应用R软件metamisc程序包及CopulaREMADA程序包实现诊断准确性试验的Meta分析
r语言performanceanalytics包的用法 -回复
r语言performanceanalytics包的用法-回复r语言是一种广泛使用的统计分析和数据可视化工具,拥有众多的功能强大的包。
其中,performanceanalytics包是一款专门用于金融分析和投资组合评估的包。
本文将一步一步回答如何使用performanceanalytics 包进行金融分析和投资组合评估。
一、安装和加载performanceanalytics包要使用performanceanalytics包,首先需要将其安装在R环境中。
在安装前,需要先安装依赖包quantmod和foreach。
安装完依赖包后,可以通过以下命令安装performanceanalytics包:Rinstall.packages("performanceanalytics")安装完成后,可以通过以下命令加载performanceanalytics包:Rlibrary(performanceanalytics)二、创建时间序列数据在进行金融分析和投资组合评估之前,首先需要准备好时间序列数据。
时间序列数据可以通过以下几种方式创建:1. 从.csv文件中导入数据如果数据已经保存在.csv文件中,可以使用read.csv函数将数据导入R 环境,然后使用as.timeSeries函数创建时间序列对象。
例如,假设我们有一个文件名为data.csv,其中包含我们要分析的数据。
可以使用以下代码将数据导入R环境:Rdata <- read.csv("data.csv")data <- as.timeSeries(data)2. 从Yahoo Finance下载数据如果数据需要从Yahoo Finance下载,可以使用quantmod包的getSymbols函数下载数据,然后使用as.timeSeries函数创建时间序列对象。
例如,以下代码将下载苹果公司(AAPL)的股票数据:Rlibrary(quantmod)getSymbols("AAPL")data <- as.timeSeries(AAPL)3. 手动创建数据如果数据量较小,也可以手动创建数据。
r语言外部验证组校准曲线
r语言外部验证组校准曲线R语言提供了多种方法来进行外部验证和校准曲线的计算和分析。
在统计建模和机器学习中,外部验证方法是用来估计模型在新数据上的性能和泛化能力的一种重要方法。
校准曲线则是用来评估模型的准确性和可靠性的一种图形化工具。
外部验证常用的方法有留出法、交叉验证和自助法。
留出法是将数据集按照一定比例划分为训练集和测试集,训练集用于建立模型,测试集用于评估模型的性能。
交叉验证则是将数据集划分为k个大小相等的子集,每次使用其中k-1个子集作为训练集,剩下的那个子集作为测试集,重复k次,最后将k次的结果取平均值作为模型的性能评估。
自助法则是从原始数据集中有放回地抽取样本构建训练集,未被抽到的样本作为测试集,重复多次构建模型和测试的过程。
R语言提供了众多的包和函数来进行外部验证和计算校准曲线的操作。
其中,caret包是一个非常流行和全面的包,提供了各种内置的外部验证方法和函数,如createDataPartition()函数用于创建数据集的训练集和测试集划分,train()函数用于训练模型,predict()函数用于预测新数据,confusionMatrix()函数用于计算模型的混淆矩阵等。
除了caret包,R语言还有其他一些包也提供了外部验证和校准曲线的功能,如boot包提供了自助法的实现,ROCR包提供了绘制校准曲线的函数。
在这些包的帮助文档中,可以找到详细的使用方法和示例代码来进行验证和曲线分析。
通过外部验证和校准曲线的分析,我们可以评估模型在新数据上的性能表现,检验模型是否过拟合或欠拟合,选择最优的模型参数和变量等。
这些方法和工具有助于我们更全面和准确地评估和改进模型,提高模型的预测能力和应用效果。
总之,R语言提供了丰富的方法和工具来进行外部验证和校准曲线的计算和分析。
通过这些方法和工具,我们可以更好地评估和改进模型,提高模型的泛化能力和应用效果。
copula r语言 参数估计方法
在深度学习的数据分析中,参数估计方法是一项至关重要的工作。
在R语言中,参数估计方法有多种,其中copula是一种非常重要的方法之一。
本文将对copula在R语言中的参数估计方法进行深入探讨,以便读者更好地理解并运用这一方法。
1. copula的概念和应用copula是一种用来描述随机变量联合分布的方法。
它的重要性在于可以独立变换边际分布和相关关系,从而更灵活地建模多维随机变量之间的依赖关系。
在实际数据分析中,copula方法被广泛应用于金融风险管理、气象预测、医学统计等领域。
2. copula在R语言中的参数估计方法在R语言中,对copula进行参数估计主要使用copula包。
该包提供了各种参数估计的方法,如极大似然估计、矩方法等。
其中,极大似然估计是最常用的方法之一,通过最大化样本的似然函数来估计copula的参数。
3. 极大似然估计方法的实现步骤- 数据准备:首先需要加载相关的R包,然后准备好待分析的数据集。
- 模型选择:根据具体的数据特点和研究目的选择合适的copula模型。
- 参数估计:利用copula包中的相应函数进行参数的极大似然估计。
- 参数诊断:对估计的参数进行诊断和检验,确保参数估计的准确性和可靠性。
4. copula参数估计的应用案例分析为了更好地说明copula在R语言中的参数估计方法,我们以金融风险管理为例进行实际应用。
假设我们需要分析股票收益率之间的相关性,我们可以使用copula方法来建模多个股票收益率之间的依赖关系,从而更准确地评估投资组合的风险。
5. 个人观点和理解作为一种灵活而有效的参数估计方法,copula在R语言中的应用为我们提供了更多的数据建模选择。
通过合理选择copula模型和有效进行参数估计,我们可以更好地理解和应用多维随机变量之间的依赖关系,从而提高数据分析的深度和广度。
总结回顾本文对copula在R语言中的参数估计方法进行了全面的探讨,包括概念和应用、极大似然估计方法的实现步骤、以及应用案例分析。
详解RStudio_中使用lm_函数及summary_函数建模与模型检验的输出结果
DOI :10.15913/ki.kjycx.2024.06.009详解RStudio中使用lm函数及summary函数建模与模型检验的输出结果廖海燕(韶关学院数学与统计学院,广东 韶关 512005)摘 要:使用RStudio ,通过各种随机函数生成样本数据,再使用stats 包的lm 函数及summary 函数建立线性回归模型,并对其输出结果的各项细则详细解读,叙述所用的理论与公式,并尝试用各种方法重新编程,从而对这个函数的建模原理得到更好的把握,能有助于更好地使用此函数建立合适的模型,并灵活地利用RStudio 编程实现各种建模需要的输出结果。
关键词:RStudio ;lm 函数;summary 函数;随机函数中图分类号:TP312.1 文献标志码:A 文章编号:2095-6835(2024)06-0036-03对于一份分析关于某变量影响因素的数据,倘若尝试拟合回归模型,可以考虑使用RStudio 中stats 包的lm 函数,但是经过研究发现,尚没有对于该函数各项输出结果的详细说明。
本文通过随机函数生成样本数据,再使用stats 包的lm 函数及summary 函数建立线性回归模型,并对其输出结果的各项细则详细解读,叙述所用的理论与公式。
问题为尝试拟合因变量Y 与自变量X 1,X 2,X 3,…,X p 之间的线性回归模型,模型如下所示:Y =β0+β1X 1+β2X 2+β3X 3+…+βp X p +ε (1)éëêêêêêêêêùûúúúúúúúúY 1 X 11 X 12 X 13 ⋯ X 1p Y 2 X 21 X 22 X 23 ⋯ X 2p ⋮Y n X n 1 X n 2 X n 3 ⋯ X np (2)将样本数据矩阵式(2)代入式(1),得到结果如式(3)所示:ìíîïïïïïY 1=β0+β1X 11+β2X 12+β3X 13+…+βp X 1p +ε1Y 2=β0+β1X 21+β2X 22+β3X 23+…+βp X 2p +ε2⋮Y n=β0+β1X n 1+β2X n 2+β3X n 3+…+βp X np +εn (3)式(3)的建模假定如下:误差ε1,ε2,ε3,…,εn ~iidN (0,σ2)。
R语言meta分析(1)meta包
R语言meta分析(1)meta包介绍从广义上讲,meta分析是指将几项研究结果结合起来的统计分析。
这一术语是由统计学家Gene V Glass在1976年向美国教育研究协会发表演讲中创造的。
从那时起,meta分析不仅成为医学研究的重要工具,而且在经济学,金融学,社会科学和工程学中也越来越受欢迎。
许多负责制定循证医学标准的组织,例如英国国家健康和护理卓越研究所(NICE),广泛使用meta分析。
meta分析在医学中的应用是比较直观的,比如说测试相对于标准治疗的新疗法活着新药物的功效。
现实研究中,大多数研究受限于研究条件,得到样品或者患者数目相对较少,例如,目前在上列出的最大的四项呼吸道疾病试验也仅仅有533名患者入组。
因此我们需要使用“所有信息来源”来获得更准确的结果。
但是,meta分析需要建立严格的搜索相关研究的系统评价标准。
研究者必须努力避免“选择偏倚”,“发表偏倚”和其他偏倚。
优点1)能对同一课题的多项研究结果的一致性进行评价;2)对同一课题的多项研究结果作系统性评价和总结;3)提出一些新的研究问题,为进一步研究指明方向;4)当受制于某些条件时,如时间或研究对象的限制,meta分析不失为一种选择;5)从方法学的角度,对现阶段某课题的研究设计进行评价;6)发现某些单个研究未阐明的问题;7)对小样本的临床实验研究,meta分析可以统计效能和效应值估计的精确度。
因此,设计合理,严密的meta分析文章能对证据进行更客观的评价(与传统的描述性的综述相比),对效应指标进行更准确、客观的评估,并能解释不同研究结果之间的异质性。
meta分析符合人们对客观规律的认识过程,是与循证医学的思想完全一致的,是一个巨大的进步。
主要步骤1.明确简洁地提出需要解决的问题2.制定检索策略,全面广泛地收集随机对照试验3.确定纳入和排除标准,剔除不符合要求的文献4.资料选择和提取,包括原文的结果数据、图表等5.各试验的质量评估和特征描述6.统计学处理7.结果解释、作出结论及评价8.维护和更新资料。
R软件实现meta分析
Package‘meta’January12,2010Title Meta-Analysis with RVersion1.1-8Depends R(>=2.9.1),gridAuthor Guido Schwarzer<sc@imbi.uni-freiburg.de>Maintainer Guido Schwarzer<sc@imbi.uni-freiburg.de>Date2010-01-12Description Fixed and random effects meta-analysis.Functions for tests of bias,forest and funnel plot. License GPL(>=2)Repository CRANDate/Publication2010-01-1213:14:17R topics documented:addvar (2)ci (3)Fleiss93 (4)Fleiss93cont (5)forest (6)funnel (10)funnel.meta (12)labbe (16)labbe.metabin (17)metabias (20)metabin (22)metacont (27)metacr (29)metacum (31)metagen (33)metainf (35)12addvar metaprop (37)Olkin95 (39)plot.meta (40)print.meta (43)read.mtv (46)read.rm5 (48)trimfill (51)trimfill.meta (53)Index56 addvar Additional functions for objects of class metaDescriptionThe as.data.frame method returns a data frame containing information on individual studies,e.g.,estimated treatment effect and its standard error.The function addvar can be used to add asingle variable to an object of class meta which for example is useful to conduct sub-group analysis or meta-regression.Usage##S3method for class'meta':as.data.frame(x,s=NULL,optional=FALSE,...)addvar(x,y,varname,by.x="studlab",by.y=by.x)Argumentsx An object of class meta.s NULL or a character vector giving the row names for the data frame.optional logical.If TRUE,setting row names and converting column names(to syntactic names)is optional.y A data frame with an additional covariatevarname A character specifying name of additional variableby.x,by.y Specifications of the common columns(see merge)...other argumentsValueA data frame is returned by the function as.data.frame.A single covariate is returned by the function addvar which can be added to an object of classmeta.Internally,the merge function is utilised.ci3Author(s)Guido Schwarzer<sc@imbi.uni-freiburg.de>See Alsometabin,metacont,metagenExamplesdata(Fleiss93cont)meta1<-metacont(n.e,mean.e,sd.e,n.c,mean.c,sd.c,study,data=Fleiss93cont,sm="SMD")##Generate additional variable#Fleiss93cont$group<-c(1,2,1,1,2)##Generate new variable by merging#object'meta1'and data frame'Fleiss93cont'#meta1$group<-addvar(meta1,Fleiss93cont,"group",by.y="study")as.data.frame(meta1)summary(meta1,byvar=group)ci Calculation of confidence intervals(normal approximation)DescriptionCalculation of confidence intervals;based on normal approximation.Usageci(TE,seTE,level=0.95)ArgumentsTE Estimated treatment effect.seTE Standard error of treatment estimate.level The confidence level required.ValueList with componentsTE Estimated treatment effect.seTE Standard error of treatment estimate.lower Lower confidence limits.4Fleiss93upper Upper confidence limits.zscore Test statistic.p P-value of test with null hypothesis TE=0.level The confidence level required.NoteThis function is primarily called from other functions of the library meta,e.g.plot.meta, summary.meta.Author(s)Guido Schwarzer<sc@imbi.uni-freiburg.de>Examplesas.data.frame(ci(170,10))as.data.frame(ci(170,10,0.99))Fleiss93Aspirin after Myocardial InfarctionDescriptionMeta-analysis on Aspirin in Preventing Death after Myocardial InfarctionUsagedata(Fleiss93)FormatA data frame with the following columns:study study labelyear year of publicationevent.e number of events in experimental groupn.e number of observations in experimental groupevent.c number of events in control groupn.c number of observations in control groupSourceFleiss JL(1993),The statistical basis of meta-analysis.Statistical Methods in Medical Research,2, 121–145.Fleiss93cont5Examplesdata(Fleiss93)metabin(event.e,n.e,event.c,n.c,data=Fleiss93,studlab=paste(study,year),sm="OR",comb.random=FALSE)Fleiss93cont Mental Health TreatmentDescriptionMeta-analysis on the Effect of Mental Health Treatment on Medical UtilisationUsagedata(Fleiss93cont)FormatA data frame with the following columns:study study labelyear year of publicationn.e number of observations in experimental groupmean.e estimated mean in experimental groupsd.e standard deviation in experimental groupn.c number of observations in control groupmean.c estimated mean in control groupsd.c standard deviation in control groupSourceFleiss JL(1993),The statistical basis of meta-analysis.Statistical Methods in Medical Research,2, 121–145.See AlsoFleiss93Examplesdata(Fleiss93cont)metacont(n.e,mean.e,sd.e,n.c,mean.c,sd.c,data=Fleiss93cont,studlab=paste(study,year),comb.random=FALSE)forest Forest plot(new plot function for objects of class meta)DescriptionDraws a forest plot in the active graphics window(using grid graphics system).Usageforest(x,byvar=x$byvar,bylab=x$bylab,print.byvar=x$print.byvar,sortvar,studlab=TRUE,level=x$level,b=x$b,comb.fixed=x$comb.fixed,comb.random=x$comb.random,overall=TRUE,text.fixed="Fixed effect model",text.random="Random effects model",lty.fixed=2,lty.random=3,xlab=NULL,xlab.pos=ref,xlim,allstudies=TRUE,weight,ref=ifelse(x$sm%in%c("RR","OR","HR"),1,0),leftcols=NULL,rightcols=NULL,leftlabs=NULL,rightlabs=NULL,lab.e=x$label.e,lab.c=x$label.c,lab.e.attach.to.col=NULL,lab.c.attach.to.col=NULL,lwd=1,at=NULL,label=TRUE,fontsize=12,boxsize=0.8,plotwidth=unit(6,"cm"),colgap=unit(2,"mm"),col.i="black",col.by="darkgray",digits=2)Argumentsx An object of class meta.byvar An optional vector containing grouping information(must be of same length asx$TE).Parameter byvar can not be used if x is an object of class metacumor metainf.bylab A character string with a label for the grouping variable.print.byvar A logical indicating whether the name of the grouping variable should be printedin front of the group labels.sortvar An optional vector used to sort the individual studies(must be of same length asx$TE).studlab A logical indicating whether study labels should be printed in the graph.Avector with study labels can also be provided(must be of same length as x$TEthen).level The level used to calculate confidence intervals for individual studies.b The level used to calculate confidence intervals for pooled estimates.comb.fixed A logical indicating whetherfixed effect estimate should be plotted.comb.random A logical indicating whether random effects estimate should be plotted. overall A logical indicating whether overall summaries should be plotted.This param-eter is useful in combination with the parameter byvar if summaries shouldonly be plotted on group level.text.fixed A character string used in the plot to label the pooledfixed effect estimate. text.random A character string used in the plot to label the pooled random effects estimate. lty.fixed Line type(pooledfixed effect estimate).lty.random Line type(pooled random effects estimate).xlab A label for the x axis.xlab.pos A numeric specifying the center of the label on the x axis.xlim The x limits(min,max)of the plot.allstudies A logical indicating whether studies with inestimable treatment effects should be plotted.weight A character string indicating which type of plotting symbols is to be used for in-dividual treatment estimates.One