数理逻辑经验例子
精品文档-离散数学(方世昌)-第1章
第1章 数理逻辑
例 1.1 - 1 下述都是命题: (1) 今天下雪; (2) 3+3=6; (3) 2 是偶数而 3 是奇数; (4) 陈涉起义那天,杭州下雨; (5) 较大的偶数都可表为两个质数之和。
3
第1章 数理逻辑
以上命题中,(1)的真值取决于今天的天气; (2)和(3)是真; (4)已无法查明它的真值,但它是或真或假的, 故将它归属于 命题; (5)目前尚未确定其真假,但它是有真值的,应归属于 命题。
6
第1章 数理逻辑
从以上分析,我们得出他必须既非说谎也不是讲真话。 这 样,断言“我正在说谎”事实上不能指定它的真假,所以不是命 题。 这种断言叫悖论。
若一个命题已不能分解成更简单的命题,则这个命题叫原子 命题或本原命题。 例1.1 - 1中(1)、(2)、(4)、(5)都是本原命 题,但(3)不是,因为它可写成“2 是偶数”和“3 是奇数”两 个命题。
译为P∧Q,但“林芬和林芳是姐妹”就不能翻释成两个命题的合
取,它是一个原子命题。
34
第1章 数理逻辑
1.1.3 命题变元和命题公式 通常,如果P代表真值未指定的任意命题,我们就称P为命题
变元; 如果P代表一个真值已指定的命题,我们就称P为命题常元。 但由于在命题演算中并不关心具体命题的涵义,只关心其真假值, 因此,我们可以形式地定义它们。
以“真”、“假”为其变域的变元,称为命题变元; T和F称 为命题常元。
35
第1章 数理逻辑
习惯上把含有命题变元的断言称为命题公式。 但这样描述 过于表面,它没能指出命题公式的结构。 因为不是由命题变元、 联结词和一些括号组成的字符串都能成为命题公式,因此在计算 机科学中常用以下定义。
单个命题变元和命题常元叫原子公式。 由以下形成规则生 成的公式叫命题公式(简称公式):
高级数理逻辑
设R为A上的一个等价关系,则 A/R={[a]R|a∈A}称为A关于R的商集。 等价类的性质
∪[a]R=A [a]R=[b]R iff aRb [a]R≠Ф
A/R是A的一个划分。
映射
复合关系
设R是由A到B的一个二元关系,S是由B到C的一个二元关 系,则
R◦S={<x,z>|存在y ∈B,使得<x,y>∈R且<y,z>∈S}称为R 与S的复合关系
逆关系
设R是由A到B的一个二元关系,则 R-1= {<y,x>|<x,y>∈R} 称为R的逆关系。
关系的性质
设R是A上的一个二元关系 自反
✓ 所有中学生打网球。 ✓ 王君不打网球。 ➢ 王君不是中学生。
可推导性关系的内因
表象:前提、结论的真值
语义范畴
内因:前提、结论的逻辑形式
语法范畴
两个例子的逻辑形式相同
✓ S中的所有元有R性质。 ✓ a没有R性质。 ➢ a不是S中的元。
数理逻辑的研究内容
形式语言
无二义性、精确的、普遍适用的符号语言 自然语言存在二义性、不精确 语义:涉及符号、表达式的具体涵义 语法:仅涉及表达式的形式结构
ZF公理体系
外延公理
S=T iff (x)(x S x T)为真
子集公理
S T iff (x)(x S x T)为真
空集存在公理幂集P(A) = {a | a为A的子集}
集合的运算
对于集S,T 并
SUT {x | x S x T}
交
SI T {x | x S x T}
数理逻辑 第三章 数学推理 数学归纳法
这样就证明了从P(n)得出P(n+1) 在第二个等式中我们使用了归纳假设P(n) 因为P(1)为真,而且对所有正整数n来说
P(n)→P(n+1)为真,所以,由数学归纳法原 理就证明了对所有正整数n来说P(n)为真
四、数学归纳法的例子
例:用数学归纳法证明:对所有正整数n 来说不等式n<2n
来说P(k)为真,要完成归纳步骤就必须证明 在这个假定下P(n+1)为真
五、数学归纳法的第二原理
例:证明:若n是大于1的整数,则n可以 写成素数之积
解:分两种情况考虑:当n+1是素数时和当 n+1是合数时。若n+1是素数,则P(n+1)为 真;若n+1是合数,则可以将其表示成两个 整数a和b之积,其中a、b满足 2≤a≤b≤n+1
3.2 数学归纳法 Mathematical Induction
一、引言
前n个正奇数之和的公式是什么? 对n=1,2,3,4,5来说,前n个正奇数之和为:
1=1,1+3=4,1+3+5=9, 1+3+5+7=16,1+3+5+7+9=25
猜测前n个正奇数之和是n2 假如这个猜测是正确的,我们就需要一
三、数学归纳法
用数学归纳法证明定理时
首先证明P(1)为真,然后知道P(2)为真,因 为P(1)蕴含P(2)
P(3)为真,因为P(2)蕴含P(3) 以这样的方式继续下去,就可以看出对任
意正整数k来说P(k)为真
数学归纳法的形象解释
三、数学归纳法
为什么数学归纳法是有效的?
数理逻辑
命题逻辑
•必要条件:就是如果该条件不成立,那么结 论就不成立, 则该条件就是必要条件。
上例中,“植物死亡”就是“缺少水分” 的必要条件(植物未死亡,一定不缺少水分)。 在自然语言中表示必要条件的词有 : 只有…才… 、仅当…。
命题逻辑
•等价“”
表示“当且仅当”、“充分且必要”,"相同",
“相等”,“一样”
• 演绎推理:由一般规律推出个别事实。 形式逻辑主要是研究演绎推理的。 例1:如果天下雨,则路上有水。(一般规律) 天下雨了。 (个别事实) 推出结论:路上有水。 (个别结论)
数理逻辑是用数学方法研究形式逻辑中推理规则 的一种理论。 所谓“数学方法”:是建立一套有严格定义的符 号,即建立一套形式语言,来研究形式逻辑。所以数 理逻辑也称为“符号逻辑”。 它与数学的其它分支、计算机科学、人工智能、 语言学等学科均有密切联系。 •这里只讨论“命题逻辑”和“谓词逻辑”。
命题逻辑
• 判断下面的式子是不是命题公式:
P∧Q, PR, (P∨Q)∧R) (P∧Q),(PR),((P∨Q)∧R) • 按照合式公式定义最外层括号必须写。 • 约定:为方便,最外层括号可以不写,上 面的命题公式可以写成: P∧Q,PR,(P∨Q)∧R
命题逻辑
• 命题公式的真值表
一个命题公式不是命题,所以它没有
命题逻辑 方法1. 列真值表。 例如,证明 (P∧(PQ))Q 为重言式。
P F F T T
Q F T F T
P Q T T F T
P∧(PQ) (P∧(PQ))Q F T F T F T T T
永真式的真值表的最后一列全是“T”
命题逻辑
永真式的性质
1).如果A是永真式,则A是永假式。
数理逻辑讲义
数理逻辑的一般介绍我们在中学时代就能进行一些证明了, 但并非所有的人都能回答到底什么是证明. 大概来说, 所谓的证明就是把认为某一断言是正确的理由明确地表述出来. 在这一过程中, 我们通常都需要把一些人们已接受的命题作为讨论的基础. 在此基础上, 如果我们能够把该断言推导出来, 该断言就是被认为是被证明了, 因而也就会被人们接受. 于是, 一个很自然的问题就是: 推导究竟为何物? 这个问题就属于逻辑的范畴.逻辑研究推理, 而数理逻辑则研究数学中所用的推理. 由于这种推理在计算机科学中有许多有广泛的应用, 数理逻辑也就成为计算机科学的重要基础之一.很明显, 我们不能够证明一切命题. 如上所述, 当我们证明某一断言(结论) 的时候需要一些其它的命题(前提)作为推理的基础. 我们还可以要求对这些前提进行证明. 如果一直这样要求下去, 或迟或早, 我们会遇这样的情况: 我们进行了“循环” 证明, 即把要证明的命题作为前提来使用, 或者我们无法再作任何证明, 因为没有更为明显的命题可以用来作为前提了.这样,我们就必须不用证明而接受某些命题,我们把这类命题称为“公理”; 其它由这些公理而证明的命题则被称为“定理”.所谓的命题, 直观上是关于某些概念之间的关系. 因而, 我们要求公理是那些根据概念可以明显地接受的命题. 由概念,公理和定理所组成的全体就是公理系统.以上对公理系统的描述要求我们知道公理系统的确切含义. 然而, 从推理的角度来说, 我们并不需要如此. 让我们来看下面的例子:(1).每个学生都是人,(2).王平是学生, (3).王平是人.我们可以由(1) 和(2)推导出(3), 也就是说,如果(1) 和(2)是正确的, 我们就可以断定(3)是正确的. 在这个推理过程中我们并不需要知道“王平”, “学生”, “人” 的含义如何, 把它们换成任何其它的名词, 这一推理都成立. 使(3) 成为(1) 和(2) 的逻辑推论是依据这样的事实: 如果(1)和(2)为真, 则(3)为真. 换句话说, 我们从命题的形式上就可以判断某一推理是否在逻辑上成立, 而无需考虑它的实际含义. 所以我们在研究逻辑的时候往往只需要进行形式的考察就行了, 不必考虑其含义.当我们对某一类研究对象指定了一个公理系统时, 这个公理系统所表示的含义就确定了. 但是在很多情况下, 我们会发现这个公理系统也适合于其它的一些对象. 