初中数学归纳法典型例题,七年级数学归纳与猜想难题经典例题及答案解析
初中数学培优专题学习专题29 归纳与猜想_答案
专题29 归纳与猜想例1 6 提示:5的对面是2,4的对面是3,1的对面是6.例2 121-n 提示:1S =1,2S =21,3S =22141=,4S =32181=,进而推出n S =121-n . 例3 (1)OE(2)射线OA 上数字的排列规律:6n -5(n 为自然数,下同);射线OB 上数字的排列规律:6n -4;射线OC 上数字的排列规律:6n -3;射线OD 上数字的排列规律:6n -2;射线OE 上数字的排列规律:6n -1;射线OF 上数字的排列规律:6n .(3)在6条射线的数字规律中,只有6n -3=2007有整数解,解围n =335,故“2007”在射线OC 上.例4 (1)可分组为(11),(21,12),(31,22,13),(41,32,23,14),(51,42,33,24,15)…,可知各组数的个数依次为1,2,3,….当F (m )=20012时,m =(1+2+…+2001)+2=2003003,这2003003个数的积为20030011. 例5 (1)第3次操作后所得到的9个数为:2,611,27,617,5,3,4,37,3. 它们的和为2+611+27+617+5+3+4+37+3=255. (2)由条件知0S =5,则1+k S =k S +120+-k S S k =()153+-+k S k k =k S k k ⋅++13-15+k . (3)因3S =255.故4S =346S -45=40;5S =457S -55=55,6S =568S -65=2145.【能力训练】1.10101002.142 提示:若有n 个黑色六边形,则白色六边形个数为4n +2.故=35时,4n +2=4×35=142个.3.1917- 4.B 5.76 黑色梯形的规律明显:每个梯形的高都为2,上底分别对OA 上的1,5,9,…,下底分别对应OA 上的3,7,11,….而上、下底的长度恰好和它在OA 上对应的数值是一样的.以上底为例,1=1,5=1+4×1,9=1+4×2,…,故第10个梯形的上底对应OA 上的数为1+4×9=37,下底的长正好为39,于是10S =()223937⨯+=76. 6.A 7.D 提示:2013÷4=503……1,故在第504个正方形右下角.8.(1)第1列的每个数都是完全平方数,并且恰好等于它所在的行数的平方.第10行起,左起第13列,应该是第13列的第10个数,即()2113-+10=144+10=154. (2)数127满足关系式127=211+6=()2112-+6,即127在左起第12列,上起第6行的位置. 9.观察已经写出的数,发现每三个连续数中恰好有一个偶数,在前100项中,第100项是奇数,前99项中有399=33个偶数. 10.设至少要画k 条直线.k 条直线最多将圆分成1+1+2+3+4+…+k 块,当k =9时,1+1+2+3+…+9=46,当k =10时,1+1+2+3+…+10=56,故至少要画10条直线,可以将圆纸片分成不小于50块.11.若对前三个先进行计算:第1个数:21-(1+21-)=21-21=0; 第2个数:31-(1+21-)[1+()312-][1+()412-]=31-21=-61; 第3个数:41-(1+21-)[1+()312-][1+()412-][1+()512-][1+()612-]=41-21=-41; ……按此规律,第n 个数:11+n -(1+21-)[1+()312-][1+()412-]…[1+()n n 2112--]=11+n -21. 由此可知n 越大,第n 个数越小,那么在第10个数,第11个数,第12个数,第13个数中,最大的数是第10个数.12.一个依次排列的n 个数组成一个数串:1a ,2a ,3a ,…,n a .依题设操作方法可得新增的数为:2a -1a ,3a -2a ,4a -3a ,…,n a -1-n a .∴新增数之和为(2a -1a )+(3a -2a )+(4a -3a )+…+(n a -1-n a )=n a -1a (*).原数串为3个数:3,9,8.第一次操作根据(*)可知,新增4项之和为6+(-1)=5=8-3;第二次操作后所得数串为:3,3,6,3,9,-10,-1,9,8.根据(*)可知,新增4项之和为3+3+(-10)+9=5=8-3.按这个规律下去,第100次操作后所得新数串所有数的和为:(3+9+8)+100×(8-3)=520.。
(完整版)数学归纳法经典例题详解
例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n Λ. 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k Λ. 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k Λ 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++Λ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++Λ.那么当n =k +1时,11131211++++++k k Λ1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k Λ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。
数学归纳法经典例题及答案
数学归纳法(2016.4.21)之马矢奏春创作一、用数学归纳法证实与正整数有关命题的步调是:(1)证实当n 取第一个值0n (如01n =或2等)时结论精确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论精确,证及时1n k =+结论也精确.分化(1)、(2),……留心:数学归纳法运用要点:两步调,一结论. 二、题型归纳:题型1.证实代数恒等式例1.用数学归纳法证实:证实:①n=1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立.②假设n=k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n=k+1时.这就说明,当n=k+1时,等式亦成立,由①、②可知,对一切自然数n 等式成立. 题型2.证实不等式例2.证实不等式n n 2131211<++++ (n∈N).证实:①当n=1时,左边=1,右边=2.左边<右边,不等式成立.②假设n=k 时,不等式成立,即k k 2131211<++++.那么当n=k+1时,这就是说,当n=k+1时,不等式成立.由①、②可知,原不等式对随便率性自然数n 都成立. 说明:这里要留心,当n=k+1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证实:12112+<++k k k .熟习了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证实数列问题例3 (x +1)n =a0+a1(x -1)+a2(x -1)2+a3(x -1)3+…+an(x -1)n(n≥2,n∈N*).(1)当n =5时,求a0+a1+a2+a3+a4+a5的值.(2)设bn =a22n -3,Tn =b2+b3+b4+…+bn.试用数学归纳法证实:当n≥2时,Tn =n(n +1)(n -1)3. 解:(1)当n =5时,原等式变成(x +1)5=a0+a1(x -1)+a2(x -1)2+a3(x -1)3+a4(x -1)4+a5(x -1)5令x =2得a0+a1+a2+a3+a4+a5=35=243.(2)因为(x +1)n =[2+(x -1)]n,所以a2=Cn2·2n-2bn =a22n -3=2Cn2=n(n -1)(n≥2) ①当n =2时.左边=T2=b2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k(k≥2,k∈N*)时,等式成立,即Tk =k(k +1)(k -1)3成立 那么,当n =k +1时,左边=Tk +bk +1=k(k +1)(k -1)3+(k +1)[(k +1)-1]=k(k +1)(k -1)3+k(k +1) =k(k +1)⎝ ⎛⎭⎪⎫k -13+1=k(k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n≥2时,Tn =n(n +1)(n -1)3.。
(完整版)数学归纳法经典例题及答案(2)
数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
数学归纳法经典例题详解
例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n . 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 那么当n =k +1时,有:这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性.解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立.综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m∈N,数列{a n}中的第4m+1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。
数学归纳法经典例题与答案
数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确.综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3=(k +1)[(k +1)+1][(k +1)-1]3=右边.故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n(n +1)(n -1)3.。
2018年浙江省中考数学《第34讲:归纳、猜想》课后练习含答案
B组
9. (2015 ·十堰 )如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火
柴棍.如果搭建正三角形和正六边形共用了
2016 根火柴棍,并且正三角形的个数比正六边
形的个数多 6 个,那么能连续搭建正三角形的个数是 ( )
第 9 题图
A . 222
B . 280
C. 286
D. 292
10.如图,在标有刻度的直线 l 上,从点 A 开始, 以 AB= 1 为直径画半圆,记为第 1 个半圆;
以 BC= 2 为直径画半圆,记为第 2 个半圆;
以 CD =4 为直径画半圆,记为第 3 个半圆;
以 DE = 8 为直径画半圆,记为第 4 个半圆,
…按此规律 ,继续 画半圆,则第 4 个半圆 的面积是第 3 个 半圆面积的
课后练习 34 归纳、猜想与说理型问题
A组
1.图 1 为雅婷左手拿着 3 张深灰色与 2 张浅灰色的牌叠在一起的情形.以下是她每次
洗牌的三个步骤:步骤一:用右手拿出叠在最下:将右手拿的 2 张牌依序交错插入左手拿的 3 张牌之间,如图 3.
步骤三:用左手拿着颜色顺序已改变的 5 张牌,如图 4.
第 1 题图
若依上述三个步骤洗牌,从图 1 的情形开始洗牌若干次后,其颜色顺序会再次与图
1
相同,则洗牌次数可能为下列何者? ( )
A. 18
B . 20
C. 25
D. 27
2. (2017 ·重庆 )下列图形都是由同样大小的菱形按照一定规律所组成的,其中第
1 个图
形中一共有 3 个菱形, 第 2 个图形中一共有 7 个菱形, 第 3 个图形中一共有 13 个菱形, …,
按此规律排列下去,第 9 个图形中菱形的个数为 ( )
初一数学竞赛专题29 归纳与猜想
专题29 归纳与猜想阅读与思考当一个问题涉及相当多的乃至无穷多的情形时,可从问题的简单情形或特殊情况人手,通过对简单情形或特殊情况的试验,从中发现一般规律或作出某种猜想,从而找到解决问题的途径或方法,这种研究问题的方法叫归纳猜想法.归纳是建立在细致而深刻的观察基础上,发现往往是从观察开始的,观察是解决问题的先导,解题中的观察活动主要有三条途径:1.数与式的特征观察.2.几何图形的结构观察.3.通过对简单、特殊情况的观察,再推广到一般情况.需要注意的是,用归纳猜想法得到的结果,常常具有或然性,它可能是成功的发现,也可能是失败的尝试,需用合乎逻辑的推理步骤把它写成无懈可击的证明.【例1】下图是飞行棋的一颗骰子,根据图中A,B,C三种状态所显示的数字,推出“?”处的数字是___________.(“东方航空杯”上海市竞赛试题)(A) (B) (C)解题思路:认真观察A,B,C三种状态所显示的数字,从中发现规律,作出推断。