of missing(see Details),"same","fixed",or"random",can be abbreviated.Plot symbols have the same size for all stud-ies or represent study weights fromfixed effect or random effects model.ref A numerical giving the reference value to be plotted as a line in the forest plot.No reference line is plotted if parameter ref is equal to NA.leftcols A character vector specifying(additional)columns to be plotted on the left side of the forest plot(see Details).rightcols A character vector specifying(additional)columns to be plotted on the right side of the forest plot(see Details).leftlabs A character vector specifying labels for(additional)columns on left side of the forest plot(see Details).rightlabs A character vector specifying labels for(additional)columns on right side of the forest plot(see Details).lab.e Label to be used for experimental group in table heading.lab.c Label to be used for control group in table heading.lab.e.attach.to.colA character specifying the column name where label lab.e should be attachedto in table heading.lab.c.attach.to.colA character specifying the column name where label lab.c should be attachedto in table heading.lwd The line width,see par.at The points at which tick-marks are to be drawn,see grid.xaxis.label A logical value indicating whether to draw the labels on the tick marks,or an ex-pression or character vector which specify the labels to use.See grid.xaxis. fontsize The size of text(in points),see gpar.boxsize A numeric used to increase or decrease the size of boxes in the forest plot.plotwidth A unit object specifying width of the forest plot.colgap A unit object specifying gap between columns printed on left and right side offorest plot.col.i The colour for individual study results and confidence limits.col.by A character specifying colour to print information on subgroups.digits Minimal number of significant digits,see print.default.DetailsA forest plot,also called confidence interval plot,is drawn in the active graphics window.Sub-groupanalyses are conducted and displayed in the plot if byvar is not missing.The forest function is based on the grid graphics system.Therefore,to plot a newfigure inan existing graphics window,one has to use the grid.newpage function.In order to print theforest plot,(i)resize the graphics window,(ii)either use dev.copy2eps or dev.copy2pdf.For basic forest plots,the plot.meta function can be used.Information from object x is utilised if argument weight is missing.Weights from thefixed effectmodel are used(weight="fixed")if parameter x$comb.fixed is TRUE;weights from therandom effects model are used(weight="random")if parameter x$comb.random is TRUEand x$comb.fixed is FALSE.The parameters leftcols and rightcols can be used to specify columns which are plotted onthe left and right side of the forest plot,respectively.If these parameters are NULL,the followingdefault columns will be plotted.Parameter rightcols:(i)estimated treatment effect with level-confidence interval,(ii)in ad-dition,weights of thefixed and/or random effects model will be given,if comb.fixed=TRUEand/or comb.random=TRUE.For an object of class metacum or metainf only the estimatedtreatment effect with level-confidence interval are plotted.Parameter leftcols:(i)leftcols=c("studlab","event.e","n.e","event.c","n.c")for an object of class metabin,(ii)leftcols=c("studlab","n.e","mean.e","sd.e","n.c","mean.c","sd.c")for an object of class metacont,(iii)leftcols=c("studlab", "TE","seTE")for an object of class metagen,(iv)leftcols=c("studlab","event","n")for an object of class metaprop,(v)leftcols=c("studlab")for an object of classmetacum or metainf.The parameters leftlabs and rightlabs can be used to specify column headings which areplotted on left and right side of the forest plot,respectively.For certain columns predefined labelsexist.If the parameters leftlabs and rightlabs are NULL,the following default labels willbe used:for columns c("studlab","TE","seTE","n.e","n.c","event.e","event.c","mean.e","mean.c","sd.e","sd.c","effect","ci","w.fixed","w.random")the labels c("Study","TE","seTE","Total","Total","Events","Events","Mean","Mean","SD","SD",summary measure,level for confidence interval,"W(fixed)","W(random)").For additional columns the column name willbe used as label.It is possible to only provide labels for new columns(see Examples).If parameters lab.e and lab.c are NULL,"Experimental"and"Control"are used as labels forexperimental and control group,respectively.For subgroups(argument byvar not NULL),results for thefixed effect model will be plotted if both arguments comb.fixed and comb.random are TRUE.In order to plot results for the random effects model within subgroups,use comb.fixed==FALSE and comb.random==TRUE.Review Manager5(RevMan5)is the current software used for preparing and maintaining Cochrane Reviews(/revman/).In RevMan5,subgroup analyses can be defined and data from a Cochrane review can be imported to R using the function read.rm5.Ifa meta-analysis is then conducted using function metacr,information on subgroups is availablein R(components byvar,bylab,and print.byvar,byvar in an object of class"meta").Accordingly,by using function metacr there is no need to define subgroups in order to redo the statistical analysis conducted in the Cochrane review.Author(s)Guido Schwarzer<sc@imbi.uni-freiburg.de>See Alsoplot.meta,metabin,metacont,metagenExamplesdata(Olkin95)meta1<-metabin(event.e,n.e,event.c,n.c,data=Olkin95,subset=c(41,47,51,59),sm="RR",meth="I",studlab=paste(author,year))grid.newpage()####Do forest plot##forest(meta1,comb.fixed=TRUE,comb.random=TRUE)grid.newpage()####Change set of columns printed on left side##of forest plot##forest(meta1,comb.fixed=TRUE,comb.random=FALSE,leftcols="studlab")grid.newpage()#### 