于是当代数学建立了许多公理系统框架(如各种代数结构). 在这种公理系统框架中, 真正重要的并不是各种公理系统所表达的特定含义的不同, 而是它们的系统构造方面的区别. 这就告诉我们, 在对公理系统进行研究时, 仅对公理系统的形式进行考察是有实际意义的, 在某些情况下这种形式上的考察可以使我们的研究更具有一般性.基于如上认识以及其它的一些考虑(如从计算机科学的角度进行研究等), 我们将对公理系统的语法部分和语义部分进行分别研究. 公理系统的语义部分研究公理系统的含义, 它属于"模型论" 的研究范围, 我们将在今后作一些初步的介绍. 现在,我们对公理系统的语法部分进行粗略的描述.公理系统的语法部分称为形式系统. 它由语言, 公理和推理规则这样三个部分组成.任何推理必须在一定的语言环境中进行, 所以形式系统首先需要有它的语言. 自然语言(如英语, 中文等)具有很丰富的表达能力, 但通常会产生二义性. 例如"是" 在自然语言中可以表示“恒等” (如: 我们的英语老师是张卫国.), “属于” (如: 王小平是学生.), “包含” (如: 学生是人.) 等不同的含义. 同时, 我们还希望公理系统的语言结构能尽可能地反映它的语义并能有效地进行推理. 因而, 我们通常在形式系统中使用人工设计的形式语言.1设A 是一个任给的集合. 我们把A 称为字母表, 把A 中的元素称为符号. 我们把有穷的符号序列称为A的表达式. 一个以A 为其字母表的语言是A 的表达式集合的一个子集, 我们把这个子集中的元素称为公式. 因为我们希望这个语言能够表达我们所研究的对象, 我们要求公式能反映某些事实. 虽然理论上以A 为其字母表的语言可以是A 的表达式集合的任何子集, 我们将只讨论那些能将公式和其它表达式有效地区分开的语言. 我们将用L(F)表示公理系统F 的语言.形式系统的第二个部分是它的公理. 我们对公理的唯一要求是它们必须是该公理系统语言中的公式.最后, 为了进行推理我们需要推理规则. 每个推理规则确保某个公式(结论) 可由其它一些公式(前提) 推导出来.给定公理系统F, 我们可以把F 中的定理定义如下:1). F 的公理是F 的定理;2). 如果F 的某一推理规则的前提都是定理, 则该推理规则的结论也是定理;3). 只有1)和2)所述的是定理.这种定义方式和自然数的定义方式相类似, 称为广义递归定义. 它和通常的定义方式在形式上有所区别. 为了说明它的合理性, 我们对F的定理进行进一步的描述. 设S0 是F 的公理集. 根据1), S0 中的元素是定理. 设S1 是公式集, 它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 中的元素. 根据2), S1 中元素是定理. 设S2 是公式集,它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 或S1 中的元素. 根据2), S2 中元素是定理. 如此下去, 我们得到S2 ,S3 ,.... 最后, 设S N 是公式集, 它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 或S1 ,...S N中的元素. 根据2), S N 中元素是定理并且我们得到了F中的所有定理. 我们将经常使用这种定义方式. 为了书写方便, 在今后的广义递归定义中我们将不再把类似3)的条款列出.如此定义的F 中定理为我们提供了一种证明方法. 当要证明F 中的定理都具有某一性质P 时, 我们可以采用下述步骤:1). 证明F 的公理都具有性质P;2). 证明如果F 的每个推理规则的所有前提具有性质P, 则它的结论具有性质P.这种证明方法称为施归纳于F的定理. 一般说来, 如果集合C 是由广义递归定义的, 我们可用类似的方法证明C中的元素都具有性质P. 这种证明方法称为施归纳于C中的元素. 2)中的前提称为归纳假设.现在我们就可以定义什么是证明了. 所谓F 中的一个证明是一个有穷的F 的公式序列, 该序列中的每一个公式要么是公理, 要么F 的某个推理规则以该序列中前面的公式所为前提而推导出的结论. 如果A 是证明P 的最后的公式, 则称P 是A 的证明.定理公式A 是F 的定理当且仅当A 在F 中有证明.证明首先根据定理的定义可以看出任何证明中的任何公式都是定理, 所以如果A 有证明, 则A 是定理. 我们施归纳于F 的定理来证明其逆亦真. 如果A 是公理, 则A 本身就是A 的证明. 如果A 是由F 的某一推理规则以B1 ,...,B n 为前提推导而得的结论, 由归纳假设, B1 ,...,B n 都有证明. 我们把这些证明按顺序列出来即可得到A 的一个证明. 证完今后, 我们将用 F .... 表示"....是F 的定理".一阶理论2今后, 我们将主要讨论一类特殊的公理系统. 这类公理系统称为一阶理论. 一阶理论是一种逻辑推理系统, 它具有很强的表达能力和推理能力, 并且在数学, 计算机科学及许多其它的科学领域中有广泛的应用. 事实上, 目前使用的大多数计算机语言和数学理论都是一阶理论.如前所述, 一阶理论的第一个部分是它的语言. 我们把一阶理论的语言称为一阶语言. 如同其它的形式语言一样, 一阶语言应包括一个符号表和一些能使我们把公式和其它表达式区分开的语法规则.首先, 我们定义一阶语言的符号表, 它由三类功能不同的符号组成. 它们是:a) 变元x,y,z,...;b) n元函数符号f,g,..., 及n元谓词符号p,q,...;c) 联结词符号和量词符号⌝,∨和∃.为了今后的方便, 我们假定一阶语言的变元是按一定顺序排列的, 并且我们把这种排列顺序称为字母顺序. 我们称0 元函数符号是常元符号. 注意: 一个任给的一阶理论并没有要求必须有函数符号: 一个一阶理论可能没有函数符号, 可能有有穷多个函数符号, 也可能有无穷多的函数符号. 我们要求任何一阶理论必须包括一个二元谓词符号, 并用"=" 来表示它. 和函数符号一样, 一个给定的一阶语言可能有有穷或无穷多个(甚至没有) 其它的谓词符号. 函数符号和除=外的谓词符号称为非逻辑符号, 而其它的符号称为逻辑符号.在定义公式之前, 我们必须先定义"项":(1.1) 定义在一阶语言中, 项是由下述广义递归方式定义的:a) 变元是项;b) 如果u1 ,...,u n 是项, f是n元函数符号, 则fu1 ...u n 是项.然后, 我们定义公式如下:(1.2) 定义在一阶语言中, 公式是由下述广义递归方式定义的:a) 如果u1 ,...,u n 是项, p是n元谓词符号, 则pu1 ...u n 是(原子) 公式,b) 如果u,v 是公式, x 是变元, 则⌝u, ∨uv 和∃xu是公式.如前所述, 相应于公式的定义, 我们有一种广义归纳的证明方法. 我们将把这种证明方法称为施归纳于长度. 有时我们还用施归纳于高度的证明方法, 而所谓的高度是公式中含有⌝,∨,和∃的数量.如果一个表达式b包括另一个表达式a, 则称第二个表达式a在第一个表达式b中出现, 即如果u,v,w 是表达式, 则v在uvw 中出现. 这里, 我们不仅要求a的符号都包括在b中, 而且要求这些符号的排列顺序和a一样并且中间不插有任何其它的符号. 我们把b包括a的次数称为a在b中出现的次数.接下来, 我们要讨论关于一阶语言的一些性质. 这种讨论不仅可以使我们加深对一阶语言的认识, 同时还能帮助我们理解其它的形式系统. 首先要考虑的是唯一可读性问题, 也就是说, 我们将要证明一阶语言中的任何公式不可能有不同的形式. 这一性质说明一阶语言在结构上是不会产生二义性的. 为了简化书写, 我们把公式和项统称为合式表达式. 于是, 根据定义可以知道所有的合式表达式都具有uv1 ...v n 的形式, 其中u 是n 元(函数或谓词) 符号, v1 ,...,v n 是合式表达式.我们说两个表达式u和v是可比较的, 如果存在一个表达式w (w 可以是空表达式) 使u=vw. 显然, 如果uv和u'v'是可比较的, 则u 和u'是可比较的; 如果uv和uv' 是可比较的, 则v 和v'是可比较的.3(1.3) 引理如果u1 ,...,u n ,u'1 ,...,u'n 是合式表达式(u1 和u'1 都不是空表达式), 而且u1 ...u n 和u'1 ...u'n 是可比较的,则对于一切i=1,...,n, u i =u'i .证明施归纳于u1 ...u n 的长度k.如果k=1, 则u1 ...u n 只有一个符号. 所以, n=1. 于是u1 ...u n =u1 且u'1 ...u'n =u'1 . 由于u1 和u'1 都是合式表达式, 它们只可能是变元或常元符号. 由于它们是可比较的, 所以u1 =u'1 .假定当k〈m时引理成立, 并设k=m.由于u1 是合式表达式, 我们可以把它写成vv1 ...v s , 其中v 是s 元符号, v1 ,...,v s 是合式表达式. 由上, u'1 和u1 是可比较的, v 也是u'1 的第一个符号. 于是, 由于u'1 是合式表达式, 它具有vv'1 ...v's 的形式. 由上所述的性质, v1 ...v s 和v'1 ...v's 是可比较的. 由于|v1 ...v s |<|u1 |≤|u1 ...u n |, 根据归纳假设, 对于一切j=1,...,s, v j =v'j , 所以, u1 =u'1 . 由此而得, u2 ...u n 和u'2 ...u'n 是可比较的, 且|u2 ...u n |<|u1 ...u n |, 所以, 由归纳假设, 对于一切i=2,...,n, u i =u'i .于是, 引理得证#(1.4) 唯一可读性定理每一个合式表达只能以唯一的方式写成uv1 ...v n 的形式, 其中, u 是n 元符号, v1 ,...,v n 是合式表达式.证明设w,w'是同一个合式表达式书写形式, 我们必须证明它们的结构是相同的. 首先, 它们必须都有相同的第一个符号,这样, u和n就唯一确定了, 从而, w=uv1...v n 且w'=uv'1...v'n, 其中v i ,v'j 是合式表达式(i,j=1,...,n). 我们还需证明对一切i=1,...,n, v i=v'i. 因为w 和w'是同一个表达式, 因而是可比较的. 于是, 根据引理(1.3), 对于一切i=1,...,n, v i=v'i #下面的定理说明如果一个合式表达式不可能由两个(或更多) 合式表达式的某些部分组成.(1.5) 引理合式表达式u中的任何符号w都是u中某一合式表达式的第一个符号.证明施归纳于u的长度k. 如果k=1, 则u是变元或常元符号. 于是任何在u中出现的符号就是u本身, 从而引理成立.假定当k<m时引理成立, 并设k=m.设u 是vv1 ...v n , 其中v是n元符号, v1 ,...,v n 是合式表达式. 如果w是v, 则它是u的第一个符号. 否则, 存在i=1,...,n, 使w 在v i 中出现. 由于|v i |<|u|, 根据归纳假设, w 是v i 中的某一合式表达式的第一个符号, 当然也是u中的某一合式表达式的第一个符号. 证完. #(1.6) 出现定理设u是n元符号, v1 ,...,v n 是合式表达式. 如果一个合式表达式v在uv1 ...v n 出现, 而且v不是整个uv1 ...v n , 则v在某一v i 出现.证明如果v的第一个符号就是定理中的u, 则v=uv'1 ...v'n , 其中v'1 ,...,v'n 是合式表达式, 且由定理条件, u和v是可比较的. 于是根据引理(1.3), 对于一切i=1,...,n, v i =v'i , 即v=uv1 ...v n . 矛盾.现假定v的第一个符号在某一v i 中出现. 根据引理(1.5), 该符号是某一合式表达式v'的第一个符号. 显然, v和v'是可比较的, 因而由引理(1.3), v=v', 即v在v i 中出现.4#为了方便起见, 我们今后将用大写字母A,B,...表示公式, 用f,g,...表示函数符号, 用p,q,...表示谓词符号, 用x,y,...表示变元, 用a,b,...表示常元符号.现在我们定义两类性质不同的变元, 即自由变元和约束变元.(1.7) 定义a) 如果x 在原子公式中出现, 则x是自由变元;b) 如果x是A 和B 中的自由变元, 且y 不是x, 则x 是⌝A, ∨AB和∃yA中的自由变元.a') x 是∃xA中的约束变元;b') 如果x是A 或B 中的约束变元, 则x 是⌝A, ∨AB和∃yA中的约束变元.注意: x可以在A 中既是自由变元又是约束变元.我们将用u[x/a]表示在表达式u 中将所有的自由变元x换成项a而得的表达式. 设A 是公式, 在很多情况下, A[x/a]关于a 所表示的含义与A 关于x所表示的含义是一样的, 但并非总是如此. 例如, 若A 是∃y=x2y, 而a 是y+1, 则A 是说x 是偶数, 但A[x/a]却不是说y+1是偶数. 这表明并非所有的代入都会保持原有的含义. 于是我们有下述定义:(1.8) 定义 a 被称为是在A 中可代入x的, 如果i) 如果A是原子公式,则a 是在A中可代入x 的;ii) 如果a 在B中可代入x 且对于a 中的任何变元y, ∃yB不含有自由变元x,则a 是在∃yB中可代入x 的;iii) 如果a 在A, B中可代入x, 则a 在⌝A和A∨B中是可代入x 的.今后, 当使用A[x/a] 时, 我们总是假定a是在A 中可代入x的. 类似地, 我们将用u[x1/ a1 ,...,x n/ a n ]表示在表达式u 中将所有的自由变元x1 ,...,x n 分别换成项a1 ,...,a n 而得的表达式, 同时还假定它们都是可代入的.在我们的一阶语言定义中项和公式的写法对于证明和理论分析比较方便, 但和通常的阅读方式不一致. 为了克服这一弱点, 我们引进一些定义符号:(A∨B) 定义为∨AB; (A→B) 定义为(⌝A∨B); (A&B) 定义为⌝(A→⌝B);(A↔B) 定义为((A→B)&(B→A)); ∀xA 定义为⌝∃x⌝A.注意: 定义符号只是为了方便而引进的记号, 它们不是语言中的符号. 当我们计算公式的长度时, 必须把它们换成原来的符号. 同样, 当用施归纳于长度或高度进行证明时也不能把它们作为符号来处理. 今后, 我们将在展示公式时用定义符号, 而在证明时用定义(1.1) 和(1.2).我们称:⌝A 为 A 的否定; A∨B 为 A 和B 的析取(A 或者B); A&B 为 A 和B 的合取(A并且B);A→B 为 A 蕴含B; A↔B 为A等价于B; ∃xA 为关于x的存在量词(存在x 使得A);∀xA 为关于x的全称量词(对一切x 使得A).作业:1) 施归纳于长度证明如果u是公式(项), x 是变元, a是项, 则u[x/a]是公式(项).2) 证明如果uv和vv'是合式表达式, 则v和v'中必有一个是空表达式.一阶理论的逻辑公理和规则形式系统的公理和规则可以分为两类: 逻辑公理和逻辑规则, 非逻辑公理和非逻辑规则. 逻辑公理和逻辑规则指的是那些所有形式系统都有的公理, 而非逻辑公理和非逻辑规则仅在5某些特定的形式系统中才有. 但是, 当形式系统足够丰富时,我们并不需要非逻辑规则. 假定在一个形式系统F 中有一条非逻辑规则使我们可以由B1 ,...,B n 推导出A, 只要F 有足够多的逻辑规则, 我们只需要在F 中加进一条公理B1 →...→B n →A (这里, B1 →...→B n →A表示B1 →(...→(B n →A)...).)就不再需要那条非逻辑规则了. 因此, 我们今后假定我们的形式系统中没有非逻辑规则. 今后我们将把逻辑规则简称为规则. 由于我们仅对形式系统进行一般讨论, 我们的兴趣主要是那些逻辑公理和规则.下面是逻辑公理:1) 命题公理: ⌝A∨A;2) 代入公理: A[x/a]→∃xA;3) 恒等公理: x=x;4) 等式公理: x1 =y1 →...→x n =y n →fx1 ...x n =fy1 ...y n ;或x1 =y1 →...→x n =y n →px1 ...x n →py1 ...y n .注意: 以上并不是仅有四条公理, 而是四类公理. 如命题公理并非一条公理, 而是对于任何公式A 我们有一条命题公理. 所以, 以上的公理实际上是公理模式.以下是规则:1) 扩展规则: 如果A, 则B∨A;2) 收缩规则: 如果A∨A, 则A;3) 结合规则: 如果A∨(B∨C), 则(A∨B)∨C;4) 切割规则: 如果A∨B且⌝A∨C, 则B∨C;5) ∃-引入规则: 如果A→B且x 不是B 中的自由变元, 则∃xA→B.如同上面的公理, 这些规则也不是五条规则, 而是五个规则模式.现在, 我们定义一阶理论如下:(1.9) 定义一个一阶理论T (简称理论T)是具有如下特征的形式系统:1) T 的语言L(T)是一阶语言;2) T 的公理是以上列出的四组公理和一些其它的非逻辑公理;3) T 的规则是以上列出的五组规则.由于一阶理论的逻辑符号, 逻辑公理和规则已经确定, 一阶理论之间的区别在于它们的非逻辑符号和非逻辑公理. 因此, 当我们希望讨论某一具体的一阶理论时只需要把它的非逻辑符号和非逻辑公理指明就行了.例.1) 数论NN 的非逻辑符号为: 常元0, 一元函数符号S, 二元函数符号+和*, 和二元谓词符号<. N 的非逻辑公理为:N1 Sx≠0; N2 Sx=Sy→x=y; N3 x+0=x; N4 x+Sy=S(x+y); N5 x*0=0;N6 x*Sy=(x*y)+x; N7 ⌝(x<0); N8 x<Sy↔x<y∨x=y; N9 x<y∨x=y∨y<x.2) 群GG 只有一个非逻辑符号, 即二元函数符号*. G 的非逻辑公理为:G1 (x*y)*z=x*(y*z); G2 ∃x(∀y(x*y=y)&∀y∃z(z*y=x)).