电动力学复习提纲及复习习题参考答案教案资料

合集下载

电动力学期末考试复习知识总结及试题

电动力学期末考试复习知识总结及试题

电动力学期末考试复习知识总结及试题第一章电磁现象的普遍规律一、主要内容:电磁场可用两个矢量—电场强度和磁感应强度来完全描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。

在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。

完成由普通物理到理论物理的自然过渡。

二、知识体系:三、内容提要:1.电磁场的基本实验定律:(1)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:(2)毕奥——萨伐尔定律(电流决定磁场的实验定律)(3)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同。

②磁场与它激发的电场间关系是电磁感应定律的微分形式。

(4)电荷守恒的实验定律,①反映空间某点与之间的变化关系,非稳恒电流线不闭合。

② 若空间各点与无关,则为稳恒电流,电流线闭合。

稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。

2、电磁场的普遍规律—麦克斯韦方程其中:1是介质中普适的电磁场基本方程,适用于任意介质。

2当,过渡到真空情况:3当时,回到静场情况:4有12个未知量,6个独立方程,求解时必须给出与,与的关系。

介质中:3、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系。

向同性均匀介质:,,2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场。

4.洛伦兹力公式考虑电荷连续分布,单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。

说明:①②5.电磁场的边值关系其它物理量的边值关系:恒定电流:6、电磁场的能量和能流能量密度:能流密度:三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度。

电动力学总复习[1]

电动力学总复习[1]

D E 0
E
D E 在各向同性介质中

基本解 为
泊松方程
x
1 4

x dV
r
2、 稳恒电流电磁场
j 0 0 t
E 0 t B 0 t D 0 t
B E t D D H j t B 0
3) 电像法 4)格林函数法
5) 泰勒展开法
2) 积分法
若电场已知
1 2 E dl
1
2
4、电磁场能量
1 静电场中的能量 wE 2 E D
1 1 WE E DdV dV 2 2
稳恒电流磁场的能量
1 wB B H 2
W x e x dV
dV
W0 Qe 0
W1 P Ee 0 P e 0
三、 电磁波的传播
1、平面电磁波
1) 真空中电磁场的波动方程
B E t E B 0 0 t
B 0 E 0
1 2 B B 2 2 0 c t
2、电磁波的反射和折射
1) 入射角、反射角、折射角

k
n E2 E1 0
E(r , t ) E0 exp[i(k r t )]
n
入射
y
2
反射 E' (r , t ) E'0 exp[i(k ' r t )]
1
k
x 折射 E'' (r , t ) E''0 exp[i(k '' r t )]
2 2 1 E 2 E 2 2 0 c t

电动力学 第三版_郭硕鸿_课后答案[第3章]

电动力学  第三版_郭硕鸿_课后答案[第3章]

电动力学习题解答参考 第三章 静磁场1. 试用A r 表示一个沿z 方向的均匀恒定磁场0B r写出A r的两种不同表示式证明两者之差是无旋场解0B r 是沿z 方向的均匀的恒定磁场即ze B B r r =0且AB r r×∇=0在直角坐标系中zx y y z x x y z e yA x A e x A z A e z A y A A r r rr )()()(∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇如果用A r 在直角坐标系中表示0B r 即=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂000y A x A x A z A z A y A xy zx yz 由此组方程可看出A r有多组解如解1)(,00x f y B A A A x Z y +−=== 即 xe xf y B A rr )]([0+−= 解2)(,00y g x B A A A Y z x +=== 即 ye y g x B A rr )]([0+=解1和解2之差为yx e y g x B e x f y B A r r r )]([)]([00+−+−=∆则zx y y z x x y z e y A xA e x A z A e z A y A A r r r r ])()([])()([])()([)(∂∆∂−∂∆∂+∂∆∂−∂∆∂+∂∆∂−∂∆∂=∆×∇这说明两者之差是无旋场2.均匀无穷长直圆柱形螺线管每单位长度线圈匝数为n电流强度为I 试用唯一性定理求管内外磁感应强度B解根据题意得右图取螺线管的中轴线为z 轴本题给定了空间中的电流分布故可由∫×='43dV r rJ B rr r πµ求解磁场分布又J r 在导线上所以∫×=34r r l Jd B r r r πµ1 螺线管内由于螺线管是无限长理想螺线管故由电磁学的有关知识知其内部磁内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场场是均匀强磁场故只须求出其中轴线上的磁感应强度即可知道管内磁场 由其无限长的特性不妨取场点为零点以柱坐标计算x y x e z e a e a r r r r r ''sin 'cos −−−=ϕϕyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−=)''sin 'cos ()'cos ''sin '(x y x y x e z e a e a e ad e ad r l d r r r r r r r −−−×⋅+⋅−=×∴ϕϕϕϕϕϕ zy x e d a e d az e d az rrr'''sin '''cos '2ϕϕϕϕϕ+−−= 取由'''dz z z +−的以小段此段上分布有电流'nIdz ∫++−−=∴232220])'([)'''sin '''cos '('4z a e d a e d az e d az nJdz B z y x rr r r ϕϕϕϕϕπµ I n az a z d nI e nI z a dz a d z 0232023222200]1)'[()'(2])'([''4µµϕπµπ=+=⋅+=∫∫∫∞+∞−∞∞−r 2)螺线管外部:由于是无限长螺线管不妨就在xoy 平面上任取一点)0.,(ϕρP 为场点)(a >ρ 222')'sin sin ()'cos cos ('z a a x x r +−+−=−=∴ϕϕρϕϕρrr )'cos(2'222ϕϕρρ−−++=a z a ('=−=x x r r r r x e a r )'cos cos ϕϕρ−zy e z e a rr ')'sin sin (−−ϕϕρyx e ad e ad l d r r r 'cos ''sin 'ϕϕϕϕ⋅+⋅−= zy x e d a a e d az e d az r l d r r r r r ')]'cos([''sin '''cos '2ϕϕϕρϕϕϕϕ−−+−−=×∴+−+−⋅=∴∫∫∫∫∞∞−∞∞−'''sin '''''cos ''[43203200dz e r d az d dz e r d az d nI B y x rr r ϕϕϕϕϕϕπµππ]')'cos('3220∫∫∞∞−−−+z e dz r a a d rϕϕρϕπ由于磁场分布在本题中有轴对称性而螺线管内部又是匀强磁场且螺线管又是无限长故不会有磁力线穿出螺线管上述积分为0所以0=B r内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场3. 设有无穷长的线电流I 沿z 轴流动以z<0空间充满磁导率为µ的均匀介质z>0区域为真空试用唯一性定理求磁感应强度B 然后求出磁化电流分布解本题的定解问题为×∇=×∇=<−=∇>−=∇===010020212201211)0(,)0(,z z z A A AA z J A z J A r r r rrr rr µµµµ由本题具有轴对称性可得出两个泛定方程的特解为∫∫==rl Id x A rl Id x A rr r rr r πµπµ4)(4)(201由此可推测本题的可能解是<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 验证边界条件1)(,12021=−⋅==B B n A A z r rr r r 即 题中,=⋅=θe e e n z z rr r r 且所以边界条件1满足2)(,11120102=−××∇=×∇==H H n A A z z r r rr r即µµ本题中介质分界面上无自由电流密度又θθπµπµe r I B H e rI B H r r r r r r 2222011====,012=−∴H H r r 满足边界条件0)(12=−×H H n r r r综上所述由唯一性定理可得本题有唯一解<>=)0(,2)0(,20z er I z e r I B θθπµπµr rr 在介质中MB H r r r −=0µ故在z<0的介质中22H B M r rr −=µ内部资料料料内部资料内部即θθθµππµπe r e r e r M )1(22200−=−⋅= ∴介质界面上的磁化电流密度r z M e r I e e r I n M r r r r r r )1(2)1(200−=×−=×=µµπµµπαθ总的感应电流)1()1(20200−=⋅⋅⋅−=⋅=∫∫µµϕµµππθθI e d r e r I l d M J Mr r rr 电流在z<0的空间中沿z 轴流向介质分界面4. 设x<0 半空间充满磁导率为µ的均匀介质x>0 空间为真空今有线电流I 沿z 轴流动求磁感应强度和磁化电流分布解假设本题中得磁场分布仍呈轴对称则可写作ϕπµe rI B vv 2′=其满足边界条件0)(0)(1212==−×=−⋅αvv v v v vv H H n B B n 即可得在介质中ϕµπµµe r I B H vv v 22′== 而Me r I M B H v v v v v −′=−=ϕµπµµ0022∴在x<0的介质中ϕµµµµπµe r I M vv 002−′= 则∫=ld M I Mvv 取积分路线为B A C B →→→的半圆,ϕe AB vQ ⊥ AB ∴段积分为零 002)(µµµµµ−′=I I M ϕπµe r I I B M v v 2)(0+=∴∴由ϕϕπµπµe rI B e r I I M v v v 22)(0′−==+可得02µµµµµ+=′内部资料料料内部资料内∴空间ϕπµµe rB 0+= I I M 0µµµµ+−=沿z轴5.某空间区域内有轴对称磁场在柱坐标原点附近已知)21(220ρ−−≈z C B Bz 其中B 0为常量试求该处的ρB 提示用,0=⋅∇B r 并验证所得结果满足0Hr×∇解由B v 具有轴对称性设zz e B e B B v v v +=ρρ其中 )21(220ρ−−=z c B B z 0=⋅∇B v Q 0)(1=∂∂+∂∂∴z B zB ρρρρ即02)(1=−∂∂cz B ρρρρ A cz B +=∴2ρρρ(常数) 取0=A 得ρρcz B =z e z c B e cz B vv v )]21([220ρρρ−−+=∴10,0==D j v vQ 0=×∇∴B v 即 0)(=∂∂−∂∂θρρe B z B z v2代入1式可得2式成立∴ρρcz B = c 为常数6. 两个半径为a 的同轴线圈形线圈位于L z ±=面上每个线圈上载有同方向的电流I1 求轴线上的磁感应强度2 求在中心区域产生最接近于均匀的磁场时的L 和a 的关系提示用条件022=∂∂z B z解1由毕萨定律L 处线圈在轴线上z 处产生得磁感应强度为内部资料料料内部资料内,11z z e B B = ∫∫−+==θπαπd L z a r B z 232231])([4sin 4 232220])[(121a z L Ia +−=µ同理L 处线圈在轴线上z处产生得磁感应强度为zz e B B vv 22=2322202])[(121a z L Ia B z++=µ∴轴线上得磁感应强度zz z e a z L a z L Ia e B B v v v++++−==2322232220])[(1])[(121µ 20=×∇B vQ 0)()(2=∇−⋅∇∇=×∇×∇∴B B B v v v 又0=⋅∇Bv0,0222=∂∂=∇∴z B zB v 代入1式中得62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−+−−++−+−−−+−−−62225222322212222122])[(])[()(6])[(])[()(])[(a z L a z L z L a z L a z L z L a z L +−++−−++ ++++++−−0取z得)(12])(2)(2[)(22522212222122322=+++−+−+−L a L a L L a L a L 2225a L L +=∴内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场a L 21=∴7. 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上试解矢势A r的微分方程设导体的磁导率为0µ导体外的磁导率为µ解定解问题为×∇=×∇=∞<>=∇<−=∇外内内外内外内A A A A A a r A a r J A a a v v v vvv vv µµµ11)(,0)(,00202选取柱坐标系该问题具有轴对称性且解与z 无关令ze r A A v v )(内内=z e r A A vv )(外外代入定解问题得=∂∂∂∂−=∂∂∂∂0))(1))((10r r A r rr J r r A r r r 外内µ 得43212ln )(ln 41)(C r C r A C r C Jr r A +=++−=外内µ由∞<=0)(r r A 内 得01=C 由外内A A v v ×∇=×∇µµ110 得 232Ja C µ−=内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场由aaA A 内外v v =令0==aaA A 内外v v 得 a Ja C Ja C ln 2,4124202µµ==−=∴ra a J A r a J A ln 2)(412220v v v vµµ外内8.假设存在磁单极子其磁荷为Qm它的磁场强度为304r rQ H m r r πµ=给出它的矢势的一个可能的表示式并讨论它的奇异性解rm m e rQ r r Q H v v v 2030144πµπµ== 由rm e rQ H B A v v v v 204πµ===×∇ 得=∂∂−∂∂=∂∂−∂∂=∂∂−∂∂0])([10)](sin 1[14])(sin [sin 12θφθπφθθθθφθφrr m A rA r r rA r A r r Q A A r (1)令,0==θA A r得rQ A m πθθθφ4sin )(sin =∂∂θθπθπθθφθφsin cos 144sin sin 0r Q A d rQ A mm −=∴=∴∫显然φA 满足1式∴磁单极子产生的矢势φθθπe r Q A m vv sin cos 14−=内部资料料料内部资料内部当2πθ→时φπe rQ A m v v 4→当πθ→时∞→A v故A v的表达式在πθ=具有奇异性A v不合理9. 