【例2】如图,依次连结第一个正方形各边的中点得到第二个正方形,再依次连结第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形边长为1,则第n个正方形的面积是____.(湖北省武汉市竞赛试题)解题思路:从观察分析图形的面积入手,先考察n=1,2,3,4时的简单情形,进而作出猜想.【例3】如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线____上.(2) 请任意写出三条射线上数字的排列规律. (3)“2 007”在哪条射线上?(贵州省贵阳市中考试题) 解题思路:观察发现每条射线上的数除以6的余数相同.【例4】观察按下列规则排成的一列数:11,12,21,13,22,31,14,23,32,41,15,24,33,42,51,16,…(※)(1)在(※)中,从左起第m 个数记为F (m ),当F (m )=22001时,求m 的值和这m 个数的积.(2)在(※)中,未经约分且分母为2的数记为c .它后面的一个数记为d ,是否存在这样的两个数c 和d ,使cd =2 001 000? 如果存在,求出c 和d ;如果不存在,请说明理由.(湖北省竞赛试题)解题思路:按分母递减而分子递增的变化规律,对原数列恰当分组,明确每组中数的个数与分母的关系、未经约分且分母为2的数在每组中的位置,这是解本例的关键,【例5】在2,3两个数之间,第一次写上2+31=5,第二次在2.5之间和5,3之间分别写上2+52=72和5+32=4,如图所示:第k 次操作是在上一次操作的基础上,在每两个相邻的数之间写上这两个数的和的1k .(1)请写出第3次操作后所得到的9个数,并求出它们的和.(2)经过k 次操作后所有的数的和记为S k ,第k +1次操作后所有数的和记为 S k +1,写出S k +1与S k 之间的关系式. (3)求S 6的值.(“希望杯”邀请赛试题)解题思路:(1)先得出第3次操作后所得到的9个数,再把它们相加即可. (2)找到规律,即毒次操作几个数的时候,除了头尾两个数2和3之外,中间的 n -2个数均重复计算了2次,用S k 表示出S k +1(3)根据(1),(2)可算出S 6的值.能力训练1.有数组(1,1,1),(2,4,8),(3,9,27),…,则第100组的三个数之和为 .(广东省广州市竞赛试题)2.如图有一长条型链子,其外形由边长为1 cm 的正六边形排列而成.其中每个黑色六边形与6个白色六边形相邻,若链子上有35个黑色六边形,则此链子有________个白色六边形.(2013年“实中杯”数学竞赛试题)3.按一定规律排列的一串数:11.-13,23,-33,15,-25,35,-45,55,-17,27,-37,…中,第98个数是__________.(山东省竞赛试题)4.给出下列丽列数2,4,6,8,10,…,1 994 6,13, 20, 27, 34,…,1 994则这两列数中,相同的数的个数是( ).A .142B .143C .284(浙江省竞赛试题)5.如图,∠AOB =45°,对OA 上到点O的距离分别为1,3,5,7,9,11,…的点作OA 的垂线且与OB 相交,得到并标出一组黑色梯形,面积分别为S 1,S 2,S 3,…,则S 10= .6.一条直线分一张平面为两部分,二条直线最多分一张平面为4部分,设五条直线最多分平面为n部分,则n 等于( )A .16B .18 C.24 D .31(北京市“迎春杯”竞赛试题)7.观察下列正方形的四个顶点所标的数字规律.那么2013这个数标在( ).A .第503个正方形的左下角B .第503个正方形的右下角C .第504个正方形的左下角D .第504个正方形的右下角(2013年浙江省衢江市竞赛试题)8.自然数按下表的规律排列:(1)求上起第10行,左起第13列的数.(2)数127应在上起第几行,左起第几列.(北京市“迎春杯”竞赛试题)9.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,每一个数都是前两个数的和,也就是1,1,2,3,5,8,13,21,34,55…问:这串数的前100个数中(包括第100个数)有多少个偶数?(“华罗庚金杯”竞赛试题)10.将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明理由.(“五羊杯”竞赛试题)11.下面是按一定规律排列的一列数:第1个数:12-(1+-12);第2个数:()()⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛-+-4113112113132;第3个数:()()()()⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛-+-611511411311211415432;…第n个数:()()()⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛-+-+-nnn211411311211111232.那么,在第10个数,第11个数,第12个数,第13个数中,最大的数是哪一个?12. 有依次排列的3个数:3,9,8.对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少?专题29 归纳与猜想例1 6 提示:5的对面是2,4的对面是3,1的对面是6. 例2121-n 提示:1S =1,2S =21,3S =22141=,4S =32181=,进而推出n S =121-n . 例3 (1)OE(2)射线OA 上数字的排列规律:6n -5(n 为自然数,下同);射线OB 上数字的排列规律:6n-4;射线OC 上数字的排列规律:6n -3;射线OD 上数字的排列规律:6n -2;射线OE 上数字的排列规律:6n -1;射线OF 上数字的排列规律:6n .(3)在6条射线的数字规律中,只有6n -3=2007有整数解,解围n =335,故“2007”在射线OC上.例4 (1)可分组为(11),(21,12),(31,22,13),(41,32,23,14),(51,42,33,24,15)…,可知各组数的个数依次为1,2,3,….当F (m )=20012时,m =(1+2+…+2001)+2=2003003,这2003003个数的积为20030011.例5 (1)第3次操作后所得到的9个数为:2,611,27,617,5,3,4,37,3.它们的和为2+611+27+617+5+3+4+37+3=255.(2)由条件知0S =5,则1+k S =k S +120+-k S S k =()153+-+k S k k =k S k k ⋅++13-15+k . (3)因3S =255.故4S =346S -45=40;5S =457S -55=55,6S =568S -65=2145.【能力训练】2.142 提示:若有n 个黑色六边形,则白色六边形个数为4n +2.故=35时,4n +2=4×35=142个. 3.1917-4.B 5.76 黑色梯形的规律明显:每个梯形的高都为2,上底分别对OA 上的1,5,9,…,下底分别对应OA 上的3,7,11,….而上、下底的长度恰好和它在OA 上对应的数值是一样的.以上底为例,1=1,5=1+4×1,9=1+4×2,…,故第10个梯形的上底对应OA 上的数为1+4×9=37,下底的长正好为39,于是10S =()223937⨯+=76.6.A7.D 提示:2013÷4=503……1,故在第504个正方形右下角.8.