根据我们在第一节所述, 一阶理论T 的定理可以定义为:1) 每一条命题公理, 代入公理, 恒等公理, 等式公理和非逻辑公理是定理;2) 如果A 是定理, 则A∨B是定理;3) 如果A∨A是定理, 则A 是定理;64) 如果A∨(B∨C) 是定理, 则(A∨B)∨C 是定理;5) 如果A∨B和⌝A∨C是定理, 则B∨C是定理;6) 如果A→B是定理且x 不是B 中的自由变元, 则∃xA→B是定理.与此对应, 我们可以用如下广义归纳法证明一阶理论T 中的定理都具有某一性质P:1) 每一条命题公理, 代入公理, 恒等公理, 等式公理和非逻辑公理具有性质P;2) 如果A 具有性质P, 则A∨B具有性质P;3) 如果A∨A具有性质P, 则A 具有性质P;4) 如果A∨(B∨C) 具有性质P, 则(A∨B)∨C 具有性质P;5) 如果A∨B和⌝A∨C具有性质P, 则B∨C具有性质P;6) 如果A→B具有性质P且x 不是B 中的自由变元, 则∃xA→B具有性质P.下面我们证明一阶理论的逻辑公理是相互独立的.(1.10) 定理一阶理论的逻辑公理和规则是互相独立的.证明当我们希望证明某一命题A 是独立于某个命题集Γ和规则集Δ时, 我们需要找到一个性质P 使A 不具有性质P, 而Γ中的每一命题具有性质P 且Δ中的每一规则保持性质P (即如果该规则的前提具有性质P, 则其结论具有性质P); 当我们希望证明某一规则R 是独立于Γ和Δ时, 我们需要找到一个性质P 使R 不保持性质P, 而Γ中的每一命题具有性质P 且Δ中的每一规则保持性质P. 这样就可以断言: 在由Γ为其公理集, Δ为其规则集的形式系统中, 每一定理都具有性质P. 由于A不具有性质P (或R 不保持性质P), 所以, A (或R)是不可能由Γ和Δ来证明的. 这样, A(或R)就独立于Γ和Δ了. 我们将根据这个思想来证明本定理.1) 对于命题公理. 定义f 如下:f(A)=T 若 A 是原子公式; f(⌝A)=F; f(A∨B)=f(B); f(∃xA)=T.可以证明: f(⌝⌝(x=x)∨⌝(x=x))=F, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=T.2) 对于代入公理. 定义f 如下:f(A)=1 若A 是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1;f(A∨B)=max{f(A),f(B)}; f(∃xA)=0.可以证明: f((x=x)→∃x(x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.3) 对于恒等公理. 定义f 如下:f(A)=0 若A是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A)},f(B); f(∃xA)=f(A).可以证明: f((x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.4) 对于等式公理. 首先在L(T)中加进常元e1 ,e2 和e3 而得L'. 然后定义f 如下:f(e i =e j )=1 iff i≤j; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A),f(B)}; f(∃xA)=T iff 存在i 使f(A[x/e i ])=T .可以证明: f((x=y→x=z→x=x→y=z))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A[x/e i ])=1, 其中, x是A 中的自由变元.5) 对于扩展规则. 定义f 如下:f(A)=1 若 A 是原子公式; f(⌝A)=1 如果f(A)=0, 否则, f(A)=0; f(A∨B)=1 如果f(A)=f(⌝B), 否则f(A∨B)=0; f(∃xA)=f(A).可以证明: f((x=x∨(⌝(x=x)∨x=x)))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.6) 对于收缩规则. 定义f 如下:7f(A)=T 若 A 是原子公式; f(⌝A)=f(∃xA)=F; f(A∨B)=T.可以证明: f(⌝⌝(x=x))=F, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=T.7) 对于结合规则. 定义f 如下:f(A)=0 若 A 是原子公式; f(⌝A)=1-f(A); f(A∨B)=f(A)*f(B)*(1-f(A)-f(B)); f(∃xA)=f(A).可以证明: f(⌝(⌝(x=x)∨⌝(x=x)))>0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=0.8) 对于切割规则. 定义f 如下:f(A)=1 若 A 是原子公式; f(⌝A)=1 如果f(A)=0或A是原子公式, 否则f(⌝A)=0; f(A∨B)=max{f(A),f(B)}; f(∃xA)=f(A).可以证明: f(⌝⌝(x=x)))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.9) 对于E-引入规则. 定义f 如下:f(A)=1 若A是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A),f(B)}; f(∃xA)=T.可以证明: f(∃y⌝(x=x)→⌝(x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.结构和模型现在我们讨论一阶理论的语义部分. 为此我们先引进一些集论的记号: 集合或类是把一些我们想要研究的对象汇集在一起, 从而我们可以把它看作是一个整体. 如果A 和B 是集合, 一个由A 到B 的映射 F (记作F: A→B)是一个A 和B 之间的对应, 在这个对应中A 中的每一个元素a 都对应着一个唯一的B中元素 b (称为F在a 上的值, 记作F(b) ). 我们把n个A 中元素按一定顺序排列而得的序列称为A 的一个n 元组, 并用(a1,...,a n )表示由A 中元素a1,...,a n 按此顺序排列的n 元组. 把由A 的所有n 元组成的集合记为A n, 然后把由A n 到B的映射称为由A 到B 的n元函数. 我们把A n 的子集称为A 上的n 元谓词. 如果P是A 上的n 元谓词, 则P(a1 ,...,a n )表示(a1 ,...,a n )∈P.真值函数根据我们对公式和项的定义, 我们可以先用函数符号和谓词符号以及变元构造一些简单的公式, 然后用联结词得到比较复杂的公式, 如"A 并且B" 等等. 我们用符号"&" 表示"并且", 即若A 和B 是公式, "A&B" 表示"A 和B同时成立".于是一个很自然的问题是怎样知道A&B 的真假? 这里, A&B 的一个很重要的特征是: 只需要知道A 和B 的真假就能确定A&B 的真假, 而不必知道A 和B 的具体含义. 为了表示这一特征, 我们引进真值. 真值是两个不同的字母T 和F, 而且当公式A 为真时, 我们用T 表示其真值; 当公式A 为假时, 我们用F 表示其真值. 于是, A&B 的真值就由A 和B 的真值确定了.有了真值的概念, 我们就可以定义真值函数了. 所谓的真值函数是由真值集T,F 到真值集T,F 的函数. 由此, 我们可以把以上的讨论叙述为: 存在二元真值函数H& 使得: 若a 和b 分别是A 和B 的真值, 则H& (a,b) 是A&B 的真值. 我们定义H& 为:H& (T,T)=T, H& (T,F)=H& (F,T)=H& (F,F)=F.我们用"∨" 表示"或者", 并定义H∨如下:8H∨(F,F)=F, H∨(T,F)=H∨(F,T)=H∨(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H∨(a,b)就是A∨B的真值.我们用"→" 表示"如果...则...", 并定义H→如下:H→(T,F)=F, H→(F,F)=H→(F,T)=H→(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H→(a,b)就是A→B的真值.我们用"↔" 表示"当且仅当", 并定义H↔如下:H↔(F,T)=H↔(T,F)=F, H↔(F,F)=H↔(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H↔(a,b)就是A↔B的真值.我们用"⌝" 表示"非", 并定义H⌝如下:H⌝(F)=T, H⌝(T)=F.于是当a 是A 的真值时, H⌝(a)就是⌝A的真值.容易证明, &,→, 和↔可由⌝和∨定义. 事实上所有的真值函数都可以由⌝和∨定义.作业1. 证明: 任何真值函数f(a1 ,...,a n )都可以由H⌝和H∨定义.2. 设H d , H s 是真值函数, 其定义为:H d (a,b)=T 当且仅当a=b=F; H s (a,b)=F 当且仅当a=b=T.证明: 任何真值函数f(a1 ,...,a n )都可以由H d (或H s )定义.结构现在我们讨论一阶语言的语义部分(称为它的结构). 所谓一个语言的语义, 当然是表示该语言中所指称的对象范围和每一个词和句子所表达的含义. 一阶语言的语义也是如此. 如前定义, 一阶语言中的符号有函数符号和谓词符号, 这些都应在它的语义中有具体的含义. 把这些组合起来, 我们就可以得到如下定义:(1.11) 定义称三元组M=〈|M|,F,P〉是一个结构,如果:1) |M|是一个非空集合,它称为是L 的论域, |M| 中的元素称为是M 的个体;2) F是|M|上的函数集合;3) P是|M|上的谓词集合.定义设L是一阶语言,M是一个结构。