1.Change order of columns on left side## 2.Attach labels to columns'event.e'and'event.c'##instead of columns'n.e'and'n.c'##forest(meta1,10funnel leftcols=c("studlab","n.e","event.e","n.c","event.c"),lab.e.attach.to.col="event.e",lab.c.attach.to.col="event.c",comb.fixed=TRUE)Olkin95$studlab<-paste(Olkin95$author,Olkin95$year)####Add variables'year'and'author'to meta-analysis object##meta1$year<-addvar(meta1,Olkin95,"year")meta1$author<-addvar(meta1,Olkin95,"author")grid.newpage()####Specify column labels only for newly created variables##'year'and'author'##forest(meta1,leftcols=c("studlab","event.e","n.e","event.c","n.c","author","year"),leftlabs=c("Author","Year of Publ"),comb.fixed=TRUE)funnel Generic function to produce a funnel plot.DescriptionDraw a funnel or radial plot to assess funnel plot asymmetry in the active graphics window.A contour-enhanced funnel plot can be produced for assessing causes of funnel plot asymmetry. Usagefunnel(x,y,...)Argumentsx An object of class meta,or estimated treatment effect in individual studies.y Standard error of estimated treatment effect(mandatory if x not of class meta)....Graphical parameters as in par may also be passed as arguments.DetailsFor simple funnel plots,funnel.default will be used.For an object of class meta the function funnel.meta will be used instead.A funnel plot or radial plot,also called Galbraith plot,is drawn in the active graphics window.Ifcomb.fixed is TRUE,the pooled estimate of thefixed effect model is plotted.If level is not NULL,the corresponding confidence limits are drawn.funnel11 In the funnel plot,if yaxis is"se",the standard error of the treatment estimates is plotted on the y axis which is likely to be the best choice(Sterne&Egger,2001).Other possible choices for yaxis are"invvar"(inverse of the variance),"invse"(inverse of the standard error),and "size"(study size).For yaxis!="size",contour-enhanced funnel plots can be produced(Peters et al.,2008)by specifying the contour levels(argument contour.levels).By default(argument col.contour missing),suitable gray levels will be used to distinguish the contours.Different colours can be cho-sen by argument col.contour.Author(s)Guido Schwarzer<sc@imbi.uni-freiburg.de>,Petra Graham<pgraham@.au> ReferencesGalbraith RF(1988a),Graphical display of estimates having differing standard errors.Technomet-rics,30,271–281.Galbraith RF(1988b),A note on graphical presentation of estimated odds ratios from several clini-cal trials.Statistics in Medicine,7,889–894.Light RJ&Pillemer DB(1984),Summing Up.The Science of Reviewing Research.Cambridge: Harvard University Press.Peters JL,Sutton AJ,Jones DR,Abrams KR,Rushton L(2008),Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry.Journal of Clinical Epidemiology,61,991–996.Sterne JAC&Egger M(2001),Funnel plots for detecting bias in meta-analysis:Guidelines on choice of axis.Journal of Clinical Epidemiology,54,1046–1055.See Alsometabias,funnel.default,funnel.metaExamplesdata(Olkin95)meta1<-metabin(event.e,n.e,event.c,n.c,data=Olkin95,subset=c(41,47,51,59),studlab=paste(author,year),sm="RR",meth="I")oldpar<-par(mfrow=c(2,2))####Funnel plots##funnel(meta1)####Same result as code above:##funnel(meta1$TE,meta1$seTE,sm="RR")####Funnel plot with confidence intervals,##fixed effect estimate and contours##cc<-funnel(meta1,comb.fixed=TRUE,level=0.95,contour=c(0.9,0.95,0.99))$col.contour legend(0.05,0.05,c("0.1>p>0.05","0.05>p>0.01","<0.01"),fill=cc) ####Contour-enhanced funnel plot with user-chosen colours##funnel(meta1,comb.fixed=TRUE,level=0.95,contour=c(0.9,0.95,0.99),col.contour=c("darkgreen","green","lightgreen"),lwd=2,cex=2,pch=16,studlab=TRUE,cex.studlab=1.25)legend(0.05,0.05,c("0.1>p>0.05","0.05>p>0.01","<0.01"),fill=c("darkgreen","green","lightgreen"))par(oldpar)funnel.meta Plot to assess funnel plot asymmetryDescriptionDraw a funnel or radial plot to assess funnel plot asymmetry in the active graphics window.A contour-enhanced funnel plot can be produced for assessing causes of funnel plot asymmetry.Usage##Default S3method:funnel(x,y,xlim=NULL,ylim=NULL,xlab=NULL,ylab=NULL,comb.fixed=FALSE,comb.random=FALSE,axes=TRUE,pch=21,text=NULL,cex=1,lty.fixed=2,lty.random=9,lwd=1,lwd.fixed=lwd,lwd.random=lwd,col="black",bg="darkgray",col.fixed="black",col.random="black",log="",yaxis="se",sm=NULL,contour.levels=NULL,col.contour,ref=ifelse(sm%in%c("RR","OR","HR"),1,0),level=NULL,studlab=FALSE,cex.studlab=0.8,...)##S3method for class'meta':funnel(x,y,xlim=NULL,ylim=NULL,xlab=NULL,ylab=NULL,comb.fixed=x$comb.fixed,comb.random=x$comb.random,axes=TRUE,pch=21,text=NULL,cex=1,lty.fixed=2,lty.random=9,lwd=1,lwd.fixed=lwd,lwd.random=lwd,col="black",bg="darkgray",col.fixed="black",col.random="black",log="",yaxis="se",sm=NULL,contour.levels=NULL,col.contour,ref=ifelse(x$sm%in%c("RR","OR","HR"),1,0),level=x$level,studlab=FALSE,cex.studlab=0.8,...)radial(x,y,xlim=NULL,ylim=NULL,xlab="Inverse of standard error",ylab="Standardised treatment effect(z-score)",comb.fixed=TRUE,axes=TRUE,pch=1,text=NULL,cex=1,col=NULL,level=NULL,...)Argumentsx An object of class meta,or estimated treatment effect in individual studies.y Standard error of estimated treatment effect(mandatory if x not of class meta).xlim The x limits(min,max)of the plot.ylim The y limits(min,max)of the plot.xlab A label for the x axis.ylab A label for the y axis.comb.fixed A logical indicating whether the pooledfixed effect estimate should be plotted.comb.random A logical indicating whether the pooled random effects estimate should be plot-ted.axes A logical indicating whether axes should be drawn on the plot.pch The plotting symbol used for individual studies.text A character vector specifying the text to be used instead of plotting