将一磁导率为µ半径为R 0的球体放入均匀磁场0H r内求总磁感应强度B r 和诱导磁矩mr解根据题意以球心为原点建立球坐标取0H v 的方向为zev此球体在外界存在的磁场的影响下极化产生一个极化场并与外加均匀场相互作用最后达到平衡保持在一个静止的状态呈现球对称本题所满足的定解问题为−=∞<=∂∂=∂∂=>=∇<=∇∞==θϕϕϕµϕµϕϕϕϕcos )(,,,0,0000002221212121R H R R R R R R R R R m R m m m m m m m 由泛定方程和两个自然边界条件得∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++−=010)(cos cos 2n nn nm P R d R H θθϕ由两个边界条件有+−−=+−=∑∑∑∑∞=+∞=−∞=+∞=0200001100100000)(cos )1(cos )(cos )(cos cos )(cos n n n nn n n n n nn n n n nn P R d n H P nR a P R d R H P R a θµθµθµθθθ得内部资料料料内部资料内≠==+−=+)1(,0223000101n d a R H d n n µµµµµµ>⋅+−+−=<+−=∴00230000000,cos 2cos ,cos 2321RR H R R R H R R R H m m θµµµµθϕθµµµϕ+==+=+−+=−∇=00011000000012323sin 23cos 231H H B H e H e H H r m v v v v vv v µµµµµµµµθµµµθµµµϕθ−⋅+−+==−⋅+−+=⋅+−−−⋅+−+=−∇=])(3[2])(3[2sin ]21[cos ]221[3050300000020230503000003300003300022R H R R R H R H H B R H R R R H R H e H R R e H R R H r m v v v v v v v vv v v v vv v µµµµµµµµµµµθµµµµθµµµµϕθ >−⋅+−+<+=∴)()(3[2)(,230305030000000000R R R H R R R H R H R R H B vv v v v vv µµµµµµµµµµ当B v在R>R 0时表达式中的第二项课看作一个磁偶极子产生的场θµµµµϕcos 20230002H RR m ⋅+−∴中可看作偶极子m v产生的势即R H R R H R R R Rm v v v v ⋅⋅+−=⋅+−=⋅⋅02300002300032cos 241µµµµθµµµµπ HR m v v300024⋅+−=∴µµµµπ10. 有一个内外半径为R 1和R 2的空心球位于均匀外磁场0H r内球的磁导率为µ求空内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场腔内的场Br讨论0µµ>>时的磁屏蔽作用解根据题意以球心为原点取球坐标选取0H v的方向为z e v在外场0H v的作用下 球壳极化产生一个附加场并与外场相互作用最后达到平衡B v的分布呈现轴对称定解问题−=∞<∂∂=∂∂∂∂=∂∂==>=∇<<=∇<=∇∞======θϕϕϕµϕµϕµϕµϕϕϕϕϕϕϕcos ,,,0,0,00000322121231223121232121321R H RR R R R R R R R R R R m R m R R m m R R m m R R m m R R m m m m m 由于物理模型为轴对称再有两个自然边界条件故三个泛定方程的解的形式为∑∞==0)(cos 1n n n n m P R a θϕ∑∞=++=01)(cos (2n n n nn n m P Rc R b θϕ∑∞=++−=010)(cos cos 3n nn nm P Rd R H θθϕ因为泛定方程的解是把产生磁场的源0H v做频谱分解而得出的分解所选取的基本函数系是其本征函数系)}(cos {θn P 在本题中源的表示是)(cos cos 100θθRP H R H −=−所以上面的解中)0(,0≠====n d c b a n n n n 故解的形式简化为θθϕθϕθϕcos cos cos )(cos 2102111321RdR H Rc R b R a mm m +−=+==内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场代入衔接条件得−=−−−=+−=++=2(22(32113210031110122120221212111111R c b R d H R c b a R d R H R c R b R c R b R a µµµµµ解方程组得3200312032000320001)2)(2()(2)(3)2(3R R R H R H a µµµµµµµµµµµµ++−−−++= 32003120320001)2)(2()(2)2(3R R R H b µµµµµµµµµ++−−+= 3200312031320001)2)(2()(2)(3R R R R H c µµµµµµµµµ++−−−= 320320031203132000620001)2)(2()(2)(3)2(3R H R R R R H R H d +++−−−++=µµµµµµµµµµµµ而 )3,2,1(,00=∇−==i H B i m i i ϕµµvv ze a B v v 101µ−=∴ 003212000321])()(2)2)(2()(11[HR R R R v µµµµµµµ−−++−−=当0µµ>>时1)(2)2)(2(2000≈−++µµµµµµ 01=∴B v 即球壳腔中无磁场类似于静电场中的静电屏障11. 设理想铁磁体的磁化规律为000,M M H B µµ+=rr 是恒定的与H r无关的量今将一个内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场理想铁磁体做成均匀磁化球0M为常值浸入磁导率为'µ的无限介质中求磁感应强度和磁化电流分布解根据题意取球心为原点做球坐标以0M v的方向为z e v本题具有球对称的磁场分布满足的定解问题为=∞<=∂∂′−∂∂=>=∇<=∇∞===0cos ,,0,021021021*******02R m R m R m m R R m m m m M R RR R R R ϕϕθµϕµϕµϕϕϕϕ ∴∑∞==0)(cos 1n n n nm P R aθϕ∑∞=+=01)(cos )(2n n n nm P R b θϕ代入衔接条件对比)(cos θn P 对应项前的系数得)1(,0≠==n b a nn µµµ+′=2001Ma 30012R M b µµµ+′=)(,cos 20001R R R M m <+′=∴θµµµϕ)(,cos 20230002R R RR M m>+′=θµµµϕ由此µµµµµµ+′′=+=<22,0000110M M H B R R v r v v ,0R R > )(3[2305030022RM R R R M R B m v r v v v −⋅+′′=∇′−=µµµµϕµ >−⋅+′′<+′′=∴)()(3[2)(,2203050300000R R R M R R R M R R R M B v r v v vv µµµµµµµµ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场又0)()(0120其中αααµv v v vv v+=−×M R B B n 代入B v的表达式得ϕθµµµαe M Mvv sin 230′′12. 将上题的永磁球置入均匀外磁场0H r中结果如何解根据题意假设均匀外场0H v 的方向与0M v的方向相同定为坐标z 轴方向定解问题为−=∞<=∂∂−∂∂=>=∇<=∇∞===θϕϕθµϕµϕµϕϕϕϕcos cos ,,0,00000002022102102121R H M R RR R R R R m R m R m m R R m m m m 解得满足自然边界条件的解是)(,cos 011R R R a m <=θϕ)(,cos cos 02102R R R d R H m >+−=θθϕ代入衔接条件0013010020100012M a R d H R d R H R a µµµµ=+++−=得到 0000123µµµµ+−=H M a 3000012)(R H M d µµµµµ+−+=)(,cos 23000001R R R H M m <+−=∴θµµµµϕ内部资料料料内部资料内部电动力学习题解答参考 第三章 静磁场)(,cos 2)(cos 0230000002R R RR H M R H m>+−++−=θµµµµµθϕ]sin 23cos 23[000000000011θθµµµµθµµµµϕe H M e H M H r m v v v +−−+−−=−∇=∴ µµµµ+−−=0000023H M v v )(,22230002000001R R M H M H B <+++=+=v v v v v µµµµµµµµµ−+−+−−−=−∇=r m e R R H M H H v v )cos 22)(cos [(23000000022θµµµµµθϕ 350230000000)(3])sin 2)(sin (Rm R R R m H e R R H M H v v r r v v−⋅+=+−++−−θθµµµµµθ ])(3[3500202RmR R R m H H B v v r r v v v −⋅+==µµ030003000022H R R M m v vv µµµµµµµ+−++=13. 有一个均匀带电的薄导体壳其半径为R 0总电荷为Q今使球壳绕自身某一直径以角速度ω转动求球内外的磁场Br提示本题通过解m ϕ或A r的方程都可以解决也可以比较本题与5例2的电流分布得到结果解根据题意取球体自转轴为z 轴建立坐标系定解问题为=∞<=∂∂=∂∂−=∂∂−∂∂>=∇<=∇∞===0)(,4sin )(1,0,021211221000000202R m R m m m R R m m m m R R R R R Q R R R R R ϕϕϕµϕµπθωθϕθϕϕϕ其中4sin R Q πθωσ=是球壳表面自由面电流密度解得满足自然边界条件的解为内部资料料料内部资料内部)(,cos 0212R R Rb m >=θϕ代入衔接条件=+−=−024301102101R b a R Q R b R a πω解得 016R Q a πω−= πω12201R Q b =)(,cos 6001R R R R Q m <−=∴θπωϕ)(,cos 1202202R R R R Q m>=θπωϕ00016sin 6cos 61R Q e R Q e R Q H r m πωθπωθπωϕθv vv v =−=−∇=∴ωπµµvr v 001016R Q H B == ])(3[41sin 12cos 1223532032022Rm R R R m e R R Q e R R Q H r r m r v v v vv v −⋅=+=−∇=πθπωθπωϕ其中ωvv 320QR m =])(3[4350202RmR R R m H B r v v v v v −⋅==πµµ14. 电荷按体均匀分布的刚性小球其总电荷为Q 半径为R 0它以角速度ω绕自身某以直径转动求1 它的磁矩2 它的磁矩与自转动量矩之比设质量M 0是均匀分布的 解1磁矩∫×=dV x J x m )(21v v v v内部资料料料内部资料内又 rR x e R == )(34)(30R R v x J ×==ωπρ∫∫×=××=∴φθθπωφθθωπφd drd R e e R Q d drd R R R R Q m r 2430230sin )(4321sin )(4321v v v v r v 又 )sin cos (cos sin y x z r e e e e e e vv v v v v φφθθθφ−−+=−=×∫∫∫−−+=∴ππφθθφφθθπω20243sin )sin cos (cos [sin 83R y x z d drd R e e e R Q m vv v v ωφθθπωππv v 5sin 8320200043300QR d drd R e R Q R z ==∫∫∫2)自转动量矩∫∫∫∫××=×=×==dV R R R M dm v R P d R L d L )(43300v v v v v v v v vωπ52sin 43sin )sin cos (cos [sin 43sin )(sin 43sin )sin (43sin )(43200203430200024302230022300223000ωφθθπωφθθφφθθπωφθθθωπφθθθωπφθθωπππππθφv v vv v v v v v v v R M d drd R R M d drd R e e e R M d drd R e R R M d drd R e e R R M d drd R e e e R R M R R y x z r r z r ==−−+=−=×−=××=∫∫∫∫∫∫∫∫∫ 0200202525M Q R M QR L m ==∴ωωv v v v15. 有一块磁矩为m r的小永磁体位于一块磁导率非常大的实物的平坦界面附近的真空中求作用在小永磁体上的力F r.内部资料料料内部资料内电动力学习题解答参考 第三章 静磁场解根据题意因为无穷大平面的µ很大则可推出在平面上所有的H v均和平面垂直类比于静电场构造磁矩m r 关于平面的镜像m ′r则外场为=⋅=∇−=2304cos 4r m R R m B m m e πθπϕϕµv v v)sin cos (4]sin cos 2[430330θθθθαπµθθπµe e r m e r e r m B rr e vv r v v +=−−−=∴m v∴受力为za r ee a m B m F v v vv )cos 1(643)(24022απµαθ+−=⋅∇⋅===内部资料料料内部资料内部。