数理逻辑2.2
2.2 析取范式与合取范式1.简单析取式与简单合取式定义2.2: 命题变项及其否定统称为文字. 仅由有限个文字构成的析取式称作简单析取式. 仅由有限个文字构成的合取式称作简单合取式.*解释: 析取, 合取.例子: p, ┐q, p∨┐p, ┐p∨q, p∨┐q∨r, p∨┐p∨r都是简单析取式.┐p, q, p∧┐p, p∧┐q, p∧q∧┐r, ┐p∧p∧q都是简单合取式.定理2.1: (1) 一个简单析取式是重言式当且仅当它同时含某个命题变项及其的否定式; (2) 一个简单合取式是矛盾式当且仅当它同时含某个命题变项及其否定式.*举例说明: p∨┐p∨q∨r, p∨┐q∨rp∧┐p∧┐q∧r, ┐p∧q∧r2.合取范式与析取范式定义 2.3: 由有限个简单合取式的析取构成的命题公式称为析取范式. 由有限个简单析取式的合取构成的命题公式称为合取范式. 析取范式与合取范式统称为范式.*析取范式的一般形式为A1∨A2∨…∨A s, 其中, A i为简单合取式, i =1, 2, …,s.合取范式的一般形式为B1∧B2∧…∧B t, 其中, B j为简单析取式, j = 1, 2, …, t.例如: (p∧┐q)∨(┐q∧r)∨p是析取范式.(p∨q∨r)∧(┐p∨┐q)∧r∧(┐p∨┐r∨s)为合取范式.定理 2.2: (1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式; (2) 一个合取范式是重言式当且仅当它的每个简单析取式都是重言式;例如: (p∧┐p∧q)∨(q∧┐q∧p∧r)∨(p∧┐p∧┐r)是矛盾式;(p∨r∨q∨┐q)∧(p∨┐q∨r∨┐r)∧(┐p∨p∨q∨┐r)是重言式.3. 将合式公式转化为析取范式与合取范式命题公式有5个联结词{∧,∨,┐,→,↔}, 如何把包含这5个联结词的公式转化为合取范式或析取范式?(1) 蕴涵式与等值式A→B⇔┐A∨BA↔B⇔(A→B)∧(B→A)⇔(┐A∨B)∧(┐B∨A)(2) 公式中的否定┐┐A⇔A┐(A∧B)⇔┐A∨┐B┐(A∨B)⇔┐A∧┐B(3) 析取范式与合取范式互换A∧(B∨C)⇔(A∧B)∨(A∧C)A∨(B∧C)⇔(A∨B)∧(A∨C)定理 2.3: (范式存在定理) 任一命题公式都存在与之等值的析取范式与合取范式.求给定公式范式的步骤为:(1) 消去联结词→和↔;(2) 用双重否定律消去双重否定符, 用德∙摩根律内移否定符;(3) 使用分配律: 求析取范式时使用∧对∨的分配律; 求合取范式时, 使用∨对∧的分配律.例2.8: 求公式(p→q)↔r的合取范式与析取范式.解: (1) 先求合取范式:(p→q)↔r⇔(┐p∨q)↔r 消去→⇔((┐p∨q)→r)∧(r→(┐p∨q)) 消去↔⇔(┐(┐p∨q)∨r)∧(┐r∨(┐p∨q)) 消去→⇔((┐┐p∧┐q)∨r)∧(┐r∨┐p∨q) 否定符内移⇔((p∧┐q)∨r)∧(┐p∨q∨┐r) 消去双重否定⇔((p∨r)∧(┐q∨r))∧(┐p∨q∨┐r) ∨对∧的分配律⇔(p∨r)∧(┐q∨r)∧(┐p∨q∨┐r) 结合律(2)求析取范式(p→q)↔r⇔(┐p∨q)↔r 消去→⇔((┐p∨q)→r)∧(r→(┐p∨q)) 消去↔⇔(┐(┐p∨q)∨r)∧(┐r∨(┐p∨q)) 消去→⇔((┐┐p∧┐q)∨r)∧(┐r∨┐p∨q) 否定符内移⇔((p∧┐q)∨r)∧(┐p∨q∨┐r) 消去双重否定,交换律⇔(p∧┐q∧┐p)∨(p∧┐q∧q)∨(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)∨(r∧┐r)∧对∨的分配律⇔0∨0∨(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)∨0 矛盾律⇔(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r) 同一律定义2.4: 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项和它的否定式恰好出现一次且仅出现一次,而且命题变项或它的否定式按下标从小到大或按字典序排列, 称这样的简单合取式(简单析取式)为极小项(极大项).*由于每个命题变项在极小项中以原形式或否定形式出现且仅出现一次, 因而n个命题变项共产生2n个不同的极小项(或极大项). 每个极小项有且仅有一个成真赋值, 每个极大项有且仅有一个成假赋值. (见下表格)例如: 含p和q的极小项和极大项极小项极大项公式成真赋值名称公式成假赋值名称┐p∧┐q 0 0 m0p∨q 0 0 M0┐p∧q 0 1 m1p∨┐q 0 1 M1 p∧┐q 1 0 m2┐p∨q 1 0 M2 p∧q 1 1 m3┐p∨┐q 1 1 M3 例如: 含p, q, r的极小项与极大项极小项极大项成真名成假名公式赋值称公式赋值称┐p∧┐q∧┐r 0 0 0 m0p∨q∨r 0 0 0 M0 ┐p∧┐q∧r 0 0 1 m1p∨q∨┐r 0 0 1 M1 ┐p∧q∧┐r 0 1 0 m2p∨┐q∨r 0 1 0 M2┐p∧q∧r 0 1 1 m3p∨┐q∨┐r 0 1 1 M3 p∧┐q∧┐r 1 0 0 m4┐p∨q∨r 1 0 0 M4 p∧┐q∧r 1 0 1 m5┐p∨q∨┐r 1 0 1 M5 p∧q∧┐r 1 1 0 m6┐p∨┐q∨r 1 1 0 M6 p∧q∧r 1 1 1 m7┐p∨┐q∨┐r 1 1 1 M7*解释极小项与极大项的不同, 成真赋值与成假赋值.定理2.4: 设M i和m i是含命题变项p1, p2, …, p n的极大项和极小项, 则有┐m i⇔M i和┐M i⇔m i .定义 2.5: 所有简单合取式(简单析取式)都是极小项(极大项)的析取范式(合取范式)称为主析取范式(主合取范式).定理 2.5: 任何命题公式都存在与之等值的主析取范式和主合取范式, 并且是唯一的.证明: 这里只证主析取范式的存在性和唯一性.首先证明存在性. 设A是任一含n个命题变项的公式. 由定理2.3可知, 存在与A等值的析取范式A’, 即A⇔A’. 若A’的某个简单合取式A i中既不含命题变项p j, 也不含它的否定式┐p j, 则将A i展开成如下等值式:A i∧(p j∨┐p j)⇔(A i∧p j)∨(A i∧┐p j)继续这个过程, 直到所有的简单合取式都含有所有的命题变项或它的否定式.若在演算过程中出现的命题变项在极小项中出现矛盾式, 则应消去.如用p代替p∧p, m i代替m i∨m i,0代替矛盾式等. 最后, 就将A化为与之等值的主析取范式A”.下面再证明唯一性. 假设命题公式A等值于两个不同的主析取范式B和C, 那么必有B⇔C. 由于B和C是不同的主析取范式, 不妨设极小项m i只出现在B中, 而不出现在C中. 于是,角标i的二进制表示为B的成真赋值, 而为C的成假赋值, 这与B⇔C矛盾.主合取范式的存在性和唯一性可类似证明.例2.9: 求公式(p→q)↔r的主析取范式和主合取范式.