symbol.cex The magnification to be used for plotting symbol.lty.fixed Line type(pooledfixed effect estimate).lty.random Line type(pooled random effects estimate).col A vector with colour of plotting symbols.bg A vector with background colour of plotting symbols(only used if pch in21:25).col.fixed Color of line representignfixed effect estimate.col.random Color of line representign random effects estimate.lwd The line width for confidence intervals(if level is not NULL).lwd.fixed The line width forfixed effect estimate(if comb.fixed is not NULL).lwd.random The line width for random effects estimate(if comb.random is not NULL).log A character string which contains"x"if the x axis is to be logarithmic,"y"if the y axis is to be logarithmic and"xy"or"yx"if both axes are to belogarithmic(applies only to function funnel).yaxis A character string indicating which type of weights are to be used.Either"se","invvar","invse",or"size"(applies only to function funnel).sm A character string indicating underlying summary measure,e.g.,"RD","RR","OR","AS","MD","SMD"(applies only to function funnel).contour.levelsA numeric vector specifying contour levels to produce contour-enhanced funnelplot.col.contour Colour of contours.ref Reference value(null effect)used to produce contour-enhanced funnel plot.level The confidence level utilised in the plot.For the funnel plot,confidence limitsare not drawn if yaxis="size".studlab A logical indicating whether study labels should be printed in the graph.Avector with study labels can also be provided(must be of same length as x$TEthen).cex.studlab Size of study labels....Graphical parameters as in par may also be passed as arguments.DetailsA funnel plot or radial plot,also called Galbraith plot,is drawn in the active graphics window.Ifcomb.fixed is TRUE,the pooled estimate of thefixed effect model is plotted.If level is not NULL,the corresponding confidence limits are drawn.In the funnel plot,if yaxis is"se",the standard error of the treatment estimates is plotted on the y axis which is likely to be the best choice(Sterne&Egger,2001).Other possible choices for yaxis are"invvar"(inverse of the variance),"invse"(inverse of the standard error),and "size"(study size).For yaxis!="size",contour-enhanced funnel plots can be produced(Peters et al.,2008)by specifying the contour levels(argument contour.levels).By default(argument col.contour missing),suitable gray levels will be used to distinguish the contours.Different colours can be cho-sen by argument col.contour.Author(s)Guido Schwarzer<sc@imbi.uni-freiburg.de>,Petra Graham<pgraham@.au>ReferencesGalbraith RF(1988a),Graphical display of estimates having differing standard errors.Technomet-rics,30,271–281.Galbraith RF(1988b),A note on graphical presentation of estimated odds ratios from several clini-cal trials.Statistics in Medicine,7,889–894.Light RJ&Pillemer DB(1984),Summing Up.The Science of Reviewing Research.Cambridge: Harvard University Press.Peters JL,Sutton AJ,Jones DR,Abrams KR,Rushton L(2008),Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry.Journal of Clinical Epidemiology,61,991–996.Sterne JAC&Egger M(2001),Funnel plots for detecting bias in meta-analysis:Guidelines on choice of axis.Journal of Clinical Epidemiology,54,1046–1055.See Alsometabias,metabin,metagenExamplesdata(Olkin95)meta1<-metabin(event.e,n.e,event.c,n.c,data=Olkin95,subset=c(41,47,51,59),studlab=paste(author,year),sm="RR",meth="I")####Radial plot##radial(meta1,level=0.95)oldpar<-par(mfrow=c(2,2))####Funnel plots##funnel(meta1)####Same result as code above:##funnel(meta1$TE,meta1$seTE,sm="RR")####Funnel plot with confidence intervals,##fixed effect estimate and contours##cc<-funnel(meta1,comb.fixed=TRUE,level=0.95,contour=c(0.9,0.95,0.99))$col.contour legend(0.05,0.05,16labbe c("0.1>p>0.05","0.05>p>0.01","<0.01"),fill=cc) ####Contour-enhanced funnel plot with user-chosen colours##funnel(meta1,comb.fixed=TRUE,level=0.95,contour=c(0.9,0.95,0.99),col.contour=c("darkgreen","green","lightgreen"),lwd=2,cex=2,pch=16,studlab=TRUE,cex.studlab=1.25) legend(0.05,0.05,c("0.1>p>0.05","0.05>p>0.01","<0.01"),fill=c("darkgreen","green","lightgreen"))par(oldpar)labbe LÁbbe plotDescriptionGeneric function for drawing a L\’Abbe plot.Usagelabbe(x,y,...)Argumentsx The x coordinates of points of the L\’Abbe plot.Alternatively,an object of class metabin.y The y coordinates of the L\’Abbe plot,optional if x is an appropriate structure....Parameters used in other L\’Abbe plot functions.DetailsGeneric function for drawing a L\’Abbe plot.Author(s)Guido Schwarzer<sc@imbi.uni-freiburg.de>ReferencesL’Abbe KA,Detsky AS,O’Rourke K(1987),Meta-analysis in clinical research.Annals of Internal Medicine,107,224–233.See Alsolabbe.metabin,metabinExamplesdata(Olkin95)meta1<-metabin(event.e,n.e,event.c,n.c,data=Olkin95,studlab=paste(author,year),sm="RR")####L'Abbe plot##labbe(meta1)labbe.metabin LÁbbe plotDescriptionDraw a L\’Abbe plot.Usage##S3method for class'metabin':labbe(x,y,xlim,ylim,xlab=NULL,ylab=NULL,TE.fixed=x$TE.fixed,TE.random=x$TE.random,comb.fixed=x$comb.fixed,comb.random=x$comb.random,axes=TRUE,pch=21,text=NULL,cex=1,col="black",bg="lightgray",lwd=1,lwd.fixed=lwd,lwd.random=lwd,lty.fixed=2,lty.random=9,sm=x$sm,weight,studlab=FALSE,cex.studlab=0.8,...)##Default S3method:labbe(x,y,xlim,ylim,xlab=NULL,ylab=NULL,TE.fixed,TE.random,comb.fixed=FALSE,comb.random=FALSE,axes=TRUE,pch=21,text=NULL,cex=1,。
R_数据处理、绘图、编程与统计检验解析
apTreeshape 进化树分析
FD
geiger
功能多样性分析
物种形成速率与进化分析
5
常用R程序包(II)
picante raster seqinr 群落系统发育多样性分析 栅格数据分析与处理 DNA序列分析
sp
spatstat splancs stats Bioconductor
空间数据处理
空间点格局分析,模型拟合与检验 空间与时空点格局分析 R统计学包 生物学数据分析工具
!!免费、软件本身及程序包的源代码公开。
2
菜单栏 快捷按钮
控制台 光标:等待输入
R登陆界面(Windows版)
路径: 开始>所有程序>R 2.11.0
3
R程序包(R Packages)
程序包是什么?