(1)第1列的每个数都是完全平方数,并且恰好等于它所在的行数的平方.第10行起,左起第13列,应该是第13列的第10个数,即()2113-+10=144+10=154.(2)数127满足关系式127=211+6=()2112-+6,即127在左起第12列,上起第6行的位置.9.观察已经写出的数,发现每三个连续数中恰好有一个偶数,在前100项中,第100项是奇数,前99项中有399=33个偶数. 10.设至少要画k 条直线.k 条直线最多将圆分成1+1+2+3+4+…+k 块,当k =9时,1+1+2+3+…+9=46,当k =10时,1+1+2+3+…+10=56,故至少要画10条直线,可以将圆纸片分成不小于50块.11.若对前三个先进行计算: 第1个数:21-(1+21-)=21-21=0; 第2个数:31-(1+21-)[1+()312-][1+()412-]=31-21=-61; 第3个数:41-(1+21-)[1+()312-][1+()412-][1+()512-][1+()612-]=41-21=-41; ……按此规律,第n 个数:11+n -(1+21-)[1+()312-][1+()412-]…[1+()n n 2112--]=11+n -21. 由此可知n 越大,第n 个数越小,那么在第10个数,第11个数,第12个数,第13个数中,最大的数是第10个数.12.一个依次排列的n 个数组成一个数串:1a ,2a ,3a ,…,n a .依题设操作方法可得新增的数为:2a -1a ,3a -2a ,4a -3a ,…,n a -1-n a .∴新增数之和为(2a -1a )+(3a -2a )+(4a -3a )+…+(n a -1-n a )=n a -1a (*).原数串为3个数:3,9,8.第一次操作根据(*)可知,新增4项之和为6+(-1)=5=8-3;第二次操作后所得数串为:3,3,6,3,9,-10,-1,9,8.根据(*)可知,新增4项之和为3+3+(-10)+9=5=8-3.按这个规律下去,第100次操作后所得新数串所有数的和为:(3+9+8)+100×(8-3)=520.。
数学归纳法经典例题及答案
数学归纳法(2016421)、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确.综合(1)、( 2),注意:数学归纳法使用要点: 两步骤,一结论、题型归纳: 题型1.证明代数恒等式用数学归纳法证明:当n=k+1时.k 12k 3由①、②可知,对一切自然数 n 等式成立.证明:①n=1时,左边 ②假设n =k 时, 2n 11 2n 1 n 2n 11 3 等式成立,即:-,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k2k 12k 1 2k 1 2k 1 2k 32k 1 2k 1 2k 32k 2 2k 1 3k 1 2k 3 2k 1 k 12k 1 2k 3 这就说明, 当n=k+1时,等式亦成立,题型2.证明不等式11 1 _例2 •证明不等式1 2打(n € N ).V 2 <3 V n证明:①当n=1时,左边=1,右边=2.左边 <右边,不等式成立.那么当n=k+1时,2 .k2k 1 2.k 1这就是说,当n=k+1时,不等式成立.由①、②可知,原不等式对任意自然数 n 都成立.说明:这里要注意,当 n=k+1时,要证的目标是1 1 1 1 ----------------------------------------1 — — — ------------2 \ k 1,当代入归纟纳假设后,就是要证明:■. 2 3 . k 、k 12、、k 1— 2 k 1 .-k 1认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *).(1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值.a 2 十⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1)3 .解:(1) 当 n = 5 时,原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 'I 1.31 .2 1■-3令x = 2 得a°+ a i + a2+ a3+ a4+ a5= 35= 243. ⑵因为(x+ 1)n= [2 + (x—1)]n,所以a2= C n22旷2b n=長=2C n2= n(n —1)(n > 2)①当n= 2时.左边=T2= b2 = 2,右边=2(2 +屮2 —1=2,左边=右边,等式成立.②假设当n = k(k>2, k€ N*)时,等式成立,即T k=k(k+!)(k—1成立那么,当n = k+ 1时,左边=T k+ b k+1 =k(k+ ¥(k— " + (k+ 1)[( k+ 1) —1] = k(k+ ¥(k—1 + k(k + 1) =k(k+ 1)宁 + 1 迩+ 1)(k+ 2)(k+ 1)[( k+ 1) + 1][(k + 1)-1]=右边故当n= k+ 1时,等式成立.综上①②,当n》2时,T n =n(n+ 1)( n—13。
数学归纳法经典例题及答案
数学归纳法(2016.4.21)之邯郸勺丸创作一、用数学归纳法证明与正整数有关命题的步调是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确.综合(1)、(2),……注意:数学归纳法使用要点:两步调,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立.②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211131211+<++++++k k k ,当代入归纳假设后,就是要证明:12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例 3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.解:(1)当n =5时,原等式变成(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
数学归纳法经典例题及答案
数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
数学归纳法
探究点三 用数学归纳法证明整除问题 【典例3】用数学归纳法证明32n+2-8n-9(n∈N*)能被64整除. 【思维导引】第一步验证当n=1时结论成立,第二步假设n=k(k≥1,k∈N*)时结 论成立,当n=k+1时,凑出n=k时的式子再证明结论成立.
【证明】(1)当n=1时,32×1+2-8×1-9=64,能被64整除, 所以n=1时结论成立. (2)假设当n=k(k≥1,k∈N*)时结论成立,即32k+2-8k-9能被64整除,则当n=k +1时, 32(k+1)+2-8(k+1)-9=9·(32k+2-8k-9)+64(k+1)能被64整除, 所以n=k+1时结论也成立. 由(1)(2)可知,对一切正整数n,32n+2-8n-9能被64整除.
2
+(k+4)=
(k+4)(k+5)
2
,
即等式成立.综合①②可得等式成立.
探究点二 用数学归纳法证明不等式 【典例2】已知等差数列{an}中,a2=8,前10项的和S10=185, (1)求数列{an}的通项公式an. (2)若从数列{an}中依次取出第2,4,8,…,2n,…项,按原来的顺序排成一个 新数列,试求新数列的前n项和An. (3)设Bn=n(5+3an),试比较An和Bn的大小,并说明理由.
【类题通法】用数学归纳法证明几何问题的关键是“找项”,即几何元素从k增加 到k+1时,所证的几何量增加多少,同时要善于利用几何图形的直观性,建立k 与k+1之间的递推关系.
平面内有n(n∈N*,n≥2)条直线,其中任何两条不平行,任何三条不过同一
n(n-1)
点,求证:交点的个数f(n)= 2
.
【证明】(1)当n=2时,两条直线的交点只有一个,又f(2)=
2.用数学归纳法证明1-21
专题复习-中考数学归纳与猜想(含答案)-
专题复习-中考数学归纳与猜想(含答案)-- 2 -专题复习 归纳与猜想归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。
其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。
一、知识网络图二、基础知识整理猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特猜想性猜想猜想猜想数猜想图猜想数猜想数猜想变- 3 -- 4 -⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。
解:⑴5×56=5-56⑵11+-=+⨯n nn n n n 。
例2〖归纳猜想型〗将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,如此循环进行下去,将结果填在下表中,并解答所提出的问题:所剪次1 2 3 4 5 …数正方形4 7 10 13 16 …个数⑴如果能剪100次,共有多少个正方形?据上表分析,你能发现什么规律?⑵如果剪n次共有A n个正方形,试用含n、A n的等式表示这个规律;⑶利用上面得到的规律,要剪得22个正方形,共需剪几次?⑷能否将正方形剪成2004个小正方形?为什么?⑸若原正方形的边长为1,设a n表示第n次所剪的正方形的边长,试用含n的式子表示a n;- 5 -- 6 -⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个; ⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解,∴不能将原正方形剪成2004个小正方形; ⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义1 a a a- 7 -如图所示。
数学归纳法经典例题及参考答案
由①、②可知,对一切自然数 n 等式成立. 题型 2.证明不等式
例 2.证明不等式1 1 1 1 2 n (n∈N).
23
n
证明:①当 n=1 时,左边=1,右边=2. 左边<右边,不等式成立.
②假设 n=k 时,不等式成立,即1 1 1 1 2 k .
认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.
题型 3.证明数列问题 例 3(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,
n∈N*). (1)当 n=5 时,求 a0+a1+a2+a3+a4+a5 的值. (2)设 bn=,Tn=b2+b3+b4+…+bn.试用数学归纳法证明:当 n≥2 时,Tn
=. 解: (1)当 n=5 时, 原等式变为(x+1)5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-
1)5 令 x=2 得 a0+a1+a2+a3+a4+a5=35=243. (2)因为(x+1)n=[2+(x-1)]n,所以 a2=Cn2·2n-2 bn==2Cn2=n(n-1)(n≥2) ①当 n=2 时.左边=T2=b2=2, 右边==2,左边=右边,等式成立. ②假设当 n=k(k≥2,k∈N*)时,等式成立, 即 Tk=成立 那么,当 n=k+1 时, 左边=Tk+bk+1=+(k+1)[(k+1)-1]=+k(k+1) =k(k+1)= ==右边. 故当 n=k+1 时,等式成立. 综上①②,当 n≥2 时,Tn=.
例 1.用数学归纳法证明:
证明:①n=1 时,左边 1 1 ,右边 1 1 ,左边=右边,等式成立.