解: (1) 求主析取范式在例2.8中已求出(p→q)↔r⇔(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r), 因此(p→q)↔r⇔(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)⇔(p∧┐q∧┐r)∨(┐p∧r∧(q∨┐q))∨(q∧r∧(p∨┐p))⇔(p∧┐q∧┐r)∨(┐p∧r∧q)∨(┐p∧r∧┐q)∨(q∧r∧p)∨(q∧r∧┐p)⇔(┐p∧┐q∧r)∨(┐p∧q∧r)∨(p∧┐q∧┐r)∨(p∧q∧r) ⇔m1∨m3∨m4∨m7(2) 求主合取范式在例2.8中, 已求出(p→q)↔r⇔(p∨r)∧(┐q∨r)∧(┐p∨q∨┐r), 因此,(p→q)↔r⇔(p∨r)∧(┐q∨r)∧(┐p∨q∨┐r)⇔(p∨r∨(q∧┐q))∧(┐q∨r∨(p∧┐p))∧(┐p∨q∨┐r)⇔(p∨r∨q)∧(p∨r∨┐q)∧(┐q∨r∨p)∧(┐q∨r∨┐p)∧(┐p∨q∨┐r)⇔(p∨q∨r)∧(p∨┐q∨r)∧(┐p∨q∨┐r)∧(┐p∨┐q∨r) ⇔M0∧M2∧M5∧M64.主析取范式和主合取范式与真值表的一一对应关系例2.10: 给出合式公式: (p→q)↔r.它的真值表见下图.p q r p→q (p→q)↔r0 0 0 1 00 0 1 1 10 1 0 1 00 1 1 1 11 0 0 0 11 0 1 0 01 1 0 1 01 1 1 1 1主析取范式:(p→q)↔r⇔(┐p∧┐q∧r)∨(┐p∧q∧r)∨(p∧┐q∧┐r)∨(p∧q∧r) ⇔m1∨m3∨m4∨m7主合取范式(p→q)↔r⇔(p∨q∨r)∧(p∨┐q∨r)∧(┐p∨q∨┐r)∧(┐p∨┐q∨r) ⇔M0∧M2∧M5∧M6*从主析取范式求主合取范式(或从主合取范式求主析取范式)*判断公式的类型:重言式或矛盾式的主析取范式和主合取范式是什么样的?设公式A中含n个命题变项, 容易看出:(1)A为重言式当且仅当A的主析取范式含全部2n个极小项.(2)A为矛盾式当且仅当A的主析取范式不含任何极小项,此时, 记A的主析取范式为0.(3)A为可满足式当且仅当A的主析取范式至少含一个极小项.例2.11: 用公式的主析取范式判断下列公式的类型.(1) ┐(p→q)∧q(2) p→(p∨q)(3) (p∨q)→r解: 公式(1), (2)只含两个命题变项, 而(3)中含3个命题变项.(1) ┐(p→q)∧q⇔┐(┐p∨q)∧q⇔(┐┐p∧┐q)∧q⇔p∧┐q∧q⇔0, 故(1)式是矛盾式.*矛盾式的主析取范式与主合取范式(2) p→(p∨q)⇔┐p∨(p∨q)⇔(┐p∧(q∨┐q))∨(p∧(q∨┐q))∨(q∧(p∨┐p))⇔(┐p∧q)∨(┐p∧┐q)∨(p∧q)∨(p∧┐q)∨(q∧p)∨(q∧┐p)⇔(┐p∧┐q)∨(┐p∧q)∨(p∧┐q)∨(p∧q)⇔m0∨m1∨m2∨m3故(2)式是重言式.也可以按如下方式:p→(p∨q)⇔┐p∨(p∨q)⇔┐p∨p∨q⇔1∨q⇔1⇔m0∨m1∨m2∨m3*重言式的主析取范式与主合取范式.(3) (p∨q)→r⇔┐(p∨q)∨r⇔(┐p∧┐q)∨r⇔(┐p∧┐q∧(r∨┐r))∨(r∧(p∨┐p))⇔(┐p∧┐q∧r)∨(┐p∧┐q∧┐r)∨(r∧p)∨(r∧┐p)⇔(┐p∧┐q∧r)∨(┐p∧┐q∧┐r)∨(p∧r∧(q∨┐q))∨(┐p∧r∧(q∨┐q))⇔(┐p∧┐q∧r)∨(┐p∧┐q∧┐r)∨(p∧r∧q)∨(p∧r∧┐q)∨(┐p∧r∧q)∨(┐p∧r∧┐q)⇔(┐p∧┐q∧┐r)∨(┐p∧┐q∧r)∨(┐p∧q∧r)∨(p∧┐q ∧r)∨(p∧q∧r)⇔m0∨m1∨m3∨m5∨m7故(3)式是可满足式.*判定两个合式公式是否等值.两个合式公式等值当且仅当它们有相同的主析取范式(主合取范式).例2.12: 某科研所要从3名科研骨干A, B, C中挑选1至2名出国进修. 由于工作需要, 选派时要满足以下条件:(1)若A去, 则C同去.(2)若B去, 则C不能去.(3)若C不去, 则A或B可以去.问所里有哪些选派方案?解: 设p: 派A去; q: 派B去; r: 派C去.由已知条件可得公式: (p→r)∧(q→┐r)∧(┐r→(p∨q))该公式的成真赋值即为可行的选派方案. 经演算得到(p→r)∧(q→┐r)∧(┐r→(p∨q))⇔(┐p∧┐q∧r)∨(┐p∧q∧┐r)∨(p∧┐q∧r)⇔m1∨m2∨m5故有三种选派方案:(1)C去, A和B都不去; (2) B去, A和C都不去;(3) A和C同去, B不去.作业:1.用等值演算求下列公式的主析取范式, 并求成真赋值.(1) (┐p→q)→(┐q∨p)(2) (┐p→q)∧(q∧r)(3) (p∨(q∧r))→(p∨q∨r)2.用等值演算求下列公式的主合取范式, 并求成假赋值.(1) (p→(p∨q))∨r(2) ┐(q→┐p)∧┐p3.求下列公式的主析取范式, 再用主析取范式求主合取范式.(1) (p→q)∧(q→r)4.用真值表求下列公式的主析取范式与主合取范式.(1) (p q)→r(2) ┐(q→┐p)∧┐p。
02-面向计算机的数理逻辑(ch2-1)
2022/3/22
10
定义:“→”如果……则…… (条件) 利用真值联结词→将原子命题a,b组成复合命题“如果a
则b”记作a→b,它们的真假值之间的关系 定义如下:
a→b 假 当且仅当 a真且b假 即:a b a→b
TT T
TF F
FT T
FF T 其中a→b称为a与b蕴涵式,a称为该蕴涵式的前件,b 称为该蕴涵式的后件。(也可以称a为前提,b为结论) 基本逻辑关系:b是a的必要条件,或a是b的充分条件。 Note:从逻辑学角度讲,与自然语言的“如果a则b”, “只要a就b”,“a仅当b”, “只有b才a” 等词汇相当。
即: a b a∨b TT T
TF T
FT T
FF F a∨b称为a与b的析取式,a,b为析取项。
2022/3/22
若 有来生╰只为你动心回忆丶回忆里的微笑。轻描丶淡写的幸福。爱琴海边的独唱,只属于你一切不再遥远。如果还囿下辈子心
、似命顾惜- 遥望法国浪漫都市≈谁惊艳了岁月俄为迩暖手“〕、╰聆听世界每个角度寻找、那份专属的幸福┛墨尔本街道旳第三 道阳光ヾ█我们会思念很久很久∞巴黎铁塔下の那抹阳光零纪年〃微蓝一抹淡笑那一抹笑.释怀了所有最美的痕迹叫回忆那年樱花赏 那 抹斜阳.我们的记忆今世、我陪你白发苍苍那一年、我们一起爱过谁把阳光剪成窗纸贴在心口你是我沿途最美的风景﹌你的温柔 颠覆我的灵魂︶ㄣ巴黎铁塔下的仰望、一抹夏凉、卡农的旋律ろ我们一起背靠背看星星-七月丶我在繁花中想你飘落的黄叶、柠檬 树 下的阳光。记住、你永远是我的唯一下一站思念还想念那年你的温柔ミ小世界里存在你的身影▲尽一生思念、想你从今、以后 浅怀感伤。流年乱了浮生穿过眼瞳的那明媚阳光ゝ路灯下↘你清澈的眼眸~樱花树下那属于我们的回忆想你//只因为你是我的全部朝 朝暮暮、只记得你的暖戒不掉丶对你的依赖没有你的世界/我不要眼泪告诉我你很幸福、你是我左心房的风景。゜漠颜╮你,我从
量词互换 结论取反的例子(二)
量词互换结论取反的例子(二)
量词互换结论取反的例子
在数理逻辑中,量词互换与结论取反是两种常见的逻辑推理方式。
量词互换指的是改变命题中的量词顺序,而结论取反则是将结论的真
值取反。
下面是一些关于量词互换和结论取反的例子,以说明它们的
逻辑效果。
1. 量词互换
全称量化的互换
•原始命题:所有的A都是B。
•互换命题:存在一个A不是B。
这个例子中,我们通过互换全称量词,从原命题中得到了互换命题。
这种互换方式可以改变命题的真值。
存在量化的互换
•原始命题:存在一个A是B。
•互换命题:所有的A都不是B。
这个例子中,我们通过互换存在量词,从原命题中得到了互换命题。
这种互换方式同样可以改变命题的真值。
2. 结论取反
原命题
•原始命题:如果A,则B。
取反命题
•结论取反:如果A,那么非B。
这个例子中,我们通过取反结论,将结论的真值取反。
原命题中的条件变成了否定的结论。
总结
•通过量词互换和结论取反的方式,我们可以改变命题的真值。
•在进行逻辑推理时,需要灵活运用这两种方式,以便得到更加准确的结论。
以上是关于量词互换和结论取反的例子,希望对你理解逻辑推理有所帮助!。
数学逻辑推理的例子
数学逻辑推理的例子
以下是 6 条关于数学逻辑推理的例子:
1. 你知道吗,数学逻辑就像侦探破案一样刺激!比如说,有三个人,A 说真话,B 说假话,C 有时说真话有时说假话。
你碰到他们,他们分别说:“我是A”“他是C”“他是B”。
那你就得好好推理一下,到底谁是谁呀!这不是很好玩吗?
2. 哎呀呀,数学逻辑可有趣啦!就像走迷宫一样。
比如,有四个盒子,一个装珍珠,其他三个是空的,每个盒子上有一句话,只有一句是真的。
你就得开动脑筋,像寻找出口一样找出装珍珠的盒子呀!难道你不想试试吗?
3. 嘿,数学逻辑有时候就跟猜谜语似的!像那种,一个数去掉二变成十五,去掉五变成二十,去掉十变成二五,这个数是多少?好好想想,是不是很有意思呢?
4. 哇塞,数学逻辑推理就如同解开谜题一样让人兴奋啊!举个例子,有五种颜色的球,红、黄、蓝、绿、紫,根据一些条件来推断哪个球在哪个位置,这就需要你用聪明的脑袋瓜啦!这难道不吸引你吗?
