at t ⎧=<≤⎪⎪==≤≤⎨⎪⎪-≤≤⎩ 其x-t 图如1-5题图(b)所示1-6题 一升降机以加速度1.22 2m s -⋅上升,当上升速度为2.44 -1m s ⋅时,有一螺丝自升降机的天花板上松落,天花板与升降机的底板相距2.4 m ,计算: (1)螺丝从天花板落到底板所需要的时间;(2)螺丝相对于升降机外固定柱子下降的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理1-1测试题及答案(第一,二章)
班级: 姓名: 得分:
一、 简答题(每题5分,共20分)
(1) 什么情况下可以把待研究的物体抽象为质点?不能抽象为质点时该怎么办? 答:当物体运动的尺度远大于物体本身的尺寸时可将其看成质点。

若物体不能被抽象为一个质点,则可将物体分成很多部分,使得每一部分足够小,以至于可将其看成质点;这样,便可将物体看成是由若干质点组成的质点系。

(2) 什么是质点的运动方程,它与质点的瞬时速度及瞬时加速度有何关系?
答:质点运动方程是质点位置矢量与时间的函数关系,即()r t 。

瞬时速度()v t 是()r t 关于时间的一阶微商,即()()dr t v t dt =
;瞬时加速度()a t 是()r t 关于时间的二阶微商,即22()()d r t a t dt =。

(3) 描述质点圆周运动的线量与角量有哪些,它们有何关系?
答:描述质点圆周运动的线量有:路程ds 、速率v 、切向加速度t a 、法向加速度
n a ;角量有:角位移d θ、角速度ω、角加速度α。

它们之间有如下关系:ds Rd θ=、
ds v R dt ω==、t dv a R dt
α==、22n v a R R ω==。

(4) 什么是惯性系和非惯性系,试举例说明?牛顿定律成立的条件是什么?
答:惯性系是指牛顿定律在其中严格成立的参考系,否则为非惯性系;地球、太阳就近似为惯性系。

牛顿定律成立的条件是:针对宏观低速运动的物体;针对惯性系中的质点。

二、 选择题(每题4分,共20分)
(1)下列说法正确的是:( D )
(A)加速度恒定不变时,物体的运动方向也不变 (B)平均速率等于平均速度的大小
(C)当物体的速度为零时,加速度必定为零
(D)质点作曲线运动时,其速度大小的变化产生切向加速度,速度方向变化产生法向加速度
(2)质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程。

对下列表达式, [1]dv dt a = [2]dr dt v = [3]ds dt v = [4]dv dt a = 下述判断正确的是( C )
(A) [1]、[4]正确 (B) [2]、[4]正确 (C) [3]、[4]正确 (D) 只有[3]正确
(3)在升降机天花板上拴有轻绳,其下端系一重物,当升降机
以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大
张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?
( C )
(A) 2a 1. (B) 2(a 1+g ).
(C) 2a 1+g . (D) a 1+g .
(4)如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别
为1m 和2m 的重物,且12m m >。

滑轮质量及一切摩擦均不计,此时重物的加速度的大小为a 。

今用竖直向下的恒力1F m g =代替质量为1m 的重物,加速度为a ', 则:( B )
(A )a a '=; (B )a a '>
(C)a a '< (D)不能确定
(5)如图所示,用水平力F 把木块压在竖直的墙面上并保持静止。

当F 逐渐增大时,木块所受到的摩擦力( B )
(A )恒为零 (B )不为零,但保持不变
(C )随F 成正比地增加
(D )开始随F 增大,达到某一最大值后,就保持不变。

三、 填空题(每空3分,共30分)
(1)质点的运动方程是ˆˆ()cos sin r t R ti R tj ωω=+,式中ω和R 是正的常量。

从t=/πω
到2/t πω=时间内,该质点的位移是 ˆ2Ri ;该质点所经过的路程是 R π 。

(2)一质点沿x 方向运动,t=0时刻处于原点处,其速度随时间变化的关系为v=2t 2+3t (SI),则当t=3s 时质点的加速度a= 215/m s ,质点的位置x= 6331.52
m = 。

(3)物理学中的四种基本相互作用分别是 引力、电磁、强、弱 ; 牛顿引力常量的量纲是
321L T M
-- 。

(4)质量m=1kg 的物体沿x 轴运动,所受合力ˆ12()F ti N =。


t=0时,物体在原点处于静止状态,则t=T 时刻物体的速率为=v
26T ,位置=x 32T 。

(5)如右图所示,系统置于加速度a=g/2(g 是重力加速度)的上升的升降机内。

A 、
B 两物体的质量相等,均为m 。

若滑轮与绳的质量不计,而A 与水平桌面间的滑动摩擦系数为μ,则A 的加速度为 33()44
g μ- ,绳中张力为 3(1)4mg μ+ 。

四、 计算题(每题10分,共30分)
1.一质点沿半径为R 的圆周按规律2012
s v t bt =-运动,0,v b 都是常量。

(1)求t 时刻质点加速度的大小。

(2)当加速度达到b 时,质点已沿圆周运行了多少圈?
解:(1)0ds v v bt dt ==-,t dv a b dt ==-,220()n v v bt a R R -== (5分) 4222
02()t n v bt a a a b R -∴=+=+ (2)4202()v bt a b b R
-=+=,000v v bt t b ⇒-=⇒= (5分)
2002001()()2224v v v b s
v b b n R R bR
πππ+-===
2.在光滑水平桌面上,固定放置一板壁。

板壁与水平面垂直,它的AB 和CD 部分是平板,BC 部分是半径为R 的半圆柱面。

一质量
为m 的物块在光滑的水平面上以初速度v 0 沿壁滑动,物块
与壁之间的滑动摩擦系数为μ,如图所示。

求物块沿板壁从
点D 滑出时的速度。

解:只考虑BC 段的运动:
2t n dv v m F F m dt R
μμ-=== (5分) 0200
v R v dv ds v ds dt R
dv ds v R
v In v πμμμπ⇒=-=-=-⎰⎰ 0v v e μπ-⇒= (5分)
3.请设计10m 高台跳水的水池的深度,并将你的结果与国际跳水规则的水深4.50~5.00m 进行比较。

假定运动员质量为50kg ,在水中受的阻力与速度的平方成正比,比例系数为 201kg m -⋅;当运动员的速率小到2.01m s -⋅时翻身,并用脚蹬池上浮。

(在水中可近似认为重力与水的浮力相等)
解:设水的深度为h ,比例系数为k,运动员的质量为m,运动员的速度为v。

运动员在接触水面之前做自由落体运动,到达水面时的速度为:s m gH v /14108.9220=⨯⨯== (3分)
进入水中后,受到重力和水的阻力的作用,由牛顿第二定律有:
k d s v dv m dt ds v dt dv a ma kv f =-⇒⎪⎪⎪⎩
⎪⎪⎪⎨⎧=-===2 (5分) 两边积分得:867
.4)945.1()5.2(20)7/1ln(500214=-⨯-=⇒=-⇒=-⎰⎰h h kds v dv m h (2分)
由结果可知设计符合国际标准。

相关文档
最新文档