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用).

电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用).

电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇AA A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(AA ⨯∇=⨯∇证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。

(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。

(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。

4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R )(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。

7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。

电动力学复习提纲及复习习题参考答案

电动力学复习提纲及复习习题参考答案

2011级电动力学复习提纲数学准备理解散度、旋度、梯度的意义,熟悉矢量的梯度、散度、旋度在直角、球、圆柱坐标系中的运算,以及散度定理(高斯定理)、旋度定理(斯托克斯定理)。

章后练习1、2。

第1章理解全章内容,会推导本章全部公式。

重点推导麦克斯韦方程组,以及用积分形式的麦克斯韦方程组推出边值关系。

章后练习1、2、5、9、10、12第2章能推导能量转化与守恒定律,并且能说明各物理量及定律的物理意义。

能认识电磁场动量及动量转化和守恒定律,并且能说明各物理量及定律的物理意义。

了解电磁场的角动量,理解电磁场有角动量且角动量转化和守恒的意义。

P35例题,书后练习2、3第3章理解静电场和静磁场的势函数,为什么可以提出,在求解静电磁场时有什么意义。

势的方程和边值关系及推导。

深入理解唯一性定理,能应用其解释电磁现象,比如静电屏蔽现象。

熟悉电磁能量势函数表达式及意义。

会独立完成P48例题1,,P55例1、例2,P57例5,。

练习1、3、6、7第4章掌握静像法、简单情形下的分离变量法;理解多极矩法,掌握电偶极矩的势、场,以及能量、受力等;知道电四极矩的表示,计算。

了解磁偶极矩的表示、能量。

熟悉超导的基本电磁性质及经典电磁理论的解释。

会独立熟练计算P62例题1、P64例2及相关讨论;P69例1、P72例3;P74例1、例2。

练习3、4、5、7、10、12第5章1、理解如何由麦克斯韦方程推导自由空间的波动方程,理解其意义。

2、能推出电场和磁场的定态方程(亥姆霍兹方程),熟练掌握自由空间平面电磁波表达式,并且能应用其证明平面电磁波性质;3、能推导反射、折射定律、费涅尔公式,并且能应用其讨论布儒斯特定律、半波损失等常见现象;4、理解全反射现象,知道什么情形下发生全反射,折射波表示,透射深度;5、熟悉电磁波在导体空间表达式,理解其物理意义、理解良导体条件及物理意义;能推导导体中电荷密度;知道导体内电场和磁场的关系;理解趋肤效应,计算趋肤深度;理想导体的边值关系;6、理解波导管中电磁波的求解过程和结果,知道结构。

电动力学习题答案

电动力学习题答案

电动力学习题答案电动力学是物理学中研究电荷、电场、磁场和它们之间相互作用的分支。

以下是一些典型的电动力学习题及其答案。

# 习题一:库仑定律的应用问题:两个点电荷,一个带电为+3μC,另一个为 -5μC,它们之间的距离为 2m。

求它们之间的静电力大小。

解答:根据库仑定律,两个点电荷之间的静电力 \( F \) 由下式给出:\[ F = k \frac{|q_1 q_2|}{r^2} \]其中 \( k \) 是库仑常数,\( q_1 \) 和 \( q_2 \) 是电荷量,\( r \) 是它们之间的距离。

代入给定的数值:\[ F = 8.9875 \times 10^9 \frac{N \cdot m^2}{C^2} \times\frac{3 \times 10^{-6} C \times (-5 \times 10^{-6} C)}{(2 m)^2} \]\[ F = 37.5 N \]# 习题二:电场强度的计算问题:一个无限大均匀带电平面,电荷面密度为 \( \sigma \)。

求距离平面\( d \) 处的电场强度。

解答:对于无限大均匀带电平面,电场强度 \( E \) 垂直于平面,大小为:\[ E = \frac{\sigma}{2\epsilon_0} \]其中 \( \epsilon_0 \) 是真空电容率。

# 习题三:电势能的计算问题:一个点电荷 \( q \) 位于另一个点电荷 \( Q \) 产生的电场中,两者之间的距离为 \( r \)。

求点电荷 \( q \) 在该电场中的电势能。

解答:点电荷 \( q \) 在由点电荷 \( Q \) 产生的电场中的电势能 \( U \) 为:\[ U = -k \frac{qQ}{r} \]# 习题四:洛伦兹力的计算问题:一个带电粒子,电荷量为 \( q \),以速度 \( v \) 进入一个垂直于其运动方向的磁场 \( B \) 中。

电动力学复习题库

电动力学复习题库

一、单项选择题1. 学习电动力学课程的主要目的有下面的几条,其中错误的是( D )A. 掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解B. 获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础C. 更深刻领会电磁场的物质性,加深辩证唯物主义的世界观D. 物理理论是否定之否定,没有绝对的真理,世界是不可知的2. =⨯⋅∇)(B A ( C )A. )()(A B B A ⨯∇⋅+⨯∇⋅B. )()(A B B A ⨯∇⋅-⨯∇⋅C. )()(B A A B ⨯∇⋅-⨯∇⋅D. B A ⨯⋅∇)(3. 下列不是恒等式的为( C )。

A. 0=∇⨯∇ϕ B. 0f ∇⋅∇⨯= C. 0=∇⋅∇ϕ D. ϕϕ2∇=∇⋅∇4. 设222)()()(z z y y x x r '-+'-+'-=为源点到场点的距离,r 的方向规定为从源点指向场点,则( B )。

A. 0=∇r B. r r r ∇= C. 0=∇'r D. r r r'∇= 5. 若m 为常矢量,矢量3m R A R ⨯= 标量3m R R ϕ⋅= ,则除R=0点外,A 与ϕ应满足关系( A ) A. ▽⨯A =▽ϕ B. ▽⨯A =ϕ-∇ C. A =ϕ∇ D. 以上都不对6. 设区域V 内给定自由电荷分布)(x ρ,S 为V 的边界,欲使V 的电场唯一确定,则需要给定( A )。

A.S φ或S n ∂∂φ B. S Q C. E 的切向分量 D. 以上都不对 7. 设区域V 内给定自由电荷分布()ρx ,在V 的边界S 上给定电势s ϕ或电势的法向导数sn ϕ∂∂,则V 内的电场( A )A . 唯一确定 B. 可以确定但不唯一 C. 不能确定 D. 以上都不对 8. 导体的静电平衡条件归结为以下几条,其中错误的是( C )A. 导体内部不带电,电荷只能分布于导体表面B. 导体内部电场为零C. 导体表面电场线沿切线方向D. 整个导体的电势相等9. 一个处于x ' 点上的单位点电荷所激发的电势)(x ψ满足方程( C )A. 2()0x ψ∇=B. 20()1/x ψε∇=-C. 201()()x x x ψδε'∇=-- D. 201()()x x ψδε'∇=-10. 对于均匀带电的球体,有( C )。

电动力学复习总结第一章电磁现象的普遍规律2019答案word精品文档18页

电动力学复习总结第一章电磁现象的普遍规律2019答案word精品文档18页

第一章电磁现象的普遍规律一、 填空题1.已知介质中的极化强度Z e A P,其中A 为常数,介质外为真空,介质中的极化电荷体密度 P ;与P垂直的表面处的极化电荷面密度P 分别等于和 。

答案: 0, A, -A2.已知真空中的的电位移矢量D =(5xy x e+2z y e )cos500t ,空间的自由电荷体密度为 。

答案: 5cos500y t3.变化磁场激发的感应电场的旋度等于 。

答案: Btv4.介电常数为 的均匀介质球,极化强度z e A PA 为常数,则球内的极化电荷密度为 ,表面极化电荷密度等于 答案0,cos A5.一个半径为R 的电介质球,极化强度为 ,电容率为2rrK P ,则介质中的自由电荷体密度为 ,介质中的电场强度等于 .答案: 20r K f )( 20r rK二、 选择题1.半径为R 的均匀磁化介质球,磁化强度为M,则介质球的总磁矩为A .M B. M R 334C.343R MD. 0答案:B2.下列函数中能描述静电场电场强度的是A .z y x e x e y e x 32 B. ecos 8C.y x e y e xy236 D.z e a (a 为非零常数)答案: D3.充满电容率为 的介质平行板电容器,当两极板上的电量t q q sin 0 ( 很小),若电容器的电容为C ,两极板间距离为d ,忽略边缘效应,两极板间的位移电流密度为: A .t dCqcos 0 B.t dC q sin 0 C. t dCqsin 0 D. t q cos 0 答案:A4.下面矢量函数中哪一个不能表示磁场的磁感强度?式中的a 为非零常数A .r e ar(柱坐标) B.y x e ax e ay C. y x e ay e ax D. e ar 答案:A5.变化磁场激发的感应电场是A.有旋场,电场线不闭和B.无旋场,电场线闭和C.有旋场,电场线闭和D.无旋场,电场线不闭和 答案: C6.在非稳恒电流的电流线的起点.终点处,电荷密度 满足A.JB.0 tC.0D. 0 t答案: D7.处于静电平衡状态下的导体,关于表面电场说法正确的是:A.只有法向分量;B.只有切向分量 ;C.表面外无电场 ;D.既有法向分量,又有切向分量 答案:A8.介质中静电场满足的微分方程是A.;,0t B E EB.0, E D ;C.;0,0E E D.;,tBE D答案:B9.对于铁磁质成立的关系是A.H BB.H B 0C.)(0M H BD.)(M H B 答案:C10.线性介质中,电场的能量密度可表示为A. 21;B.E D21; C. D. E D答案:B三、 思考题1、有人说:“当电荷分布具有某种对称性时,仅要根据高斯定理的积分形式这一个方程就可以求解静电场的分布。

电动力学课后习题解答(参考)

电动力学课后习题解答(参考)

∂ ∂y
∂ ∂z
=
(
∂Az ∂y

∂Ay ∂z
)ex
+
(
∂Ax ∂z

∂Az ∂x
)ey
+
(
∂Ay ∂x

∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y

∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z

∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x

(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r

电动力学复习题部分答案ppt课件

电动力学复习题部分答案ppt课件

七、求磁化矢量为M
的均匀磁化铁球产生的磁场。
0
解:铁球内外为两均匀区域,在铁球外没有磁
荷分布
(
m外
0),在铁球内由于均匀磁化
M
0
,
而m内 M 0 =0,因此磁荷只能分布在铁球表
面上,故球内、外磁势都满足Laplace’s equation.
2m10 2m20
(rR0球半) 径 (R0r)
由于轴对称性,极轴沿M 0方向,上式解的:
当n=1时,有
b21bR1R0203c1Rc01 M0
所以
c11 3M 0,
b11 3M 0R0 3
当n 1时,有
cn bn 0
从而得到
m11 3M0R03r2cosM0R 303 rc2 osR033 M r3 0r m21 3M0rcos1 3M 0r
铁球内、外的磁场强度为
线是闭合的线由正磁荷发出到负磁荷止五电动力学题解p139八电动力学教程韩奎吴玉喜p127九课本p112十电动力学题解p270十一电动力学题解p302或电动力学教程韩奎吴玉喜p154十二课本p186习题九部分十五电动力学题解p441感谢亲观看此幻灯片此课件部分内容来源于网络如有侵权请及时联系我们删除谢谢配合
[2 t2z2]
aQ
(a2
1
2
)
1 2
0
Q

Q感 Q
可见,导体板面上总感应电荷Q感恰好等于点是荷Q的 电量。
▲最后,求点电荷Q受到的作用力:
因为力密度
1 s f Jc2 t JB 0

J0E E 120E2I
所以总力为
F f d V J d V J d s
V
V

电动力学复习提纲

电动力学复习提纲

电动力学第一章 电磁现象的普遍规律第一节电荷和电场1. 库仑定理和电场强度(1) 定理的表示形式及其物理解释;(2) 电荷激发电场的形式及其计算(点电荷、点电荷系、一定形状分布的电荷体系) (点电荷) (点电荷系) ()30()4V x r E x dV r ρπε''=⎰ (体电荷分布) (面电荷分布) ()30()4L x r E x dl r λπε''=⎰ (线电荷分布) 2. 高斯定理和电场的散度(1)高斯定理的形式及其意义S Q E dS ε⋅=⎰ ()VQ x dV ρ''=⎰ (2)静电场的散度及其物理意义E ρε∇⋅= 意义:电荷是电场的源,电场线从正电荷发出终止于负电荷。

反应了局域性:空间某点邻域上场的散度只和该点上的电荷有关,而和其他地点的电荷分布无关;电荷只直接激发其邻近的场,而远处的场则是通过场本身的内部作用传递出去的。

3. 静电场的旋度()0L S E dl E dS ⋅=∇⨯⋅=⎰⎰ ,0E ∇⨯= (环路定理) 书本例题(p7)第二节 电流和磁场1. 电荷守恒定律电流密度(矢量)的定义J ,电荷守恒定律的微分积分形式:2014QQ F r r πε'= 30()4F Q r E x Q r πε==' 3110()4n n i i i i i i Q r E x E r πε====∑∑()30()4S x r E x dS r σπε''=⎰S V J dS dV t ρ∂⋅=-∂⎰⎰ (积分形式)0J tρ∂∇⋅+=∂ (微分形式,也称电流连续性方程) 2. 毕奥—萨伐尔定律034Idl r dB r μπ⨯= ,034L Idl r B rμπ⨯=⎰ (闭合导线情形下,毕—萨定律的积分微分表示式) 034Jdv r dB r μπ⨯= ,034V J r B dV r μπ⨯=⎰ (闭合导体情形下,毕—萨定律的积分微分表示式) 掌握定理的内容及用此定理求电流分布激发的磁场。

电动力学基本内容复习提纲

电动力学基本内容复习提纲

电动力学基本内容复习提纲电动力学(Electrodynamics)是物理学中研究电荷、电场、电流和磁场之间相互作用的分支学科。

下面是电动力学的基本内容复习提纲:一、电荷和电场的基本概念1.电荷的基本特性和定义2.电荷守恒定律及其应用3.质点电荷和连续分布电荷的电场计算4.电势的定义和性质5.电场和电势的关系二、电场的基本性质和电场的运动1.电场强度的定义和性质2.电场线的性质和规律3.正电荷和负电荷在电场中的运动4.点电荷在电场中受力的性质和计算三、电场的高斯定律1.高斯定律的基本概念和表述2.高斯定律的应用:计算电场和电势3.高斯定律在导体中的应用四、电势与电势能1.电势能的概念和计算2.连续分布电荷系统的电势计算3.轴对称电荷分布的电势计算五、电场中的静电力1.静电力的基本概念和性质2.电场中两个点电荷互相作用的力计算3.连续分布电荷系统的静电力计算六、电荷在电场中的运动1.电场中带电微粒的加速和速度计算2.电场中带电微粒的轨迹和运动方程3.带电粒子在均匀磁场中的运动七、导体中的静电平衡1.导体的基本性质和导体中的电荷分布2.导体中电荷的自由移动和静电平衡条件3.导体表面电荷密度和电势的分布八、电流和电阻1.电流和电流密度的概念和计算2.电阻和电导的概念和性质3. Ohm定律及其应用九、电路和电动势1.串联和并联电路的电流和电压计算2.电动势的概念和性质3. Kirchhoff定律的应用十、磁场和电磁感应1.磁场的基本概念和性质2.安培定律和洛伦兹力的计算3.静磁场和恒定磁场4.电磁感应的基本概念和现象十一、电磁感应和电磁波1.法拉第电磁感应定律的应用2.涡旋感应和电磁感应的计算3.麦克斯韦方程组的基本概念和应用4.电磁波的基本性质和特点以上提纲主要囊括了电动力学的基本内容,希望对你的复习有所帮助。

如果还有其他问题,请随时追加提问。

11 电动力学习题参考解答

11 电动力学习题参考解答

2 (1) ∇ × (ϕ A) = ∇ϕ × A + ϕ∇ × A , (2) ∇ × (∇ × A) = ∇ (∇ ⋅ A) − ∇ A
r
r
r
r
r
r
r r r r r ∇× (ϕ A) = ∇ϕ × (ϕ A) + ∇ A × (ϕ A) = ϕ ∇ϕ × A + ∇A × (ϕ A) r 其中 ∇ϕ 或 ∇ A 分别表示只对 ϕ 或 A 作用。由于 ∇ A 对标量函数只能取梯度,故 r r ∇ A × (ϕ A) = (∇ Aϕ ) × A
同理可以得到磁感应强度满足的波动方程
2


r r 1 ∂2 B ∇ B− 2 2 =0 c ∂t
1.1.4 证 明 在 均 匀 介 质 中 极 化 电 荷 密 度 与 自 由 电 荷 密 度 满 足 关 系 式
ρ p = −(1 − ε 0 / ε ) ρ f 。 r r r r r uv 证 将 D = ε 0 E + P 代入散度方程 ∇ ⋅ D = ρ f ,并考虑 D = ε E ,有 r r r ε r r ε ρ f = ∇ ⋅ D = ∇ ⋅ (ε 0 E ) + ∇ ⋅ P = 0 ∇ ⋅ D + ∇ ⋅ P = 0 ρ f − ρ P ε ε
为了解决这个矛盾,将电场强度的旋度方程修改为

r r ∂B r ∇× E = − − Jm ∂t
由此可以推出磁流守恒定律(即连续性方程)

r ∂ρ m + ∇ ⋅ Jm = 0 ∂t
们就得到有磁单极时的麦克斯韦方程组

因为麦克斯韦方程组中的另外两个方程在引入磁荷后不出现矛盾,所以不必修改。这样我
r r r r r ∂D r r ∂B r − Jm , ∇ × H = +J ∇ ⋅ D = ρ , ∇ ⋅ B = ρm , ∇ × E = − ∂t ∂t

电动力学第三版课后答案

电动力学第三版课后答案

第一章 电磁现象的普遍规律
σP
=
P1n
= (ε

ε
0
)
r
3− 3εr
r13
3
ρ f rr
r =r2
=
(1

ε0 ε
)
r23 − r13 3r23
ρf
考虑到内球壳时 r r2
σP
=
−(ε

ε
0
)
r
3− 3εr
r13
3
ρ f rr
r =r1
=0
8 内外半径分别为 r1 和 r2 的无穷长中空导体圆柱 沿轴向流有恒定均匀自由电流 Jf 导体
的磁导率为 µ 求磁感应强度和磁化电流

∫ ∫ l Hr ⋅ dlr = I f
+
d dt
Dr
S

dSr
=I
f
当 r < r1时, I f = 0,故Hr = Br = 0
∫ ∫ 当 r2>r>r1 时
Hr ⋅ dlr = 2πrH =
l
S rj f
⋅ dSr =
j f π (r 2 − r12 )
fy

∂ ∂y
f x )kr]dV
∫=
[
∂ ∂x
(
f
y
kr

fz
rj ) +
∂ ∂y
( f z ir

f x kr) +
∂ ∂z
( f x rj

f yir)]dV
∫ ∫ 又
dSr × fr =
S
[(
S
f z dS y

电动力学基本内容复习提纲

电动力学基本内容复习提纲

M xM H
(1 M )0 r 0
导体:
B H
J E
麦克斯韦方程组+介质的电磁本构方程
研究电磁场在介质中传播和与介质相互作用的基本方程
必须掌握
4. 麦克斯韦方程组对应的边值关系
B E t D H J t D B 0
导体内电场为零
dS
Sk
k Q Q 0
2. 分离变量法
求解区域内部无自由电荷分布
2 0
拉普拉斯 (Laplace) 方程 根据所求解问题的边界条件选择不同的坐标系 球面边界:球坐标系 柱面边界:柱坐标系 直角坐标系
球面边界:球坐标系
z

