数与式的计算100题(真题专练)备战2023年中考数学考点微专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考向1.9 数与式的计算100题(真题专练)
1.(2019·四川遂宁·中考真题)计算:201920(1)(2)(3.14)4cos30|212|π-︒-+-+--+- 2.(2019·四川乐山·中考真题)如图,点A 、B 在数轴上,它们对应的数分别为2-,1
x
x +,且点A 、B 到原点的距离相等.求x 的值.
3.(2021·湖南张家界·中考真题)计算:2021
(1)
222cos608-+-︒4.(2021·广东深圳·中考真题)先化简再求值:2
169
123x x x x ++⎛⎫+÷ ⎪++⎝⎭
,其中1x =-. 5.(2021·湖南湘潭·中考真题)计算:0
11|2|(2)()4tan 453
π----+-︒
6.(2021·内蒙古呼伦贝尔·中考真题)计算:2122sin 60133
---︒+7.(2021·广西柳州·中考真题)计算:391-
8.(2021·黑龙江大庆·()2
222sin 451+︒-- 9.(2021·上海·中考真题)计算: 1
129|1228-+- 10.(2021·青海西宁·中考真题)计算: 1
2
1(2)|3|2-⎛⎫-+-- ⎪⎝⎭
.
11.(2020·新疆·中考真题)计算:()()20
12π34-++-
12.(2020·青海·中考真题)计算:1
0311345( 3.14)273π-⎛⎫+︒+- ⎪⎝⎭
13.(2020·甘肃天水·中考真题)(1)计算:1
14sin 6032|2020124-︒
⎛⎫
-+ ⎪⎝⎭
.
(2)先化简,再求值:
21111211
a a a a a a ---÷-+++,其中3a = 14.(2020·北京·中考真题)计算:1
1()18|2|6sin 453
---︒
15.(2020·山东菏泽·中考真题)计算:2020
12020
12|63|2345(2)
2-⎛⎫
++︒--⋅ ⎪⎝⎭
.
16.(2020·四川乐山·中考真题)计算:022cos60(2020)π--︒+-.
17.(2020·浙江·﹣1|.
18.(2020·浙江嘉兴·中考真题)(1)计算:(2020)0﹣3|; (2)化简:(a +2)(a ﹣2)﹣a (a +1).
19.(2020·浙江台州·中考真题)计算:3-
20.(2019·山东东营·中考真题)(1)计算:()1
01 3.142019π-⎛⎫+- ⎪⎝⎭
2sin 4512+-;
(2)化简求值:222
22a b a ab b a b a ab a ⎛⎫++-÷
⎪--⎝⎭
,当1a =-时,请你选择一个适当的数作为b 的值,代入求值.
21.(2021·甘肃兰州·中考真题)先化简,再求值:2
2611
931
m m m m m --÷--+-,其中4m =.
22.(2021·河南·中考真题)(1)计算:013(3--; (2)化简:2
122
1x x x -⎫⎛
-
÷
⎪⎝
⎭. 23.(2021·湖北鄂州·中考真题)先化简,再求值:22934
11x x x x x x -+÷+--,其中2x =.
24.(2021·广西玉林·()()0
1
416sin30π--+--°.
25.(2021·广西玉林·中考真题)先化简再求值:()2
112a a a a -⎛
⎫-+÷ ⎪⎝⎭
,其中a 使反比例函数
a
y x
=
的图象分别位于第二、四象限. 26.(2021·北京·中考真题)已知22210a b +-=,求代数式()()2
2-++a b b a b 的值.
27.(2021·北京·中考真题)计算:02sin60(5π--.
28.(2021·江苏宿迁·中考真题)计算:()0
π1-4sin45°
29.(2021·湖北荆州·中考真题)先化简,再求值:2221211a a a a a ++⎛⎫
÷+ ⎪--⎝⎭
,其中a =
30.(2021·浙江衢州·中考真题)先化简,再求值:29
33x x x +--,其中1x =.
31.(2021·浙江衢州·0
1()|3|2cos602
--+︒.
32.(2021·湖北随州·中考真题)先化简,再求值:2141122
x x x -⎛
⎫+÷
⎪++⎝⎭,其中1x =. 33.(2021·山东菏泽·中考真题)先化简,再求值:22
22
1244m n n m m n m mn n
--+÷--+,其中m ,n
满足
32
m n =-. 34.(2021·湖北十堰·中考真题)化简:222
14244a a a a a a a a +--⎛⎫-÷
⎪--+⎝⎭
.
35.(2021·湖北十堰·1
133-⎛⎫
︒+-- ⎪⎝⎭.
36.(2021·湖南常德·中考真题)化简:2593111
a
a a a a a ++⎛⎫+÷
⎪---⎝⎭
37.(2021·湖南常德·中考真题)计算:012021345-+︒.
38.(2021·湖南郴州·中考真题)先化简,再求值:2213111
a a a a a a --⎛⎫
-÷
⎪+--⎝⎭,其中a =
39.(2021·湖南郴州·中考真题)计算:1
1(2021)|2tan 602π-⎛⎫
--+⋅︒ ⎪⎝⎭
.
40.(2021·湖南怀化·中考真题)计算:0
21(3)()4sin 60(1)3
π--+︒--
41.(2021·湖北黄冈·中考真题)计算:0|12sin 60(1)π-︒+-.
42.(2021·新疆·中考真题)先化简,再求值:2241
4421x x x x x x ⎛⎫-+⋅
⎪+++-⎝⎭
,其中3x =.
43.(2021·湖南长沙·中考真题)计算:(0
2sin 451-+°
44.(2021·四川广安·中考真题)先化简:22
21211a a a a a a -+⎛⎫
÷- ⎪-+⎝⎭
,再从-1,0,1,2中选择一个适合的数代入求值.
45.(2021·四川广安·中考真题)计算:()0
3.1414sin 60π-︒.
46.(2021·湖南邵阳·中考真题)先化简,再从1-,0,1,21中选择一个合适的x 的值代入求值.
22
11121x x x x x -⎛
⎫-÷ ⎪+++⎝⎭
.
47.(2021·四川眉山·中考真题)计算:(1
143tan 602-⎛⎫-︒-- ⎪⎝⎭
48.(2021·江苏苏州·中考真题)先化简再求值:21111x x x
-⎛
⎫+⋅
⎪-⎝⎭,其中1x =.
49.(2021·江苏苏州·2
23--.
50.(2021·江苏扬州·中考真题)计算或化简:
(1)0
13|tan603⎛⎫
-++︒ ⎪⎝⎭
; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭.