校区2018年自主招生考试数学试题(附答案)

合集下载

中考自主招生数学试卷(含解析)

中考自主招生数学试卷(含解析)

2018年山东省枣庄实验高中自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的选项填到二卷答题纸的指定位置处)1.如图,数轴上点A表示数a,则|a﹣1|是()A.1B.2C.3D.﹣22.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<﹣1D.k<﹣1或k=03.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株4.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=45.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.6.如图在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树稍的仰角分别是45°与60°,∠DCA=90°,在屋顶C处测得∠DCA=90°,若房屋的高BC=5米,则高DE的长度是()A.6米B.6米C.5米D.12米7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵8.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB 于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π9.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6B.5或7C.4或5或6D.5或6或710.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣1,1)、B(0,﹣2)、C(1.0),点P(0,2)绕点A旋转180得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2018的坐标为()A.(2,﹣4)B.(0,4)C.(﹣2,﹣2)D.(2,﹣2)二、填空题(本大题共5小题,每小题5分,共25分,把答案填到二卷答题纸的指定位置处)11.若实数a满足a2﹣2a﹣1=0,则2a3﹣7a2+4a﹣2018=12.学校“百变魔方”社团准备购买A、B两种魔方.已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同,则购买一套魔方(A、B两种魔方各1个)需元.13.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A、点C 分别在x 轴、y 轴的正半轴上,函数y =2x 的图象与CB 交于点D ,函数y =(k 为常数,k ≠0)的图象经过点D ,与AB 交于点E ,与函数y =2x 的图象在第三象限内交于点F ,连接AF 、EF ,则△AEF 的面积为 .14.如图,已平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆于点F ,连接CF ,若半圆O 的半径为12,则阴影部分的周长为 .15.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将利△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n ﹣2C n ﹣1∁n 、….假设AC =2,这些三角形的面积和可以得到一个等式是 .三、解答题(共7道题,合计65分,解答应写出文字说明、证明过程或推演步骤,并把答案写在二卷答题纸的指定位置处)16.(7分)先简化,再求值:(),其中x=2,y=.17.(8分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)18.(9分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?19.(9分)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.20.(10分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?21.(10分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.22.(12分)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.2018年山东省枣庄实验高中自主招生数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的选项填到二卷答题纸的指定位置处)1.【分析】根据数轴上A点的位置得出a表示的数,利用绝对值的意义计算.【解答】解:根据数轴得:a=﹣2,∴|a﹣1|=|﹣2﹣1|=|﹣3|=3,故选:C.【点评】此题考查了数轴,以及绝对值,熟练掌握绝对值的意义是解本题的关键.2.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k•(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k•(﹣1)>0,解得k>﹣1且k≠0.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.【分析】根据题目中的图形,可以发现其中的规律,从而可以求得当n=11时的芍药的数量.【解答】解:由图可得,芍药的数量为:4+(2n﹣1)×4,∴当n=11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选:B.【点评】本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.4.【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选:D.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.5.【分析】根据特殊点的实际意义即可求出答案.【解答】解:因为该做水池就是一个连通器.开始时注入甲池,乙池无水,当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A、B不正确,此时甲池水位不变,所有水注入乙池,所以水位上升快.当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快.故选:D.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.【分析】首先解直角三角形求得表示出AC,AD的长,进而利用直角三角函数,求出答案.【解答】解:如图,在Rt△ABC中,∠CAB=45°,BC=6m,∴AC==5(m);在Rt△ACD中,∠CAD=60°,∴AD==10(m);在Rt△DEA中,∠EAD=60°,DE=AD•sin60°=5,答:树DE的高为5米.故选:C.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.7.【分析】A、将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B 正确;C、由4+10=14,可得出每人植树量数列中第15、16个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.73棵,结论D错误.此题得解.【解答】解:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选:D.【点评】本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.8.【分析】用矩形的面积减去半圆的面积即可求得阴影部分的面积.【解答】解:∵矩形ABCD,∴AD=CB=2,∴S阴影=S矩形﹣S半圆=2×4﹣π×22=8﹣2π,故选:C.【点评】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形构成半圆是解答本题的关键,难度不大.9.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选:D.【点评】本题考查了由三视图判断几何体,也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个小立方体.10.【分析】画出P1~P6,寻找规律后即可解决问题.【解答】解:如图所示,P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),发现6次一个循环,∵2018÷6=336…2,∴点P2018的坐标与P2的坐标相同,即P2018(2,﹣4),故选:A.【点评】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.二、填空题(本大题共5小题,每小题5分,共25分,把答案填到二卷答题纸的指定位置处)11.【分析】由题意可得a2=2a+1,代入代数式可求值.【解答】解:∵a2﹣2a﹣1=0∴a2=2a+1∴2a3﹣7a2+4a﹣2018=2a(2a+1)﹣7(2a+1)+4a﹣2018=4a2+2a﹣14a﹣7+4a﹣2018=4(2a+1)﹣8a﹣2025=﹣2021故答案为:﹣2021【点评】本题考查了代数式求值,个体代入是本题的关键.12.【分析】设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:购买一套魔方(A、B两种魔方各1个)需35元.故答案为:35.【点评】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,列出关于x、y的二元一次方程组.13.【分析】根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标,过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.【解答】解:∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴反比例函数的表达式为y=,∴E(2,1),F(﹣1,﹣2);过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=,故答案为.【点评】本题主要考查了待定系数法求函数解析式,以及正方形的性质,解题的关键是求得D、E、F点的坐标.14.【分析】根据菱形的判定定理得到四边形OABC为菱形,得到∴△COF为等边三角形,求出∠OCF=60°,根据弧长公式求出的长,根据直角三角形的性质求出EF、CE,得到答案.【解答】解:∵四边形OABC为平行四边形,OA=OC,∴四边形OABC为菱形,∴BA=BC,∴∠CFA=∠COA,∵BC∥AF,∴∠A=∠CFA,∴∠A=∠COA,又∠A+∠COA=180°,∴∠A=60°,∴∠COF=60°,∴△COF为等边三角形,∴∠OCF=60°,∴的长==4π,∵CD⊥AB,∠BDC=60°,∴∠BCD=30°,∴∠ECO=90°,又∠COE=60°,∴∠E=30°,∴OE=2OC=24,∴EF=12,EC==12,∴阴影部分的周长=12+12+4π,故答案为:12+12+4π.【点评】本题考查的是弧长的计算,掌握弧长公式:l=是解题的关键.15.【分析】先根据AC=2,∠B=30°,CC1⊥AB,求得S=;进而得到=△ACC1×,=×()2,=×()3,根据规律可知=×()n﹣1,再根据S=AC×BC=×2×2=2,即可得到等式.△ABC【解答】解:如图2,∵AC=2,∠B=30°,CC1⊥AB,∴Rt△ACC1中,∠ACC1=30°,且BC=2,∴AC1=AC=1,CC1=AC1=,=•AC1•CC1=×1×=;∴S△ACC1∵C1C2⊥BC,∴∠CC1C2=∠ACC1=30°,∴CC2=CC1=,C1C2=CC2=,∴=•CC2•C1C2=××=×,同理可得,=×()2,=×()3,…∴=×()n﹣1,=AC×BC=×2×2=2,又∵S△ABC∴2=+×+×()2+×()3+…+×()n﹣1+…∴2=.故答案为:2=.【点评】本题主要考查了图形的变化类问题,解决问题的关键是找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题(共7道题,合计65分,解答应写出文字说明、证明过程或推演步骤,并把答案写在二卷答题纸的指定位置处)16.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=[﹣]•=•=﹣,当x=2,y=时,原式=﹣=﹣=﹣.【点评】本题主要考查分式的混合运算﹣化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金﹣2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.【点评】本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.18.【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.【解答】解:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,因为x为偶数,所以当销售单价定为80﹣6=74元或80﹣8=72时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.【点评】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.19.【分析】(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【解答】解:(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴,同理.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴,∴.【点评】本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20.【分析】(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【解答】解:(1)设购进甲种服装x件,由题意可知:80x+60(100﹣x)≤7500 解得:x≤75答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,W=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000方案1:当0<a<10时,10﹣a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:10<a<20时,10﹣a<0,w随x的增大而减小,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.【点评】本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x 表示出利润是关键.21.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.【点评】本题考查了三角形的三边关系、全等三角形的判定与性质、角的关系等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解决问题的关键.22.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+∠AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).∵△EQ2P为直角三角形,∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点.由切割线定理得到Q2P=Q1P=2,EQ2=1设点Q2的坐标为(m,n)则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n ﹣1)2=4②①﹣②得n=2m﹣5③将③代入到①得到m1=3(舍,为Q1)m2=再将m=代入③得n=,∴Q2(,)此时点Q坐标为(3,1)或(,).方法二:(1)略.(2)∵C(0,),D(3,﹣1),∴KCD=,∵OE⊥CD,∴K CD×K OE=﹣1,∴K OE=,∴l OE:y=x,把x=3代入,得y=2,∴E(3,2),∵A(3﹣,0),D(3,﹣1),∴K EA==,∵K AD=,∴K EA×K AD=﹣1,∴EA⊥AD,∠EHD=∠EAD,∵∠EFH=∠AFD,∴∠AEO=∠ADC.(3)由⊙E的半径为1,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小,设点P坐标为(x,y),EP2=(x﹣3)2+(y﹣2)2,∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,∴当y=1时,EP2有最小值,将y=1代入y=(x﹣3)2﹣1得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),显然Q1(3,1),∵Q1Q2被EP垂直平分,垂足为H,∴K Q1Q2×K EP=﹣1,∴K EP==﹣,K Q1Q2=2,∵Q1(3,1),∴l Q1Q2:y=2x﹣5,∵l EP:y=﹣x+,∴x=,y=,∴H(,),∵H为Q1Q2的中点,∴H x=,H Y=,∴Q2(x)=2×﹣3=,Q2(Y)=2×﹣1=,∴Q2(,).【点评】本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.。

2018年北京大学自主招生数学试题含解析

2018年北京大学自主招生数学试题含解析

一、选择题(选对得10分,不选得0分,选错扣5分)1、整数z y x ,,满足1=++zx yz xy ,则()()()222111z y x+++可能取到的值为()A.16900B.17900C.18900D.前三个答案都不对2、在不超过99的正整数中选出50个不同的正整数,已知这50个数中任两个的和都不等于99,也不等于100.这50个数的和可能等于()A.3524B.3624C.3724D.前三个答案都不对3、已知⎥⎦⎤⎢⎣⎡∈2,0 x ,对任意实数a ,函数1cos 2cos 2+-=x a x y 的最小值记为()a g ,则当a 取遍所有实数时,()a g 的最大值为()A.1B.2C.3D.前三个答案都不对4、已知2020210-是n 2的整数倍,则正整数n 的最大值为()A.21B.22C.23D.前三个答案都不对5、在凸四边形ABCD 中,4=BC ,60=∠ADC ,90=∠BAD ,四边形ABCD 的面积等于2ADBC CD AB ⋅+⋅,则CD 的长(精确到小数点后1位)为()A.6.9B.7.1C.7.3D.前三个答案都不对二、填空题(填空题共5小题;请把每小题的正确答案填在横线上,每题10分)6、满足等式2015120151111⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++x x 的整数x 的个数是_______.7、已知[]4,2,,,∈d c b a ,则()()()22222cbdacd ab +++的最大值与最小值的和为_______.8、已知对于任意的实数[]5,1∈x ,22≤++q px x ,不超过22q p +的最大整数是_______.9、设bc a c b x 2222-+=,ca b a c y 2222-+=,ab c b a z 2222-+=,且1=++z y x ,则201520152015z y x ++的值为_______.10、设n A A A ,,,21 都是9元集合{}9,,2,1 的子集,已知i A 为奇数,n i ≤≤1,j i A A 为偶数,n j i ≤≠≤1,则n 的最大值为_______.2018年北京大学自主招生选拔录取考试数学部分参考答案一、选择题1、A解析:()()()()()()()2222111x z z y y x z y x+++=+++.令⎪⎩⎪⎨⎧=+=+=+,13,5,2x z z y y x 解得⎪⎩⎪⎨⎧=-==.8,3,5z y x 经检验,这组解满足题意,此时()()()16900111222=+++z y x .2、D解析:考虑将1,2,⋯,99这99个正整数分成如下50组:(1,99),(2,98),⋯,(47,53),(48,52),(49,51),(50).若选出的50个不同的正整数中没有50,则必有2个数位于(1,99),(2,98),⋯,(47,53),(48,52),(49,51)中的同一组,不合题意.所以这50个不同的正整数中必有50,而(1,99),(2,98),⋯,(47,53),(48,52),(49,51)中,每组有且只有一个数被选中.因为50+49=99,所以(49,51)中选51;因为51+48=99,所以(48,52)中选52;以此类推,可得50,51,52,⋯,98,99是唯一可能的选法.经检验,选50,51,52,⋯,98,99满足题意,此时50+51+⋯+98+99=3725,故选D.3、A解析:令[]1,0cos ∈=x t ,令()122+-=at t t h ,[]1,0∈t 则()()()()⎪⎩⎪⎨⎧>-≤≤-<=1,2210,1012a a a a a a g ,故()a g 的最大值为1(0≤a 时等号成立).4、D解析:1()()()()()1555515151521522102345102020202020++++-++=-=-,而1510+模4余2,155+模4余2,15555234++++为奇数,故正整数n 的最大值为24.5、A解析:设四边形ABCD 的面积为S ,直线AC ,BD 的夹角为θ,则2sin 22sin ADBC CD AB AD BC CD AB BD AC S ⋅+⋅≤⋅⋅+⋅≤⋅⋅=θθ,由题意,2ADBC CD AB S ⋅+⋅=,所以D C B A ,,,四点共圆,且BD AC ⊥.故9.634≈=CD ,选A.二、填空题6、11解析:若x 为正整数,则2015120151111⎪⎭⎫ ⎝⎛+>>⎪⎭⎫⎝⎛++e x x ,若x 为负整数,令()2,≥∈-=*n N n n x ,则1111111-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+n x n x .因为数列()2,1111≥∈⎪⎭⎫ ⎝⎛-+*-n Nn n n 关于n 单调递增,故当且仅当2016-=x 时,有2015120151111⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++x x .7、2541解析:注意到()()()()222222bd ac cd ab c bda -++=++,于是()()()()()()22222222211⎪⎭⎫ ⎝⎛+-+=++++=+++cd ab bd ac bd ac cd ab cd ab c b d a cd ab ,显然当0=-bd ac 时,原式取得最大值为1.接下来考虑cdab bdac +-的最大值.由于1+⋅-=+-cb d ac bd a cd ab bd ac ,令αtan =d a ,βtan =c b ,则问题等价于当⎥⎦⎤⎢⎣⎡∈2arctan ,21arctan ,βα时,求βα-tan 的最大值,显然为4321arctan2arctan tan =⎪⎭⎫ ⎝⎛-.因此原式的最小值为2516.注:可以看做向量()d a ,和()c b ,夹角余弦的平方.8、9解析:注意到q px x y ++=2,[]5,1∈x 满足22≤≤-y ,因此符合题意的二次函数只有两个:762+-=x x y ,762-+-=x x y9、1解析:由1=++z y x ,可得()()()()()()()()()()22222223223322322322322=-------=-+-++-+-=-++-++--+=--++-++-+b a c a c b c b a b a c c b a c b a b a abc c b c a c bc ac b a b a ab abc c c b c a b b a bc a ac ab 所以c b a +=或a c b +=或b a c +=,故1201520152015=++z y x .10、9解析:构造是容易的,取{}i A i =,9,,2,1 =i 即可.用0,1表示集合中的元素是否在子集中,如{}9,5,4,3,11=A ,则记()1,0,0,0,1,1,1,0,11=A ,那么j i j i A A A A =⋅.显然,如果当10≥n 时,必然存在m 个向量线性相关,不妨设()0,,0,02211 =+++m m A A A λλλ,其中()m i Z i ,,2,1 =∈λ,11=λ.此时考虑()m m A A A A λλλ+++⋅ 22111,那么根据题意有11A A ⋅为奇数,而()m i A A i ,,3,21 =⋅为偶数,这样就推出了矛盾.因此所求n 的最大值为9.注:用这个方法,可以得出n 元集合至多有n 个包含奇数个元素的子集,使得这些子集中任意两个的交集均包含偶数个元素.。

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案2018年XXX第二批次自主招生(实验班)数学考试试卷考试时间:90分钟,满分100分一、选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个正确答案)1.化简 (2-m)/(m-2) 的结果是:A。

m-2B。

2-mC。

-m-2D。

-2/(m-2)2.表达式 abc+abc+abc 的所有可能值的个数是:A。

2个B。

3个C。

4个D。

无数个3.某班50名学生可在音乐、美术、体育三门选修课中选择,每位学生至少选择一门。

选择音乐的有21人,选择美术的有28人,选择体育的有16人,既选择音乐又选择美术的有7人,既选择美术又选择体育的有6人,既选择体育又选择音乐的有5人,则三项都参加的人数是:A。

2B。

3C。

4D。

54.已知二次函数 y=x^2-2x-6,当m≤x≤4 时,函数的最大值为2,最小值为-7,则满足条件的 m 的取值范围是:A。

m≤1B。

-2<m<1C。

-2≤m<1D。

-2≤m≤15.适合不等式 2/(3x-y) ≤ 1,且满足方程 3x+y=1 的 x 的取值范围是:A。

x≤1/3B。

-1≤x<1/3C。

x≤1D。

-1≤x≤16.已知 A、B 两点在一次函数 y=x 的图像上,过 A、B 两点分别作 y 轴的平行线交双曲线 y=1/x (x>0) 于 M、N 两点,O 为坐标原点。

若 BN=3AM,则 9OM^2-ON^2 的值为:A。

8B。

16C。

32D。

367.在直角三角形 ABC 中,∠BAC=90°,M、N 是 BC 边上的点,BM=MN=CN/2,如果 AM=8,AN=6,则 MN 的长为:A。

4√3B。

2√3C。

10D。

10/38.将正奇数按如图所示的规律排列下去,若有序实数对(n,m) 表示第 n 排,从左到右第 m 个数,如 (4,2) 表示奇数 15,则表示奇数 2017 的有序实数对是:A。

2018年苍南中学自主招生选拔数学试卷答案

2018年苍南中学自主招生选拔数学试卷答案

2018年苍南中学自主招生选拔考试数学答案二、填空题(每小题6分,共42分)9. 181 ; 10. 6:5 ; 11.2 ;12 ; 13. 6 ; 14. cm 4π ;15. 4 .三、解答题(本大题共4题,共60分.解答应写出文字说明、证明过程或演算步骤)16.(本题满分12分)解:由方程①知:∵120x x ⋅<,1x >2x >0 ∴1x >0,20x <∴1220x x m +=+> 1220x x m ⋅=-<∴-2<m <2由方程②知:232m m-= ∴2230m m --= ∴3m =(舍去),1m =-(△>0) 代入②得:2(2)20x n x --+=∵方程的两根为有理数∴△=()2228n k --=∴△=()2228n k --= ()()228n k n k -+--=∴2422n k n k -+=⎧⎨--=⎩或2224n k n k -+=-⎧⎨--=-⎩ ∴5n =或1n =-17. (本题满分12分)(1)∵△ABC 是边长为6的等边三角形,∴∠ACB =060,∵∠BQD =030, ∴∠QPC =090,设AP =x ,则PC =6−x ,QB =x ,∴QC =QB +BC =6+x ,∵在Rt △QCP 中,∠BQD =30∘,∴PC =21QC ,即6−x =21(6+x ),解得x =2, ∴AP =2;(2)当点P 、Q 同时运动且速度相同时,线段DE 的长度不会改变。

理由如下:作QF ⊥AB ,交直线AB 于点F ,连接QE ,PF ,又∵PE ⊥AB 于E ,∴∠DFQ =∠AEP =090,∵点P 、Q 速度相同,∴AP =BQ ,∵△ABC 是等边三角形,∴∠A =∠ABC =∠FBQ =060,在△APE 和△BQF 中,∵∠AEP =∠BFQ =090,∴∠APE =∠BQF ,∠AEP =∠BFQ ,∠A =∠FBQ ,AP =BQ ,∴△APE ≌△BQF (AAS ),∴AE =BF ,PE =QF 且PE ∥QF ,∴四边形PEQF 是平行四边形,∴DE =21EF , ∵EB +AE =BE +BF =AB ,∴DE =21AB , 又∵等边△ABC 的边长为6,∴DE =3,∴点P 、Q 同时运动且速度相同时,线段DE 的长度不会改变。

2018年成都市川大附中自主招生数学试卷(含解析)

2018年成都市川大附中自主招生数学试卷(含解析)