Review
电动力学基本内容
• 电动力学基本内容
– Maxwell 方程组和 Lorentz 力 – 静电/磁场求解方法
– 动电,即电磁波的发射(辐射)/传播/接收(吸收)
– 狭义相对论
• 电动力学特点
– 经典电动力学(低速)+狭义相对论(高速) – 是一个完备的理论,非常好用 – 宏观电磁现象的规律,涉及微观则多半失效
必须掌握
5. 电磁场的能量和能流
电磁场具有做功的能力----能量 电磁场的能量分布在电磁场所在的空间区域 能量随电磁场的运动而传递 线性各向同性介质:
D E, B H
1 w ( E D H B) 2
SP E H
必须掌握
能量守恒定律
流入区域的能量 场能量的增加 场对物质作功
位移电流
E (J 0 )0 t
JD 0 E t
B 0 J
B 0 ( J J D )

电动力学答案(郭硕鸿+第三版) chapter2

电动力学答案(郭硕鸿+第三版) chapter2

ϕ0
E0 Rcosθ
+
b0 R
+
E0 R03 R2
cosθ
∫ 又由边界条件 −
s
ε0
∂φ外 ∂r
ds
Q
∴ b0
=
Q 4πε 0
∴ϕ内
Q 4πε 0 R0
− ϕ0,R
<
R0
m ϕ外
Q 4πε 0R
+
E0 R03 R2
cosθ
E0 Rcosθ
R > R0
课 后 答 案 网
o 3 均匀介质球的中心置一点电荷 Qf 球的电容率为 ε 球外为真空 试用分离变数法求
da ρf
=


Dr
=
ε
ε −ε0


Pr
=

εK −ε0
)r 2
`
(3)对于球外电场 由高斯定理可得
h ∫ Er外

dsr
=
Q ε0
.k∫ ∫∫∫ ∴Er外 ⋅4πr2 =
ρ f dV = ε0

εK − ε0 )r 2
⋅r2
sinθdrdθdϕ
ε0
ww∴Er外
εKR ε 0 (ε − ε 0 )r 3
)
两者合起来就是极化偶极子
da PrP
=
(ε0 ε1
− 1) Pr f
h 5.空心导体球壳地内外半径为 R1 和 R2 k 电势和电荷分布

.
w ∇2φ3 = 0,φ3 r→∞ = 0
φ 2
wwφ1
= =
4CπP,rεφ⋅02rrrr3→+0
= φ1'

1.电动力学课后习题答案_第一章

1.电动力学课后习题答案_第一章

电动力学课后习题答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(21∇⋅-∇=⨯∇⨯A 解:(1)由∇的微分性质得()∇⋅A B 可以变成两项,一次对A 作用()∇⋅A A B ,一次对B 作用()∇⋅B A B 。

由∇的矢量性质,()=()()⨯∇⨯∇⋅-⋅∇B A B A B A B ,可得()=()+()∇⋅⨯∇⨯⋅∇B A B A B A B 。

同理()=()+()∇⋅⨯∇⨯⋅∇A A B B A B A ,则:()=()+()=()()()()∇⋅∇⋅∇⋅⨯∇⨯+⋅∇+⨯∇⨯+⋅∇A BA B A B A B B A B A A B A B综上,原式得证。

(2)在(1)的结论式里令=A B ,得A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,即: 21()()2A ⨯∇⨯=∇-⋅∇A A AA2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, u u u d d )(AA ⨯∇=⨯∇ 解:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)()///()()()xy z x y z u xy z A u A u A u ∇⨯=∂∂∂∂∂∂e e e Az x y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂= z x y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=d d u u=∇⨯A3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011级电动力学复习提纲数学准备理解散度、旋度、梯度的意义,熟悉矢量的梯度、散度、旋度在直角、球、圆柱坐标系中的运算,以及散度定理(高斯定理)、旋度定理(斯托克斯定理)。

章后练习1、2。

第1章理解全章内容,会推导本章全部公式。

重点推导麦克斯韦方程组,以及用积分形式的麦克斯韦方程组推出边值关系。

章后练习1、2、5、9、10、12第2章能推导能量转化与守恒定律,并且能说明各物理量及定律的物理意义。

能认识电磁场动量及动量转化和守恒定律,并且能说明各物理量及定律的物理意义。

了解电磁场的角动量,理解电磁场有角动量且角动量转化和守恒的意义。

P35例题,书后练习2、3第3章理解静电场和静磁场的势函数,为什么可以提出,在求解静电磁场时有什么意义。

势的方程和边值关系及推导。

深入理解唯一性定理,能应用其解释电磁现象,比如静电屏蔽现象。

熟悉电磁能量势函数表达式及意义。

会独立完成P48例题1,,P55例1、例2,P57例5,。

练习1、3、6、7第4章掌握静像法、简单情形下的分离变量法;理解多极矩法,掌握电偶极矩的势、场,以及能量、受力等;知道电四极矩的表示,计算。

了解磁偶极矩的表示、能量。

熟悉超导的基本电磁性质及经典电磁理论的解释。

会独立熟练计算P62例题1、P64例2及相关讨论;P69例1、P72例3;P74例1、例2。

练习3、4、5、7、10、12第5章1、理解如何由麦克斯韦方程推导自由空间的波动方程,理解其意义。

2、能推出电场和磁场的定态方程(亥姆霍兹方程),熟练掌握自由空间平面电磁波表达式,并且能应用其证明平面电磁波性质;3、能推导反射、折射定律、费涅尔公式,并且能应用其讨论布儒斯特定律、半波损失等常见现象;4、理解全反射现象,知道什么情形下发生全反射,折射波表示,透射深度;5、熟悉电磁波在导体空间表达式,理解其物理意义、理解良导体条件及物理意义;能推导导体中电荷密度;知道导体内电场和磁场的关系;理解趋肤效应,计算趋肤深度;理想导体的边值关系;6、理解波导管中电磁波的求解过程和结果,知道结构。

能计算截止频率。

了解谐振腔中的电磁场解,理解且求解共振频率。

7、独立计算P103,P111,P120例1、P121的例2、例3。

练习5、7、8、9,10第6章1、熟悉并且理解时变电磁场的电磁势及与电磁场的关系;2、什么是规范变换和规范不变性,熟悉库仑规范和洛仑兹规范;3、熟悉达朗贝尔方程,理解什么是近区、感应区、辐射区及特点;了解多极展开方法的应用;理解什么是推迟势,物理意义和表达式;4、熟悉电偶极辐射的电磁场及性质特点、偶极辐射的功率特点。