数学归纳法二(解析,练习及答案)
数学归纳法(Ⅱ)用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确.例1、比较2n与n2的大小(n∈N*).解:当n=1时,2n>n2,当n=2、4时,2n=n2,当n=3时,2n<n2,当n=5时,2n>n2,猜想:当n≥5时,2n>n2,n∈N*.下面用数学归纳法证明:(1)当n=5时,结论显然成立.(2)假设n=k(k∈N*,k≥5)时2k>k2,当n=k+1时,2k+1=2·2k>2k2.下面证明2k2>(k+1)2,2k2-(k+1)2=k2-2k-1,此式在k≥5时单调递增.∴k2-2k-1≥14>0,∴2k2>(k+1)2.即n=k+1时,2k+1>(k+1)2.∴由(1)(2)得所求证成立.综上,当n=1或n≥5时,2n>n2;当n=2,4时,2n=n2;当n=3时,2n<n2.例2、已知数列满足,,试猜想的通项公式并用数学归纳法证明.解:由和,得,,,,归纳上述结果,可猜想.下面用数学归纳法证明:(1)当n=1时,,右边,等式成立.(2)假设当n=k(k≥1)时,等式成立,即成立.当n=k+1时,.即n=k+1时等式成立.根据(1)和(2),可知猜想对任意正整数n都成立.例3、是否存在常数a、b、c,使等式对一切正整数n 都成立?证明你的结论.解:把n=1,2,3代入得方程组,解得,猜想:等式对一切都成立.下面用数学归纳法证明:(1)当n=1时,由上面的探求可知等式成立.(2)假设n=k时等式成立,即,当n=k+1时,所以当n=k+1时,等式也成立,∴由(1)(2)知猜想成立,即存在a=3,b=11,c=10使命题成立.例4、是否存在正整数m,使得f(n)=(2n+7)·3n+9对任意自然数n都能被m整除?若存在,求出最大的m值,并证明结论;若不存在,请说明理由.解:由f(n)=(2n+7)·3n+9,得f(1)=36, f(2)=3×36, f(3)=10×36, f(4)=34×36,由此猜想最大的m=36.下面用数学归纳法证明f(n)能被36整除:(1)当n=1时,显然成立.(2)假设n=k时, f(k)能被36整除,即f(k)=(2k+7)·3k+9能被36整除;当n=k+1时,f(k+1)=[2(k+1)+7]·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),由于3k-1-1是偶数,故18(3k-1-1)能被36整除.∴当n=k+1时,f(n)也能被36整除.由(1)(2)可知对一切正整数n都有f(n)=(2n+7)·3n+9能被36整除,m的最大值为36.练习:一、选择题1、如果命题对成立,那么它对也成立,又若对及成立,则下列结论正确的是()A.对所有自然数成立 B.只对所有正偶数成立C.只对所有正奇数成立 D.对所有大于1的自然数成立2、用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证()A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立3、用数学归纳法证明命题“n3+(n+1)3+(n+2)3(n∈N)能被9整除”要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3 B.(k+2)3 C.(k+1)3D.(k+1)3+(k+2)34、如果命题对n=k成立,则它对n=k+1也成立,现已知对n=4不成立,则下列结论中正确的是()A.对成立 B.对n>4且成立C.对n<4且成立 D.对n≤4且不成立二、填空题5、用数学归纳法证明“2n>n2+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取__________.6、证明<1++++…+<n+1(n>1),当n=2时,中间式子等于_________.三、解答题7、用数学归纳法证明:对一切大于1的自然数,不等式(1+)(1+)…(1+)>均成立.8、已知数列{a n}的前n项和为S n,且a1=1,S n=n2a n(n∈N*).(1)试求出S1,S2,S3,S4,并猜想S n的表达式;(2)证明你的猜想,并求出a n的表达式.9、是否存在常数a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立,若存在,求出a、b、c并证明;若不存在,试说明理由.10、已知数列,计算S1,S2,S3,S4,根据计算结果,猜想S n的表达式,并用数学归纳法进行证明.11、已知等差数列{a n}的公差d大于0,且a2,a5是方程x2-12x+27=0的两根,数列{b n}的前n项和为T n,且T n=1-.(1)求数列{a n}、{b n}的通项公式;(2)设数列{a n}的前n项和为S n,试比较与S n+1的大小,并说明理由.参考答案:1、D 解析:命题对成立,则它对也成立;由成立可以得取所有正偶数都成立,由成立可以得取所有正奇数都成立,所以答案选D.2、D 解析:假设n=k时不等式成立,即2k>k2-2.当n=k+1时,2k+1=2·2k>2(k2-2),由2(k2-2)≥(k+1)2-2k2-2k-3≥0(k+1)(k-3)≥0k≥3,因此需验证n=1,2,3时命题成立.3、A 解析:假设n=k时命题成立,即k3+(k+1)3+(k+2)3能被9整除,当n=k+1时(k+1)3+(k+2)3+(k+3)3=[k3+(k+1)3+(k+2)3]+9(k2+3k)+27.4、D 解析:可以考虑“命题对n=k成立,则它对n=k+1也成立”的逆否命题:“命题对n=k+1不成立,则它对n=k不成立”.5、5 提示:时2n>n2+1都不成立,以后都成立.6、1+++提示:时,所以中间的式子为1+++.7、证明:(1)当n=2时,左边=1+=;右边=.∵左边>右边,∴不等式成立.(2)假设n=k(k≥2,且k∈N*)时不等式成立,即(1+)(1+)…(1+)>.则当n=k+1时,(1+)(1+)…(1+)>·==>==.∴当n=k+1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n,不等式都成立.8、解:(1)∵a n=S n-S n-1(n≥2),∴S n=n2(S n-S n-1),∴S n=S n-1(n≥2).∵a1=1,∴S1=a1=1,∴S2=,S3==,S4=,猜想S n=(n∈N*).(2)证明:①当n=1时,S1=1成立.②假设n=k(k≥1,k∈N*)时,等式成立,即S k=,当n=k+1时, S k+1=(k+1)2·a k+1=a k+1+S k=a k+1+,∴a k+1=,∴S k+1=(k+1)2·a k+1==,∴n=k+1时等式也成立,得证.∴根据①、②可知,对于任意n∈N*,等式均成立.又∵a k+1=,∴a n=.9、解:假设存在a、b、c使12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立.当n=1时,a(b+c)=1;当n=2时,2a(4b+c)=6;当n=3时,3a(9b+c)=19.解方程组解得证明如下:①当n=1时,由以上知存在常数a,b,c使等式成立.