2018年成都市川大附中自主招生考试数学试卷(考试时间:120分钟满分:150分)第Ⅰ卷(选择题,共60分)一、选择题(本大题共有12个小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一个选项是最符合题目要求的,请把答案涂在答题卷的相应位置)1.如图,若数轴上的两点A、B表示的数分别为a、b,则|a﹣b|+|b|等于()A.a B.a﹣2b C.﹣a D.b﹣a2.如果|m+1|+(n﹣2018)2=0,那么m n的值为()A.﹣1 B.1 C.2018 D.﹣20183.由一些完全相同的小立方块搭成的几何体的三种视图如下,那么小正方体个数为()A.5个B.6个C.7个D.8个4.有四张正面分别标有数字﹣2,﹣1,1,2的不透明卡片,它们除数字不同外其余相同.现将它们背面朝上,洗匀后小李从中任取两张,将两张卡片上的数字之和记为x,则小李得到的x值使分式的值为0的概率是()A.B.C.D.5.已知a2+b2=6ab且a>b>0,则的值为()A.B.±C.2 D.±26.将边长分别为1、1、2、3、5的正方形依次选取2个、3个、4个、5个拼成矩形,按下面的规律依次记作矩形①、矩形②、矩形③、矩形④.若继续选取适当的正方形拼成矩形,那么按此规律,矩形⑧的周长应该为()A.288 B.220 C.178 D.1107.若对所有的实数x,x2+ax+a恒为正,则()A.a<0 B.a>4 C.a<0或a>4 D.0<a<48.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.169.如图,点E、F分别为正方形ABCD中AB、BC边的中点,连接AF、DE相交于点G,连接CG,则cos∠CGD =()A.B.C.D.10.一次函数y=﹣kx+4与反比例函数的图象有两个不同的交点,点(﹣,y1)、(﹣1,y2)、(,y3)是函数图象上的三个点,则y1、y2、y3的大小关系是()A.y2<y3<y1B.y1<y2<y3C.y3<y1<y2D.y3<y2<y111.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→……,则2018分钟时粒子所在点的横坐标为()A.886 B.903 C.946 D.99012.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②当x≥1时,y随x的增大而减小;③2a+b=0;④b2﹣4ac>0;⑤<1,其中正确的个数是()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题,共90分)二、填空题(本大题共有4个小题,每题5分,共20分,请把答案直接填在答题卷相应位置)13.如果ab<0,那么++=.14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,D是AB边上的动点,E是AC边上的动点,则BE+ED 的最小值为.15.如图,矩形ABCD四个顶点均在函数y=的图象上,且矩形面积为2,则x A=.16.两条平行线间的距离公式一般地;两条平行线l1:Ax+By+C1=0和l2:Ax+By+C2=0间的距离公式是d=如:求:两条平行线x+3y﹣4=0和2x+6y﹣9=0的距离.解:将两方程中x,y的系数化成对应相等的形式,得2x+6y﹣8=0和2x+6y﹣9=0,因此,d=两条平行线l1:3x+4y=10和l2:6x+8y﹣10=0的距离是.三、解答题(本大题共有5个大题,共70分.请保留必要的步骤和过程,写在答题卷的对应题号的位置.注意:写错位置一律不给分)17.(5分)已知x2﹣4x+1=0,求的值.18.(5分)如果=3+,求m的值.19.(12分)植树节前夕,某校所有学生参加植树活动,要求每人植2~6棵.活动结束后,校学生会就本校学生的植树量进行了调查.经过对调查数据的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,计算出“3棵”部分所对应的圆心角的度数;(4)在这次调查中,众数和中位数分别为多少?(5)从该校中任选一名学生,其植树量为“6棵”的概率是多少?20.(15分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连结AP并延长AP交CD于F点,连接BP,交CE于点H.(1)若∠PBA:∠PBC=1:2,判断△PBC的形状并说明;(2)求证:四边形AECF为平行四边形.21.(15分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD 的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=3,求CD的长.22.(18分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,其中点B(2,0),交y轴于点C(0,﹣).直线y=mx+过点B与y轴交于点N,与抛物线的另一个交点是D,点P是直线BD下方的抛物线上一动点(不与点B、D重合),过点P作y轴的平行线,交直线BD于点E,过点D作DM⊥y轴于点M.(1)求抛物线y=x2+bx+c的表达式及点D的坐标;(2)若四边形PEMN是平行四边形?请求出点P的坐标;(3)过点P作PF⊥BD于点F,设△PEF的周长为C,点P的横坐标为a,求C与a的函数关系式,并求出C 的最大值.参考答案与试题解析1.【解答】解:由数轴可知:﹣2<b<﹣1<0<a<1,∴a﹣b>0,b<0,∴原式=a﹣b﹣b=a﹣2b,故选:B.2.【解答】解:由题意得,m+1=0,n﹣2018=0,解得m=﹣1,n=2018,所以,m n=(﹣1)2018=1.故选:B.3.【解答】解:根据三种视图的形状,可以得到俯视图上的小立方体的摆放、个数,如图所示:(其中数字表示在该位置上摆立方体的个数)因此需要小立方体的个数为8个,故选:D.4.【解答】解:当x=﹣3时,分式的值为0.画树状图如图所示:共有12个等可能的结果,小李得到的x值使分式的值为0的结果有2个,∴小李得到的x值使分式的值为0的概率为=;故选:A.5.【解答】解:∵a2+b2=6ab,∴(a+b)2=8ab,(a﹣b)2=4ab,∴()2==2,又∵a>b>0,∴=.故选:A.6.【解答】解:由分析可得:第⑤个的周长为:2×(8+13),第⑥的周长为:2×(13+21),第⑦个的周长为:2×(21+34),第⑧个的周长为:2×(34+55)=178,故选:C.7.【解答】解:令y=x2+ax+a,这个函数开口向上,式子的值恒大于0的条件是:△=a2﹣4a<0,解得:0<a<4.故选:D.8.【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选:D.9.【解答】解:如图,在正方形ABCD中,AB=AD,∠B=∠BAD=90°,∵E、F分别为AB、BC边的中点,∴AE=BF,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠AED=∠BFA,∵∠BAF+∠AED=∠BAF+∠BFA=90°,∴∠AGE=90°,∴AF⊥DE,取AD的中点H,连接CH,因为H是AD的中点,CH∥AF,设CH与DG相交于点M,则MH是三角形ADG的中位线,所以DM=GM,所以CH垂直平分DG,∴CD=CG,∴∠CGD=∠CDG,∵AB∥CD,∴∠CGD=∠AED,设正方形的边长为2a,则AE=a,由勾股定理得,DE===a,∴cos∠AED===,∴cos∠CGD=cos∠AED=.故选:D.10.【解答】解:一次函数y=﹣kx+4与反比例函数的图象有两个不同的交点,即:﹣kx+4=有解,∴﹣kx2+4x﹣k=0,△=16﹣4k2>0,k2<4,∴2k2﹣9<﹣1<0,∴函数图象在二、四象限,如图,在每个象限内,y随x的增大而增大,∵﹣1<﹣,0<y2<y1,∵当x=时,y3<0,∴y3<y2<y1,故选:D.11.【解答】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=,有(n+1)个点,共2n个点;2+4+6+8+10+…+2n≤2018≤2018且n为正整数,得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x==990,46个点,∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:D.12.【解答】解:①由二次函数y=ax2+bx+c(a≠0)的图象可知:a>0,b<0,c<0,∴abc>0,∴①正确;②∵抛物线的对称轴为x=1,抛物线开口向上,在对称轴右侧,y随x的增大而增大,即当x≥1时,y随x的增大而增大,∴②错误;③∵抛物线的对称轴为x=1,∴﹣=1,∴b=﹣2a,即2a+b=0,∴③正确;④∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴④正确;⑤观察图象可知:当x=﹣2时,y>0,即4a﹣2b+c>0,4a+c>2b,∵b<0,<1,∴⑤正确.∴①③④⑤正确.故选:D.13.【解答】解:∵ab<0,∴a、b异号,∴++=1﹣1﹣1=﹣1;故答案为﹣1.14.【解答】解:如图,作点B关于AC的对称点B′,过B′点作B′D⊥AB于D,交AC于E,连接AB′、BE,则BE+ED=B′E+ED=B′D的值最小.∵点B关于AC的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB==13.∵S△ABB′=•AB•B′D=•BB′•AC,∴B′D===,∴BE+ED=B′D=.故答案为.15.【解答】解:如图,连接OA、OD,过点A、D分别作AE⊥x轴,DF⊥x轴,垂足为E、F,点A在反比例函数y=的图象上,设点A的坐标(x,),根据矩形和双曲线的对称性可得,D(,x),∵S△AOE=S△DOF又∵S△AOD+S△DOF=S△AOE+S梯形ABEF,∴S△AOD=S梯形AEFD=S矩形ABCD=×2=,即,(DF+AE)•EF=,也就是,(+x)(﹣x)=,解得:x=,或x=<0(舍去),故答案为:.16.【解答】解:将两方程中x,y的系数化成对应相等的形式,得6x+8y﹣20=0和6x+8y﹣10=0,∴d==1.故答案为:1.17.【解答】解:原式==∵x2﹣4x+1=0,∴x2﹣4x=﹣1..18.【解答】解:去分母得:3x﹣2=3(x+1)+m,3x﹣2=3x+3+m,3x﹣3x﹣2﹣3=m,m=﹣5.19.【解答】解:(1)根据题意得:300÷30%=1000(人),答:该校共有1000名学生;(2)植5株的人数是:1000×35%=350(人),补图如下:(3)根据题意得:×360°=72°,答:植3棵部分所对应的圆心角的度数是72°;(4)植5棵的人数最多,则众数是5棵;把这些数从小到大排列,第501和502个数的平均数是中位数,则中位数是4棵.(5)因为共有1000人,植6株树的人数是50,则植树量为“6棵”的概率是=.20.【解答】(1)解:△PBC是等边三角形,理由是:在矩形ABCD中,∠ABC=90°,∵∠PBA:∠PBC=1:2,∴∠OBC=60°,∵沿EC对折矩形ABCD,使B点落在点P处,∴PC=BC,∴△PBC是等边三角形;(2)证明:∵根据折叠得出△EBC≌△EPC,∴BE=PE,∴∠1=∠2,∵E为AB的中点,∴BE=AE,∴AE=PE,∴∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,∴BP⊥AF,∵对折矩形ABCD,∴BP⊥CE,∴AF∥CE,∵根据矩形ABCD得:AE∥CF,∴四边形AECF为平行四边形.21.【解答】(1)证明:连结AO,AC;如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∴∠CAD=90°,∵E是CD的中点,∴AE=CD=CE=DE,∴∠ECA=∠EAC,∵OA=OC,∴∠OAC=∠OCA,∵CD是⊙O的切线,∴CD⊥OC,∴∠ECA+∠OCA=90°,∴∠EAC+∠OAC=90°,∴OA⊥AP,∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==;∴∠P=30°,∴∠AOP=60°,∵OC=OA,∴△AOC是等边三角形,∴∠ACO=60°,在Rt△BAC中,∵∠BAC=90°,AB=3,∠ACO=60°,∴AC===3,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===2.22.【解答】解:(1)将B,C点坐标代入函数解析式,得,解得,抛物线的解析式为y=x2+x﹣.∵直线y=mx+过点B(2,0),∴2m+=0,解得m=﹣,直线的解析式为y=﹣x+.联立直线与抛物线,得∴x2+x﹣=﹣x+,解得x1=﹣8,x2=2(舍),∴D(﹣8,7);(2)∵DM⊥y轴,∴M(0,7),N(0,)∴MN=7﹣=6.设P的坐标为(x,x2+x﹣),E的坐标则是(x,﹣x+)PE=﹣x+﹣(x2+x﹣)=﹣x2﹣x+4,∵PE∥y轴,要使四边形PEMN是平行四边形,必有PE=MN,即﹣x2﹣x+4=6,解得x1=﹣2,x2=﹣4,当x=﹣2时,y=﹣3,即P(﹣2,﹣3),当x=﹣4时,y=﹣,即P(﹣4,﹣),综上所述:点P的坐标是(﹣2,﹣3)和)(﹣4,﹣);(3)在Rt△DMN中,DM=8,MN=6,由勾股定理,得DN==10,∴△DMN的周长是24.∵PE∥y轴,∴∠PEN=∠DNM,又∵∠PFE=∠DMN=90°,∴△PEF∽△DMN,∴=,由(2)知PE=﹣a2﹣a+4,∴=,∴C=﹣a2﹣a+,C=﹣(a+3)2+15,C与a的函数关系式为C=﹣a2﹣a+,当a=﹣3时,C的最大值是15。

青岛九中2018年自主招生考试数学笔试试题及答案

青岛九中2018年自主招生考试数学笔试试题及答案

保密★启用前青岛九中2018年自主招生考试笔试数学试题友情提示:答题前请仔细阅读以下说明1.考试时间为90分钟,试卷满分120分。

试卷由Ⅰ卷和Ⅱ卷两部分构成。

Ⅰ卷为选择题,共48分;第Ⅱ卷为非选择题,共72分。

2.第Ⅰ卷共2页,请将选出的答案标号(A、B、C、D)涂在答题卡上。

第Ⅱ卷共4页,请将答案用黑色签字笔(0.5mm)写在答题纸相应位置上,答在试卷上或不在规定区域答题均无效。

第Ⅰ卷(48分)一、选择题(本大题共8题,每题6分,满分48分)1.若12x <<,则2|3|21x x x --+等于()A.2 B.2x - C.2xD.2-2.a 表示一个三位数,b 表示一个二位数,如果把a 放在b 的左边,组成一个五位数,那么这个五位数是()A.ab B.100a b + C.1000a b + D.a b +3.已知二次函数21(0)y ax bx c a =++≠图象的最高点坐标为(2,4)-,则一次函数()224y b c x b ac =-+-图象可能在()A.一、二、三象限B.一、三、四象限C.一、二、四象限D.二、三、四象限4.已知22112242m n n m +=--,则12m n +的值等于()21- B.0C.21D.-15.对于方程22||x x m -=,如果方程实数根的个数为4个,则m 的值可能等于()A.1- B.1C.0D.12-6.已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(1,0)A -,对称轴为直线1x =,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点).下列结论:○1当3x >时,y<0;○2213a -≤≤-;○320ab +>;○42a b at bt +≥+(t 为任意实数),其中正确结论的个数是(A.1 B.2 C.3 D.47.如图,一圆桌周围有20个箱子,依顺时针方向编号1~20。

2018年山东省青岛一中自主招生数学试卷及答案解析

2018年山东省青岛一中自主招生数学试卷及答案解析

2018年山东省青岛一中自主招生数学试卷一、选择题(本大题共8小题,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分) 1.(3分)党的十九大报告指出,十八大以来的五年,我国经济建设取得重大成就,国内生产总值从五十四万亿元增长到八十万亿元,这五年我国国内生产总值增长了()元.A.2.6×105B.2.6×1012C.2.6×1013D.2.6×1014 2.(3分)3×(﹣2)2018+(﹣2)2019的值是()A.22018B.﹣22018C.22019D.﹣220193.(3分)我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11.按此方式,则将十进制数15换算成二进制数应为()A.1101B.1110C.1111D.111114.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,若∠A=50°,则∠BOC=()A.100°B.115°C.125°D.130°5.(3分)有甲乙丙三位同学对1班足球队与2班足球队的足球友谊赛进行赛前估计,甲说:1班足球队至少进2个球,乙说:1班足球队进球数不到3个,C说:1班足球队至少进1个球.比赛后,得知3个人中,只有1个人的估计是对的,则1班足球队进球的个数是()A.4个B.3个C.1个D.0个6.(3分)一列数81,82,83,…,82018,其中末位数是8的数的个数是()A.672B.505C.504D.2527.(3分)仪表板上有四个开关,每个开关只能处于开或者关状态,如果相邻的两个开关不能同时是开的,那么所有不同的状态有()第1页(共17页)。

2018年清华大学自主招生试题数学Word版含解析

2018年清华大学自主招生试题数学Word版含解析

一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)2 (D)313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2α2α),12b =(2β2β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则)(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为1328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()33sin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]66i ππ-+-1sin )662i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅=2,正确;答案(B),|OA|+|OB|≥22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离1,正确。

2018年___自主招生数学试卷(含答案解析)

2018年___自主招生数学试卷(含答案解析)

2018年___自主招生数学试卷(含答案解析)2018年___自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.√16的平方根是()A.4B.±4C.22.若√(1−x)2=x−1成立,则x满足()A.x≥1B.x≥C.x≤1D.±23.已知x=√5−1,则x2+2x的值是()A.2B.3C.4D.54.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,d与水平线垂直,取向右为正方向;直线c、以其中一条为y轴,取向上为正方向.某同学在此坐标平面上画了二次函数x=xx2+2xx+2(x≠0)的图象如图,则下面结论正确的是()A.a为x轴,c为y轴B.a为x轴,d为y轴C.b为x轴,c 为y轴D.b为x轴,d为y轴5.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,xx⊥xx,垂足为H,HM平分∠xxx,HM交AB于x.若xx=3,xx=1,则MH长为()A.1B.1.5C.0.5D.0.76.如图,△xxx中,∠x=90°,D是BC边上一点,∠xxx=3∠xxx,xx=8,xx=7.则AB的值为()A.15B.20C.2√2+7D.2√2+√7二、填空题(本大题共10小题,共40.0分)7.已知实数x、y满足x+2x=5,则x−x=3.8.分解因式:x2+4xx+4x2+x+2x−2=(x+2x+1)2−3.9.在平面直角坐标系中,点A,B的坐标分别为(x,3),(3x−1,3),若线段AB与直线x=2x+1相交,则m的取值范围为(0,1)。

10.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是9cm。

11.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D、N处,B在同一直线上,分别落在M、F与BE交于点G.设AB=√3,那么△xxx的周长为4+4√3.12.如图,已知点x1,x2,…,xx均在直线x=x−1上,点x1,x2,…,xx均在双曲线x=−x上,x1x1⊥x并且满足:x1x2⊥x轴,x2x2⊥x轴,…,xx−1xx⊥x轴,xxxx⊥x轴,且x1x2=x2x3=…=xx−1xx,则n的最小值为2.1.由题意可知,点B在x轴负半轴,点A在x轴正半轴,且AB垂直于x轴,因此AB的斜率为0,即AB为x轴,所以B的纵坐标为0.又因为B在x轴负半轴,所以其横坐标为负数,设为-a。

2018年武汉大学自主招生数学试题(解析版)

2018年武汉大学自主招生数学试题(解析版)