R程序包是多个函数的集合,具有详细的说明和示例。 Window下的R程序包是经过编译的zip包。
每个程序包包含R函数、数据、帮助文件、描述文件等。
相应的方法绘制相应的图形。这就是面向对象编程的思想。
12
R有哪些函数?
查询的方法:Help>Html help>packages log() log10() exp() sin() cos() tan() asin() acos() binom.test()
fisher.test()
chisq.test() glm(y ~ x1+x2+x3, binomial)
7
程序包使用
程序包的中函数,都要先导入,再使用,因此导入程序包是第一步。 在控制台中输入如下命令: library(affy) 程序包内的函数的用法与R内置的基本函数用法一样。 library(affy)
R语言关于“包”的知识点总结
R语⾔关于“包”的知识点总结R语⾔的包是R函数,编译代码和样本数据的集合。
它们存储在R语⾔环境中名为“library”的⽬录下。
默认情况下,R语⾔在安装期间安装⼀组软件包。
随后添加更多包,当它们⽤于某些特定⽬的时。
当我们启动R语⾔控制台时,默认情况下只有默认包可⽤。
已经安装的其他软件包必须显式加载以供将要使⽤它们的R语⾔程序使⽤。
所有可⽤的R语⾔包都列在R语⾔的包。
下⾯是⽤于检查,验证和使⽤R包的命令列表。
检查可⽤R语⾔的包获取包含R包的库位置.libPaths()当我们执⾏上⾯的代码,它产⽣以下结果。
它可能会根据您的电脑的本地设置⽽有所不同。
[2] "C:/Program Files/R/R-3.2.2/library"获取已安装的所有软件包列表library()当我们执⾏上⾯的代码,它产⽣以下结果。
它可能会根据您的电脑的本地设置⽽有所不同。
Packages in library ‘C:/Program Files/R/R-3.2.2/library':base The R Base Packageboot Bootstrap Functions (Originally by Angelo Cantyfor S)class Functions for Classificationcluster "Finding Groups in Data": Cluster AnalysisExtended Rousseeuw et al.codetools Code Analysis Tools for Rcompiler The R Compiler Package获取当前在R环境中加载的所有包search()当我们执⾏上述代码时,它产⽣了以下结果。
它会根据你的个⼈电脑的本地设置⽽异。
[1] ".GlobalEnv" "package:stats" "package:graphics"[4] "package:grDevices" "package:utils" "package:datasets"[7] "package:methods" "Autoloads" "package:base"安装⼀个新的软件包有两种⽅法来添加新的R包。
r survmisc 包 用法
R包survmisc的使用指南介绍survmisc是一个在R语言环境中使用的生存分析工具包。
它提供了一系列函数和工具,用于处理和分析生存数据。
本文将详细介绍survmisc包的安装、加载和常用函数的使用方法,并提供实例演示。
安装要安装survmisc包,可以使用以下命令:install.packages("survmisc")安装完成后,可以加载该包并开始使用。
library(survmisc)常用函数survmisc包提供了许多用于生存分析的函数。
下面是一些常用函数的介绍和使用方法。
survfitcenssurvfitcens函数用于计算受限生存数据的Kaplan-Meier估计值。
它可以处理右侧和左侧的截尾数据。
survfitcens(Surv(time, status) ~ covariate, data = data)•Surv(time, status)表示生存时间和生存状态的变量。
•covariate是用于分组的协变量变量。
•data是包含数据的数据框。
survdiffcenssurvdiffcens函数用于比较两个或多个生存曲线之间的差异。
它可以处理右侧和左侧的截尾数据。
survdiffcens(Surv(time, status) ~ group, data = data)•Surv(time, status)表示生存时间和生存状态的变量。
•group是用于分组的变量。
•data是包含数据的数据框。
coxphcenscoxphcens函数用于拟合Cox比例风险模型,用于估计变量对生存的影响。
coxphcens(Surv(time, status) ~ covariate, data = data)•Surv(time, status)表示生存时间和生存状态的变量。
•covariate是用于分析的协变量变量。
•data是包含数据的数据框。
survAUCsurvAUC函数用于计算受限生存数据的时间相关区域下曲线(time-dependent AUC)。
R的应用领域包介绍
R的应用领域包介绍 By R-FoxAnalysis of Pharmacokinetic Data 药物(代谢)动力学数据分析网址:/web/views/Pharmacokinetics.html维护人员:Suzette Blanchard版本:2008-02-15翻译:R-fox, 2008-04-12药物(代谢)动力学数据分析的主要目的是用非线性浓度时间曲线(concentration time curve)或相关的总结(如曲线下面积)确定给药方案(dosing regimen)和身体对药物反应间的关系。
R基本包里的nls()函数用非线性最小二乘估计法估计非线性模型的参数,返回nls类的对象,有 coef(),formula(), resid(),print(), summary(),AIC(),fitted() and vcov()等方法。
在主要目的实现后,兴趣就转移到研究属性(如:年龄、体重、伴随用药、肾功能)不同的人群是否需要改变药物剂量。
在药物(代谢)动力学领域,分析多个个体的组合数据估计人群参数被称作群体药动学(population PK)。
非线性混合模型为分析群体药动学数据提供了自然的工具,包括概率或贝叶斯估计方法。
nlme包用Lindstrom和Bates提出的概率方法拟合非线性混合效应模型(1990, Biometrics 46, 673-87),允许nested随机效应(nested random effects),组内误差允许相关的或不等的方差。
返回一个nlme类的对象表示拟合结果,结果可用print(),plot()和summary() 方法输出。
nlme对象给出了细节的结果信息和提取方法。
nlmeODE包组合odesolve包和nlme包做混合效应建模,包括多个药动学/药效学(PK/PD)模型。
面版数据(panel data)的贝叶斯估计方法在CRAN的Bayesian Inference任务列表里有所描述(/web/views/Bayesian.html)。
RClimDex中文用户手册
RClimDex (1.0)极端气候指数计算软件用户手册张学斌 Feng Yang加拿大环境部气候研究中心2004年9月10日南京信息工程大学遥感学院陈昌春译注2013.8作者致谢RClimDex 由Xuebin Zhang(张学斌)and Feng Yang(加拿大气象局气候研究部)开发与维护,最初的开发由加拿大国际发展办事处通过《加中气候协作项目,C5》资助。
Lisa Alexander, Francis Zwiers, Byron Gleason, David Stephenson, Albert Klan Tank, Mark New, Lucie Vincent与Tom Peterson对R包的开发与测试作出了重要贡献。
CCl/CLIVAR ETCCDMI的有关研讨会也对RClimDex的改进提供了宝贵的意见。
.译者的话原英文说明中所介绍的下载网址链接已无效,新网址包括http://www.pcic.uvic.ca/tools-and-data/climdex/software.shtmlRClimdex可计算极端气候指数27项,以下摘录来自一硕士论文《内蒙古地区极端气候事件时空变化及其与NDVI的相关性》(使用RClimdex软件)的15项指数名称翻译及一段简要说明。
1.指数名称、解释、单位FD0 霜日一年中日最低温<0℃的日数天SU25 夏日日数日最高气温>25℃的日数天GSL 作物生长期连续6 日>5℃或<5℃的时间跨度天TN10p 冷夜日数日最低气温<10%分位值的日数天TN90p 暖夜日数日最低气温>90%分位值的日数天TX10p 冷昼日数日最高温<10%分位值的日数天TX90p 暖昼日数日最高温>90%分位值的日数天WSDI 热持续指数连续6 日最高温在90%分位值日数天CSDI 冷持续指数连续6 日最低温在10%分位值日数天RX5day 5 日最大降水量每月内连续五日的最大降水量 mmCDD 持续干燥指数日降水量<1mm 的最长连续日数天CWD 持续湿润指数日降水量≥mm 的最大持续日数天SDII 普通日降水强度降水量≥1mm 的总量与日数之比 mmR10 强降水日数每年日降水量>=10mm 的总日数天R95pTOT 强降水量 95%分位值强降水之和 mm2.简要说明在应用RClimDex 处理数据之前,必须确保每个站点的数据以文本格式储存,并且储存的气象数据必须按照年、月、日、24 小时日降水量、日最高气温、日最低气温等顺序排列,各记录项之间通过空格将其隔开。
使用R语言metaMA程序包实现基因表达谱数据的Meta分析
chips by loading different packages. Before conducting meta-analysis of gene expression profiles of microarray data
using the metaMA package, genes from different studiesneed to be converted into the same format. Draw the Venn
• 782 •
中国循证心血管医学杂志2019年7月第11卷第7期 Chin J Evid Based Cardiovasc Med,July,2019,Vol.11,No.7
• 循证研究与临床转化·方法学 •
使用R语言metaMA程序包实现基因表达谱数据的Meta分析
李贤菁1,邓巧玲1,李嘉兴1,张晨曦1,阙雅婷1,翁鸿1,黄静宇2,李胜1,3,4
Medicine and Clinical Epidemiology, The Second Clinical College, Wuhan University, Wuhan, 430071, China.