②假设n=k(k∈N*)时等式成立,即12+22+32+…+k2+(k-1)2+…+22+12=k(2k2+1);当n=k+1时,12+22+32+…+k2+(k+1)2+k2+(k-1)2+…+22+12=k(2k2+1)+(k+1)2+k2 =k(2k2+3k+1)+(k+1)2=k(2k+1)(k+1)+(k+1)2=(k+1)(2k2+4k+3)=(k+1)[2(k+1)2+1],即n=k+1时,等式成立.因此存在a=,b=2,c=1,使等式对一切n∈N*都成立.10、解:;.猜想:证明:(1)当n=1时,左边=,右边=,猜想成立.(2)假设当n=k时猜想成立,即那么,所以,当n=k+1时猜想也成立.综合(1)(2)知,猜想对任何都成立.11、解:(1)由已知得,又∵{a n}的公差大于0,∴a5>a2,∴a2=3,a5=9.∴d===2,a1=1,∴a n=2n-1.∵T n=1-b n,∴b1=,当n≥2时,T n-1=1-b n-1,∴b n=T n-T n-1=1-b n-(1-b n-1),化简,得b n=b n-1,∴{b n}是首项为,公比为的等比数列,即b n=·=,∴a n=2n-1,b n=.(2)∵S n==n2,∴S n+1=(n+1)2,=.以下比较与S n+1的大小:当n=1时,=,S2=4,∴<S2,当n=2时,=,S3=9,∴<S3,当n=3时,=,S4=16,∴<S4,当n=4时,=,S5=25,∴>S5.猜想:n≥4时,>S n+1.下面用数学归纳法证明:①当n=4时,已证.②假设当n=k(k∈N*,k≥4)时,>S k+1,即>(k+1)2.那么n=k+1时,==3·>3(k+1)2=3k2+6k+3=(k2+4k+4)+2k2+2k-1>[(k+1)+1]2=S(k+1)+1,∴n=k+1时,>S n+1也成立.由①②可知n∈N*,n≥4时,>S n+1都成立.综上所述,当n=1,2,3时,<S n+1,当n≥4时,>S n+1.。
数学归纳法典型例题
2.3 数学归纳法2.3.2 数学归纳法应用举例【提出问题】数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。
那么,数学归纳法都能解决哪些类型的问题呢?我们再研究几个用数学归纳法证明的例子。
【经典例题】例1 在数列{a n }中a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列。
(Ⅰ)求a 2,a 3,a 4并猜想a n 的表达式;(Ⅱ)用数学归纳法证明所得的结论;解:(Ⅰ)∵a n ,S n ,S n -21成等比数列 ∴S n 2=a n ·(S n -21)(n ≥2) (*) 把a 1=1,S 2=a 1+a 2=1+a 2代入(*)式得:a 2=-32 把a 1=1,a 2=-32,S 3=31+a 3代入(*)得:a 3=-152。
同理可得:a 4=-352 由此可以猜想:a n =⎪⎩⎪⎨⎧>---=)1()12)(32(2)1(1n n n n (Ⅱ)(1)当n=1,2时,由(Ⅰ)知猜想成立。
(2)假设n=k(k ≥2) 时,a k =-)12)(32(2--k k 成立。
故S k 2=-)12)(32(2--k k ·(S k -21)(2k -3)(2k -1)S k 2+2S k -1=0∴S k =121-k 或S k =321--k (舍去) 由S k+12=a k+1·(S k+1-21)得 (S k +a k+1)2=a k+1·(a k+1+S k -21) 所以2)12(1-k +a k+12+1221-+k a k =a k+12+121-+k a k -21a k+1 解得a k+1=〕〕〔〔1)1(23)1(22-+-+-k k 即n=k+1时,命题也成立。
由(1)(2)可知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切正整数成立。
07数学归纳法(经典题型+答案)
数学归纳法(理)证明一个与正整数n 有关的命题,可按下列步骤:1.(归纳奠基)证明当n 取第一个值n 0(n 0∈N*)时命题成立;2.(归纳递推)假设n =k(k ≥n 0,k ∈N*)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.例1:已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2(1n +2+1n +4+…+12n )时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证 ( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立解: ∵n 为偶数故假设n =k 成立后,再证n =k +2时等式成立例2:用数学归纳法证明“1+2+22+…+2n +2=2n +3-1”,在验证n =1时,左边计算所得的式子为 ( ) A .1 B .1+2 C .1+2+22 D .1+2+22+23解:由n =1时,左=1+2+22+23.例3:已知f (n )=1n +1n +1+1n +2+…+1n 2,则 ( ) A .f (n )中共有n 项,当n =2时,f (2)=12+13 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14例4:用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左例5:在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验第一个值n 0=________. 解:第一步检验的第一个值n 0应为3.例6:求证:(n +1)(n +2)·…·(n +n)=2n ·1·3·5·…·(2n -1)(n ∈N*).解:当n =1时,等式左边=2,右边=2,故等式成立;假设当n =k 时等式成立,即(k +1)(k +2)·…·(k +k)=2k·1·3·5·…·(2k -1),那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1)=(k +2)(k +3)·…·(k +k)(2k +1)(2k +2) =2k·1·3·5·…·(2k -1)(2k +1)·2=2k +1·1·3·5·…·(2k -1)(2k +1),这就是说当n =k +1时等式也成立. 综上可知原等式对于任意正整数n 都成立.用数学归纳法证明恒等式应注意(1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标.(3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.例7:数列{an}满足Sn =2n -a n (n ∈N*).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ;(2)用数学归纳法由此猜想a n =2n -12n -1(n ∈N *). (2)证明:①当n =1时,a 1=1,结论成立.②假设n =k (k ≥1且k ∈N *)时,结论成立,即a k =2k -12k -1.那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k . ∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k .