1.对于数列{u n },若存在常数M >0,对任意的n ∈N*,恒有|u n +1-u n |+|u n -u n -1|+…+|u 2-u 1|≤M ,则称数列{u n }为B —数列.(1)首项为1,公比为q (|q |<1)的等比数列是否为B —数列?请说明理由;(2)设S n 是数列{x n }的前n 项和,给出下列两组判断:A 组:①数列{x n }是B —数列,②数列{x n }不是B —数列;B 组:③数列{S n }是B —数列,④数列{S n }不是B —数列.请以其中一组中的论断为条件,另一组中的一个论断为结论组成一个命题,判断所给出的命题的真假,并证明你的结论;(3)若数列{a n }、{b n }都是B —数列,证明:数列{a n b n }也是B —数列.【解析】(1)由题意,u n =q n -1,|u i +1-u i |=|q |i -1(1-q ),于是:|u n +1-u n |+|u n -u n -1|+…+|u 2-u 1|=(1-q )·1-|q |n1-|q |≤1-|q |n≤1,由定义知,数列为B —数列.(2)命题1:数列{x n }是B —数列,数列{S n }是B —数列.此命题是假命题.取x n =1(n ∈N*),则数列{x n }是B —数列;而S n =n ,|S n +1-S n |+|S n -S n -1|+…+|S 2-S 1|=n ,由于n 的任意性,显然{S n }不是B —数列.命题2:若数列{S n }是B —数列,则数列{x n }是B —数列.此命题是真命题.证明:|S n +1-S n |+|S n -S n -1|+…+|S 2-S 1|=|x n +1|+|x n |+…+|x 2|≤M ,又因为|x n +1-x n |+|x n -x n -1|+…+|x 2-x 1|≤|x n +1|+2|x n |+2|x n -1|+…+2|x 2|+|x 1|≤2M +|x 1|,所以:数列{x n }为B —数列.(3)若数列{a n }、{b n }均为B —数列,则存在正数M 1,M 2,对于任意的n ∈N*,有|a n +1-a n |+…+|a 2-a 1|≤M 1,|b n +1-b n |+…+|b 2-b 1|≤M 2,注意到:|a n |=|a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1|≤|a n +1-a n |+…+|a 2-a 1|+a 1≤M 1+a 1;同理:|b n |≤M 2+b 1;令k 1=M 1+a 1,k 2=M 2+b 1,则|a n +1b n +1-a n b n |=|a n +1b n +1-a n b n +1+a n b n +1-a n b n |≤|b n +1||a n +1-a n |+|a n ||b n +1-b n |≤k 2|a n +1-a n |+k 1|b n +1-b n |;从而:|a n +1b n +1-a n b n |+|a n b n -a n -1b n -1|+…+|a 2b 2-a 1b 1|≤k 2(|a n +1-a n |+|a n -a n -1|+…+|a 2-a 1|)+k 1(|b n +1-b n |+|b n -b n -1|+…+|b 2-b 1|)≤k 2M 1+k 1M 2.所以:数列{a n b n }是B —数列.2.如图,在平面直角坐标系xOy 中,已知F 1、F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 、B 分别是椭圆E 的左、右顶点,D (1,0)为线段OF 2的中点,且AF 2→+5BF 2→=0.(1)求椭圆E 的方程;(2)若M 为椭圆上的动点(异于点A 、B ),连接MF 1并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ .设直线MN 、PQ 的斜率存在且分别为k 1、k 2,试问是否存在常数λ,使得k 1+λk 2=0恒成立?若存在,求出λ的值;若不存在,说明理由.【解析】(1)易知c =2,因为AF 2→+5BF 2→,即a +c =5(a -c ),解得:a =3,所以:b 2=a 2-c 2=5.所以:椭圆E 的方程为x 29+y 25=1. (2)设直线MN 的方程为x =ty -2,M (x 1,y 1),N (x 2,y 2),所以:直线MP 的方程为y =y 1x 1-1(x -1),联立椭圆方程和直线方程可得:⎩⎪⎨⎪⎧x 29+y 25=1,y 1x -(x 1-1)y -y 1=0,消去y 得:(5-x 1)x 2-(9-x 21)x +9x 1-5x 21=0, 由根与系数的关系可得:x P =9-5x 15-x 1, 于是P ⎝ ⎛⎭⎪⎫9-5x 15-x 1,4y 15-x 1,同理可得:Q ⎝ ⎛⎭⎪⎫9-5x 25-x 2,4y 25-x 2, 所以:k 2=-2825t =-2825k 1,即:k 1+2528k 2=0 所以:存在λ=2528满足题意. 3.已知函数f (x )=ln x -ax +a x,其中a 为常数. (1)若f (x )的图象在x =1处的切线经过点(3,4),求a 的值;(2)若0<a <1,求证:f ⎝⎛⎭⎫a 22>0;(3)当函数f (x )存在三个不同的零点时,求a 的取值范围.【解析】(1)f ′(x )=1x -a -a x 2,所以f ′(1)=1-2a , 因为切点坐标为(1,0),所以k =2,所以:1-2a =2,解得:a =-12. (2)证明:原题即证2ln a -ln2-a 32+2a>0对任意的a ∈(0,1)成立. 令g (a )= 2ln a -ln2-a 32+2a ,所以:g ′(a )=2a -3a 22-2a 2=4a -3a 4-42a 2, 令h (a )=4a -3a 4-4,则h ′(a )=4-12a 3,则h (a )在⎝ ⎛⎭⎪⎫0,133单调递增,在⎝ ⎛⎭⎪⎫133,1上单调递减,而h (a )max =h ⎝ ⎛⎭⎪⎫133=39-4<0, 所以:g ′(a )<0,所以:g (a )在(0,1)上单调递减,所以:g (a )>g (1)=-ln2+32>0. (3)显然x =1是函数的一个零点,则只需a =x ln x x 2-1有两个不等的实数解即可. 令g (x )=x ln x x 2-1,x >0且x ≠1. 则g ′(x )=-(x 2+1)⎝⎛⎭⎫ln x -x 2-1x 2+1(x 2-1)2,令φ(x )=ln x -x 2-1x 2+1, 则φ′(x )=1x -4x (x 2+1)2=(x 2-1)2x (x 2+1)2>0,于是φ(x )在(0,+∞)上单调递增,同时注意到φ(1)=0.所以g (x )在(0,1)上单调递增,在(1,+∞)单调递减.因为lim x →1x ln x x 2-1=lim x →1ln x x -1x =lim x →11x 1+1x 2=lim x →1x x 2+1=12, 又因为limx →0x ln x x 2-1=lim x →0ln x x -1x =lim x →0x 1+x 2=0,lim x →+∞x ln x x 2-1=lim x →01x +1x =0, 所以:0<a <12. 4.设非负实数x 、y 、z 满足xy +yz +zx =1,求证:1x +y +1y +z +1z +x ≥52. 【解析】证明:由于对称性,不妨设x ≥y ≥z ,设y +z =a ,则ax =1-yz ≤1,所以:x ≤1a, 令1x +y +1y +z +1z +x =2x +a x 2+1+1a=f (x ), 所以:f ′(x )=-2(x 2+1)2(x 2+ax -1)=2(yz -x 2)(x 2+1)2<0,即f (x )为单调递减函数, 所以:f (x )≥f ⎝⎛⎭⎫1a =2a +a 31+a 2+1a , 因为2a +a 31+a 2+1a -52=(a -1)2(2a 2-a +2)2a (a 2+1)≥0, 当且仅当a =1时等号成立,此时x =1,则y +z +yz =1,且yz =0,所以等号成立的条件为x =1,y =1,z =0(或者其轮换).变式题:设非负实数x 、y 、z 满足xy +yz +zx =1,求证:1x +y +1y +z +1z +x ≥12+2. 5.设函数f (x )是定义在区间(1,+∞)上的函数,其导函数为f ′(x ),如果存在实数a 和函数h (x ),其中,h (x )对任意的x ∈(1,+∞)都有h (x )>0,使得f ′(x )=h (x )(x 2-ax ++1),则称函数f (x )具有性质P (a ).(1)设函数f (x )=ln x +b +2x +1(x >1),其中b 为常数; ①求证函数f (x )具有性质P (a );②求函数f (x )的单调区间;(2)已知函数g (x )具有性质P (2),给定x 1,x 2∈(1,+∞),x 1<x 2,α=mx 1+(1-m )x 2,β=mx 2+(1-m )x 1,且α>1,β>1,若|g (α)-g (β)|<|g (x 1)-g (x 2)|,求m 的取值范围.【解析】(1)①因为f ′(x )=x 2-bx +1x (x +1)2,显然对x 2-bx +1=t (x ),存在b 使得对x ∈(1,+∞),t (x )>0恒成立,h (x )=1x (x +1)2>0恒成立. ②由①知,f ′(x )=x 2-bx +1x (x +1)2,当b ≤2时,f ′(x )≥0恒成立,此时f (x )在(0,+∞)单调递增, 当b >2时,f ′(x )在(1,+∞)上有一个零点x 0=b +b 2-42, 函数f (x )在⎝ ⎛⎭⎪⎫1,b +b 2-42上单调递减,在⎝ ⎛⎭⎪⎫b +b 2-42,+∞单调递增.。

北京大学自主招生北大自招数学2018+解析

北京大学自主招生北大自招数学2018+解析

2018年北京大学自主招生数学试卷选择题共20小题:在每小题的四个选项中,只有一项符合题目要求,请把正确选项的代号填在表格中,选对得5分,选错扣1分,不选得0分。

1. 把实数2018)335(+=a 写成十进制小数,则a 的十分位、百分位和千分位上数字之和等于( C ) A.0 B. 9 C. 27 D. 前三个答案都不对解答:记2018(5b =−,容易知道b 是一个很小的正数,进一步,0.00001b <.由二项式展开,容易知道20182018*(5(5a b N +=++−∈,从而a 是一个正整数减去一个很小的正数,从而a 的十分位、百分位和千分位上数字都是9. 答案C.2. 已知b a ≠,1)()(22=+=+c a b c b a ,则abc b a c −+)(2的值为( A )A. 2B. 1C. 0D. 前三个答案都不对解法一:由22()()()()()0()()0a b c b a c ab a b c a b a b a b ab bc ca +=+⇒−+−+=⇒−++=,又a b ≠,所以0ab bc ca ++=,2()1()1()11a b c a ab ca a bc abc ∴+=⇔+=⇔−=⇒=−,2()()()22c a b abc c ca cb abc c ab abc abc ∴+−=+−=−−=−=。

解法二:记()21ab c +=……①,()21b a c +=……②,①-②有()()()()2200ab a b c a b a b ab c a b −+−=⇔−++=⎡⎤⎣⎦,由b a ≠,()()0ab c a b ab c a b ++=⇔=−+,从而原式=22()2c a b abc +=−.另一方面,由21b c a +=……③,21a c b+=……④,④-③有 222211a b a b a b b a −=−⇒=+,与()ab c a b =−+比较可知道11c abc ab=−⇒=−, 从而原式=22()22c a b abc +=−=. 答案A. 3. 设1,0≠>a a ,函数14)(2−−=x xa ax f 在区间[-1,2]上的最小值为-5,则a 的取值范围是( C )A. 221≥=a a 或 B. 210≥<<a a 或 C .2210≥<<a a 或 D. 前三个答案都不对解答:()22()4125x x x f x a a a =−−=−−,则()22xa −在[]1,2x ∈−时的最小值为0,即当[]1,2x ∈−时,xa 的取值范围包含2,根据指数函数的单调性,有()()(21220210a a a a a a ⎛⎫−−≤⇔−≥ ⎪⎝⎭, 考虑到0a >,可得2210≥<<a a 或. 答案C. 4. 设n S 为一等差数列的前n 项和,已知2501510==S S ,,则n nS 的最小值是( D )A. -25B. -36C. -48D. 前三个答案都不对 解答:由等差数列常用性质:n S n ⎧⎫⎨⎬⎩⎭是等差数列,且10010S =,155153S =,可知()1103n S n n =−,则 ()21110(202)36n nS n n n n n =−=−⋅⋅−,根据均值不等式可知7n =时,n nS 有最小值-49. 答案D.5. 以梯形ABCD 的下底BC 上一点为圆心做半圆,此半圆与这个梯形的上底AD 和两腰AB 、CD 都相切,则 |AB|+|CD|-|BC|的值( D )A. 为正B. 为负C. 可正可负D. 前三个答案都不对 解答:当ABCD 特别接近矩形时,12AB CD BC r ===,可知|AB|+|CD|-|BC|无限趋近于0;事实上,当ABCD 四点共圆的时候,可以证明|AB|+|CD|-|BC|=0(1985年IMO 几何问题); 另一方面,当A,D 重合,也就是ABCD 退化成一个三角形时,明显有|AB|+|CD|-|BC|大于零.从而|AB|+|CD|-|BC|的值可零可正. 答案D.6. 在ABC ∆中,0tan tan tan >++C B A 是ABC ∆为锐角三角形的( C )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 前三个答案都不对 解答: 根据三角形中的常用恒等式tan tan tan tan tan tan A B C A B C ++=⋅⋅,可知tan ,tan ,tan 0A B C >,从而ABC ∆为锐角三角形,反之亦然. 答案C.7. 满足对任意实数a ,b 都有)()()(b f a f b a f +=+和)()()(b f a f ab f =的实函数)(x f 的个数是( B )A. 1B. 2C.无穷多D. 前三个答案都不对解答: 容易猜测满足题意的实函数)(x f 只有两个:()f x x =或()0f x =. 事实上,有柯西方程可知()f x kx =(这样说并不严谨,只有证明了()f x 单调性或者连续性之后才能严谨地证明()f x kx =,事实上,不难借助两个条件方程证明:当()f x 不恒等于零时,其一定是单调递增的),代入()()()f x x f x f x ⋅=⋅ 有2k k = ,从而0,1k =. 答案B.8. 设函数t t t f 2)(2+=,则点集{})()(2)()(|),(y f x f y f x f y x ≥≤+且所构成的图形的面积是( B )A. 4πB. 2πC. πD. 前三个答案都不对解答:平面区域问题()()()()22222222114f x f y x x y y x y +≤⇔+++≤⇔+++≤;()()()()222220f x f y x x y y x y x y ≥⇔+≥+⇔−++≥;如图,画出平面区域后可知,满足两个不等式的区域是两个圆心角为90的扇形, 并且扇形半径为2.所以区域面积为2π. 答案B.9. 不等式122>+yx 且3,3≥≥y x 的正整数解),(y x 的个数是( D ) A. 3B. 4C. 6D. 前三个答案都不对解答:本质上是不定方程问题:()()()22120224xy x y x y x y+>⇒−+<⇒−−<, 所以()()()()()()2,21,1,1,2,2,1,1,3,3,1x y −−=,所以正整数解),(y x 的个数是5. 答案D. 10. 设数列{}1≥n a n 的首项20191=a ,前n 项和n S =n a n 2,则2018a 的值为( C )A.20191B.20181 C. 10091D. 前三个答案都不对解答:n S =n a n 2,1n S +=()211n n a ++,作差可得()()22111112n n n n n n n a S S n a n a n a na ++++=−=+−⇒+=,()()()111211222019n n n n a n n a a +⇒++=+==⋅⋅=⋅,所以2018220191.201820191009a ⋅==⋅ 答案C.11. 在ABC ∆中,AB=13,AC=15,BC=14,AD 为边BC 上的高,则ABD ∆和ACD ∆的内切圆圆心之间的距离为( D )A. 2B. 3C. 5D. 前三个答案都不对解答:根据AD 垂直BC 于D,且AB=13,AC=15,BC=14,容易根据勾股数的性质求得:BD=5,CD=9,AD=12, 则三角形ABD 的内切圆半径为5121322+−=,三角形ACD 的内切圆半径为1291532+−=,则ABD ∆和ACD ∆的内切圆圆心之间的距离为d ==答案D.12. ABC ∆的内角A ,B ,C 的对边分别为c b a ,,,满足3cos cos c A b B a =−,则BAtan tan 等于( A ) A. 2B. 1C.21D. 前三个答案都不对 解答:根据正弦定理 ()11sin cos sin cos sin sin 33A B B A C A B −==+展开可得,24tan sin cos sin cos 233tan AA B B A B=⇒=. 13. 设实数y x ,满足1422=+y x ,则1243−+y x 的取值范围为( B )A. [)+∞,0B. []13212132-12+, C. []13212,0+ D. 前三个答案都不对 解答:记()(),2cos ,sin x y θθ=,则()34126cos 4sin 121212x y θθθϕ⎡+−=+−=+−∈−+⎣,答案B.14. 过椭圆14922=+y x 上一点M 做圆222=+y x 的两条切线,过切点的直线与坐标轴交于Q P ,两点,O为坐标原点,则POQ ∆面积的最小值为( B )A.21 B.32 C.43 D. 前三个答案都不对解答:记()220000,,194x y M x y +=,则由切点弦的性质00:2PQ x x y y +=,则00220,,,0P Q y x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,000012222POQS x y x y ∆==,另一方面2200001943x y x y =+≥=,所有0022.3POQ S x y ∆=≤ 答案B.15. 设正实数b a ,满足1=+b a ,则3271ba +的最小值为( A ) A.2131347+ B. 2131555+ C. 218D. 前三个答案都不对解答:记1a b =−,3127,1u b b =+− 则()241811du db b b =−−,令()2418101du db bb =−=−,根据 10,0a b b =−>>,则()29912b b b −+=−⇒=(舍负),代入可得3271ba +的最小值为 2131347+. 答案A.16. 在正方体1111D C B A ABCD −中,动点M 在底面ABCD 内运动且满足M DD A DD 11∠=∠,则动点M 在底面ABCD 内的轨迹为( A )A. 圆的一部分B. 椭圆的一部分C. 双曲线一支的一部分D. 前三个答案都不对 解答:1145DD M DD A ∠=∠=,从而1DM DD =,答案A.17. 已知21,F F 是椭圆与双曲线的公共焦点,P 是椭圆与双曲线的一个交点,且321π=∠PF F ,则椭圆与双曲线的离心率的倒数之和的最大值为( D )A. 32B. 3C.331D. 前三个答案都不对解答:设椭圆和双曲线的短半轴(虚半轴)分别为12,b b ,则由常用面积结论:122212tancot33F PF S b b ππ∆==,于是22213b b =,记两曲线的半焦距为c ,则两条曲线的离心率的倒数之和1211e e +==12111e e +=≤= 答案D.18. 设三个实数c b a ,,组成等比数列,c b a c 320+≤>且,则实数acb 2−的取值范围是( B ) A. ⎥⎦⎤ ⎝⎛∞161-,B. ⎥⎦⎤ ⎝⎛∞91-,C. ⎥⎦⎤ ⎝⎛∞81-, D. 前三个答案都不对解答:由2,0b ac c =>,可知0a > ,则()()223231233110b ca b c q q q q a a≤+⇒≤+=+⇒−+≥, 所以13q ≥或1q ≤− . 进一步, 222max2111111222483489b c q q q a −⎛⎫⎛⎫=−=−−+=−−+= ⎪ ⎪⎝⎭⎝⎭,所以实数a c b 2−的取值范围是 ⎥⎦⎤ ⎝⎛∞91-,. 答案B. 19. 设实函数0,)(2≠++=a c bx ax x f ,定义)2))((()(),()(11≥==−n x f f x f x f x f n n ,已知方程x x f =)(1无实根,则方程x x f =)(2018的实根个数是( A )A. 0B. 2018C. 4036D. 前三个答案都不对解答:方程x x f =)(1无实根,则1()f x x >恒成立或1()f x x <恒成立,进而()11()()f f x f x x >>或()11()()f f x f x x <<恒成立,依次类推,()20172017()()f f x f x x >>>或()20172017()()f f x f x x <<<恒成立,从而方程x x f =)(2018没有实根. 答案A.20. 三棱锥ABC P −中,底面ABC 是以A ∠为直角的直角三角形,PA 垂直于底面ABC ,且AC AB PA +=,则三个角CPA BPC APB ∠∠∠与,的和是( C )A. 60°B. 75°C. 90°D. 前三个答案都不对解答:记,,APB BPC CPA αγβ∠=∠=∠=,则tan tan 1αβ+=;所以()sin cos sin cos 1sin cos cos cos cos αββααβαβαβ+=⇒+=,另一方面,对二面角B PA C −−用二面角余弦定理可知,cos cos cos cos 0sin sin 2λαβπαβ−==,从而cos cos cos λαβ=,所以()sin cos αβγ+=,又因为,,αβγ都是锐角,所以2παβγ+=−,所以答案C.。

2018年上海市华师大二附中自主招生数学试卷

2018年上海市华师大二附中自主招生数学试卷

2018年上海市华师大二附中自主招生数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)已知关于x的多项式ax7+bx5+x2+x+12(a、b为常数),且当x=2时,该多项式的值为﹣8,则当x=﹣2时,该多项式的值为.2.(3分)已知关于x的方程x2+(a﹣2)x+a+1=0的两实根x1、x2满足,则实数a=.3.(3分)已知当甲船位于A处时获悉,在其正东方向相距10海里的B处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C 处的乙船,试问乙船应该朝北偏东度的方向沿直线前往B处救援.4.(3分)关于x、y的方程组有组解.5.(3分)已知a、b、c均大于零,且a2+2ab+2ac+4bc=20,则a+b+c的最小值是.6.(3分)已知二次函数y=2x2﹣px+5,当x≥﹣2时,y随x的增加而增加,那么当x=p 时,对应的y的值的取值范围为.7.(3分)如图所示,正方形ABCD的面积设为1,E和F分别是AB和BC的中点,则图中阴影部分的面积是.8.(3分)在直角梯形ABCD中,∠ABC=∠BAD=90°,AB=16,对角线AC与交BD于点E,过E作EF⊥AB于点F,O为边AB的中点,且FE+EO=8,则AD+BC=.9.(3分)陈老师从拉面的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB,对折后(点A与B重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB上的和均变成,变成1,等).那么在线段AB上(除A,B)的点中,在第n次操作后,恰好被拉到与1重合的点所对应的数为.10.(3分)定义min{a,b,c}表示实数a、b、c中的最小值,若x、y是任意正实数,则M =min{x,,y}的最大值是.二、解答题(共2小题,满分0分)11.四个不同的三位整数的首位数字相同,并且它们的和能被它们中的三个数整除,求这些数.12.如图,已知P A切⊙O于A,∠APO=30°,AH⊥PO于H,任作割线PBC交⊙O于点B、C,计算的值.2018年上海市华师大二附中自主招生数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)已知关于x的多项式ax7+bx5+x2+x+12(a、b为常数),且当x=2时,该多项式的值为﹣8,则当x=﹣2时,该多项式的值为40.【解答】解:∵当x=2时,ax7+bx5+x2+x+12=a×27+b×25+22+2+12=﹣8,∴a×27+b×25=﹣26.当x=﹣2时,ax7+bx5+x2+x+12=a×(﹣2)7+b×(﹣2)5+(﹣2)2+(﹣2)+12=﹣a×27﹣b×25+22﹣2+12=﹣(a×27+b×25)+4﹣2+12=26+14=40.故答案为40.2.(3分)已知关于x的方程x2+(a﹣2)x+a+1=0的两实根x1、x2满足,则实数a=3﹣.【解答】解:∵关于x的方程x2+(a﹣2)x+a+1=0的两实根为x1、x2,∴△=(a﹣2)2﹣4(a+1)≥0,即a(a﹣8)≥0,∴当a≥0时,a﹣8≥0,即a≥8;当a<0时,a﹣8<0,即a<8,所以a<0.∴a≥8或a<0,∴x1+x2=2﹣a,x1•x2=a+1,∵x12+x22=4,(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,∴(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,解得a=3±.∵3<<4,∴6<3+<7(不合题意舍去),3﹣<0;∴a=3﹣.故答案为:a=3﹣.3.(3分)已知当甲船位于A处时获悉,在其正东方向相距10海里的B处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C 处的乙船,试问乙船应该朝北偏东60度的方向沿直线前往B处救援.【解答】解:如图,连接BC.由题意,可知∠BAS=90°,AB=10海里,∠SAC=30°,AC=10海里.∴∠BAC=∠BAS+∠SAC=120°,∵AB=AC,∴∠ACB=∠B=30°.∵AB∥CD,∴∠BCD=∠B=30°,∴∠NCB=90°﹣∠BCD=60°.故答案为60.4.(3分)关于x、y的方程组有2组解.【解答】解:把y=1两边平方得到y2•x=1,则x=y﹣2,把x=y﹣2代入方程x x﹣y=y x+y得y﹣2(x﹣y)=y x+y,当y=1时,x=1,当y≠1,则﹣2(x﹣y)=x+y,所以y=3x,x=,∴=,解得y=,∴x=.经检验方程组的解为或.故答案为2.5.(3分)已知a、b、c均大于零,且a2+2ab+2ac+4bc=20,则a+b+c的最小值是2.【解答】解:(a+b+c)2﹣b2﹣c2+2bc=20,(a+b+c)2=(b﹣c)2+20,∵(b﹣c)2≥0,∴(b﹣c)2+20≥20,∵(a+b+c)2≥20.且a、b、c均大于零,∴a+b+c≥2,既a+b+c的最小值是2.故答案为:2.6.(3分)已知二次函数y=2x2﹣px+5,当x≥﹣2时,y随x的增加而增加,那么当x=p 时,对应的y的值的取值范围为y≥69.【解答】解:∵当x≥﹣2时,y随x的增加而增加,a>0,∴x=﹣=≤﹣2,∴p≤﹣8,∴当x=p时,y=2p2﹣p2+5=p2+5,∴对应的y的值的取值范围为:y≥69.故答案为:y≥69.7.(3分)如图所示,正方形ABCD的面积设为1,E和F分别是AB和BC的中点,则图中阴影部分的面积是.【解答】解:设DE,DF分别交AC于N,M,∵四边形ABCD是正方形,∴AB=BC=CD=AD,AD∥BC,∴△AMD∽△CMF,∴,∵F是BC的中点,∴AD=BC=2FC,∴=2,同理:△AEN∽△CDN,∵E是AB的中点,∴=2,∴AN=MN=CM=AC,∵S△ACD=S正方形ABCD=×1=,∴S△DMN=S△ACD=×=,S△ADM=S△ACD=×=,∵,∴S△CFM=×=,同理:S△AEN=,∴S阴影=S正方形ABCD﹣S△AEN﹣S△CFM﹣S△DMN=1﹣﹣﹣=.8.(3分)在直角梯形ABCD中,∠ABC=∠BAD=90°,AB=16,对角线AC与交BD于点E,过E作EF⊥AB于点F,O为边AB的中点,且FE+EO=8,则AD+BC=16.【解答】解:设EF=x,BF=y,∵FE+EO=8,∴OE=8﹣x,而AB=16,O为边AB的中点,∴OF=8﹣y,∵EF⊥AB,∴∠OFE=90°,∴OE2=OF2+EF2,即(8﹣x)2=(8﹣y)2+x2,∴16x=16y﹣y2,又∵∠ABC=∠BAD=90°,即AD∥EF∥BC,∴△BEF∽△BDA,△AEF∽△ACB,∴,,∴①,②,①+②得,,∴AD+BC=16x •=16,故答案为:16.9.(3分)陈老师从拉面的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB,对折后(点A与B重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB 上的和均变成,变成1,等).那么在线段AB上(除A,B)的点中,在第n次操作后,恰好被拉到与1重合的点所对应的数为,,,…,.【解答】解:根据题意,得1 2 34操作次数变化点重合点11由上图表格,可以推出第n次操作后,恰好被拉到与1重合的点所对应的数的通式为,.所以原题答案为,,…,.10.(3分)定义min{a,b,c}表示实数a、b、c中的最小值,若x、y是任意正实数,则M =min{x,,y}的最大值是.【解答】解:依题设≥M,x≥M,y+≥M,∴,,M,∴M2≤2,y=,y+=,∴M=,M的最大值是.故答案为:.二、解答题(共2小题,满分0分)11.四个不同的三位整数的首位数字相同,并且它们的和能被它们中的三个数整除,求这些数.【解答】解:先设这四个数为x1,x2,x3,x4,且它们的和能被其中的x2,x3,x4整除,x2<x3<x4;则根据题意有:(x1+x2+x3+x4)÷x2=1+(x1+x3+x4)÷x2=N(自然数),即(x1+x3+x4)÷x2=N﹣1,因为他们的首位数字相同,所以N﹣1应该在3附近,又因为x2<x3<x4,所以(x1+x3+x4)÷x2=4,同理(x1+x2+x4)÷x3=3,(x1+x2+x3)÷x4=2;则4x3=5x2=3x4;由5x2=3x4可得2x2=3(x4﹣x2),因为x4和x2的首位数字相同,所以x4﹣x2最大为99,即x2最大为148,且由4x3=5x2=3x4可以知道,x2应该能被12整除,故x2可以为108,120,132,144;进而求出x3为135,150…,x4为180,200…;所以x2只能取为x2=108,从而x3=135,x4=180,x1=117,即这四个数是117,108,135,180.12.如图,已知P A切⊙O于A,∠APO=30°,AH⊥PO于H,任作割线PBC交⊙O于点B、C,计算的值.【解答】解:连接OB、OC、OA,如图,∵P A为⊙O的切线,∴OA⊥P A,即∠P AO=90°,而AH⊥OP,∴∠PHA=90°,∴Rt△P AH∽Rt△POA,∴P A:PO=PH:P A,即P A2=PH•PO,又∵PBC为⊙O的割线,∴P A2=PB•PC,∴PH•PO=PB•PC,∴△PBH∽△POC,∴∠PBH=∠POC,=,即=①,∴点H、B、C、O四点共圆,∴∠HOB=∠HCB,∴△PBO∽△PHC,∴=,即=②,由①②得=,即=,∴==,∴=,∴==,∵在Rt△OAP中,∠APO=30°,则OP=2OA,∴=.。

2018年安徽师大附中自主招生数学试卷(含答案解析)

2018年安徽师大附中自主招生数学试卷(含答案解析)