5. 呀,数学逻辑推理就像玩游戏一样呢!比如,要把 9 个苹果放进 4 个袋子,每个袋子都要有苹果,而且袋子里的苹果数要是奇数。
这可得好好琢磨琢磨,这不就跟玩挑战一样刺激吗?
6. 嘿呀,数学逻辑有的时候真的能让人大吃一惊呢!想象一下,有几个人排队,从前往后数小明是第 5 个,从后往前数他是第 6 个,那这一队有多少人呢?你能快速推理出来吗?
我觉得数学逻辑推理真是充满了奇妙和乐趣,能让人的思维变得超级活跃,还能带来满满的成就感呢!。
否定之否定规律案例
否定之否定规律案例在逻辑学中,否定之否定规律是指一个命题经过两次否定后,会得到与原命题相同的结论。
这一规律在数理逻辑和哲学思维中都有着重要的应用。
下面我们通过一些案例来具体说明否定之否定规律的运用。
案例一,数学中的否定之否定。
假设有一个命题,“这个数不是负数”。
经过一次否定,得到命题,“这个数是负数”。
再经过第二次否定,得到命题,“这个数不是负数”。
我们可以看到,第一次否定之后得到的命题与原命题相反,而第二次否定之后又回到了原命题的结论,这就是否定之否定规律的应用。
案例二,哲学中的否定之否定。
在哲学思维中,否定之否定规律也有着重要的应用。
比如,某人可能会说,“我不是不相信你。
”这句话经过两次否定之后,就变成了,“我相信你。
”这再次验证了否定之否定规律的有效性。
案例三,生活中的否定之否定。
在日常生活中,否定之否定规律也经常被运用。
比如,有人可能会说,“我不是不喜欢这个城市。
”经过两次否定之后,就变成了,“我喜欢这个城市。
”这再次验证了否定之否定规律的普适性。
通过以上案例的分析,我们可以看到否定之否定规律的普遍适用性。
无论是在数学、哲学还是生活中,这一规律都能够帮助我们理清思绪,得出正确的结论。
因此,我们在思考问题时,也可以运用否定之否定规律,进行逻辑推理,从而获得更加准确的结论。
总结。
否定之否定规律是一种在逻辑学、数理逻辑、哲学思维和日常生活中都有着广泛应用的规律。
通过对一些案例的分析,我们可以看到这一规律的普适性和有效性。
因此,在我们的思维和表达中,也可以运用否定之否定规律,来得出更加准确和合理的结论。
希望本文的案例分析能够帮助读者更好地理解并运用否定之否定规律。
离散数学命题逻辑 第一章(1)
我现在年纪大了,搞了这么多年软件,错误 不知犯了多少,现在觉悟了。我想,假如我早在 数理逻辑上好好下点功夫的话,我就不会犯这么 多错误。不少东西逻辑学家早就说过了,可是我 不知道。要是我能年轻20岁的话,我就会回去学 逻辑。
E.W.Dijkstra
先看著名物理学家爱因斯坦出过的一道题: 一个土耳其商人想找一个十分聪明的助手协助他经商,有两人 前来应聘,这个商人为了试试哪个更聪明些,就把两个人带进一间 漆黑的屋子里,他打开灯后说:“这张桌子上有五顶帽子,两顶是 红色的,三顶是黑色的,现在,我把灯关掉,而且把帽子摆的位置 弄乱,然后我们三个人每人摸一顶帽子戴在自己头上,在我开灯后, 请你们尽快说出自己头上戴的帽子是什么颜色的。”说完后,商人 将电灯关掉,然后三人都摸了一顶帽子戴在头上,同时商人将余下 的两顶帽子藏了起来,接着把灯打开。这时,那两个应试者看到商 人头上戴的是一顶红帽子,其中一个人便喊道:“我戴的是黑帽 子。” 请问这个人说得对吗?他是怎么推导出来的呢?
Page 13
2、命题满足的条件
命题的语句形式:陈述句 非命题语句:疑问句、命令句、感叹句、非命题陈述句 (悖论语句) 命题所表述的内容可决定是真还是假,不能不真又不假, 也不能又真又假。
Page 14
3、举例
• • • • • • • • • 北京是中国的首都。 土星上有生物。 3+2≥9。 1+101=110 请关门! 你要出去吗? 如果天气好,那么我去散步。 x= 2。 我正在撒谎。
Page 9
第一章 命题逻辑
研究以命题为基本单位构成的前提和结论之间的 可推导关系。
Page 10
第一章 命题逻辑
1
命题及其表示方法 联结词
举例矛盾律和排中律的区别
举例矛盾律和排中律的区别矛盾律和排中律是数理逻辑中的两个基本原则,它们在逻辑推理和判断中起着重要的作用。
下面将分别从实际生活和数学推理的角度给出矛盾律和排中律的例子,以便更好地理解它们的区别。
一、矛盾律的例子:1. 生活中的例子:一个物体要么存在,要么不存在,不存在中间状态。
比如,一个房间里要么有人,要么没有人,不存在同时既有人又没有人的情况。
2. 数学推理中的例子:数学中的一个命题要么是真的,要么是假的,不存在中间的可能性。
比如,命题“2 + 2 = 4”要么是真的,要么是假的,不存在其他可能。
3. 哲学中的例子:矛盾律也是哲学中的基本原则之一。
根据矛盾律,一个命题和它的否定命题不能同时为真。
比如,命题“这个苹果是红色的”和“这个苹果不是红色的”不能同时为真。
4. 法律中的例子:在法律中,矛盾律也具有重要的意义。
比如,一个人要么有罪,要么无罪,不存在中间状态。
法庭上的判决要么宣判被告无罪,要么宣判被告有罪,不能同时。
5. 日常生活中的例子:比如,一个人要么是男性,要么是女性,不存在中间性别。
在填写表格时,有时需要选择男或女,没有其他选项。
二、排中律的例子:1. 生活中的例子:一个杯子要么是空的,要么是有水的,不存在其他可能。
在日常生活中,我们常常会面临选择的问题,比如要么出门要么不出门,不存在第三种选择。
2. 数学推理中的例子:在数学中,排中律也是常用的原则。
比如,一个数要么是奇数,要么是偶数,不存在其他可能。
3. 哲学中的例子:排中律也是哲学中重要的原则之一。
根据排中律,一个命题和它的否定命题必然有一个为真,另一个为假。
比如,命题“这个物体是圆形”和“这个物体不是圆形”必然有一个为真,另一个为假。
4. 法律中的例子:在法律中,排中律也有一定的适用性。
比如,在刑事案件中,被告要么犯罪,要么没有犯罪,不存在第三种可能。
5. 日常生活中的例子:比如,一个人要么是学生,要么是工人,不存在同时既是学生又是工人的情况。
一阶谓词逻辑的例子
一阶谓词逻辑的例子一阶谓词逻辑是数理逻辑的一种重要分支,用来描述命题逻辑中不可分解的具体对象和其属性之间的关系。
下面将列举10个例子,以便更好地理解一阶谓词逻辑的应用。
1. 人类学科的分类命题:所有人类学科都是社会科学。
谓词:学科是社会科学。
量化:∀x 学科(x) → 社会科学(x)2. 数学定理的证明命题:如果一个数是偶数,则它的平方也是偶数。
谓词:数是偶数,数的平方是偶数。
量化:∀x 偶数(x) → 偶数(x^2)3. 学生成绩评定命题:如果一个学生的考试成绩高于60分,则他及格。
谓词:学生的考试成绩高于60分,学生及格。
量化:∀x 考试成绩高于60分(x) → 及格(x)4. 飞机航班延误命题:如果一个航班的起飞时间晚于计划起飞时间,则它延误。
谓词:航班的起飞时间晚于计划起飞时间,航班延误。
量化:∀x 起飞时间晚于计划起飞时间(x) → 延误(x)5. 车辆交通违规行为命题:如果一辆车闯红灯,则它违规。
谓词:车辆闯红灯,车辆违规。
量化:∀x 闯红灯(x) → 违规(x)6. 数学集合运算命题:如果一个元素属于集合A并且不属于集合B,则它属于A-B。
谓词:元素属于集合A,元素属于集合B,元素属于集合A-B。
量化:∀x (属于(A,x) ∧ ¬属于(B,x)) → 属于(A-B,x)7. 人类语言学命题:如果一个词是名词,则它可以被复数化。
谓词:词是名词,词可以被复数化。
量化:∀x 名词(x) → 可以被复数化(x)8. 物理学中的牛顿第二定律命题:如果一个物体受到力的作用,则它会产生加速度。
谓词:物体受到力的作用,物体产生加速度。
量化:∀x 受力作用(x) → 产生加速度(x)9. 金融投资策略命题:如果一个投资组合的回报率高于市场平均回报率,则它具有优势。
谓词:投资组合的回报率高于市场平均回报率,投资组合具有优势。
量化:∀x 回报率高于市场平均回报率(x) → 具有优势(x)10. 生物学中的进化理论命题:如果一个物种的适应度高于其他物种,则它在进化中具有优势。
数理逻辑的基本原理与应用
数理逻辑的基本原理与应用数理逻辑是研究符号推理的一种科学,它以数学方法为基础,通过形式化的方法研究符号的组合关系和推理规律,以达到精确地描述、分析和推演各种事物的目的。