这表明n =k +1时,结论成立.由①②知猜想a n =2n -12n -1(n ∈N *)成立. 例8:已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *. (1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.解:(1)当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1或a 1=-3-1(舍去). 当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3或a 2=-5-3(舍去).同理可得a 3=7- 5.由a 1,a 2,a 3,猜想a n =2n +1-2n -1(n ∈N *).(2)证明:①由(1)的计算过程知,当n =1,2,3时,通项公式成立.②假设当n =k (k ≥3,k ∈N *)时,通项公式成立,即a k =2k +1-2k -1.那么由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k,将a k =2k +1-2k -1代入上式并整理得 a 2k +1+22k +1a k +1-2=0,解得:a k +1=2k +3-2k +1或a k +1=-2k +3-2k +1(舍去).即当n =k +1时,通项公式也成立.由①和②,可知对所有n ∈N *,a n =2n +1-2n -1都成立.例9:用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( ) A .k 2+1B .(k +1)2C.k +14+k +122D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2 解:当n =k 时,等式左端=1+2+…+k 2,当n =k +1时,等式左端=1+2+…+k 2+221(1)(1)k k k +⋯++++个.答案:D例10:如果命题p (n )对n =k 成立,则它对n =k +2也成立.若p (n )对n =2成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立解:若n =2p (n )成立,则n =4,6,8,…,时p (n )成立.答案:B例11:用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值最小应取( ) A .7 B .8 C .9 D .10解:可逐个验证,n =8成立.答案:B例12.下列代数式(其中k ∈N *)能被9整除的是( )A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k )解:(1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立.由(1)(2)可知,命题对任何k ∈N *都成立.答案:D例13:若凸n (n ≥4)边形有f (n )条对角线,是凸(n +1)边形的对角线条数f (n +1)为( )A .f (n )+n -2B .f (n )+n -1C .f (n )+nD .f (n )+n +1解:由题意知f (n +1)-f (n )=n -1,故f (n +1)=f (n )+n -1.答案:B例14:在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是____________. 解:a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,∴a n =12n -12n +1.例15:用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真. 解:∵n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立.答案:2k +1例16:用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12. 证明:(1)当n =1时,左边=12=1,右边=(-1)0·1×1+12=1,∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k k +12. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2=(-1)k -1k k +12+(-1)k ·(k +1)2=(-1)k ·k +12[-k +2(k +1)]=(-1)k k +1k +22,∴n =k +1时,等式也成立, 由(1)(2)得对任意n ∈N *有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12. 例17:已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n(n ∈N *),且点P 1的坐标为(1,-1). *解:(1)由题意得a 1=1,b 1=-1,b 2=-11-4×1=13,a 2=1×13=13,∴P 2(13,13). ∴直线l 的方程为y +113+1=x -113-1,即2x +y =1. (2)①当n =1时,2a 1+b 1=2×1+(-1)=1成立.②假设n =k (k ≥1且k ∈N *)时,2a k +b k =1成立.则2a k +1+b k +1=2a k ·b k +1+b k +1=b k 1-4a 2k ·(2a k +1)=b k 1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.例18:已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较11+a 1+11+a 2+11+a 3+…+1与1的大小,并说明理由. 解:∵f ′(x )=x 2-1,a n +1≥f ′(a n +1),∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1=x 2+2x 在区间[-1,+∞)上单调递增,于是由a 1≥1,得a 2≥(a 1+1)2-1≥22-1,进而得a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想:①当n =1时,a 1≥21-1=1,结论成立;②假设当n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k -1,则当n =k +1时,由g (x )=(x +1)2-1在区间[-1,+∞)上单调递增知,a k +1≥(a k +1)2-1≥22k -1≥2k +1-1,即n =k +1时,结论也成立.由①、②知,对任意n ∈N *,都有a n ≥2n -1.即1+a n ≥2n .∴11+a n ≤12n . ∴11+a 1+11+a 2+11+a 3+…+11+a n ≤12+122+123+…+12n =1-12n ⎛⎫ ⎪⎝⎭<1.。