2018年安徽师大附中自主招生数学试卷副标题题号一二三总分得分一、选择题(本大题共6小题,共24.0分)1.√16的平方根是()A. 4B. ±4C. 2D. ±22.若√(1−x)2=x−1成立,则x满足()A. x≥0B. x≥1C. x≤1D. x<13.已知m=√5−1,则m2+2m的值是()A. 2B. 3C. 4D. 54.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,取向右为正方向;直线c、d与水平线垂直,以其中一条为y轴,取向上为正方向.某(m≠0)的图象如图,则下同学在此坐标平面上画了二次函数y=mx2+2mx+12面结论正确的是()A. a为x轴,c为y轴B. a为x轴,d为y轴C. b为x轴,c为y轴D. b为x轴,d为y轴5.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,AH⊥CD,垂足为H,HM平分∠AHC,HM交AB于M.若AC=3,BC=1,则MH长为()A. 1B. 1.5C. 0.5D. 0.76.如图,△ABC中,∠C=90°,D是BC边上一点,∠ADC=3∠BAD,BD=8,DC=7.则AB的值为()A. 15B. 20C. 2√2+7D. 2√2+√7二、填空题(本大题共10小题,共40.0分)7. 已知实数x 、y 满足{x +2y =54x −y =2,则x −y =______.8. 分解因式:x 2+4xy +4y 2+x +2y −2=______.9. 在平面直角坐标系中,点A ,B 的坐标分别为(m,3),(3m −1,3),若线段AB 与直线y =2x +1相交,则m 的取值范围为______.10. 若一个圆锥的侧面展开图是半径为18cm ,圆心角为240°的扇形,则这个圆锥的底面半径长是______cm .11. 如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D分别落在M 、N 处,且点M 、N 、B 在同一直线上,折痕与边AD 交于点F ,NF 与BE 交于点G.设AB =√3,那么△EFG 的周长为______. 12. 如图,已知点A 1,A 2,…,A n 均在直线y =x −1上,点B 1,B 2,…,B n 均在双曲线y =−1x 上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n+1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若a 1=−1,则a 2016=______.13. 如图,已知△ABC 中,∠C =90°,∠A =30°,AC =√3.动点D 在边AC 上,以BD 为边作等边△BDE(点E 、A 在BD 的同侧).在点D 从点A 移动至点C 的过程中,点E 移动的路线长为______. 14. 如图,Rt △ABC 中,∠ACB =90°,AC =2,BC =3,点M 是直线BC 上一动点,且∠CAM +∠CBA =45°,则BM 的长为______.15. 在平面直角坐标系中,有三条直线l 1,l 2,l 3,它们的函数解析式分别是y =x ,y =x +1,y =x +2.在这三条直线上各有一个动点,依次为A ,B ,C ,它们的横坐标分别为a ,b ,c ,则当a ,b ,c 满足条件______时,这三点不能构成△ABC . 16. 如图,已知点P(2,0),Q(8,0),A 是x 轴正半轴上一动点,以OA 为一边在第一象限内作正方形OABC ,当PB +BQ 取最小值时,点B 的坐标是______.三、解答题(本大题共8小题,共86.0分)17.若关于x的分式方程2x−2+mxx2−4=3x+2无解,求m的值.18.甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x(ℎ),甲、乙两人行驶的路程分别为y1(km)与y2(km).如图①是y1与y2关于x的函数图象.(1)分别求线段OA与线段BC所表示的y1与y2关于x的函数表达式;(2)当x为多少时,两人相距6km?(3)设两人相距S千米,在图②所给的直角坐标系中画出S关于x的函数图象.19.如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2−CF2取最大值时,求tan∠DCF的值.20.如图,过原点的直线y=k1x和y=k2x与反比例函数y=1x的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是______四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=1x 图象上的任意两点,a=y1+y22,b=2x1+x2,试判断a,b的大小关系,并说明理由.21.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若AB−BO=2,求AF的值;CF(3)若△DEF与△AEB相似,求BE的值.DE22.问题:如图1,a、b、c、d是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形ABCD,使它的顶点A、B、C、D分别在直线a、b、d、c上,并计算它的边长.小明的思考过程:他利用图1中的等距平行线构造了3×3的正方形网格,得到了辅助正方形EFGH,如图2所示,再分别找到它的四条边的三等分点A、B、C、D,就可以画出一个满足题目要求的正方形.请回答:图2中正方形ABCD的边长为______.请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为60°,边长为1)中,画出一个等边△ABC,使它的顶点A、B、C落在格点上,且分别在直线a、b、c上,并直接写出等边△ABC的边长(只需要画出一种即可).(2)如图4,a、b、c是同一平面内的三条平行线,a、b之间的距离是1,b、c之间的距离是1,等边△ABC的三个顶点分2别在a、b、c上,直接写出△ABC的边长.23.已知二次函数y=ax2+4x+c(a≠0)的图象是经过y轴上点C(0,2)的一条抛物线,顶点为A,对称轴是经过点H(2,0)且平行于y轴的一条直线.点P是对称轴上位于点A下方的一点,连接CP并延长交抛物线于点B,连接CA、AB.(1)求这个二次函数的表达式及顶点A的坐标;(2)当∠ACB=45°时,求点P的坐标;(3)将△CAB沿CB翻折后得到△CDB,问点D能否恰好落在坐标轴上?若能,求点P的坐标,若不能,说明理由.24.对于平面直角坐标系xOy中的点M和图形W1,W2给出如下定义:点P为图形W1上一点,点Q为图形W2上一点,当点M是线段PQ的中点时,称点M是图形W1,W2的“中立点”.如果点P(x1,y1),Q(x2,y2),那么“中立点”M的坐标为(x1+x22,y1+y22).已知,点A(−3,0),B(0,4),C(4,0).(1)连接BC,在点D(12,0),E(0,1),F(0,12)中,可以成为点A和线段BC的“中立点”的是______;(2)已知点G(3,0),⊙G的半径为2,如果直线y=−x+1存在点K可以成为点A和⊙G的“中立点”,求点K的坐标;(3)以点C为圆心,半径为2作圆,点N为直线y=2x+4上的一点,如果存在点N,使得y轴上的一点可以成为点N与⊙C的“中立点”,直接写出点N的横坐标的取值范围.答案和解析1.【答案】D【解析】解:√16=4,4的平方根是±2.故选:D.先化简√16=4,然后求4的平方根.本题考查平方根的求法,关键是知道先化简√16.2.【答案】B【解析】【分析】此题主要考查了二次根式的性质,熟练应用√a=−a(a≤0)是关键.直接利用二次根式的性质解答即可.【解答】解:∵√1−x=x−1,∴x−1≥0,解得:x≥1.故选B.3.【答案】C【解析】解:∵m=√5−1,∴m2+2m=m(m+2)=(√5−1)(√5+1)=4.故选:C.直接提取公因式进而将已知代入求出答案.此题主要考查了二次根式的化简求值,正确分解因式是解题关键.4.【答案】D【解析】解:∵在y=mx2+2mx+12(m≠0),当x=0时,y=12,∴直线b为x轴,∵y=mx2+2mx+12(m≠0)的对称轴为直线x=−1,∴直线d是y轴,故选:D.由抛物线与y轴的交点坐标为(0,12),配方成顶点式得出其对称轴为直线x=−1,据此判断可得.本题考查了二次函数的性质,解题的关键是根据抛物线解析式判断出抛物线的对称轴位置,与坐标轴的交点,开口方向等特征.5.【答案】A【解析】解:延长HM交AC于K.∵AB是直径,∴∠ACB=90°∵AD⏜=BD⏜,∴∠ACD=∠BCD=45°,∵AH⊥CD,∴∠AHC=90°,∴∠HAC=∠HCA=45°,∴HA=HC,∵HM平分∠AHC,∴HK⊥AC,AK=KC∴点M就是圆心,∵AK=KC,AM=MB,∴KM=12BC=12,在RT△ACH中,∵AC=3,AK=KC,∠AHC=90°,∴HK=12AC=32,∴HM=HK−KM=32−12=1.故选:A.延长HM交AC于K,首先证明△AHC是等腰直角三角形,再证明点M是圆心,求出HK、MK即可解决问题.本题考查垂径定理、三角形中位线定理、圆周角定理等知识,解题的关键是证明点M 是圆心,属于中考常考题型.6.【答案】B【解析】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED =DBAD,∴AD2=8(8+a)=64+8a,∵AC2=AD2−CD2=AB2−BC2,∴64+8a−72=a2−152,解得a=20或−12(舍弃).∴AB=20,故选:B.如图,延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】−1【解析】解:{x+2y=5 ①4x−y=2 ②,②−①得:3x−3y=−3,则x−y=−1,故答案为:−1方程组两方程相减即可求出x−y的值.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.8.【答案】(x+2y+2)(x+2y−1)【解析】解:x2+4xy+4y2+x+2y−2=(x+2y)2+(x+2y)−2=(x+2y+2)(x+2y−1).故答案为:(x+2y+2)(x+2y−1).直接将前三项分组利用完全平方公式分解因式,进而结合十字相乘法分解因式得出答案.此题主要考查了分组分解法分解因式,正确运用公式是解题关键.9.【答案】23≤m≤1【解析】解:当y=3时,2x+1=3,解得x=1,所以直线y=3与直线y=2x+1的交点为(1,3),当点B在点A的右侧,则m≤1≤3m−1,解得23≤m≤1;当点B在点A的左侧,则3m−1≤1≤m,无解,所以m的取值范围为23≤m≤1.先求出直线y=3与直线y=2x+1的交点为(1,3),再分类讨论:当点B在点A的右侧,则m≤1≤3m−1,当点B在点A的左侧,则3m−1≤1≤m,然后分别解关于m的不等式组即可.本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.10.【答案】12【解析】解:设这个圆锥的底面半径为rcm,根据题意得2πr=240⋅π⋅18180,解得r=12,所以这个圆锥的底面半径长为12cm.故答案为12.设这个圆锥的底面半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=240⋅π⋅18180,然后解方程求出r即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.11.【答案】6【解析】解:连接BM,作FH⊥BC于H,如图所示,则N在BM上,FH=AB=√3.由翻折的性质得,CE=ME,∵BE=2CE,∴BE=2ME,又∵∠M=∠C=90°,∴∠EBM=30°,∵∠FNM=∠D=90°,∴∠BGN=60°,∴∠FGE=∠BGN=60°,∵AD//BC,∴∠AFG=∠FGE=60°,∴∠EFG=12(180°−∠AFG)=12(180°−60°)=60°,∴△EFG是等边三角形,∴EF=FG=EG,∠FEG=60°,在Rt△EFH中,EF=ABsin60∘=√3√32=2,∴△EFG的周长=3EF=6.故答案为6.连接BM,作FH⊥BC于H,则N在BM上,FH=AB=√3,由翻折的性质得出CE=C′E,证明△EFG是等边三角形,得出EF=FG=EG,∠FEG=60°,由三角函数求出EF,即可得出△EFG的周长.本题考查了翻折变换的性质、矩形的性质、等边三角形的判定与性质、三角函数;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.12.【答案】12【解析】解:∵a1=−1,∴B1的坐标是(−1,1),∴A2的坐标是(2,1),即a2=2,∵a2=2,∴B2的坐标是(2,−12),∴A3的坐标是(12,−12),即a3=12,∵a3=12,∴B3的坐标是(12,−2),∴A4的坐标是(−1,−2),即a4=−1,∵a4=−1,∴B4的坐标是(−1,1),∴A5的坐标是(2,1),即a5=2,…,∴a1,a2,a3,a4,a5,…,每3个数一个循环,分别是−1、2、12,∵2016÷3=672,∴a2016是第672个循环的第3个数,∴a2016=12.故答案为:12.首先根据a1=−1,求出a2=2,a3=12,a4=−1,a5=2,…,所以a1,a2,a3,a4,a5,…,每3个数一个循环,分别是−1、2、12;然后用2015除以3,根据商和余数的情况,判断出a2016是第几个循环的第几个数,进而求出它的值是多少即可.(1)此题主要考查了反比例函数图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.(2)此题还考查了一次函数图象上的点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(−bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.13.【答案】√3【解析】解:如图,作EF⊥AB垂足为F,连接CF.∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵△EBD是等边三角形,∴BE=BD,∠EBD=60°,∴∠EBD=∠ABC,∴∠EBF=∠DBC,在△EBF和△DBC中,{∠EFB=∠BCD=90°∠EBF=∠DBCEB=BD,∴△EBF≌△DBC,∴BF=BC,EF=CD,∵∠FBC=60°,∴△BFC是等边三角形,∴CF=BF=BC,∵BC=12AB=,∴BF=12AB,∴AF=FB,∴点E在AB的垂直平分线上,∴在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,∴在点D从点A移动至点C的过程中,点E移动的路线为√3.故答案为:√3.作EF⊥AB垂足为F,连接CF,由△EBF≌△DBC,推出点E在AB的垂直平分线上,在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,由此即可解决问题.本题考查轨迹、等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,正确找到点E的运动路线,属于中考常考题型.14.【答案】135【解析】解:如图:延长CA到E,使CE=BC=3,连接BE,作AF⊥BE,∵BC=CE=3,∠C=90°,AC=2,∴AE=1,∠E=∠EBC=45°,∵AF⊥BE,∴∠E=∠EAF=45°,∴AF=EF且AE=1,∴根据勾股定理可得EF=AF=√22,∵BC=3,AC=2,∴AB=√BC2+AC2=√13,在Rt△ABF中,BF=√AB 2−AF 2=5√22,∵∠EBA+∠ABC=45°,∠CAM+∠CBA=45°,∴∠MAC=∠EBA,且∠C=∠AFB=90°,∴△ABF∽△MAC,∴AFCM =BFAC,∴CM=25,∴BM=3−25=135,故答案为13.5延长CA到E,使CE=BC=3,连接BE,作AF⊥BE,可求∠E=∠EBC=45°,根据勾股定理可求AB,AF,EF,BF的长度,可证△ABF∽△AMC,可得CM的长度,即可求BM的长度.本题考查了勾股定理,相似三角形的判定和性质,关键是构造直角三角形用勾股定理解决问题.=215.【答案】a=b=c或a=b+1=c+2或a−ca−b【解析】解:(1)动点的横坐标相等时:a=b=c.(2)动点的纵坐标相等时:∵y=a,y=b+1,y=c+2,∴a=b+1=c+2.(3)三点满足一次函数式,三点可以表示一次函数的斜率:斜率为函数图象与x轴所形成角的正切值;∵三点的坐标为(a,a),(b,b+1),(c,c+2),∴b+1−ab−a =c+2−ac−a,1+1b−a =1+2c−a,∴a−ca−b=2.故答案为:a=b=c或a=b+1=c+2或a−ca−b=2.若不能构成三角形,就是这三个动点在一条直线上的时候,在一条直线有三种情况,(1)动点的横坐标相等;(2)动点的纵坐标相等;(3)三点满足一次函数式.本题考查两条直线相交或平行问题,关键是知道动点满足什么条件时不能构成三角形,即动点在同一直线上时不能三角形,从而可求解.16.【答案】(85,8 5 )【解析】解:如图,连接OB,作点Q关于OB 的对称点Q′,连接Q′B,则BQ=BQ′,∵四边形ABCO是正方形,∴OB平分∠AOC,∴点Q′在y轴上,且Q(0,8),∴PB+BQ=PB+BQ′,∴当Q′,B,P三点共线时,PB+BQ的最小值等于线段PQ′的长,由P(2,0),Q′(0,8),可得PQ′的解析式为y=−4x+8,∵点B的横坐标与纵坐标相同,令x=−4x+8,则x=85,∴y=85,∴点B的坐标是(85,85 ),故答案为:(85,8 5 ).连接OB,作点Q关于OB的对称点Q′,连接Q′B,则BQ=BQ′,依据PB+BQ=PB+BQ′,可知当Q′,B,P三点共线时,PB+BQ的最小值等于线段PQ′的长,再根据PQ′的解析式为y=−4x+8,即可得到点B的坐标.本题主要考查了正方形性质的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17.【答案】解:2x−2+mxx2−4=3x+2,2(x+2)+mx=3(x−2),2x+4+mx=3x−6,x−mx=10,x=101−m,∵当x=2时分母为0,方程无解,即101−m =2,m =−4时方程无解; 当x =−2时分母为0,方程无解, 即101−m =−2,m =6时方程无解, 当m =1时,x =101−m 无意义,方程无解,故m 的值为:−4或1或6.【解析】本题须先求出分式方程的解,再根据分式方程无解的条件列出方程,最后求出方程的解即可.本题主要考查了分式方程的解,在解题时要能灵活应用分式方程无解的条件,列出式子是本题的关键.18.【答案】解:(1)设y 1=kx +b(k ≠0),y 2=mx +n(m ≠0). 将点O(0,0)、A(1.2,72)代入y 1=kx +b , {b =01.2k +b =72,解得:{k =60b =0, ∴线段OA 的函数表达式为y 1=60x(0≤x ≤1.2). 将点B(0.2,0)、C(1.1,72)代入y 2=mx +n , {0.2m +n =01.1m +n =72,解得:{m =80n =−16, ∴线段BC 的函数表达式为y 2=80x −16(0.2≤x ≤1.1).(2)当0<x <0.2时,60x =6, 解得:x =0.1;当x ≥0.2时,|60x −(80x −16)|=6, 解得:x 1=0.5,x 2=1.1,∴当x 为0.1或0.5或1.1时,两人相距6km . (3)令y 1=y 2,即60x =80x −16, 解得:x =0.8.当0≤x ≤0.2时,S =60x ;当0.2≤x ≤0.8时,S =60x −(80x −16)=−20x +16; 当0.8≤x ≤1.1时,S =80x −16−60x =20x −16; 当1.1≤x ≤1.2时,S =72−60x .将S 关于x 的函数画在图中,如图所示.【解析】(1)观察图①找出点的坐标,根据点的坐标利用待定系数法即可求出y 1与y 2关于x 的函数表达式;(2)当0<x <0.2时,利用y 1=6可得出关于x 的一元一次方程,解之即可得出x 的值;当x ≥0.2时,由两人相距6km ,可得出关于x 的含绝对值符号的一元一次方程,解之即可得出结论;(3)令y 1=y 2求出x 值,分0≤x ≤0.2、0.2≤x ≤0.8、0.8≤x ≤1.1及1.1≤x ≤1.2四种情况考虑,根据图①的两线段上下位置关系结合两线段的函数表达式,即可找出S 关于x 的函数关系式,取其各段端点,描点、连线即可画出S 关于x 的函数图象. 本题考查了一次函数的应用、待定系数法求一次函数解析式、解一元一次方程以及函数图象,解题的关键是:(1)根据点的坐标利用待定系数法求出y 1与y 2关于x 的函数表达式;(2)根据二者间的距离找出关于x 的方程;(3)分0≤x ≤0.2、0.2≤x ≤0.8、0.8≤x ≤1.1及1.1≤x ≤1.2四种情况找出S 关于x 的函数关系式.19.【答案】解:(1)∵α=60°,BC =10,∴sinα=CE BC,即sin60°=CE 10=√32, 解得CE =5√3;(2)①存在k =3,使得∠EFD =k∠AEF .理由如下:连接CF 并延长交BA 的延长线于点G , ∵F 为AD 的中点, ∴AF =FD ,在平行四边形ABCD 中,AB//CD , ∴∠G =∠DCF ,在△AFG 和△DFC 中,{∠G =∠DCF∠AFG =∠DFC(对顶角相等)AF =FD, ∴△AFG≌△DFC(AAS), ∴CF =GF ,AG =CD , ∵CE ⊥AB ,∴EF =GF(直角三角形斜边上的中线等于斜边的一半),∴∠AEF =∠G ,∵AB =5,BC =10,点F 是AD 的中点, ∴AG =5,AF =12AD =12BC =5,∴AG =AF , ∴∠AFG =∠G ,在△EFG 中,∠EFC =∠AEF +∠G =2∠AEF , 又∵∠CFD =∠AFG(对顶角相等), ∴∠CFD =∠AEF ,∴∠EFD =∠EFC +∠CFD =2∠AEF +∠AEF =3∠AEF , 因此,存在正整数k =3,使得∠EFD =3∠AEF ;②设BE =x ,∵AG =CD =AB =5, ∴EG =AE +AG =5−x +5=10−x ,在Rt △BCE 中,CE 2=BC 2−BE 2=100−x 2,在Rt △CEG 中,CG 2=EG 2+CE 2=(10−x)2+100−x 2=200−20x , ∵由①知CF =GF ,∴CF 2=(12CG)2=14CG 2=14(200−20x)=50−5x ,∴CE 2−CF 2=100−x 2−50+5x =−x 2+5x +50=−(x −52)2+50+254,∴当x =52,即点E 是AB 的中点时,CE 2−CF 2取最大值, 此时,EG =10−x =10−52=152,CE=√100−x2=√100−254=5√152,所以,tan∠DCF=tan∠G=CEEG =5√152152=√153.【解析】(1)利用60°角的正弦值列式计算即可得解;(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△DFC全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解;②设BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG 中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答.本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,二次函数的最值问题,作出辅助线构造出全等三角形是解题的关键,另外根据数据的计算求出相等的边长也很重要.20.【答案】(1)平行;(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y=1x的图象在第一象限相交于A,∴k1x=1x ,解得x=√1k1(因为交于第一象限,所以负根舍去,只保留正根)将x=√1k1带入y=k1x得y=√k1,故A点的坐标为(√1k1,√k1)同理则B点坐标为(√1k2,√k2),又∵OA=OB,∴√1k1+k1=√1k2+k2,两边平方得:1k1+k1=1k2+k2,整理后得(k1−k2)(k1k2−1)=0,∵k1≠k2,所以k1k2−1=0,即k1k2=1;(3)∵P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=1x图象上的任意两点,∴y1=1x1,y2=1x2,∴a=y1+y22=1x1+1x22=x1+x22x1x2,∴a−b=x1+x22x1x2−2x1+x2=(x1+x2)2−4x1x22x1x2(x1+x2)=(x1−x2)22x1x2(x1+x2),∵x2>x1>0,∴(x1−x2)2>0,x1x2>0,(x1+x2)>0,∴(x1−x2)22x1x2(x1+x2)>0,∴a−b>0,∴a>b.【解析】解:(1)∵直线y=k1x和y=k2x与反比例函数y=1x的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD是平行四边形;故答案为:平行;(2)见答案;(3)见答案.(1)由直线y=k1x和y=k2x与反比例函数y=1x的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出√1k1+k1=√1 k2+k2,两边平分得1k1+k1=1k2+k2,整理后得(k1−k2)(k1k2−1)=0,根据k1≠k2,则k1k2−1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=1x 图象上的任意两点,得到y1=1x1,y2=1x2,求出a=y1+y22=1x1+1x22=x1+x22x1x2,得到a−b=x1+x22x1x2−2x1+x2=(x1+x2)2−4x1x22x1x2(x1+x2)=(x1−x2)22x1x2(x1+x2)>0,即可得到结果.本题考查了反比例函数的性质,平行四边形的判定,矩形的判定和性质,比较代数式的大小,掌握反比例函数图形上点的坐标的特征是解题的关键.21.【答案】解:(1)∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD∴∠ABO=∠ABE∵BA=BA,∴△ABE≌△ABO(AAS)∴AE=AO=4;(2)设BO=x,则AB=x+2,在Rt△ABO中,由AO2+OB2=AB2得42+x2=(x+2)2,解得:x=3,∴OB=BE=3∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°∴∠EAB=∠ACB∵∠BFA=∠AFC∴△BFA∽△AFC∴AFCF =BEAO=34,即AFCF=34;(3)①如图1,当△DEF∽△AEB时,有∠BAE=∠FDE∴∠ADE=∠FDE∴BD垂直平分AF∴AB=BF∴∠BAE=∠BFE∴∠BAE=∠BFE=∠BAO=30°∴BEAB=ABBD=12∴BEDE =13,②如图2,设⊙Q交y轴于点G,连接DG,作FH⊥DG于H,当△DEF∽△BEA时,有∠ABE=∠FDE∴∠DAE=∠DAG=∠FDE=∠FDH∴AG=AE=4,FE=FH=OG=8∴BEDE=AEEF=12∴BEDE =12,∴BEDE 的值是13或12.【解析】(1)由AD是⊙Q的直径可得:∠AEB=∠AED=90°,再由BA垂直平分CD可得:BC=BD,即可证明:△ABE≌△ABO;(2)设BO=x,根据勾股定理可得:x=3,再证:△BFA∽△AFC,即可得AFCF的值;(3)分两种情形:①△DEF∽△AEB,可求得:BEDE =13,②△DEF∽△BEA,可求得:BEDE=12.本题考查了圆的性质,勾股定理,相似三角形判定和性质等知识点,是一道常见中考几何综合题和几何压轴题,要求学生能够熟练掌握并运用所学性质定理和判定定理.22.【答案】√5【解析】解:问题:由题意,得AE=2,BE=1,在Rt△ABE中,由勾股定理,得AB=√5.故答案为:√5.解决问题:(1)根据条件画出图形为如图3:由题意易证△ADB≌△CEA,∴AB=AC,∠CAE=∠ABD,∵∠ADB=∠AEC=120°,∴∠ABD+∠BAD=60°,∴BAD+∠CAE=60°,∵∠EAF=60°,∴∠BAC=60°,∴△ABC是等边三角形.作AH⊥EF于H,在Rt △ACH 中,AC =√CH 2+AH 2=√(52)2+(√32)2=√7. ∴等边△ABC 的边长为√7.(2)如图4中,作AH ⊥直线b 于H ,将△ABH 绕点A 逆时针旋转60°得到△ACE ,作EJ ⊥直线c 于J 交直线a 于K .则有∠AEC =∠AHB =∠AKE =∠EJC =90°,AE =AH =1,∠EAK =∠CEJ =30°, ∴EK =12AE =12, ∴EJ =1,EC =EJcos30∘=2√33, ∴AC =√AE 2+EC 2=√12+(2√33)2=√213. ∴等边△ABC 的边长为√213 问题:直接运用勾股定理就可以求出AB 的值;解决问题:(1)根据等边三角形的性质就可以画出符合条件的图形,利用全等三角形的性质解决问题即可.(2)如图4中,作AH ⊥直线b 于H ,将△ABH 绕点A 逆时针旋转60°得到△ACE ,作EJ ⊥直线c 于J 交直线a 于K.想办法求出AE ,EC 即可解决问题.本题考查了作图的运用,等腰直角三角形的性质的运用,勾股定理的运用,直角三角形的性质的运用,全等三角形的性质的运用,解答时合理运用全等三角形的性质是关键. 23.【答案】解:(1)由抛物线的对称性可知,抛物线的图象经过点(0,2)和点(4,2), 则{2=16a +16+c 2=c ,解得{a =−1c =2, ∴y =−x 2+4x +2,∴当x =2时,y =6,∴点A 的坐标是(2,6);(2)如图1,过点C 作CE ⊥AH ,过点P 作PF ⊥AC 于F ,则CE =2,AE =4,AC =√22+42=2√5,∵∠AFP =∠AEC =90°,∠FAP =∠EAC ,∴△AFP∽△AEC ,∴PF AF =CE AE =12,∵∠FCP =45°,∴CF =PF .设CF=PF=m,则AF=2m,∴m+2m=2√5,m=2√53.∴AP=103,∴PH=83,∴P(2,83);(3)①当点D落在x轴的正半轴上时,如图2,CD=AC=2√5,又∵OC=2,∴OD=4,由对称性可知AP=PD,设PH=m,则AP=PD=6−m,在Rt△DPH中,有PH2+HD2=PD2,即m2+22=(6−m)2,解得m=83,∴P1(2,83);②当点D落在y轴的负半轴上时,如图3,CD=AC=2√5,由对称性可知∠DCP=∠ACP,又∵AH//OC,∴∠DCP=∠APC,∴∠APC=∠ACP,∴AC=AP=2√5,∴PH=6−2√5,∴P2(2,6−2√5);③当点D落在x轴的负半轴上时,如图4,CD=AC=2√5,又∵OC=2,∴OD=4,∴DH=AP=6,连接AD,∴直线CH是线段AD的中垂线,又点P在直线AH上,∴点P与点H重合,∴P3(2,0).)、P2(2,6−2√5)、P3(2,0).综上所述,点P的坐标为:P1(2,83【解析】(1)运用待定系数法解得即可;(2)过点C作CE⊥AH,过点P作PF⊥AC于F,可证明△AFP∽△AEC,再根据相似三角形的性质解答即可;(3)分情况讨论:①当点D落在x轴的正半轴上时;②当点D落在y轴的负半轴上时;③当点D落在x轴的负半轴上时.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质及相似三角形的判定与性质等知识.24.【答案】解:(1)D、F(2)如图2中,点A和⊙G的“中立点”在以O为圆心,1为半径的圆上运动,因为点K在直线y=−x+1上,设K(m,−m+1),则有m2+(−m+1)2=1,解得m=0或1,∴点K坐标为(1,0)或(0,1).(3)如图3中,由题意,当点N确定时,点N与⊙G的“中立点”是以NC的中点P为圆心1为半径的⊙P,当⊙P与y轴相切时,点N的横坐标分别为−2或−6,所以满足条件的点N的横坐标的取值范围为−6≤x N≤−2.【解析】解:(1)如图1中,观察图象可知,满足条件的点在△ABC的平行于BCD的中位线上,故成为点A和线段BC的“中立点”的是D、F.故答案为D、F.(2)(3)见答案【分析】(1)根据“中立点”的定义,画出图形即可判断;(2)如图2中,点A和⊙G的“中立点”在以O为圆心,1为半径的圆上运动,因为点K 在直线y=−x+1上,设K(m,−m+1),则有m2+(−m+1)2=1,求出m的值即可解决问题;(3)如图3中,由题意,当点N确定时,点N与⊙G的“中立点”是以NC的中点P为圆心1为半径的⊙P,当⊙P与y轴相切时,点N的横坐标分别为−2或−6,由此即可解决问题;本题考查一次函数综合题、圆的有关知识、三角形的中位线定理、“中立点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.。

襄阳市四中、五中2018年自主招生考试数学试题(word版附答案)

襄阳市四中、五中2018年自主招生考试数学试题(word版附答案)