本文将介绍数理逻辑的基本原理、基础概念以及在实际应用中的一些例子。
一、基本原理1. 符号逻辑符号逻辑是指用符号来表示推理过程和结果的方法。
在符号逻辑中,将各种存在的概念和关系都用符号来表示,使推理的过程变得形式化和规范化,从而保证推理的正确性和可靠性。
2. 命题逻辑命题逻辑是最基础的数理逻辑,它研究各种命题之间的关系。
在命题逻辑中,每个命题都用变量来表示,例如P代表“今天天气晴朗”,Q代表“明天下雨”。
命题逻辑中的逻辑符号包括否定、合取、析取、蕴含、等价等。
3. 谓词逻辑谓词逻辑研究命题中涉及到的个体和属性之间的关系。
在谓词逻辑中,用限定词和谓词来表示个体和属性,例如“每个人都有一个名字”这个命题可以表示为∀x,∃y,person(x)→has_name(x,y),其中∀表示“每个”,∃表示“存在”,person(x)表示“x是人”,has_name(x,y)表示“x有一个名字y”。
4. 模态逻辑模态逻辑是研究各种命题的可能性和必然性等模态概念的逻辑。
在模态逻辑中,引入可能性和必然性等概念的逻辑符号,例如“可能”、“必然”等。
二、基础概念1. 命题命题是陈述语句中可以明确真假的句子,例如“上海是中国的一座城市”,“1+1=3”等。
命题可以用符号表示,例如P表示“上海是中国的一座城市”。
2. 联结词联结词是用来连接命题的逻辑符号,例如“非(not)”、“与(and)”、“或(or)”、“蕴含(imply)”等。
3. 符号和解释符号和解释是数理逻辑中非常重要的概念,符号是用来代表命题和联结词的符号,而解释是对这些符号进行解释的规则。
例如“甲是女士”这个命题可以用P表示,其解释为“其中甲是人,且甲是女性”。
4. 推理推理是数理逻辑的核心内容,它是指通过已有的命题推出新的命题。
一阶逻辑语言例子
一阶逻辑语言例子一阶逻辑是数理逻辑的一个分支,也是最基本的逻辑系统之一。
它以谓词逻辑形式描述命题,使用量词、谓词和逻辑连词等符号进行推理。
下面是一些符合要求的一阶逻辑语言的例子:1. 所有人都会死亡。
此命题使用了“所有人”这个量词和“会死亡”这个谓词,表示对所有人的普遍性断言。
2. 存在一个人是天才。
此命题使用了“存在一个人”这个量词和“是天才”这个谓词,表示存在一个满足条件的人。
3. 如果今天下雨,那么我就不出门。
此命题使用了“如果...那么...”这个逻辑连词,表示条件与结论之间的关系。
4. 所有的猫都喜欢吃鱼。
此命题使用了“所有的猫”这个量词和“喜欢吃鱼”这个谓词,表示对所有猫的普遍性断言。
5. 存在一个人是善良的。
此命题使用了“存在一个人”这个量词和“是善良的”这个谓词,表示存在一个满足条件的人。
6. 如果我学习努力,那么我就能考取好成绩。
此命题使用了“如果...那么...”这个逻辑连词,表示条件与结论之间的关系。
7. 所有的鸟都会飞。
此命题使用了“所有的鸟”这个量词和“会飞”这个谓词,表示对所有鸟的普遍性断言。
8. 存在一个人是聪明的。
此命题使用了“存在一个人”这个量词和“是聪明的”这个谓词,表示存在一个满足条件的人。
9. 如果我努力工作,那么我就能晋升。
此命题使用了“如果...那么...”这个逻辑连词,表示条件与结论之间的关系。
10. 所有的花都有颜色。
此命题使用了“所有的花”这个量词和“有颜色”这个谓词,表示对所有花的普遍性断言。
以上是一些符合要求的一阶逻辑语言的例子,它们通过使用量词、谓词和逻辑连词等符号,描述了一些普遍性断言和条件关系。
这些例子展示了一阶逻辑在表达命题和进行推理方面的应用。
德摩根定律三个公式的例子
德摩根定律三个公式的例子德摩根公式是指德摩根定律,如下:非(P 且Q) = (非P) 或(非Q)非(P 或Q) = (非P) 且(非Q)德·摩根定律在数理逻辑的定理推演中,在计算机的逻辑设计中以及数学的集合运算中都起着重要的作用。
他的发现影响了乔治·布尔从事的逻辑问题代数解法的研究。
这巩固了德摩根作为该规律的发现者的地位,尽管亚里士多德也曾注意到类似现象,且这也为古希腊与中世纪的逻辑学家熟知。
扩展资料:设x属于Cu(A∪B)则x属于u却不属于A∪B所以x属于u却不属于A,也不属于B故x属于CuA且属于CuB故x属于CuA∩CuB反过来,式子仍然成立同理,另一式也成立例子:1. -(A且B) = -A或-B举个例子,上菜后发现老板做的不是土豆牛腩这盘菜,是不是有三种情况:没土豆;没牛腩;既没土豆也没牛腩,可以翻译为:-土豆或-牛腩。
因此:-(土豆且牛腩)= -土豆或-牛腩2. -(A或B) = -A且-B举个例子,上菜后发现老板做的不是土豆牛腩这盘菜,是不是有三种情况:没土豆;没牛腩;既没土豆也没牛腩,可以翻译为:-土豆或-牛腩。
因此:-(土豆且牛腩)= -土豆或-牛腩理解后有同学心里嘀咕记不住啊,再简单点只记一句口诀:负号分进去,且变或,或变且。
-(A且B)=-A或-B-(A或B)=-A且-B看看是不是这样呢默默记下后听题1.-(德且智且体)= 2.-(高学历或有经验)=答案:1.=-德或-智或-体2.=-高学历且-有经验【例1】如果今年的旱情仍在持续且人们抗旱不力,那么今年的农作物就会减产,并且农民的收入会降低。
但是,多项证据表明,今年农民的收入不仅不会降低,反而会有所提高。
据此,可以推出( )A.今年的旱情仍在持续,且人们抗旱不力B.今年的旱情仍在持续,或人们抗旱不力C.今年的旱情没有持续,或人们抗旱有力D.今年的旱情没有持续,且人们抗旱有力【答案】C【解析】拿到题目发现有逻辑关联词是翻译推理,于是先翻译,后推理。
物理经验和数理逻辑经验区别的例子
物理经验和数理逻辑经验区别的例子
物理经验是指我们通过直接观察和感知自然界、物体等而获得的知识和经验,例如我们可以一眼看出一块钢块比一块木头更重。
而数理逻辑经验是通过逻辑思考和推理而获得的经验和知识,例如我们可以通过逻辑推理证明某个命题是否成立,或者推导出某个数学公式的结果。
一个简单的例子是判断一只猫是否有尾巴,我们可以通过观察猫的身体来获得物理经验,即直接看猫是否有尾巴。
而如果我们给出“所有的猫都有尾巴”这个命题,通过逻辑推理我们可以得出“这只猫有尾巴”的结论。
这就是数理逻辑经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理逻辑经验例子
数理逻辑是一门研究符号语言和推理的学科,它在许多领域中都有广泛应用。
以下是数理逻辑的一些经验例子:
1. 命题逻辑:命题逻辑是数理逻辑中的一种基本形式,它用来研究命题之间的逻辑关系。
例如,命题“今天下雨了”可以表示为P,命题“明天会晴天”可以表示为Q。
我们可以使用逻辑联结词(如“与”、“或”、“非”)来描述这些命题之间的关系,例如“今天下雨了并且明天会晴天”可以表示为P∧Q。
2. 谓词逻辑:谓词逻辑是一种扩展的命题逻辑,它允许我们使用变量和谓词来描述命题。
例如,我们可以定义一个谓词“是素数”,然后使用变量x表示一个整数,这样我们就可以描述一个命题“x是素数”。
我们还可以使用量词(如“存在”、“任意”)来描述这些命题的数量和特征,例如“存在一个素数x,使得x大于10”可以表示为x(P(x) ∧ x>10)。
3. 命题演算:命题演算是一种用于计算逻辑表达式的数学方法。
例如,我们可以使用真值表来计算一个命题逻辑表达式的真值,或者使用命题演算的规则来简化一个逻辑表达式。
例如,我们可以使用命题演算的规则来将一个复杂的逻辑表达式简化为等价的形式,或者使用它来证明一个定理的正确性。
4. 证明论:证明论是数理逻辑中研究证明方法和证明结构的学科。
例如,我们可以使用数学归纳法来证明一个命题的正确性,或者使用逆证法来证明一个逆命题的正确性。
证明论还研究证明的可靠性
和有效性,以及如何避免常见的证明错误。
5. 模型论:模型论是一种用于研究逻辑语言和它们的语义结构的方法。
例如,我们可以使用模型来解释一个逻辑理论的含义,或者使用模型来验证一个逻辑理论的正确性。
模型论还研究逻辑语言和自然语言之间的关系,以及如何将自然语言翻译成逻辑语言。
这些经验例子说明了数理逻辑的广泛应用,它可以帮助我们理解和分析许多不同领域的问题,包括数学、计算机科学、哲学、语言学等。