Corresponding author: Li Sheng, E-mail:lisheng-znyy@
【摘要】 基因芯片技术原理为杂交测序,即碱基互补配对原则。基因芯片技术发展迅速,是进行
基因分析的有力工具。由于基因芯片类型及其数据格式的多样性,对基因组数据进行全面和完整的分析
具有重要意义。R是一个免费、开源的统计分析软件,通过加载不同包,能实现对不同类型基因芯片的
分析。使用基于R语言的metaMA包前,需要把不同研究基因转化为统一格式。通过加载metaMA包,使用
单细胞测序r语言metadata
单细胞测序数据分析是当前生物信息领域的热点之一,随着研究者对生物学单细胞水平的兴趣不断增加,对单细胞测序数据的分析需求也日益增长。
在进行单细胞测序数据分析时,对元数据的处理和分析是至关重要的一步。
R语言作为一种功能强大的数据分析工具,其在处理单细胞测序元数据方面具有独特的优势。
本文将介绍单细胞测序数据中的元数据及其在R语言中的处理方法,希望能为研究者们提供一些参考和帮助。
一、单细胞测序数据中的元数据在单细胞测序实验中,每个细胞的各种信息都会被记录下来,包括基因表达量、细胞类型、细胞状态等。
这些信息通常以表格的形式呈现,每行代表一个细胞,每列代表一个特征。
除了基本的基因表达矩阵之外,还会存在着与细胞细胞相关的元数据信息。
这些元数据信息包括但不限于细胞类型标注、样本信息、数据质量评估等。
而这些元数据的处理和分析对于后续的单细胞测序数据分析至关重要。
二、R语言中的元数据处理1. 导入元数据在R语言中,可以使用read.table()或者read.csv()等函数导入元数据信息。
在导入过程中,需要注意文件的格式以及是否包含表头等内容。
另外,R语言还提供了丰富的数据导入和处理的包,如dplyr、data.table等,可以大大简化数据处理的过程。
2. 数据清洗与整理一般情况下,导入的元数据信息可能存在一些缺失值、异常值或者格式不规范的情况,需要进行数据清洗和整理。
可以使用R语言中的函数如na.omit()plete.cases()等进行缺失值处理,使用filter()、mutate()等进行数据筛选和转换。
3. 数据可视化和探索在处理元数据的过程中,数据的可视化和探索是非常重要的一步。
R 语言中的ggplot2、plotly等包可以帮助研究者们对数据进行可视化分析,更直观地了解数据的分布规律和特点。
4. 数据分析与挖掘除了数据的清洗和可视化之外,R语言还提供了丰富的数据分析和挖掘函数和包,如聚类分析、主成分分析等。
中位生存时间的95%可信区间 r语言
一、概述在统计学中,中位数生存时间是评估某种事件发生后,中位数生存时间是指该事件发生后一半的样本中的个体所经历的时间。
而95可信区间则是一种统计学上的概念,用来评估某个参数的估计值的可靠性。
r 语言是一种流行的统计计算工具,它拥有强大的数据处理和可视化能力,因此非常适合用来计算中位生存时间的95可信区间。
二、中位生存时间的95可信区间的计算方法计算中位生存时间的95可信区间可以用Kaplan-Meier方法。
Kaplan-Meier方法是一种用来估计生存分布函数的非参数统计方法,它可以考虑观测值的截尾情况,并且能够处理时间依赖的协变量。
具体而言,Kaplan-Meier方法通过计算累积生存函数来估计生存曲线,然后用对数-对数生存分布函数(log-log survival distribution function)来计算95可信区间。
在r语言中,可以使用survival包来实现Kaplan-Meier方法,具体步骤如下:1.加载survival包```Rlibrary(survival)```2. 创建存活数据,包括观察时间(time)和观察状态(status)```Rtime <- c(5, 9, 11, 15, 20)status <- c(1, 1, 0, 1, 0)```3. 使用survfit函数进行Kaplan-Meier估计```Rfit <- survfit(Surv(time, status) ~ 1)```4. 使用summary函数查看估计结果```Rsummary(fit)```通过上述步骤,我们可以得到中位生存时间的95可信区间的具体数值。
三、r语言在计算中位生存时间的95可信区间中的优势1. r语言具有丰富的统计计算函数和包,可以方便地实现各种复杂的统计计算,包括中位生存时间的95可信区间。
2. r语言的可视化能力强大,可以直观地展示中位生存时间的95可信区间,帮助研究人员更好地理解数据分布。
《如何使用R软》课件
05
使用`write.csv()`、 `write.excel()`等函数。
06
数据清洗与整理 01 02 03
数据清洗 处理缺失值。 识别并处理异常值。
数据清洗与整理
转换数据类型。 数据整理
数据排序与分组。
数据清洗与整理
数据筛选与选择。 数据重塑与合并。
数据分析方法与技巧
描述性分析
01
02
04
如`sum()`、`mean()`、`max()`、`min()`等用 于数据处理和统计分析的函数。
04
数据处理与分析
数据导入与导
数据导入 数据导出
01
从Excel、CSV等文件导入数据
到R中。
02
使用`read.csv()`、 `read.excel()`等函数。
03
04
将R中的数据导出为Excel、 CSV等格式。
案例
使用R软件对股票价格数据进行时间 序列分析,包括数据清洗、平稳性检 验、季节性分解、趋势分析等步骤, 并展示结果。
机器学习案例
机器学习基础
介绍机器学习的基本概念、原理和应用领域,以及在R中实现机器学习的方法和工具。
案例
使用R软件进行分类、回归和聚类等机器学习任务,包括数据准备、特征选择、模型训练和评估等步骤,并展示 结果。
检查R的安装路径是否正确,重新安装R软件。
问题2
R运行过程中出现错误
解决方案
检查代码是否有语法错误,或者尝试更新R到最新版 本。
R运行速度慢
问题3
解决方案
尝试关闭一些不必要运行的程序,或者优化R代码。
数据处理常见问题
问题1
数据导入失败
解决方案
R_数据处理、绘图、编程与统计检验
矩阵的创建
生成矩阵的函数 dim()和matrix() dim() 定义矩阵的行列数,例如:
x <- 1:12 dim(x) <- c(3,4)
[,1] [,2] [,3] [,4] [1,] 1 4 7 10 [2,] 2 5 8 11 [3,] 3 6 9 12 matrix.x <- matrix(1:12,nrow=3,byrow=T) t(x)#转置 为行或列添加名称:s()s()
ylab=“days” 纵轴名称为days
在控制台中键入如下命令 2+2 a <- 2
赋值与注释
<-也可用=, 甚至->代替 赋值符号
b <- 2
c <- a+b
c #注释
Math:
>1+1 [1] 2
>1+1*7 [1] 8
> (1 + 1) * 7 [1] 14
Variables:
> x <- 1 >x [1] 1 >y=2 >y [1] 2 > 3 -> z >z [1] 3 > (x + y) * z [1] 9
• 从S统计绘图语言演变而来,可看作S的“方言”
!!免费、软件本身及程序包的源代码公开。
菜单栏 快捷按钮
光标:等待输入
R登陆界面(Windows版) 路径: 开始>所有程序>R 2.11.0
控制台
R程序包(R Packages)
程序包是什么? R程序包是多个函数的集合,具有详细的说明和示例。 Window下的R程序包是经过编译的zip包。
R语言命令Tutorial-更新后,CCA,RDA,PCA,heatmap
R语言命令Tutorial-更新后,CCA,RDA,PCA,heatmap一、GeoChip 数据处理1 准备数据登录数据库,用户名ieg\jianqiang,PW:ieg123?选择GeoChip4数据,再次输入用户密码;点击Prepare microarray data,点击选择要分析的数据,点击submit,勾选“Remove the spots SNR less than 2”,此即为SNR 数据;若勾选“Adjust SNR according to Thermophile probes less than 5%”,此即为Thermo数据;勾选“by dividing the mean of each sample”,即为DBM数据,若不勾选,则为relative abundance(RA)数据;这样就有四套数据分别为SNR DBM、SNR RA、Thermo DBM、Thermo RA,选择好要下载的数据后,输入“Experimental N ame:”,点击submit,点击“set it as default”点击go,随后点击main回到主界面,点击“Analyze microarray data”在跳出的对话框中点cancel,点击如下图所示项目后,点击submit;在show information框中选择除了“All targets”外的所有项,点击submit;点击download后,待所有数据出来后另存为文本文件,这样就准备好一套数据,将所有4套数据都如此下载好。
数据下载后,在excel中去除各样品重复中只有一个重复有检测到基因信号的数据,即为cut 1;Relative abundance数据需要将各基因信号值分别除以该样品中所有基因信号值得和,再乘以各个样品基因信号值和的平均值,即data1/sum1*average。
这样即得到Relative abundance数据Relative abundance数据继续做两种处理,一是将数据+1后取ln,一是将数据除以1000;这样总共是6套数据,将所有数据中0值替换为空白,同时只留下gene ID和genename两项,另存为tab delimited txt文件,即可用于DCA(Detrended Correspondence Analysis)、Dissimilarity Test、cluster(A simple hierarchical clustering analysis)分析;2 数据预分析2.1 DCA分析在数据分析界面点击以下项后,上传刚刚准备的数据,即可做DCA分析,结果可获得DCA图及DCA数据,可拷贝出数据自行作图;2.2 Dissimilarity Test点击后,上传数据,选择需要比较的样品,即可做MRPP、anosim、adonis比较,记录distance和sig值;2.3 cluster分析点击,将数据按各样品取平均值后上传分析,即可得cluster图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用R软件metamisc程序包及CopulaREMADA程序包实现诊断准确性试验的Meta分析
王权;杨廉洁;何倩;喻亚宇;许杨鹏;张超
【期刊名称】《中国循证心血管医学杂志》
【年(卷),期】2016(008)004
【摘要】The Meta-analysis of diagnostic test accuracy (DTA) is a research method that comprehensive evaluates the accuracy of diagnostic test evidence. The metamisc package and CopulaREMADA package in R software are used for implementing Meta-analysis and graphic plotting of DTA based on classic frequency study approach. Compared with traditional bivariate model, the analysis models established by these two packages can reduce intergroup difference and simplify the tedious iterative operation process, which make DTA evaluation indicator more accurate and efficient.%诊断性准确性试验(diagnostic test accuracy,DTA)Meta分析是一种全面评价诊断试验证据准确性的研究方法,R软件metamisc程序包与CopulaREMADA程序包是基于经典频率学方法用于DTA Meta分析制作及图形绘制的程序包,与传统的双变量模型相比,其所建立的分析模型减少了组间差异,简化了其繁琐的迭代运算过程,使诊断试验评价指标更加准确与高效。
【总页数】4页(P392-395)
【作者】王权;杨廉洁;何倩;喻亚宇;许杨鹏;张超
【作者单位】442000 十堰,十堰市太和医院湖北医药学院附属医院口腔
科;442000 十堰,十堰市太和医院湖北医药学院附属医院院务办公室;442000 十堰,湖北医药学院口腔医学院12级;442000 十堰,湖北医药学院口腔医学院12级;442000 十堰,湖北医药学院口腔医学院12级;442000十堰,十堰市太和医院湖北医药学院附属医院循证医学中心
【正文语种】中文
【中图分类】R4
【相关文献】
1.应用R软件meta4diag程序包实现诊断准确性试验的Meta分析 [J], 何倩;王晓娜;喻亚宇;桂裕亮;张超;牛玉明
2.应用R软件bamdit程序包实现诊断准确性试验的Meta分析 [J], 王权;何倩;吴君怡;陶圆;张超;牛玉明
3.应用R软件Metatron程序包实现诊断准确性试验Meta分析及程序包汇总比较[J], 何倩;孙艳玲;陶圆;吴君怡;桂裕亮;张超;牛玉明
4.应用R软件HSROC程序包联合RevMan 5软件实现诊断准确性试验Meta分析 [J], 周建国;田旭;田金徽;周权;马虎
5.R软件metamisc程序包在Meta分析中的应用 [J], 余言松;沈可;曾宪涛
因版权原因,仅展示原文概要,查看原文内容请购买。