2018年襄阳四中、襄阳五中自主招生考试数学试题考试时间:120分钟 试卷满分:150一、选择题:共10小题,每题5分,共计50分,在每个小题给出的四个选项中有且只有一个符合题目要求.1.下列运算结果中正确的是( )A.()732321412x x x =⎪⎭⎫ ⎝⎛-∙-B.()()11123+-+=+x x x x C.1122+=++a a aD.327x -的立方根是x 32.直线122++=m x a y (其中m a 、是常数)一定不经过的象限是( ) A.第一象限B.第二象限C.第三象限D.第四象限3.根据如下三视图,计算出该几何体的表面积是( ) A.36π B.34πC.30πD.40π 4.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何”,问鸡、兔的只数分别是( ) A.21,14 B.22,13 C.23,12D.24,115.如图,正方形ABCD 对角线交于一点O ,又O 是正方形O C B A111的一个顶点,而且两个正方形的边长相等都为a ,正方形O C B A 111绕O 在转动,则两正方形重叠部分的面积为( )A.不确定B.281aC.241aD.261a 6.在直角坐标系中,一束光线经过点A(3,2),先后经过x 轴、y 轴反射后再经过点B(1,4),则光线从A 到B 经过的路线长为( ) A.5B.132C.52D.627.下列五个图像中,能表示y 是x 的函数的图像的个数是( )A.1个B.2个C.3个D.4个8.如图,直线a x =从左往右运动,将△ABC 分成左右两部分,左边阴影部分的面积为S ,则S 关于a 的函数图像是( )9.有下列四个命题:①若,42=x 则;2=x ②若,1441222-=-x x 则;21=x ③命题“若,>22bm am 则b a >”的逆命题;④若一元二次方程02=++c bx ax 的两根是1和2,则方程02=+-a bx cx 的两根是-1和21-;其中真命题的个数是( )A.1个B.2个C.3个D.4个10.函数()03212≤≤-++-=x x x y 的最小值与最大值分别是( ) A.3,9B.43,9 C.1,9 D.3,10二、填空题:共6小题,每小题5分,共30分,把答案转填到答题卡相应的位置上. 11.函数x x x x y -++++=2120中自变量x 的取值范围是___________. 12.()=--+++-32432427432_________.13.方程012=--x x 的较大的根为a ,a 的小数部分为b ,则=++ab b a 22___________.14.⊙O 的内接梯形ABCD ,AB 过点O ,AB ∥CD ,AC 交BD 于E ,OD 交AC 于F ,AB=10,∠DAB=60°,则EF=____________.15.二次函数m x x y +-=22与x 轴有两个不同的交点A 、B ,现有下列四个命题: ①m 的取值范围是;<1m ②A 、B 的距离;m AB -=12 ③若,15-=m 当0>y 时,x 的取值范围是3-<x 或;>5x④点C ()(),>,552-+m m 则△ABC 的面积最大值3.其中正确命题的序号是______. 16.如图所示,在直角坐标系中的整点(横纵坐标为整数)处:()()(),,,,,,101101321--b b b (),,114--b ()()()()()121110110198765,,,,,,,,,b b b b b --,…, 以此类推,=2018b ________ 【参考公式:()121321+=+⋯+++n n n ).】三、解答题:共70分 17.(6分)已知,41=+aa 求aa 1-的值. 18.(6分)为绿化环境,现引进一批同类的树,三年后,这些树的树干的周长情况如图所示:(1)这批树共有________棵;(2)这批树干周长的中位数在第________组(从左到右);(3)从这批数据中任取一个,落在50~60这一组的概率为__________; (4)求这批树干周长的平均数.19.(8分)如图,E 在矩形ABCD 的边CD 上,沿AE 将△ADE 折叠使D 落在边BC 上的F 点.已知AE=55,tan ∠EFC=43.(1)求证:△ABF ∽△FCE ;(2)求AB 和BC 的长.20.(8分)如图,已知正方形的边长为a ,以各边为直径在正方形内部画半圆:(1)求阴影部分的面积;(2)现将1000粒豆子(大小忽略不计)均匀撒在此正方形内,问大约有多少粒豆子落在阴影部分(π取3.1416).21.(10分)已知,⊙O 的半径为10,圆内一定点M ,OM=6,过M 作相互垂直的弦AC 与BD ,O 到AC 、BD的距离分别为21d d 、,求四边形ABCD 面积的最大值.22.(10分)新华商场经市场调查得知,某商品的月销售量y (单位:吨)与销售价格x (单位:万元/吨)的关系可用如图的折线ABC 表示: (1)求出y 与x 的函数关系式;(2)若该商品的进价为5万元/吨,销售该商品的每月固定成本为10万元,问该商品每吨的定价多少元时,销售该商品的月利润w (单位:万元)有最大值?并求出最大值.23.(10分)若△ABC 的三边长分别为c b a 、、,记,2cb a p ++=,我国南宋时期著名数学家秦九韶推出三角形的面积公式为:①⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+-=222222241c b a b a S 古希腊数学家海伦推出三角形的面积公式为:()()()②c p b p a p p S ---=(1)已知,,,12108===c b a ,利用上面公式,求△ABC 的面积; (2)请你由公式①推出公式②.24.(12分)抛物线()02≠++=a c bx ax y 的顶点为C(1,4),与x 轴交于点A 、B ,与y 轴交于点D ,其中B 点坐标为(3,0).(1)求抛物线的解析式;(2)如图1,过点A 的直线与抛物线交于E ,交y 轴于F ,其中E 点的横坐标为2,直线PQ 为抛物线的对称轴,点G 是PQ 上一动点,在x 轴上是否存在一点H ,使D 、G 、H 、F 四点围成的四边形的周长最小?若存在,求出这个最小值及点G 、H 的坐标;若不存在,说明理由;(3)如图2,抛物线上是否存在一点T ,过T 作x 轴的垂线,垂足为M ,过M 作直线MN ∥BD 交线段AD 于N ,连接MD ,使△DNM ∽△BMD?若存在,求出点T 的坐标;若不存在,说明理由.2018年襄阳四中、五中自主招生考试数学参考答案一.选择题(本题共50分)9.④把两组根分别代入方程①和②,均可得a+b+c=04a+2b+c=0;10.当-3≤x≤-2时,y=x2-x-3=(x-12)2-134,当x=-3时,有最大值9,当x=-2时,有最小值3;当-2≤x≤-1时,y=x2+x+1=(x+12)2+34,当x=-2时,有最大值3,当x=-1时,有最小值1;当-1≤x≤0时,y=-x2+x+3=-(x-12)2+134,当x=-1时,有最小值1,当x=0时,有最小值3;综上可知:函数的最小值与最大值分别是1和9.二.填空题(共计30分)11.-2≤x≤2且x≠-1,x≠0;12. 9 ;13. x=1±52,∴a=1,b=5−12,∴=2;14.536;15.①②③④;16.以O为中心,边长为2的正方形(第①圈)上共有格点4×〔(2×①+1)-1〕=8=8×1个,b8(1,1),以O为中心,边长为4的正方形(第②圈)上共有格点4×〔(2×②+1)-1〕=16=8×2个,b24(2,2),即b8+16(2,2),以O为中心,边长为6的正方形(第③圈)上共有格点4×〔(2×③+1)-1〕=24=8×3个,b48(3,3),即b8+16+24(3,3),……,以O为中心,边长为2n的正方形(第n圈)上共有格点4×〔(2×n+1)-1〕=8 n个,b8+16+24+……+8n(n,n),前n个正方形上的格点的总数为S n=8+16+24+……+8n=8(1+2+3+……+n)=4n(n+1),当n=22时,Sn=2024,∴b2024(22,22),∴b2024(16,22)三.解答题(共70分)17.解:∵a+1a =4,∴(a−1a)2=(a1a)2-4a·1a42-4=12,∴a1a=±23,∴a−1a =(a1a)(a1a)=4×(±23)=±8318.⑴这批树共8+12+14+10+6=50(棵);⑵其中位数在第3组;⑶概率为:1250=0.24;⑷其平均数为:45×8+55×12+65×14+75×10+85×650=63.8(cm).19.⑴∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°.∵AD沿AE折叠,点D落在BC边的点F处,∴∠AFE=∠D=90°,FE=DE,∴∠AFB+∠CFE=90°.∵∠AFB+∠BAF=90°,∴∠CFE=∠BAF,又∵∠B=∠C=90°,∴△ABF∽△FCE.(2)在Rt △EFC 中,∵tan ∠EFC =ECFC =43,∴设EC=3x ,则FC=4x ,EF = EC 2+FC 2=5x ,∴DE=EF=5x ,AB=DC=DE +EC=8x .∵△ABF ∽△FCE ,∴AF FE=AB FC,即AF 5x =8x4x,∴AF=10x .由折叠知:AD=AF ,∴AD=10x .在Rt △ADE 中,AD=10x ,DE=5x ,AE=55,由勾股定理得AD 2+DE 2=AE 2,即(10x)2+(5x)2=(55)2,解这个方程得x 1=1,x 2=-1(负数不合题意,舍去).∴AD=10,AB=8,∴ AB=8,BC =AD=10. 20.⑴⑵1000×(12πa 2−a 2)÷a 2=570.8(粒)21.过点O 分别作OE ⊥AC 于E 点、OF ⊥BD 于F 点,则四边形OEMF 为矩形,连接OC 、OD , ∴MF =EO =d 1,FO =d 2,∴d 12+d 22=OM 2=36, ∴S 四边形ABCD =12AC ·BD =12×2 100−d 12×2 100−d 22=2 100−d 12× 100−d 22≤( 100−d 12)2+( 100−d 22)2=(100−d 12)+(100−d 22)=200-(d 12+d 22)=200-36=164.22. 解:⑴由函数图象可知:当5≤x ≤7时,y =-2x +20;当7<x ≤12时,y =-x +13; ⑵由题意得,月利润w =(x -5)·y -10,由⑴可知,当5≤x ≤7时, w 1=(x -5)(-2x +20)-10=-2(x -7.5)2+2.5;当7≤x ≤12时, w 2=(x -5)(-x +13)-10=-(x -9)2+6,综上可知:该商品每吨定价为9万元时,销售该商品的月利润最大,最大利润为6万元.23.附:①海伦公式的证明证明:如图,在△ABC 中,过A 作高AD 交BC 于D,设BD = x ,那么DC = a -x,由于AD 是△ABD 、△ACD 的公共边,则h 2=c 2-x 2=b 2-(a -x )2,24.解:(1)设抛物线的解析式为:y =a (x ﹣1)2+4,∵点B 的坐标为(3,0).∴4a +4=0,∴a =﹣1,∴此抛物线的解析式为:y =﹣(x ﹣1)2+4=﹣x 2+2x +3;(2)存在.抛物线的对称轴方程为:x =1,∵点E 的横坐标为2,∴y =﹣4+4+3=3,∴点E (2,3),∴设直线AE 的解析式为:y =kx +b ,∴ −k +b =02k +b =3,∴ k =1b =1,∴直线AE 的解析式为:y =x +1,∴点F (0,1),∵D (0,3),∴D 与E 关于x =1对称,作F 关于x 轴的对称点F ′(0,﹣1),连接EF ′交x 轴于H ,交对称轴x =1于G ,四边形DFHG 的周长即为最小,设直线EF ′的解析式为:y =mx +n ,∴ n =−12m +n =3,解得: m =2n =−1, ∴直线EF ′的解析式为:y =2x ﹣1,∴当y =0时,2x ﹣1=0,得x =12,即H (12,0),当x =1时,y =1,∴G (1,1);∴DF =2,FH =F ′H = (12)2+12=52,DG = 22+12= 5,∴使D 、G ,H 、F 四点所围成的四边形周长最小值为:DF +FH +GH +DG =2+ 52+ 52+ 5=2+2 5;(3)存在.∵BD = 32+32=3 2,设M (c ,0),∵MN ∥BD ,∴MNBD =AM AB ,即3 21+c 4,∴MN =3 24(1+c ),DM = 32+c 2,要使△DNM ∽△BMD ,需DM BD=MN DM,即DM 2=BD •MN ,可得:9+c 2=3 2×3 24(1+c ),解得:c =32或c =3(舍去).当x =32时,y =﹣(32−1)2+4=152. ∴存在,点T 的坐标为(32,152).。

2018年成都市川大附中自主招生数学试卷(含解析)

2018年成都市川大附中自主招生数学试卷(含解析)

2018年成都市川大附中自主招生考试数学试卷(考试时间:120分钟满分:150分)第Ⅰ卷(选择题,共60分)一、选择题(本大题共有12个小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一个选项是最符合题目要求的,请把答案涂在答题卷的相应位置)1.如图,若数轴上的两点A、B表示的数分别为a、b,则|a﹣b|+|b|等于()A.a B.a﹣2b C.﹣a D.b﹣a2.如果|m+1|+(n﹣2018)2=0,那么m n的值为()A.﹣1 B.1 C.2018 D.﹣20183.由一些完全相同的小立方块搭成的几何体的三种视图如下,那么小正方体个数为()A.5个B.6个C.7个D.8个4.有四张正面分别标有数字﹣2,﹣1,1,2的不透明卡片,它们除数字不同外其余相同.现将它们背面朝上,洗匀后小李从中任取两张,将两张卡片上的数字之和记为x,则小李得到的x值使分式的值为0的概率是()A.B.C.D.5.已知a2+b2=6ab且a>b>0,则的值为()A.B.±C.2 D.±26.将边长分别为1、1、2、3、5的正方形依次选取2个、3个、4个、5个拼成矩形,按下面的规律依次记作矩形①、矩形②、矩形③、矩形④.若继续选取适当的正方形拼成矩形,那么按此规律,矩形⑧的周长应该为()A.288 B.220 C.178 D.1107.若对所有的实数x,x2+ax+a恒为正,则()A.a<0 B.a>4 C.a<0或a>4 D.0<a<48.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.169.如图,点E、F分别为正方形ABCD中AB、BC边的中点,连接AF、DE相交于点G,连接CG,则cos∠CGD =()A.B.C.D.10.一次函数y=﹣kx+4与反比例函数的图象有两个不同的交点,点(﹣,y1)、(﹣1,y2)、(,y3)是函数图象上的三个点,则y1、y2、y3的大小关系是()A.y2<y3<y1B.y1<y2<y3C.y3<y1<y2D.y3<y2<y111.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→……,则2018分钟时粒子所在点的横坐标为()A.886 B.903 C.946 D.99012.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②当x≥1时,y随x的增大而减小;③2a+b=0;④b2﹣4ac>0;⑤<1,其中正确的个数是()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题,共90分)二、填空题(本大题共有4个小题,每题5分,共20分,请把答案直接填在答题卷相应位置)13.如果ab<0,那么++=.14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,D是AB边上的动点,E是AC边上的动点,则BE+ED 的最小值为.15.如图,矩形ABCD四个顶点均在函数y=的图象上,且矩形面积为2,则x A=.16.两条平行线间的距离公式一般地;两条平行线l1:Ax+By+C1=0和l2:Ax+By+C2=0间的距离公式是d=如:求:两条平行线x+3y﹣4=0和2x+6y﹣9=0的距离.解:将两方程中x,y的系数化成对应相等的形式,得2x+6y﹣8=0和2x+6y﹣9=0,因此,d=两条平行线l1:3x+4y=10和l2:6x+8y﹣10=0的距离是.三、解答题(本大题共有5个大题,共70分.请保留必要的步骤和过程,写在答题卷的对应题号的位置.注意:写错位置一律不给分)17.(5分)已知x2﹣4x+1=0,求的值.18.(5分)如果=3+,求m的值.19.(12分)植树节前夕,某校所有学生参加植树活动,要求每人植2~6棵.活动结束后,校学生会就本校学生的植树量进行了调查.经过对调查数据的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,计算出“3棵”部分所对应的圆心角的度数;(4)在这次调查中,众数和中位数分别为多少?(5)从该校中任选一名学生,其植树量为“6棵”的概率是多少?20.(15分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连结AP并延长AP交CD于F点,连接BP,交CE于点H.(1)若∠PBA:∠PBC=1:2,判断△PBC的形状并说明;(2)求证:四边形AECF为平行四边形.21.(15分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD 的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=3,求CD的长.22.(18分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,其中点B(2,0),交y轴于点C(0,﹣).直线y=mx+过点B与y轴交于点N,与抛物线的另一个交点是D,点P是直线BD下方的抛物线上一动点(不与点B、D重合),过点P作y轴的平行线,交直线BD于点E,过点D作DM⊥y轴于点M.(1)求抛物线y=x2+bx+c的表达式及点D的坐标;(2)若四边形PEMN是平行四边形?请求出点P的坐标;(3)过点P作PF⊥BD于点F,设△PEF的周长为C,点P的横坐标为a,求C与a的函数关系式,并求出C 的最大值.参考答案与试题解析1.【解答】解:由数轴可知:﹣2<b<﹣1<0<a<1,∴a﹣b>0,b<0,∴原式=a﹣b﹣b=a﹣2b,故选:B.2.【解答】解:由题意得,m+1=0,n﹣2018=0,解得m=﹣1,n=2018,所以,m n=(﹣1)2018=1.故选:B.3.【解答】解:根据三种视图的形状,可以得到俯视图上的小立方体的摆放、个数,如图所示:(其中数字表示在该位置上摆立方体的个数)因此需要小立方体的个数为8个,故选:D.4.【解答】解:当x=﹣3时,分式的值为0.画树状图如图所示:共有12个等可能的结果,小李得到的x值使分式的值为0的结果有2个,∴小李得到的x值使分式的值为0的概率为=;故选:A.5.【解答】解:∵a2+b2=6ab,∴(a+b)2=8ab,(a﹣b)2=4ab,∴()2==2,又∵a>b>0,∴=.故选:A.6.【解答】解:由分析可得:第⑤个的周长为:2×(8+13),第⑥的周长为:2×(13+21),第⑦个的周长为:2×(21+34),第⑧个的周长为:2×(34+55)=178,故选:C.7.【解答】解:令y=x2+ax+a,这个函数开口向上,式子的值恒大于0的条件是:△=a2﹣4a<0,解得:0<a<4.故选:D.8.【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选:D.9.【解答】解:如图,在正方形ABCD中,AB=AD,∠B=∠BAD=90°,∵E、F分别为AB、BC边的中点,∴AE=BF,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠AED=∠BFA,∵∠BAF+∠AED=∠BAF+∠BFA=90°,∴∠AGE=90°,∴AF⊥DE,取AD的中点H,连接CH,因为H是AD的中点,CH∥AF,设CH与DG相交于点M,则MH是三角形ADG的中位线,所以DM=GM,所以CH垂直平分DG,∴CD=CG,∴∠CGD=∠CDG,∵AB∥CD,∴∠CGD=∠AED,设正方形的边长为2a,则AE=a,由勾股定理得,DE===a,∴cos∠AED===,∴cos∠CGD=cos∠AED=.故选:D.10.【解答】解:一次函数y=﹣kx+4与反比例函数的图象有两个不同的交点,即:﹣kx+4=有解,∴﹣kx2+4x﹣k=0,△=16﹣4k2>0,k2<4,∴2k2﹣9<﹣1<0,∴函数图象在二、四象限,如图,在每个象限内,y随x的增大而增大,∵﹣1<﹣,0<y2<y1,∵当x=时,y3<0,∴y3<y2<y1,故选:D.11.【解答】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=,有(n+1)个点,共2n个点;2+4+6+8+10+…+2n≤2018≤2018且n为正整数,得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x==990,46个点,∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:D.12.【解答】解:①由二次函数y=ax2+bx+c(a≠0)的图象可知:a>0,b<0,c<0,∴abc>0,∴①正确;②∵抛物线的对称轴为x=1,抛物线开口向上,在对称轴右侧,y随x的增大而增大,即当x≥1时,y随x的增大而增大,∴②错误;③∵抛物线的对称轴为x=1,∴﹣=1,∴b=﹣2a,即2a+b=0,∴③正确;④∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴④正确;⑤观察图象可知:当x=﹣2时,y>0,即4a﹣2b+c>0,4a+c>2b,∵b<0,<1,∴⑤正确.∴①③④⑤正确.故选:D.13.【解答】解:∵ab<0,∴a、b异号,∴++=1﹣1﹣1=﹣1;故答案为﹣1.14.【解答】解:如图,作点B关于AC的对称点B′,过B′点作B′D⊥AB于D,交AC于E,连接AB′、BE,则BE+ED=B′E+ED=B′D的值最小.∵点B关于AC的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB==13.∵S△ABB′=•AB•B′D=•BB′•AC,∴B′D===,∴BE+ED=B′D=.故答案为.15.【解答】解:如图,连接OA、OD,过点A、D分别作AE⊥x轴,DF⊥x轴,垂足为E、F,点A在反比例函数y=的图象上,设点A的坐标(x,),根据矩形和双曲线的对称性可得,D(,x),∵S△AOE=S△DOF又∵S△AOD+S△DOF=S△AOE+S梯形ABEF,∴S△AOD=S梯形AEFD=S矩形ABCD=×2=,即,(DF+AE)•EF=,也就是,(+x)(﹣x)=,解得:x=,或x=<0(舍去),故答案为:.16.【解答】解:将两方程中x,y的系数化成对应相等的形式,得6x+8y﹣20=0和6x+8y﹣10=0,∴d==1.故答案为:1.17.【解答】解:原式==∵x2﹣4x+1=0,∴x2﹣4x=﹣1..18.【解答】解:去分母得:3x﹣2=3(x+1)+m,3x﹣2=3x+3+m,3x﹣3x﹣2﹣3=m,m=﹣5.19.【解答】解:(1)根据题意得:300÷30%=1000(人),答:该校共有1000名学生;(2)植5株的人数是:1000×35%=350(人),补图如下:(3)根据题意得:×360°=72°,答:植3棵部分所对应的圆心角的度数是72°;(4)植5棵的人数最多,则众数是5棵;把这些数从小到大排列,第501和502个数的平均数是中位数,则中位数是4棵.(5)因为共有1000人,植6株树的人数是50,则植树量为“6棵”的概率是=.20.【解答】(1)解:△PBC是等边三角形,理由是:在矩形ABCD中,∠ABC=90°,∵∠PBA:∠PBC=1:2,∴∠OBC=60°,∵沿EC对折矩形ABCD,使B点落在点P处,∴PC=BC,∴△PBC是等边三角形;(2)证明:∵根据折叠得出△EBC≌△EPC,∴BE=PE,∴∠1=∠2,∵E为AB的中点,∴BE=AE,∴AE=PE,∴∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,∴BP⊥AF,∵对折矩形ABCD,∴BP⊥CE,∴AF∥CE,∵根据矩形ABCD得:AE∥CF,∴四边形AECF为平行四边形.21.【解答】(1)证明:连结AO,AC;如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∴∠CAD=90°,∵E是CD的中点,∴AE=CD=CE=DE,∴∠ECA=∠EAC,∵OA=OC,∴∠OAC=∠OCA,∵CD是⊙O的切线,∴CD⊥OC,∴∠ECA+∠OCA=90°,∴∠EAC+∠OAC=90°,∴OA⊥AP,∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==;∴∠P=30°,∴∠AOP=60°,∵OC=OA,∴△AOC是等边三角形,∴∠ACO=60°,在Rt△BAC中,∵∠BAC=90°,AB=3,∠ACO=60°,∴AC===3,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===2.22.【解答】解:(1)将B,C点坐标代入函数解析式,得,解得,抛物线的解析式为y=x2+x﹣.∵直线y=mx+过点B(2,0),∴2m+=0,解得m=﹣,直线的解析式为y=﹣x+.联立直线与抛物线,得∴x2+x﹣=﹣x+,解得x1=﹣8,x2=2(舍),∴D(﹣8,7);(2)∵DM⊥y轴,∴M(0,7),N(0,)∴MN=7﹣=6.设P的坐标为(x,x2+x﹣),E的坐标则是(x,﹣x+)PE=﹣x+﹣(x2+x﹣)=﹣x2﹣x+4,∵PE∥y轴,要使四边形PEMN是平行四边形,必有PE=MN,即﹣x2﹣x+4=6,解得x1=﹣2,x2=﹣4,当x=﹣2时,y=﹣3,即P(﹣2,﹣3),当x=﹣4时,y=﹣,即P(﹣4,﹣),综上所述:点P的坐标是(﹣2,﹣3)和)(﹣4,﹣);(3)在Rt△DMN中,DM=8,MN=6,由勾股定理,得DN==10,∴△DMN的周长是24.∵PE∥y轴,∴∠PEN=∠DNM,又∵∠PFE=∠DMN=90°,∴△PEF∽△DMN,∴=,由(2)知PE=﹣a2﹣a+4,∴=,∴C=﹣a2﹣a+,C=﹣(a+3)2+15,C与a的函数关系式为C=﹣a2﹣a+,当a=﹣3时,C的最大值是15。

2018自主招生考试数学

2018自主招生考试数学

数学试卷一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()D.B C第3题第4题4.如图,AB为⊙O的一固定直径,它把⊙O,∠OCD的5.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()226.如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是()A.π-4 B. π C. π+12 D.415π+7.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()排多一人的规律排列,则当n取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是()A、296B、221C、225D、641第9题 第10题10.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )二、填空题(本大题共8小题,每小题3分,共24分) 11.(3分)与是相反数,计算= _________ .12. 已知b a ,为有理数,且满足b a +=+33421,则b a -=______ 13.(3分)如图,M 、N 分别为△ABC 两边AC 、BC 的中点,AN 与BM 交于点O ,则= _________ .第13题 第14题14.(3分)如图,已知圆O 的面积为3π,AB 为直径,弧AC 的度数为80°,弧BD 的度数为20°,点P 为直径AB 上任一点,则PC+PD 的最小值为 _________ .15.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a ,是3的倍数的个数为b ,则样本6、a 、b 、9的中位数是 _________ .三、解答题(72)16、某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到几点时,停车场内第一次出现无车辆?17.如图,ABCD是矩形纸片,E是AB上一点,且BE:EA=5:3,EC=155,把△BCE沿折痕EC向上翻折,若点B恰好落在AD边上,设这个点为F,求AB、BC的长.第17题图18.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.19.(15分)如图,已知菱形ABCD 边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.20、已知A 1、A 2、A 3是抛物线221x y =上的三点,A 1B 1、A 2B 2、A 3B 3分别垂直于x 轴,垂足为B 1、B 2、B 3,直线A 2B 2交线段A 1A 3于点C.(1)如图18-1,若A 1、A 2、A 3三点的横坐标依次为1、2、3,求线段CA 2的长;(2)如图18-2,若将抛物线221x y =改为抛物线1212+-=x x y ,A 1、A 2、A 3三点的横坐标为连续整数,其他条件不变,求线段CA 2的长;(3)若将抛物线221x y =改为抛物线c x b x a y ++=2,A 1、A 2、A 3三点的横坐标为连续整数,其他条件不变,请猜想线段CA 2的长(用a 、b 、c 表示,并直接写出答案).图18-2参考答案与试题解析2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=().B CAD((,(23.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C 作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()22y=两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最y=,×,当5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是().B C D6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()l=(7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()﹣,代入得(﹣)8.(3分)如图,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,如果,那么△ABC的内切圆半径为()C=3AB,三角形r=h=1二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)与是相反数,计算=.a+的值,再配方开平方即可得解.|﹣=3=3+2+=.故答案为:=310.(3分)若[x]表示不超过x的最大整数,,则[A]=﹣2.,≈A=++1+111.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.MN=ABMN=AB故答案是12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB 上任一点,则PC+PD的最小值为3.==80由=120.的度数为==80=100=20=+=100×13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.=5.514.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.(,([﹣()﹣=.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.x=PQ=.三、解答题(72)16、解:设从6时起x 分钟时停车场内第一次出现无车辆,此时总共出车S 辆,进场车y 辆,则⎪⎩⎪⎨⎧->+=-=3815)1(6x y y S S x ---------------------------------------------(6分)∴ 3)1(6)15(8-->-S S , 解得 5.55>S . -------------------(8分)∵ S 为正整数,∴ S =56,即到第56辆车开出后,停车场内第一次出现无车辆.此时330)156(6=-=x ,6+60330=11.5(时) 答:到11时30分时,停车场内第一次出现无车辆.--------------------------(12分)17.设k BE 5=,则k EA 3=,则在k AF AEF Rt 4=中有△,k BE AE AB CD 8=+==,由AEF ∆∽DFC ∆可得,k CF 10=,∴k CF BC 10==,(3分),在中有△BECRt k k k BC BE CE 55)10()5(2222=+=+=,∴51555=k ,3=k ,∴248==k AB ,3010==k BC (3分)18.(14分)如图,过正方形ABCD 的顶点C 在形外引一条直线分别交AB 、AD 延长线于点M 、N ,DM 与BN 交于点H ,DM 与BC 交于点E ,BN △AEF 与DC 交于点F .(1)猜想:CE 与DF 的大小关系?并证明你的猜想.(2)猜想:H 是△AEF 的什么心?并证明你的猜想.第19题图利用平行线分线段成比例定理得到,从而得到,19.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.边长为,∠利用等边三角形的面积等于边长平方的×BE=O E=BG=DM=DG=6rDN=DH=6r MN=DM+DN=12(EF=EB+BC+CF=++边长为××);BE=rr﹣DN=DH=6﹣﹣r+++=12(这个点与圆心的连线平分两切线的夹角;掌握菱形的性质,记住等边三角形的面积等于边长平方的20、解:(1)方法一:∵A 1、A 2、A 3三点的横坐标依次为1、2、3, ∴A 1B 1=211212=⨯,A 2B 2=22212=⨯,A 3B 3=293212=⨯. 设直线A 1A 3的解析式为y=kx+b. ∴⎪⎪⎩⎪⎪⎨⎧+=+=b k b k 32921 解得⎪⎩⎪⎨⎧-==232b k ∴直线A 1A 3的解析式为 232-=x y . ∴CB 2=2×25232=- . ∴CA 2=CB 2-A 2B 2=21225=-. 方法二:∵A 1、A 2、A 3三点的横坐标依次为1、2、3, ∴A 1B 1=211212=⨯,A 2B 2=22212=⨯,A 3B 3=293212=⨯ . 由已知可得A 1B 1∥A 3B 3,∴CB 2=21(A 1B 1+A 3B 3)= 25)2921(21=+ . ∴CA 2=CB 2-A 2B 2=21225=- . ---------------------------------------------(4分) (2)方法一:设A 1、A 2、A 3三点的横坐标依次为 n-1、n 、n+1 . 则A 1B 1=1)1()1(212+---n n ,A 2B 2=1212+-n n ,A 3B 3=1)1()1(212++-+n n . 设直线A 1A 3的解析式为y=kx+b. ∴⎪⎪⎩⎪⎪⎨⎧++-+=+++---=+-1)1()1(21)1(1)1()1(21)1(22n n b k n n n b k n 解得⎪⎩⎪⎨⎧+-=-=232112n b n k ∴直线A 1A 3的解析式为 2321)1(2+--=n x n y . --------------------------------(8分) ∴CB 2=23212321)1(22+-=+--n n n n n . ∴CA 2=CB 2-A 2B 2=21121232122=-+-+-n n n n . -----------------------------------(10分) 方法二:设A 1、A 2、A 3三点的横坐标依次为n-1、n 、n+1 . 则A 1B 1=1)1()1(212+---n n ,A 2B 2=1212+-n n ,A 3B 3=1)1()1(212++-+n n 由已知可得A 1B 1∥A 3B 3,∴CB 2=21(A 1B 1+A 3B 3) = ]1)1()1(211)1()1(21[2122++-+++---n n n n =23212+-n n ∴CA 2=CB 2-A 2B 2=21)121(232122=-+-+-n n n n . (3)当a >0时,CA 2=a ;当a <0时,CA 2=-a. ---------------------------------(14分)。

2018年安徽省合肥168中自主招生数学试卷(含答案解析)

2018年安徽省合肥168中自主招生数学试卷(含答案解析)

2018年安徽省合肥168中自主招生数学试卷姓名:得分:日期:一、选择题(本大题共 8 小题,共 40 分)1、(5分) 如果ab>0,a+b<0,那么下面各式:①√ab =√a√b,②√ab=1,③√ab÷√ab=-b,正确的个数是()A.0个B.1个C.2个D.3个2、(5分) 把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是()A. B. C. D.3、(5分) 有一根40cm的金属棒,欲将其截成x根7cm的小段和y根9cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3B.x=4,y=1C.x=3,y=2D.x=2,y=34、(5分) 如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°5、(5分) 已知14m 2+14n 2=n-m-2,则1m -1n 的值等于( )A.1B.0C.-1D.-14 6、(5分) 如图所示,在Rt△BAD 中,延长斜边BD 到点C ,使DC=12BD ,连接AC ,若tanB=53,则tan∠CAD 的值为( )A.√33B.√35C.13D.157、(5分) (非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( )A.3B.1C.3或-1D.-3或18、(5分) 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A.(0,0)B.(1,12)C.(65,35)D.(107,57)二、填空题(本大题共 6 小题,共 30 分)9、(5分) 在形状、大小、颜色都一样的卡片上,分别画有线段、等腰直角三角形、等边三角形、平行四边形、菱形、等腰梯形、正五边形、正六边形、圆等9个图形,小明随机抽取一张卡片,抽得图形既是轴对称图形,又是中心对称图形的概率是______.10、(5分) 直线y=kx+b 经过A (2,1)、B (-1,2)两点,则不等式12x >kx+b >-2的解集为______.11、(5分) 因式分解:x 3-6x 2+11x-6=______.12、(5分) 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙O 1、⊙O 2半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是______.13、(5分) 把图一的矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD 的面积为______.14、(5分) 如图,抛物线y=13x 2-x-6交x 轴于A 、C 两点,交y 轴于点B ;将抛物线y=13x 2-x-6向上平移234个单位长度、再向左平移m (m >0)个单位长度,得到新抛物线;若新抛物线的顶点P 在△ABC 内,则m 的取值范围是______ .三、解答题(本大题共 3 小题,共 40 分)15、(12分) 在同一平面内有n 条直线,任何两条不平行,任何三条不共点.当n=1时,如图(1),一条直线将一个平面分成两个部分;当n=2时,如图(2),两条直线将一个平面分成四个部分;则:当n=3时,三条直线将一个平面分成______部分;当n=4时,四条直线将一个平面分成______ 部分;若n 条直线将一个平面分成a n 个部分,n+1条直线将一个平面分成a n+1个部分.试探索a n 、a n+1、n 之间的关系.16、(14分) 如图,已知在平面直角坐标系xOy 中,抛物线y=14x 2+bx+c 与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA=2OC .(1)求这条抛物线的表达式及顶点M 的坐标;(2)求tan∠MAC 的值;(3)如果点D 在这条抛物线的对称轴上,且∠CAD=45°,求点D 的坐标.17、(14分) 如图,△ABC 中,AC=16,∠BAC=60°,AB=l0,⊙P 分別与边AB 、AC 相切于D 、E (切点D 、E 不在边AB 、AC 的端点),ED 的延长线与CB 的延长线相交于点F .(1)求BC 边的长和△ABC 的面积;(2)设AE=x ,DF=y ,写出y 与x 的函数解析式,并写出自变量x 的取值范围;(3)探索△ADC 与△DBF 能否相似?若能相似,请求出x 的值,同吋判断此吋⊙P 与边BC 的位置关系,并证明之;若不能相似,请说明理由.2018年安徽省合肥168中自主招生数学试卷【第 1 题】【答案】C【解析】解:∵ab>0,a+b<0,∴a<0,b<0,∴①√ab =√−a√−b,故此选项错误;②√ab=1,正确;③√ab÷√ab=-b,正确,故选:C.直接利用二次根式的性质分别化简得出答案.此题主要考查了二次根式的乘除,正确掌握二次根式的性质是解题关键.【第 2 题】【答案】C【解析】解:结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C,D,再根据三角形的位置,即可得出答案,故选:C.通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.此题主要考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.【第 3 题】【答案】C【解析】解:根据题意得:7x+9y≤40,则x≤40−9y 7,∵40-9y≥0且y 是正整数,∴y 的值可以是:1或2或3或4. 当y=1时,x≤317,则x=4,此时,所剩的废料是:40-1×9-4×7=3cm ;当y=2时,x≤227,则x=3,此时,所剩的废料是:40-2×9-3×7=1cm ;当y=3时,x≤137,则x=1,此时,所剩的废料是:40-3×9-7=6cm ;当y=4时,x≤47,则x=0(舍去).则最小的是:x=3,y=2.故选:C .根据金属棒的长度是40cm ,则可以得到7x+9y≤40,再根据x ,y 都是正整数,即可求得所有可能的结果,分别计算出省料的长度即可确定.本题考查了不等式的应用,读懂题意,列出算式,正确确定出x ,y 的所有取值情况是本题的关键.【 第 4 题 】【 答 案 】B【 解析 】 解:∵AB∥CD ,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°-180°=180°.故选:B .根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B 、点C 为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.【 第 5 题 】【 答 案 】C【 解析 】解:由14m 2+14n 2=n-m-2,得(m+2)2+(n-2)2=0,则m=-2,n=2,∴1m -1n =-12-12=-1. 故选:C .把所给等式整理为2个完全平方式的和为0的形式,得到m ,n 的值,代入求值即可.考查分式的化简求值,把所给等式整理为2个完全平方式的和为0的形式是解决本题的突破点;用到的知识点为:2个完全平方式的和为0,这2个完全平方式的底数为0.【 第 6 题 】【 答 案 】D【 解析 】解:如图,作DE∥AC 交AB 于E .在Rt△ABD 中,∵tanB=AD AB =53 ∴可以假设AD=5k ,AB=3k , ∴BD=√34k ,CD=√342k , ∵DE∥AC , ∴∠DAC=∠ADE ,BE BA =BD BC =23,∴BE=2k ,∴AE=k ,∴tan∠CAD=tan∠ADE=AE AD =k 5k =15,故选:D .如图,作DE∥AC 交AB 于E .由tanB=AD AB =53可以假设AD=5k ,AB=3k ,推出BD=√34k ,CD=√342k ,想办法求出AE 即可解决问题.本题考查解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.【第 7 题】【答案】A【解析】解:根据条件知:α+β=-(2m+3),αβ=m2,∴1α+1β=β+ααβ=−(2m+3)m2=-1,即m2-2m-3=0,所以,得{m2−32m−3=0(2m−3)2−4m2>0,解得m=3.故选:A.由于方程有两个不相等的实数根可得△>0,由此可以求出m的取值范围,再利用根与系数的关系和1α+1β=-1,可以求出m的值,最后求出符合题意的m值.1、考查一元二次方程根与系数关系与根的判别式及不等式组的综合应用能力.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-ba ,x1•x2=ca.【第 8 题】【答案】D【解析】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2√5,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG 中,AG=√OA 2−OG 2=√52−(2√5)2=√5,∴AC=2√5, ∵OA•BK=12•AC•OB ,∴BK=4,AK=√AB 2−BK 2=3,∴点B 坐标(8,4), ∴直线OB 解析式为y=12x ,直线AD 解析式为y=-15x+1,由{y =12x y =−15x +1解得{x =107y =57, ∴点P 坐标(107,57). 故选:D .如图连接AC ,AD ,分别交OB 于G 、P ,作BK⊥OA 于K .首先说明点P 就是所求的点,再求出点B 坐标,求出直线OB 、DA ,列方程组即可解决问题.本题考查菱形的性质、轴对称-最短问题、坐标与图象的性质等知识,解题的关键是正确找到点P 位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.【 第 9 题 】【 答 案 】49【 解析 】解:∵在这一组图形中既是中心对称图形,又是轴对称图形的是:线段、菱形、正六边形、圆共4个, ∴9张卡片上的图形既是中心对称图形,又是轴对称图形的概率是49;故答案为:49.先判断出既是中心对称图形,又是轴对称图形的个数,再根据概率公式进行解答即可.本题考查的是概率公式及中心对称图形和轴对称图形的概念,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .【 第 10 题 】【 答 案 】2<x <11【 解析 】解:∵直线y=kx+b 经过A (2,1),B (-1,2)两点,∴{2k +b =1−k +b =2,解得{k =−13b =53, 则该直线方程为y=-13x+53,∴不等式12x >kx+b >-2变为12x >-13x+53>-2, 解得 2<x <11,故答案为:2<x <11.利用待定系数法求得一次函数解析式,进而得到不等式,再解不等式即可.此题主要考查了待定系数法求一次函数解析式,以及一次函数与不等式,关键是计算出k 、b 的值.【 第 11 题 】【 答 案 】(x-3)(x-2)(x-1)【 解析 】解:x 3-6x 2+11x-6=x 3-6x 2+9x+2x-6=x (x 2-6x+9)+2(x-3)=x (x-3)2+2(x-3)=(x-3)[x (x-3)+2]=(x-3)(x 2-3x+2)=(x-3)(x-2)(x-1).故答案为:(x-3)(x-2)(x-1).首先将11x 拆项,进而利用提取公因式法以及公式法分解因式进而得出答案.此题主要考查了分组分解法分解因式,正确分组是解题关键.【 第 12 题 】【 答 案 】2<d <3【 解析 】解:∵⊙O 1、⊙O 2半径分别3和1,∴当两圆相交时,2<d <4,∵其中一个圆的圆心在另一圆的圆内,∴2<d <3,故答案为:2<d <3.读懂“内相交”的定义,然后结合两圆相交时两圆的圆心距和两圆的半径的大小关系求解. 本题考查了圆与圆的位置关系,解题的关键是弄懂内相交的定义,难度不大.【 第 13 题 】【 答 案 】1445【 解析 】解:由勾股定理得,MN=5,设Rt△PMN 的斜边上的高为h ,由矩形的宽AB 也为h ,根据直角三角形的面积公式得,h=PM•PN÷MN=125,由折叠的性质知,BC=PM+MN+PN=12,∴矩形的面积=AB•BC=1445.利用折叠的性质和勾股定理可知.本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,直角三角形和矩形的面积公式求解.【 第 14 题 】【 答 案 】0<m <4【 解析 】解:∵y=13x 2-x-6=13(x-32)2-274,∴由题意,新抛物线的解析式可表示为:y=13(x-32+m )2-274+234=13(x-32+m )2-1,它的顶点坐标P :(32-m ,-1);由y=13x 2-x-6可得:A (-3,0),C (6,0),B (0,-6).设直线AB 的解析式为y=kx-6(k≠0),把x=-3,y=0代入,得-3k-6=0,b=-2,∴y=-2x-6.同理直线BC :y=x-6;当点P 在直线AB 上时,-2(32-m )-6=-1,解得:m=4;当点P 在直线BC 上时,(32-m )-6=-1,解得:m=-72;∴当点P 在△ABC 内时,-72<m <4;又∵m >0,∴符合条件的m的取值范围:0<m<4.故答案是:0<m<4.首先根据平移条件表示出移动后的函数解析式,进而用m表示出该函数的顶点坐标,将其代入直线AB、BC的解析式中,即可确定P在△ABC内时m的取值范围.考查了抛物线与x轴的交点,二次函数图象与几何变换.由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.【第 15 题】【答案】解:当n=1时,分成2部分,当n=2时,分成4=2+2部分,当n=3时,分成7=4+3部分,…(2分)当n=4时,分成11=7+4部分,…(4分)规律发现,有几条线段,则分成的部分比前一种情况多几部分,a n、a n+1、n之间的关系是:a n+1=a n+(n+1).…(8分)故答案为:7,11,a n+1=a n+(n+1).【解析】一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成7部分,四条直线最多可以把平面分成11部分,可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,…,n条时比原来多了n部分.本题是对图形变化问题的考查,根据前四种情况发现有几条线段则分成的空间比前一种增加几部分是解题的关键.【第 16 题】【答案】解:(1)∵C (0,-3),∴OC=3.y=14x 2+bx-3.∵OA=2OC ,∴OA=6. ∵a=14>0,点A 在点B 右侧,抛物线与y 轴交点C (0,-3).∴A (6,0). ∴0=14×36+6b-3,∴b=-1. ∴y=14x 2-x-3,∴y=14(x-2)2-4,∴M (2,-4).答:抛物线的解析式为y=14x 2-x-3,M 的坐标为(2,-4);(2)如图1,过点M 作MH⊥x 轴,垂足为点H ,交AC 于点N ,过点N 作NE⊥AM 于点E ,垂足为点E .∴∠AHM=∠NEM=90°.在Rt△AHM 中,HM=AH=4,由勾股定理,得AM=4√2,∴∠AMH=∠HAM=45°.设直线AC 的解析式为y=kx+b ,由题意,得{0=6k +b −3=b,解得:{k =12b =−3, ∴直线AC 的表达式为y=12x-3. 当x=2时,y=-2,∴N (2,-2).∴MN=2.∵∠NEM=90°,∠NME=45°,∴∠MNE=∠NME=45°,∴NE=ME .在Rt△MNE 中,∴NE 2+ME 2=NM 2,∴ME=NE=√2.∴AE=AM -ME=3√2在Rt△AEN 中,tan∠MAC=NE AE =√23√2=13. 答:tan∠MAC=13; (3)如图2,①当D 点在AC 上方时,∵∠CAD 1=∠D 1AH+∠HAC=45°,且∠HAM=∠HAC+∠CAM=45°,∴∠D 1AH=∠CAM , ∴tan∠D 1AH=tan∠MAC=13.∵点D 1在抛物线的对称轴直线x=2上,∴D 1H⊥AH ,∴AH=4.在Rt△AHD 1中, D 1H=AH•tan∠D 1AH=4×13=43. ∴D 1(2,43); ②当D 点在AC 下方时,∵∠D 2AC=∠D 2AM+∠MAC=45°,且∠AMH=∠D 2AM+∠AD 2M=45°,∴∠MAC=∠AD 2M . ∴tan∠AD 2H=tan∠MAC=13.在Rt△D 2AH 中,D 2H=AHtan∠AD 2H =4÷13=12. ∴D 2(2,-12). 综上所述:D 1(2,43);D 2(2,-12).【 解析 】(1)根据与y 轴的交点C 的坐标(0,-3)就可以求出OC 的值及c 的值,进而求出OA 的值及A 的坐标,由待定系数法就可以求出b 的值而求出解析式及定点坐标;(2)如图1,过点M 作MH⊥x 轴,垂足为点H ,交AC 于点N ,过点N 作NE⊥AM 于点E ,垂足为点E .在Rt△AHM 中,HM=AH=4,就可以求出AM 的值,再由待定系数法求出直线AC 的解析式,就可以求出点N 的坐标,进而求出MN 的值,由勾股定理就可以求出ME 及NE 的值,从而求出AE 的值就可以得出结论;(3)如图2,分类讨论,当D 点在AC 上方时,根据角之间的关系就可以求出∠D 1AH=∠CAM ,当D 点在AC 下方时,∠MAC=∠AD 2M 就可以求出点D 的坐标.本题考查了待定系数法求二次函数的解析式的运用,一次函数的解析式的运用,二次函数的顶点式的运用,等腰直角三角形的性质的运用,三角函数值的运用,解答时求出函数的解析式是关键,灵活运用等腰直角三角形的性质求解是难点.【 第 17 题 】【 答 案 】解:(1)如图1,过点B 作BG⊥AC ,交AC 于点G .在Rt△ABG 中,∠BAC=60°,AB=l0, ∴AG=5,BG=5√3∴CG=AC -AG=16-5=11,在Rt△BGC 中,由可得BC=14,∴S △ABC =12AC•BG=12×16×5√3=40√3;(2)如图2,过E 作EH∥AB 交BC 于H ,∵⊙P 分別与边AB 、AC 相切于D 、E ,∴AE=DE ,又∠BAC=60°,可设AE=AD=DE=x ,DB=10-x ,CE=16-x ,在△ABC 中,∵EH∥AB∴EH AB =CE CA 即EH 10=16−x 16,得EH=58(16-x ),在△FEH 中,∵EH∥DB ,∴FD FE =DB EH , 即y x+y =10−x 58(16−x),整理得y=-83x+803(0<x <10) (3)假如△ADC 与△DBF 相似,∵∠DBF >∠DCA ,又∠DAC=∠BDF=60°∴只能∠DBF 与∠ADC ,∠BFD 与∠ACD 是对应角, ∴AD BD =AC DF ,即x 10−x =16y解得x 1=10(舍去),x 2=6,当x=6时,⊙P 与边BC 相切.证明:当x=6时,求得⊙P 的半径r=2√3,过P 作PQ⊥BC ,垂足为Q ,连接PA 、PB 、PC ,有S △ABC =S △PAB +S △PAC +S △PBC即40√3=12×10×2√3+12×16×2√3+12×14×PQ ,解得,PQ ═2√3=r∴⊙P 与边BC 相切.【 解析 】(1)过B 作BG⊥AC ,垂足为G ,解Rt△ABG ,得BG ,AG ,再求CG ,在Rt△CBG 中,运用勾股定理求BC ;(2)由∠BAC=60°,AD ,AE 为圆的切线可知,△ADE 为等边三角形,可设AE=AD=DE=x ,DB=10-x ,CE=16-x ,过E 作EH∥AB 交BC 于H ,在△ABC 中,由EH∥AB ,利用相似比求EH ,在△FEH 中,由EH∥DB ,利用相似比求x 、y 的关系;(3)过P 作PQ⊥BC ,垂足为Q ,连接PA 、PB 、PC ,先假如△ADC 与△DBF 相似,利用相似比求x 的值,再求圆的半径;本题是圆综合题,熟练运用相似三角形的判定与性质、勾股定理是解题的关键。

华中师大一附中2018年自主招生考试数学试题(word版附答案)

华中师大一附中2018年自主招生考试数学试题(word版附答案)

华中师大一附中2018年高中招生考试数学试题考试时间:70分钟 卷面满分:120分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题 (本大题共5小题,每小题7分,共35分.在每小题给出的四个选项中,有且只有一项是正确的.)1.二次函数y =x 2+2x +c 的图象与x 轴的两个交点为A(x 1,0),B(x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( ) A .当n >0时,m <x 1 B .当n >0时,m >x 2 C .当n <0时,m <0D .当n <0时,x 1<m <x 22.已知实数a 、b 、c 满足a <b <c ,并目k =,则直线y =-kx +k 一定经过( )A .第一、三、四象限B .第一、二、四象限C .第一、二、三象限D .第二、三、四象限3.下边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为16、22,则输出的a =(a ←a -b 的含义:将a -b 的结果赋给a )( ) A .0 B .2 C .4D .144.直线l :kx -y -2k -1=0被以A(1,0)为圆心,2为半径的⊙A 所截得的最短弦长为( ) A . B .2 C .2D .45.如图,△ABC 中,AB=AC=8,BC=4,BF ⊥AC 于F ,D 是AB 的中点,E 为AC 上一点,且2EF=AC,则tan ∠DEF=( ) A .B .C .D .二、填空题(本大题共5小题,每小题7分,共35分). 6.若a +b -2=3c 5,则(b c )a 的值为__________.BA CDEF7.已知△ABC的一边长为4,另外两边长恰是方程2x212x+m+1=0的两实根,则实数m 的取值范围是__________.8.如图,D是△ABC的边AB上的一点,且AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则=__________.9.有十张正面分别标有数字1,2,3,4,5,6,7,8,9,10的不透明卡片,它们除数字不同外其余全部相同,将它们背面朝上,洗匀后从中任取一张,以卡片上的数字作为关于x的不等式5x a≤5中的系数a,使得该不等式的正整数解只有1和2的概率为__________.10.若四个互不相等的正实数a,b,c,d满足(a2018c2018)(a2018d2018)=2018,(b 2018c2018)(b2018d2018)=2018,则(ab)2018(cd)2018的值为__________.三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程和演算步骤)11.(本小题满分16分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE、BE、GD有什么数量关系?说明理由;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是AB上一点,且∠DCE=45°,BE=2,求DE的长.12.(本小题满分16分)如图1,在平面直角坐标系xOy内,已知点A(1,0),B(1,1),C (1,0),D(1,1),记线段AB为L1,线段CD为L2,点P是坐标系内一点.给出如下定义:若存在过点P的直线l与L1,L2都有公共点,则称点P是L1L2相关点,例如,点P(0,1)是L1-L2相关点.(1)以下各点中,__________是L1-L2相关点(填出所有正确的序号);①(1,2);②(5,2);③(4,2).(2)直接在图1中画出所有L1-L2相关点所组成的区域,用阴影部分表示;(3)已知点M在y轴上,以M为圆心,r为半径画圆,若⊙M上有且只有一个点为L1L2相关点.①当r=1时,求点M的纵坐标;②求r的取值范围.13.(本小题满分18分)定义:点P(x,y)为平面直角坐标系中的点,若满足x=y时,则称该点为“平衡点",例如点(-1,-1),(0,0),(,)都是“平衡点".①当-1≤x≤3时,直线y=2x+m上存在“平衡点”,则实数m的取值范围是__________.(2)直线y=3mx+n-1上存在“平衡点”吗?若存在,请求出“平衡点”的坐标;若不存在,请说明理由;(3)若抛物线y=ax2+bx+1(a>0)上存在两个不同的“平衡点"A(x1,x1),B(x2,x2),且满足0<x1<2,=2,令t=b2-2b+,试求实数t的取值范围.华中师大一附中2018年高中招生考试数学试题参考答案考试时间:70分钟卷面满分:120分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题(本大题共5小题,每小题7分,共35分.在每小题给出的四个选项中,有且只有一项是正确的.)题号 1 2 3 4 5答案 D A B C A二、填空题(本大题共5小题,每小题7分,共35分).6.36 7.9〈m≤17 8.9.10.-2018 三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程和演算步骤.)11.(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△ACBE≌△CDF.∴CE=CF.……………………………4分(2)GE=BE+GD.理由如下:∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=EF.∴GE=DF+GD=BE+GC.……………………………10分(3)过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=6.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x-2,∴AD=AG-DG=8-x,AE=AB-BE=6-2=4.在Rt△AED中∵DE2=AD2+AE2,即x2=(8-x)2+42解得x=5.∴DE=5……………………………16分12.(1)②,③是L1-L2相关点。

2018年上海中学自主招数学试卷及答案解析

2018年上海中学自主招数学试卷及答案解析

2018年上海中学自主招数学试卷一.填空题1.已知1a +1b =1a+b ,则b a+a b 的值等于 . 2.有 个实数x ,可以使得√120−√x 为整数.3.如图,△ABC 中,AB =AC ,CD =BF ,BD =CE ,用含∠A 的式子表示∠EDF ,则∠EDF= .4.在直角坐标系中,抛物线y =x 2+mx −34m 2(m >0)与x 轴交于A ,B 两点.若A ,B两点到原点的距离分别为OA ,OB ,且满足1OB −1OA =23,则m 的值等于 . 5.定圆A 的半径为72,动圆B 的半径为r ,r <72且r 是一个整数,动圆B 保持内切于圆A且沿着圆A 的圆周滚动一圈,若动圆B 开始滚动时的切点与结束时的切点是同一点,则r 共有 个可能的值.6.学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有 人.7.对于各数互不相等的正整数组(a 1,a 2,…a n )(n 是不小于2的正整数),如果在i <j时有a i >a j ,则称a i 与a j 是该数组的一个“逆序”,例如数组(2,4,3,1)中有逆序“2,1”、“4,3”、“4,1”、“3,1”,其逆序数为4,现若各数互不相同的正整数组(a 1,a 2,a 3,a 4,a 5,a 6)的逆序数为2,则(a 6,a 5,a 4,a 3,a 2,a 1)的逆序数为 .8.若n 为正整数,则使得关于x 的不等式1121<n x+n <1019有唯一的整数解的n 的最大值为 .二、选择题(共4小题,每小题3分,满分12分)9.已知x 2+ax ﹣12能分解成两个整数系数的一次因式的积,则整数a 的个数有( )A .0B .2C .4D .6 10.如图,D 、E 分别为△ABC 的底边所在直线上的两点,BD =EC ,过A 作直线l ,作DM∥BA交l于M,作EN∥CA交l于N.设△ABM面积为S1,△ACN面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.S1与S2的大小与过点A的直线位置有关11.设p1、p2、q1、q2为实数,则p1p2=2(q1+q2),若方程甲:x2+p1x+q1=0,乙:x2+p2x+q2=0,则()A.甲必有实根,乙也必有实根B.甲没有实根,乙也没有实根C.甲、乙至少有一个有实根D.甲、乙是否总有一个有实根不能确定12.设a=121+223+325+⋯+100722013,b=123+225+327+⋯+100722015,则以下四个选项中最接近a﹣b的整数为()A.252B.504C.1007D.2013三.解答题13.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N 不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.14.是否存在m个不全相等的正数a1、a2、…、a m(m≥7),使得它们能全部被摆放在一个圆周上,每个数都等于其相邻两数的乘积?若存在,求出所有这样的m值;若不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学试题一、选择题(每小题3分,共30分) 1. 已知0221≠+=+b a b a ,则ba的值为( ) A.-1 B.1 C.-2 D.22.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ) A. 4 B. 6 C.8 D.123.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有( ) A .5组 B .7组 C .9组 D .11组4.如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径长等于( ) A .25B .5C .6D .325.将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为( )A. -4≤b ≤-2B. -6≤b ≤2C.-4≤b ≤2D. -8≤b ≤-26.设a ,b 是实数,定义@的一种运算如下:a @b =(a +b )2﹣(a ﹣b )2,则下列结论: ①若a @b =0,则a =0或b =0第4题图第2题图第5题图xOyC 1D 1A 1B 1E 1 E 2 E 3 E 4 C 2 D 2 A 2B 2C 3D 3A 3B 3第7题图②a @(b +c )=a @b +a @c③不存在实数a ,b ,满足a @b =a 2+5b 2④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,a @b 最大. 其中正确的有( )A .②③④B .①②④C .①③④D .①②③7.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2018B 2018C 2018D 2018的边长是( )A .201712() B .201812()C .20173D .20183(8. 如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣2,与x 轴的一个交点在 (﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a ﹣b =0;②c <0;③﹣3a +c >0;④4a ﹣2b >at 2+bt (t 为实数);⑤点(﹣29,y 1),(﹣25,y 2),(﹣21,y 3)是该抛物线上的点,则y 1<y 2<y 3. 其中说法正确的有( )A .4个B .3个C .2个D .1个 9.若关于x 的方程22240224x x x ax x x +-+++=-+-只有一个实数根,则符合条件的所有实数a 的值的总和为( )A .6-B .30-C .32-D .38-10.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE =FD ,连接第8题图第10题图BE ,CF . BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE④S △HDG :S △HBG =tan ∠DAG ;⑤线段DH 的最小值是25﹣2. A .2B .3C .4D .5二、填空题(每小题4分,共20分)11.在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P '(﹣y +1,x +2),我们把点P '(﹣y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2018的坐标为 . 12. 如图, 点A ,C 都在函数330)y x >的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 .13.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .14. 已知有理数x 满足:31752233x xx -+-≥-,若32x x --+的最小值为a ,最大值为b ,则ab = .15.如图,在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如第12题图第13题图第15题图图1),减去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .三、解答题(每题10分,共50分) 16. (本题满分10分)已知非零实数a ,b 满足a b a b a a =++-+-++-4)1)(5(316822,求1-b a 的值17. (本题满分10分)如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做 “和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;(2)猜想任意一个四位“和谐数”能否被11整除,并说明理由;(3) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x (14x ≤≤,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.18. (本题满分10分) 边长为22的正方形ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°到BQ ,连接QP ,QP 与BC 交于点E ,QP 延长线与AD (或AD 延长线)交于点F . (1)连接CQ ,证明:CQ =AP ;(2)设AP =x ,CE =y ,试写出y 关于x 的函数关系式,并求当x 为何值时,CE =83BC ; (3)猜想PF 与EQ 的数量关系,证明你的结论.19. (本题满分10分)如图,在⊙O 中,直径CD 垂直于不过圆心O 的弦AB ,垂足为点N ,连接AC ,点E 在AB 上,且AE =CE (1)求证:AC 2=AE •AB ;(2)过点B 作⊙O 的切线交EC 的延长线于点P ,试判断PB 与PE 是否相等,并说明理由; (3)在(2)的条件下,设⊙O 半径为4,点N 为OC 中点,点Q 在⊙O 上,求线段PQ 的最小值.20. (本题满分10分)如图,已知抛物线y =ax 2+bx 经过点A (10,0)和B (8,4).点P 是x轴正半轴上的一个动点,过点P 作x 轴的垂线段,与直线OB 交于点C ,延长PC 到Q ,使QC =PC .过点Q 的直线分别与x 轴、y 轴相交于点D 、E ,且OD =OE ,直线DE 与直线OB 相交于点F .设OP =t .(1)请直接写出抛物线和直线OB 的函数解析式; (2)当点Q 落在抛物线上时,求t 的值; (3)连结BD :①请用含t 的代数式表示点F 的坐标;②当以点B 、D 、F 为顶点的三角形与△OEF第18题图第19题图OABx ByPQCEDF第20题图18备用图118备用图219备用图119备用图2求t 的值.九年级数学参考答案一、选择题(每题3分,共30分)1.D2.B3.C4.A5.A6.B7.C8.B9.D 10.C 二、填空题(每题4分,共20分)11. (1,4);12. (26,0);13. 11133y x;14. 5;15. 40或三、解答题(每小题10分,共50分) 16. (本题满分10分)由题意得:5,0)1)(5(2≥≥+-a b a ………………………………………. 2分44)4(16822-=-=-=+-a a a a a ……………………………… 3分 0)1)(5(3)1)(5(34)1)(5(344)1)(5(316822222=+-+-=+-+-+=++-+-+-=++-+-++-b a b a b a b a b a b a b a b a a……………6分又因为03≥-b ,0)1)(5(2≥+-b a 故0)1)(5(32=+-=-b a b ……… 8分则5,3==a b , ………………………………… 9分 故1-b a =25 ………………………… ………………………… ……………………10分17.(本题满分10分)解:⑴、四位“和谐数”:1221,1331,1111,6666…(答案不唯一)……………………2分(2)任意一个四位“和谐数”都能被11整数,理由如下: 设任意四位“和谐数”形式为:abcd ,则满足:最高位到个位排列:a ,b ,c ,d 个位到最高位排列:d,c,b,a由题意,可得两组数据相同,则:a =d ,b =c 则1000100101000100101001110911011111111abcd a b c da b b aa ba b为正整数∴ 四位“和谐数” abcd 能被11整数 又∵a ,b ,c ,d 为任意自然数, ∴任意四位“和谐数”都可以被11整除…………………………………………5分(3)设能被11整除的三位“和谐数”为,zyx ,则满足:个位到最高位排列:x,y,z 最高位到各位排列:z,y,x .由题意得,两组数据相同,则:x =z .故10110zyxxyx x y10110991122911111111zyx x yx y x yx yx y为正整数 ∴y =2x (14x ≤≤)……………………………………………………8分 18. (本题满分10分)(1)证明:如图1,∵线段BP 绕点B 顺时针旋转90°得到线段BQ , ∴BP =BQ ,∠PBQ =90°. ∵四边形ABCD 是正方形, ∴BA =BC ,∠ABC =90°. ∴∠ABC =∠PBQ .∴∠ABC ﹣∠PBC =∠PBQ ﹣∠PBC ,即∠ABP =∠CBQ . 在△BAP 和△BCQ 中, ∵,∴△BAP ≌△BCQ (SAS ).∴CQ =AP ;………………………………………………………………………………3分 (2)解:如图1,∵四边形ABCD 是正方形, ∴∠BAC =∠BAD =45°,∠BCA =∠BCD =45°, ∴∠APB +∠ABP =180°﹣45°=135°, ∵DC =AD =2,由勾股定理得:AC ==4,∵AP =x , ∴PC =4﹣x ,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP, (5)分∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,……………………………………………………6分x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;……………………………………………………7分(3)解:结论:PF=EQ,…………………………………………………………8分理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠F AP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.…………………………………9分当F在AD的延长线上时,如图3,同理可得:PF=PG=EQ.…………………………………10分19. (本题满分10分)证明:(1)如图1,连接BC,∵CD为⊙O的直径,AB⊥CD,∴=,∴∠A=∠ABC,∵EC=AE,∴∠A=∠ACE,∴∠ABC=∠ACE,∵∠A=∠A,∴△AEC∽△ACB,∴,∴AC2=AE•AB;………………………………………………………………………………3分(2)PB=PE,……………………………………………………………………………4分理由是:如图2,连接OB,∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°,∵∠OBN+∠COB=90°,∴∠PBN=∠COB,∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN,∴PB=PE;………………………………………………………………………………7分(3)如图3,∵N为OC的中点,∴ON=OC=OB,Rt△OBN中,∠OBN=30°,∴∠COB=60°,∵OC=OB,∴△OCB为等边三角形,∵Q为⊙O任意一点,连接PQ、OQ,因为O Q为半径,是定值4,则PQ+OQ的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,∴Q为OP与⊙O的交点时,PQ最小,∠A=∠COB=30°,∴∠PEB=2∠A=60°,∠ABP=90°﹣30°=60°,∴△PBE是等边三角形,Rt△OBN中,BN==2,∴AB=2BN=4,设AE=x,则CE=x,EN=2﹣x,Rt△CNE中,x2=22+(2﹣x)2,x =,∴BE=PB=4﹣=,Rt △OPB 中,OP ===, ∴PQ =﹣4=.则线段PQ 的最小值是.……………………………………………………10分20. (本题满分10分)解:(1)抛物线的函数解析式是21542y x x =-+,………………………2分 直线OB 的函数解析式是12y x =; ………………3分 (2)∵OP =t ,PC ⊥x 轴于点P ,交直线OB 于点C ,∴PC =12t ,∴PQ =t ,即Q (t ,t ),………………4分 当点Q 落在抛物线上时,21542t t t =-+, 解得:6t =; -…………………………………………6分(3)①作FG ⊥x 轴于点G ,设FG =n ,由(2)得:PQ =t ,∵OD =OE ,OD ⊥OE ,∴45ODE ∠=︒,∴△PDQ 是等腰直角三角形∴PD = PQ =t ,∴OD =2t ,同理可得:FG = DG =n ,∴OG =2t n -,将x =2t n -,y=n 代入12y x =得:23n t =, ∴OG =43t ,∴F (43t ,23t ); ………………………………………8分②由(3)①得:OF=,FD==,∵ED=,OB=∴BF=OB OF-=,EF ED FD=-=,Ⅰ.当点F在射线OB的点B的右侧时:∠BFD>90°,而△OEF中无钝角,故此时△OEF与△DBF不相似;Ⅱ.当点F在线段OB上时:∵∠OFE=∠BFD,∴OE和BD是对应边,当△OEF∽△DBF时,OF EFDF BF==,解得:103t=,当△OEF∽△BDF时,OF EFBF DF==,解得:4t=.∴103t=或4.…………………………………10分。

相关文档
最新文档