5、独立完成练习2第7章1、了解狭义相对论的产生过程,对电磁学发展的意义;2、熟练掌握狭义相对论的原理;洛仑兹变换式、间隔的概念及表示;3、熟悉物理量按变换性质分类;理解如何得到协变物理量、判断物理规律的协变性、熟悉教材给出的四维物理量、洛伦兹变换矩阵;4、熟练掌握相对论的多普勒效应及特点;5、了解协变的电动力学规律;6、熟悉如何求解以匀速运动的带电粒子的势函数、电磁场及特点;7、独立完成P159例4、P162例1、P164例2,P165例3、例4,练习2、8,9,11,12第8章1、理解相对论的时空效应,能用洛仑兹变换式推出同时的相对性,长度收缩,动钟变慢,因果律及光速极限,并且能够应用计算;2、理解相对论的时空结构;熟悉速度变换式并且能应用计算;3、熟悉质能关系式并且理解怎么提出的,深入理解静能、动能的概念。

4、独立完成P171例1,P173例2,P177例3,P180例1,P181例2,P182例3. 练习1、2、5、7、8、10、11 第9章了解运动带电粒子的电磁场,什么时候能产生辐射;了解经典电动力学的适用范围。

注:1、课堂上的补充例题及课堂练习要求掌握;2、考题形式有填空22分,选择填空18分,证明10分,计算50分;3、总成绩100分,平时作业20%(包括作业和课堂练习),考勤10%,期末70%。

部分习题答案习题一(1、2、12自己证明)1.用静电场的高斯定理说明电力线总是从正电荷发出,止于负电荷,且静电场线不可能是闭合的。

2.用磁场的高斯定理说明磁力线总是闭合的。

5.试证明:在均匀介质内部,极化电荷密度P ρ与自由电荷密度ρ的关系为ρεερ⎪⎭⎫⎝⎛-=10P ,其中ε是介质的电容率. 证明:因为E D ρρε=,电容率ε与坐标无关,由P E D ρρρ+=0ε,和f D ρ=⋅∇ρ,得()()()fP D ED P ρεεεεερ/1/1000--=⋅∇--=-⋅-∇=⋅-∇=ρρρρ 一般介质0εε>,因此P ρ与f ρ符号相反。

9.平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,电容率为1ε和2ε.今在两极板间接上电动势为E 的电池,求⑴ 电容器两板上的自由电荷面密度; ⑵ 介质分界面上的自由电荷面密度.若分界面是漏电的,电导率分别为1σ和2σ,当电流达到恒定时,上述两问题的结果如何?解 (1)求两板上自由电荷面密度1f σ和2f σ,在介质绝缘情况下,电容器内不出现电流.22211122110D l D l l E l E V εε+=+= (1)边值关系为 σ=-⋅)(21D D n , (2)在两种绝缘介质的分界面上,没有自由电荷分布,03=f σ∴ 0)(12=-⋅D D ρρn 12D D = (3)因为两极板中(导体中)电场为0,;在导体和介质的分界面2处有212)(f σ-=-⋅D D n得 22f D σ=-在另一导体与介质的分界面1处有f σ=-⋅-)(12D D n (4)f D σ==-⋅-11)(D n 联立解得221101εεσl l V f +=221102εεσl l V f +-=可见,整个电容器保持0321=++f f f σσσ(电中性)(2)当介质略为漏电,并达到稳恒时,要保持电流连续性条件成立0)(12=-⋅J J n 即 n n 21J J =21J J =在两介质界面上有自由电荷积累,此时21D D ≠,应有J J J ==21 ∴ J E E ==2211σσ∵ 极板的电导率远大于1σ和2σ,故极板中电场近似为0 ∴ )(22211122110σσf l f l l E l E V +=+=J )2(211σσl l +=∴ 22110σσl l J J +=211220σσσl l V E +=2112102σσσl l V E +=根据边值关系最后得出,各交界面上自由电荷面密度为21120211σσσεσl l V f +=, 21120122σσσεσl l V f +-= ,2112021123)(σσσεσεσl l V f +-=10.试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面;在恒定电流情况下,导体内电场线总是平行于导体表面.证明:因为 t t E E 21=,导体内(1)电场为0,所以导体外(2)电场的切向分量为0,电场线总是垂直于导体表面。

在恒定电流情况下,0=⋅∇J ρ,则有0=n J ,又由欧姆定律E J ρρσ=故导体中0=n E ,所以电场仅有切向分量,电场线平行于导体表面。

12.用静电场的环路定理说明,电力线不可能是闭合曲线。

习题二2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非铁磁物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率.解:⑴由高斯定理可得r f e r D ˆ2πλ=ρ,则.ˆ2r f e rD E πελε==ρρ 由欧姆定律微分形式.ˆ2r ff e r E J πεσλσ==ρρ 而位移电流密度.ˆ21r fDe tr t D J ∂∂=∂∂=λπρρ,对其两边求散度 又由f D ρ=⋅∇ρ,0=∂∂+⋅∇tJ f f ρρ 得f f tλεσλ-=∂∂,所以 0=∂∂+tDJ f ρρ。

因为介质是非铁磁性的,即H B ρρμ=,故任意一点,任意时刻有000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B f ρρρρμμ⑵由f f tλεσλ-=∂∂,解这个微分方程得 ()tf et εσλλ-=0⑶功率密度()222/r E E J p f f πελσσ==⋅=ρρ⑷长度为l 的一段介质耗散的功率为.ln 222222a b l rldr r f baf πελσππελσ=⎪⎪⎭⎫⎝⎛⎰ 能量密度()22/,21r tw D E w f πελσ-=∂∂⋅=ρρ长度为l 的一段介质内能量减少率为.ln 2222ab l rldr t wf baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B ρ;⑵试求筒内接近内表面处的电场强度E ρ和玻印廷矢量S ρ;⑶试证明:进入这圆筒长为l 一段的S ρ的通量为⎪⎪⎭⎫⎝⎛2022B l R dt d μπ..解:⑴单位面电流ωσσπR lTRl i ==2 ωσμμρϖR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为ωσμπR r S d B s02=⋅=Φ⎰ρρ由法拉第定律,得 .21210dtd Rr dt d r E ωσμπ-=Φ-=因为 t αω=所以ασμrR E 021-= 考虑到方向,则有z r e erR E ˆˆ210⨯=ασμρ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμρ 该处的能流密度为()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯=ρρρ r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。

⑶进入这圆筒长为l 一段的S 的通量为lt R Rl S R s 24202ασπμπ=⋅=Φ而lt R dt dB B l R B l R dt d 2420022022ασπμμπμπ==⎪⎪⎭⎫ ⎝⎛ 所以⎪⎪⎭⎫⎝⎛=Φ2022B l R dt d S μπ 讨论:此结果表明,筒内磁场增加的能量等于S 流入的能量。

由于筒未转动时,筒内磁场为零,磁场能量为零,磁场能都是经过玻印廷矢量由表面输入的。

习题三1.试证明,在两种导电介质的分界面上,.01122=∂∂-∂∂n n ϕσϕσ ()21指向由n ρ. 证明:因为0=⋅⎰⎰SS d j ρρ所以,n n j j 21= 又, nE j n n ∂∂==ϕσσ 即 .01122=∂∂-∂∂nn ϕσϕσ3. 试论证:在没有电荷的地方,电势既不能达到极大值,也不能达到极小值.(提示:分真空和均匀介质空间,用泊松方程证明.) 证明:由02ερϕ-=∇ (1) 没有电荷的地方0222222=∂∂+∂∂+∂∂z y x ϕϕϕ (2) 如果ϕ为极大,则022<∂∂x ϕ,022<∂∂yϕ,022<∂∂z ϕ,这不满足(2)式,可见没有电荷处,ϕ不能为极大。

相关文档
最新文档