数论中的整除性质练习题
初等数论(1)数的整除
初等数论(1)----数的整除初等数论又称初等整数论,它的研究对象是整数集。
整数是小学就接触的一类数,但是关于数论的问题却是最难解决的。
1、整数的离散性:任何两个整数,x y 之间的距离至少为1,因此有不等式1x y x y <⇔+≤。
例如:(1)若222912842440a ab b bc c c -+-+-+=,求a b c ++的值.(2)求整数,,a b c ,使它们满足不等式222332a b c ab b c +++<++.作比较。
2、整数的奇偶性:将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m (m ∈Z ),任一奇数可表为2m+1或2m -1的形式.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)奇数±奇数=偶数;偶数±偶数=偶数; 奇数±偶数=奇数;偶数×偶数=偶数; 奇数×偶数=偶数;奇数×奇数=奇数;(4)两个整数的和与这两个整数的差有相同的奇偶性; (5)奇数的平方都可表为81m +形式,偶数的平方都可表为8m 或84m +的形式(m ∈Z ). (6)任意两个整数的平方和被4除余数不可能是3. (7)任意两个整数的平方差被4除余数不可能是2.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.例如: 1.(1)已知c b a ,,是整数,c b a ++是奇数,判断c b a -+,c b a +-,c b a ++-的奇偶性,说明理由。
(2)你能找到三个整数c b a ,,,使得关系式()()()()2010a b c a b c a b c b c a ++-++-+-=成立吗?如果能找到,请举一例,如果找不到,请说明理由.2、是否存在整数,m n ,满足222010m n +=?3、设1,2,3,,9的任一排列为1239,,,,a a a a ,求证:129(1)(2)(9)a a a ---是一个偶数. 类题:(1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,体现了整体处理的优点,但掩盖了“乘积”为偶数的原因. 解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.例4-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.例4-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.4、有n 个数12,,,n x x x ,它们中的每一个数或者为1,或者为1-,如果1234110n n n x x x x x x x x -++++=,求证:n 是4的倍数。
2020北京 初二数学竞赛 数论专题:整数的整除性质(包含答案)
2020北京 初二数学竞赛 数论专题:整数的整除性质(含答案)1. 下面这个41位数20555L 123个2099L 23个能被7整除,问中间方格代表的数字是几? 解析 因为5555555111111=⨯,9999999111111=⨯,11111137111337=⨯⨯⨯⨯,所以555555和999999都能被7整除,那么由18个5和18个9分别组成的18位数,也能被7整除.而原数=185230555000L L 123123个个1851890999+L L 123123个个,因此右边的三个加数中,前后两个数都能被1整除,那么只要中间的能被7整除,原数就能被7整除.把拆成两个数的和:5599BA B +.因为7|55300,7|399336+=.评注 记住111111能被7整除很有用.2. 一位魔术师让观众写下一个六位数a ,并将a 的各位数字相加得b ,他让观众说出a b -中的5个数字,观众报出1、3、5、7、9,魔术师便说出余下的那个数,问那个数是多少?解析 由于一个数除以9所得的余数与这个数的数字和除以9所得的余数相同,所以a b -是9的倍数.设余下的那个数为x ,则()9|13579x +++++,即 ()9|7x +,由于09x ≤≤,所以,2x =.3. 若p 、q 、21p q -、21q p-都是整数,并且1p >,1q >.求pq 的值. 解析 若p q =,则212112p p q p p--==- 不是整数,所以p q ≠.不妨设p q <,于是2121212p q q q q q--<<=≤, 而21p q -是整数,故211p q-=,即21q p =-.又 214334q p p p p--==- 是整数,所以p 只能为3,从而5q =.所以3515pq =⨯=.4. 试求出两两互质的不同的三个正整数x 、y 、z 使得其中任意两个的和能被第三个数整除.解析 题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.不妨设x y z <<,于是y z x +、z x y +、x y z+都是正整数.先考虑最小的一个:12x y z z z z++<=≤, 所以1x y z+=,即z x y =+.再考虑z x y +,因为()|y z x +,即()|2y y x +,所以|2y x ,于是2212x y y y <=≤, 所以21x y=,即2y x =,从而这三个数为x 、2x 、3x .又因为这三个数两两互质,所以1x =.所求的三个数为1、2、3.5. 证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.解析 要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.设三个连续的奇数分别为21n -、21n +、23n +(其中n 是整数),于是 ()()()()22222121231121n n n n n -+++++=++. 所以 ()()()22212|212123n n n ⎡⎤-++++⎣⎦. 又()2111n n n n ++=++,而n 、1n +是相邻的两个整数,必定一奇一偶,所以()1n n +是偶数,从而21n n ++是奇数,故()()()22224212123n n n ⎡⎤-++++⎣⎦Œ. 6. 若x 、y 为整数,且23x y +,95x y +之一能被17整除,那么另一个也能被17整除. 解析 设23u x y =+,95x y =+.若17|u ,从上面两式中消去y ,得3517v u x -=.① 所以 17|3v .因为(17,3)=1,所以17|v 即17|95x y +.若17|v ,同样从①式可知17|5u .因为(17,5)=1,所以17|u ,即17|23x y +.7. 设n 是奇数,求证:60|6321n n n ---.解析 因为260235=⨯⨯,22、3、5是两两互质的,所以只需证明22、3、5能整除6321n n n ---即可.由于n 是奇数,有22|62n n -,22|31n +,所以22|6231n n n ---;又有3|63n n -,3|21n +,所以3|6321n n n ---;又有5|61n -,5|32n n +,所以5|6321n n n ---.所以60|6321n n n ---.评注 我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k 表示,奇数常用21k +表示,其实这就是按模2分类.又如,一个整数a 被3除时,余数只能是0、1、2这三种可能,因此,全体整数可以分为3k 、31k +、32k +这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.8. 设n 为任意奇正整数,证明:15961000270320n n n n +--能被2006整除.解析 因为200621759=⨯⨯,所以为证结论成立,只需证n 为奇正整数时,15961000270320n n n n +--能被2、17、59整除.显然,表达式能被2整除.应用公式,n 为奇数时,()()121n n n n n a b a b a a b b ---+=+-++L ,()()121n n n n n a b a b a a b b ----=-+++L .由于159610005944+=⨯,2703205910+=⨯,所以15961000270320n n n n +--能被59整除.又159627013261778-==⨯,10003206801740-==⨯,所以15961000270320n n n n +--能被17整除.9. 若整数a 不被2和3整除,求证:()224|1a -.解析 因为a 既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k 、61k +、62k +、63k +、64k +、65k +这六类.由于6k 、62k +、64k +是2的倍数,63k +是3的倍数,所以a 只能具有61k +或65k +的形式,有时候为了方便起见,也常把65k +写成61k -(它们除以6余数均为5).故a 具有61k ±的形式,其中k 是整数,所以()()222161136121231a k k k k k -=±-=±=±. 由于k 与31k ±为一奇一偶(若k 为奇数,则31k ±为偶数,若k 为偶数,则31k ±为奇数),所以()2|31k k ±,于是便有()224|1a -.10. 求证:31n +(n 为正整数)能被2或22整除,但不能被2的更高次幂整除. 解析 按模2分类.若2n k =为偶数,k 为正整数,则()22313131n k n +=+=+. 由3k 是奇数,()23k 是奇数的平方,奇数的平方除以8余1,故可设()2381k l =+,于是 ()3182241n l l +=+=+,41l +是奇数,不含有2的因数,所以31n +能被2整除,但不能被2的更高次幂整除. 若21n k =+为奇数,k 为非负整数,则()()()22131313313811461n k k l l ++=+=⋅+=++=+. 由于61l +是奇数,所以此时31n +能被22整除,但不能被2的更高次幂整除.11. 设p 是质数,证明:满足22a pb =的正整数a 、b 不存在.解析 用反证法.假定存在正整数a 、b ,使得22a pb =.令() , a b d =,1a a d =,1b b d =,则()11 , 1a b =.所以222211a d pb d =,2211a pb =,所以21|p a .由于p 是质数,可知,1|p a .令12a pa =,则22221a p pb =,所以2221pa b =.同理可得,1|p b .即1a 、1b 都含有p 这个因子,这与()11 , 1a b =矛盾.12. 如果p 与2p +都是大于3的质数,那么6是1p +的约数.解析 每一整数可以写成6n 、61n -、61n +、62n -、62n +、63n +中的一种(n 为整数),其中6n 、62n -、62n +、63n +在1n ≥时都是合数,分别被6、2、2、3整除.因此,质数p 是61n -或61n +的形式.如果()611p n n =+≥,那么()263321p n n +=+=+是3的倍数,而且大于3,所以2p +不是质数.与已知条件矛盾.因此()611p n n =-≥.这时16p n +=是6的倍数.评注 本题是将整数按照除以6,所得的余数分为6类.质数一定是61n +或61n -的形式.当然,反过来,形如61n -或61n +的数并不都是质数.但可以证明形如61n -的质数有无穷多个,形如61n +的质数也有无穷多个.猜测有无穷多个正整数n ,使61n -与61n +同为质数.这是孪生质数猜测,至今尚未解决.13. 已知a 、b 是整数,22a b +能被3整除,求证:a 和b 都能被3整除.证 用反证法.如果a 、b 不都能被3整除,那么有如下两种情况:(1)a 、b 两数中恰有一个能被3整除,不妨设3|a ,3b Œ.令3a m =,31b n =±(m 、n 都是整数),于是()222222996133321a b m n n m n n +=+±+=+±+,不是3的倍数,矛盾.(2)a ,b 两数都不能被3整除.令31a m =±,31b n =±,则()()2222223131961961a b m n m m n n +=++±=±++±+()22333222m n m n =+±±+,不能被3整除,矛盾.由此可知,a 、b 都是3的倍数.14. 若正整数x 、y 使得2x x y+是素数,求证:x y ≤. 解析 设2x p x y =+是素数,则()py x x p =-,所以()|p x x p -,故|p x ,或者|p x p -,故可得|p x ,且p x <.令x kp =,k 是大于1的整数,则()1y x k x =-≥.15. 证明:形如abcabc 的六位数一定被7、11、13整除.解析 100171113abcabc abc abc =⨯=⨯⨯⨯. 由此可见,abcabc 被7、11、13整除.16. 任给一个正整数N ,把N 的各位数字按相反的顺序写出来,得到一个新的正整数N ',试证明:N N '-被9整除.解析 N 除以9,与N 的数字和除以9,所得余数相同.N '除以9,与N '的数字和除以9,所得余数相同.N 与N '的数字完全相同,只是顺序相反,所以N 与N '的数字和相等.N 除以9与N '除以9,所得的余数相同,所以N N '-被9整除.17. 19991999199919991999N =L 144424443连写个.求N 被11除所得的余数.解 显然,N 的奇数位数字和与偶数位数字和的差为()1999999119998⨯+--=⨯.19998⨯除以11的余数与88⨯除以11的余数相同,即余数为9.从而N 除以11,所得的余数为9.18. 在568后面补上三个数字,组成一个六位数,使它能被3、4、5分别整除.符合这些条件的六位数中,最小的一个是多少?解析 要命名这个六位数尽可能小,而且能被5整除,百位数字和个位数字都应选0.这样,已知的五个数位上数字之和是5+6+8+0+0=19.要使这个六位数能被3整除,十位上可填2、5、8.由能被4整除的数的特征(这个数的末两位数应该能被4整除)可知,应在十位上填2.这个六位数是568020.19. 已知四位数abcd 是11的倍数,且有b c a +=,bc 为完全平方数,求此四位数. 解析 在三个已知条件中,b c a +=说明给出b 和c ,a 就随之给定,再由11|abcd ,可定d .而bc 为完全平方数,将b 和c 的取值定在两位平方数的十位和个位数字范围中,只要从这个范围中挑选符合要求的即可.由bc 完全平方数,只可能为16、25、36、49、64、81这六种情况.由b c a +=,此时相应的a 为7、7、9、13、10、9.其中13和10显然不可能是四位数的千位数字. 在716d 、725d 、936d 、981d ,这四种可能性中,由11|abcd ,应有()()11|d b a c +-+.()()11|176d +-+时,d 可为1;()()11|275d +-+时,这种d 不存在;()11|396d +-+时,d 可为1;()11|891d +-+时,d 可为2.故满足条件的四位数有:7161、9361、9812.评注 bc 为完全平方数,表示bc 是两位整数,0b ≠,因此,不考虑00、01、04、09这四种情况,否则还应加上1012、4048、9097这三个四位数.20. 用0,1,2,…,9这十个数字组成能被11整除的最大的十位数是多少?解析 因为0+1+2+…+9=45.这个最大十位数若能被11整除,其奇数位上数字之和与偶数位上的数字之和的差(大减小)为0或11的倍数.由于这十个数字之和是45(奇数),所以这个差不可能是0、22、44(偶数).若这个差为33,则只能是396-,但0+1+2+3+4=10,即最小的五个数字之和都超过6,不可能.若这个差为11,()4511228+÷=,452817-=.如果偶数位为9、7、5、3、1,其和为25;奇数位为8、6、4、2、0,其和为20.交换偶数位上的1与奇数位上的4,可得偶数位上的数为9、7、5、4、3,奇数位上的数为8、6、2、1、0.于是所求的最大十位数为9876524130.21. 一个六位数88的倍数,这个数除以88所得的商是多少?解析 设这个六位数为1234A B ,因为它是88的倍数,而88811=⨯,8与11互质,所以,这个六位数既是8的倍数,又是11的倍数.由1234A B 能被8整除,可知34B 能被8整除(一个数末三位组成的数能被8整除,这个数就能被8整除),所以B 是4.由能被11整除的数的特征(一个数奇数位数字之和与偶数位数字之和的差能被11整除,这个数就能被11整除),可知奇数位数字之和与偶数位数字之和的差()()234144A A ++-++=-能被11整除,则40A -=,即4A =.124344881413÷=. 所以,这个六位数是124344,它除以88的商是1413.22. 如果六位数105整除,那么,它的最后两位数是多少?解析 因为这个六位数能被105整除,而105357=⨯⨯,3、5、7这三个数两两互质,所以,这个六位数能同时被3、5、7整除.根据能被5整除的数的特征,它的个位数可以是0或5.根据能被3整除的数的特征,可知这个六位数有如下七种可能:199320,199350,199380,199305,199335,199365,199395.而能被7整除的数的特征是:这个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7整除.经试算:395199196-=,196能被7整除.所以,199395能被105整除,它的最后两位数是95.23. 形如1993199319931993520n L 1442443个,且能被11整除的最小数是几? 解析 本题实质上确定n 的最小值.利用被11整除的数的特征:偶数位数字之和与奇位数字之和的差能被11整除.该数的偶数位数字之和为122n +,奇数位数字之和为105n +,两者之差为()12210523n n n +-+=-.要使()11|23n -,不难看出最小的7n =,故所求最小数为71993199319931993520L 1442443个. 24. 是否存在100个不同的正整数,使得它们的和与它们的最小公倍数相等?解析 存在满足条件的100个数.事实上,对任意正整数()3n ≥,下述n 个数3,23⨯,223⨯,…,223n -⨯,13n -,它们的最小公倍数为123n -⨯,和为221222132323233323233n n n n ----+⨯+⨯++⨯+=+⨯++⨯+L L 33211113232333323n n n n n -----=+⨯++⨯+==+=⨯L L .所以,这几个数的和等于它们的最小公倍数.取100n =,可知存在符合要求的100个数.。
五年级上册数学试题-奥数:数论之数的整除性(解析版)全国通用
第三讲 数论之数的整除性卷Ⅰ 1. 熟练掌握整除性质及特殊数的整除特征; 2. 巧妙运用整除性质及特殊数的整除特征解决数的整除问题;答案:因为432165a a a a a a 能被5整除,所以4a 是5;由于165432a a a a a a 、321654a a a a a a 和543216a a a a a a 分别能被2、4、6整除,因此1a 、3a 、5a 是偶数,取值为2、4、6,进而知道2a 、6a 是1和3;上述能被4整除的那个六位数的末两位32a a 应是4的倍数,而2a 是奇数,所以3a 只能为2和6.根据上面的分析,为使原六位数最大,1a 可取最大的数字6,2a 取1、3中的大数3,这样其余各数分别是3a =2,4a =5,5a =4,6a =1,所以最大值为632541.教学目标专题精讲 想 挑 战 吗?用数字1、2、3、4、5、6排列成一个六位数654321a a a a a a ,将1a 移到最后,所得的六位数165432a a a a a a 能被2整除;再将2a 移到最后,所得的六位数216543a a a a a a 能被3整除;……;最后把5a 移到最后,所得的六位数543216a a a a a a 能被6整除,那么654321a a a a a a 的最大可能值是多少? 数的整除性质: [性质1] 如果a 能被b 整除,b 能被c 整除,那么a 一定能被c 整除. 例如,48能被16整除,16能被8整除,那么48一定能被8整除. [性质2] 如果a 、b 都能被c 整除,那么(a ±b ) 也一定能被c 整除. 例如,21与15都能被3整除,那么21+15及21-15都能被3整除. [性质3] 如果c 能分别被两个互质的自然数a 、b 整除,那么c 一定能被ab 整除. 例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除.①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数数字和能被3整除,这个数就能被9整除;一个数各位数数字和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.⑤部分特殊数的分解:111=3×37;1001=7×11×13;11111=41×271;10001=73×137;10101=3×7×13×37;1995=3×5×7×19;1998=2×3×3×3×37;2007=3×3×223;2008=2×2×2×251;2007+2008=4015=5×11×73.(一)整除的性质【例1】某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是多少?分析:可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除,因此该数是[9,5,11]=495,因此符合条件的最小自然数是495.注意:本题易错答案为990,提醒同学们注意.(拓展)一个各位数字均不为零的三位数能被8整除,将其百位数字、十位数字、个位数字分别划去后可以得到3个两位数(例如,按此方法由247将得到47、27、24).已知这些两位数中一个能被5整除,另一个能被6整除,还有一个能被7整除.那么原来的三位数是多少?分析:那个能被5整除的两位数的个位数字是0或5,且应是原三位数的十位数字或个位数字.注意到各位数字均不为零且本身是偶数,故必须有原三位数的是十位数字是5.三位数能被8整除意味着末两位数应能被4整除.在51~59之间只有52、56是4的倍数,但52不是5、6、7中任何一个数的倍数,故题设中的三位数个位数字一定是6.由上述分析可知,百位数字和6组成的两位数是6的倍数,可能为36、66、96,则得到三个三位数:356、656、956,经检验只有656是8的倍数.【例2】1)从1~3998这3998个自然数中,有多少个能被4整除?(2)从1~3998这3998个自然数中,有多少个数的各位数字之和能被4整除?分析:(1)第一问比较简单,3998÷4=999…6所以1~3998中有996个能被4整除的(2)考虑数字和,如果一个一个找规律我们会发现规律是不存在的,因此我们考虑分组的方法,我们补充2个数,0000和3999,此外所有的一位两位三位数都在前面加上0补足4位,然后对这4000个数做如下分组:(0000,1000,2000,3000),(0001,1001,2001,3001),(0002,1002,2002,3002),…(0999,1999,2999,3999),共1000组,容易发现每一组恰好有个数字和是4的倍数,因此共有1000个数字和是4的倍数,但注意到我们补充了一个0000进去.所以原来的3998个数里,有999个数字和是4的倍数.【例3】在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a整除?分析:如果2008+a 能被2007-a 整除,那么2008+a 2007-a 为自然数,2008+a 2008200712007-a 2007a++=-也是自然数, 4015能被(2007-a )整除,所以4015=5×11×73,4015的约数中小于2007的数有1、5、11、73、55、365、803, 所以当a 取2006、2002、1996、1934、1952、1642、1204能使2008+a 能被2007-a 整除.【例4】 已知两个三位数abc 与def 的和abc def +能被37整除,证明:六位数abcdef 也能被37整除. 分析:abcdef =abc ×1000+def =abc ×999+(abc +def ),因为999能被37整除,所以abc ×999能被37整除,而(abc +def )也能被37整除,所以其和叶能被37整除.(前铺)已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?分析:因为□△□△□△=□△10101⨯,所以在题述等式的两边同时约去□△即得△□×□〇×☆△=10101.作质因数分解得37137310101⨯⨯⨯=,由此可知该数分解为3个两位数乘积的方法仅有371321⨯⨯.注意到两位△□的十位数字和个位数字分别和另外的两位数□〇和☆△中出现,所以△□=13,□〇=37,☆△=21.即〇=7,△=1,□=3,☆=2,所求的四位数是7132.(前铺)证明:形如abcabc 的六位数一定能被7,11,13整除. 分析:1001,100171113abcabc abc =⨯=⨯⨯,所以得证.(拓展)若4b+2c+d=32.试问abcd 能否被8整除?请说明理由.分析:由能被8整除的特征知,只要后三位数能被8整除即可.10010bcd b c d =++,有(42)9688(12)bcd b c d b c b c -++=+=+,所以abcd 能被8整除.(拓展)已知a ,b 是整数,求证a+b,ab 、a-b 这三个数之中,至少有一个是3的倍数.分析:若a,b 之一是3的倍数,则ab 是3的倍数;若a,b 都不是3的倍数:1)a=b=3k+1或3k-1 (都余1或都余2),则a-b 是3的倍数;2)a,b 一个是3k+1 一个是3k-1 (一个余1,一个余2),则a+b 是3的倍数;所以a+b,ab,a-b 这三个数之中,至少有一个是3的倍数.(拓展)五位数abcde 是9的倍数,其中abcd 是4的倍数,那么abcde 的最小值是_______.分析:1)若a、b、c、d、e不同的字母代表相同的数值时,abcde=abcd×10+e=(abcd+e)+ abcd ×9,因为abcde是9的倍数,所以(abcd+e)是9的倍数,要abcde最小,我们希望abcd和e都能取最小,这样和也就最小.abcd是4的倍数,所以最小是1000,要让(abcd+e)是9的倍数,e最小是8,所以abcde最小值是10008.2)若a、b、c、d、e不同的字母代表不同的数值时,abcd是4的倍数,所以最小是1024,但e为2,矛盾,所以abcd最小是1028,即abcde最小值是10287.(二)整除的特征【例5】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.5,15=5×3,20=5×4,25=5×5,30=5×6,35=5×7,40=5×8,45=5×9,50=5×5×2,55=5×11,发现只有25、50、75、100、……这样的数中才会出现多个5,写到55时共出现11+1+1=13个因数5,所以至少应当写到55,最多可以写到59.[前铺] 从50到100的这51个自然数的乘积的末尾有多少个连续的0?分析:首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的数字5乘以偶数又可以产生1个0,所以一共有++147=+个0.124[巩固] 11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?343=,则可知,在11个连续的两位数种,至多只能有2个数是7的倍数,所以其中有一分析:因为37个必须是49的倍数,那就只能是49或98.又因为乘积的末4位都是0,就是说这连续的11个自然数应该“含有”4个5.连续的11个自然数中至多只能有3个是5的倍数,至多只能有1个是25的倍数,所以其中有一个必须是25的倍数,那么就只能是25、50或75.所以这11个数是40,41,42,43,44,45,46,47,48,49,50,它们的平均数即为它们的中间项45.[拓展] 975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?分析:积的最后4个数字都是0,说明乘数里至少4个2和4个5.975=5×5×39,935=5×187,972=2×2×243,共有3个5,2个2,方框内至少是2×2×5=20 答:在方框内最小应填20.卷Ⅱ【例6】 已知四十一位数55…55□99…99(其中5和9各20个)能被7整除,那么中间方格内的数字是多少?分析:因为555555和999999都是7的倍数,如果原数是能被7整除,那么由5个205555□ 9个209999=5个205555□99999910999969个14+⨯知 5个205555□ 9个149999也能被7整除;又 5个205555□ 9个149999可以表示成 5555552910⨯+ 5个145555□ 9个149999,说明 5个145555□9个149999也能被7整除, 相当于将原数的前后分别去掉555555和999999后整除性不变,依次下去,得到55□99.因此□44是7的倍数,□3是7的倍数,所以得□=6.[前铺1] 已知10□8971能被13整除,求□中的数.分析:10□8-971=1008-971+□0=37+□0.上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8.[前铺2] 在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?分析:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除.[巩固1] 在六位数11□□11中的两个方框内各填入一个数字,使得这个六位数能够被17和19整除,那么方框中的两位数是多少?分析:(法1)这个六位数能够被17和19整除,那么也应当能被17×19=323整除,因为119911减去某个数□□00就可能是323的倍数.119911=323×371+78,说明119911应当减去的四(三)位数满足□□00除以323也余78,也就是满足□□22除以323应当能够除尽.说明□□22是4522,那么□□00是4600,因此所求的六位数是119911-4600=115300.[巩固2] 应当在如下的问号“?”的位置上填上哪一个数码,才能使得所得的整数可被7整除?(其中数码6和5各重复了50次)666...66?555 (55)分析:可在“?”的位置上填上2或9.事实上,111111(6个1)可被7整除,因此如果将我们的数的头和尾各去掉48个数码,并不改变其对7的整除性,于是还剩下66?55.从中减去63035,并除以10,即得3?2.此时不难验证,具有此种形式的三位数中,只有322和392可被7整除.所以?上填2或9.[拓展] 应当在如下的“□□”的位置上填上哪两个数码,才能使得所得的整数可被63整除?(其中数码2和7都重复了25次.222...22□□77 (777)分析:63=7×9,所以中间□□两个数的和能被9整除,又111111(6个1)可被7整除,所以去掉首尾24个数字后,剩下的2□□7,也能被7整除,2007=7×286+5,所以□□5也能被7整除,□□5-35能被7整除,所以两位数□□被7除余3,在两位数中被7除余3,且能被9整除的只有45. □□中所填的数是45.【例7】 (★★全国小学数学奥林匹克)200820082008200808n 个能被99整除,那么,n 的最小值为多少?分析:由于99=9×11,所以200820082008200808n 个能被11和9整除,200820082008200808n 个中奇位数减偶位数的差为(8-2)n+8=6n+8,当n=6、17、28……时,(3n+1)是11的倍数,所以n 的最小值是6. 200820082008200808n 个各位数字之和为(2+8)×n+8=10n+8,所以当n=1、10、19、28……等数时,能被9整除,所以n 的最小值为28.[前铺] 如果200520052005200501n 个能被11整除,那么n 的最小值是 .分析:200520052005200501n 个中奇数位减偶数位的差为(5-2)n +1=3n +1,当n=7时,(3n +1)是11的倍数,所以n 的最小值是7.【例8】 已知多位数55…5599…99□□(其中5和9各n 个)能被7整除,那么当n 取值为什么时,方格内的数字的不同的情况数为定值,并求出这个定值?分析:由例题1知当n=6k (k 为自然数),100÷7=14…2,所以共有15种不同的情况;当n ≠6k (k 为自然数),情况不定.[前铺1] 如果六位数1992□□能被105整除,那么它的最后两位数是多少?分析:199300÷105余10,199300-10=199290,即它的最后两位数是90.[前铺2] 已知200520052005□□是72的倍数,求末两位数是多少?分析:72=8×9,因为被9整除,所以末两位数字和是被9除余6的,因为被8整除,注意到百位是奇数,所以末两位被8除余4,满足这2个条件的2位数就只有60.[拓展] 已知多位数□□55…5599…99(其中5和9各n 个)能被77整除,那么方格内的数字是多少?分析:由例题知当n=6k (k 为自然数),100÷77=1…23,方格内的数字是77;当n ≠6k (k 为自然数),情况不定.【例9】 已知四十一位数55…55□7□99…99(其中5和9各19个)能被77整除,那么方格内的数字分别是多少?分析:由上题知可化为5□7□9能被7整除,50709÷77=658…43,所以□0□0+43=7 k (k 为自然数),即□0□0+1=7 k (k 为自然数),又21+□+□=11 k (k 为自然数),所以□+□=10,设第一个□为x ,则第二个□为(10-x ),有1000x+10(10-x )+1=7 k (k 为自然数),,所以x=6,即第一个□为6,所以第二个□为4,即所求的数为56749.[前铺1] 五位数329A B 能被72整除,问:A 与B 各代表什么数字?分析:已知329A B 能被72整除.因为72=8×9,8和9是互质数,所以329A B 既能被8整除,又能被9整除.根据能被8整除的数的特征,要求29B 能被8整除,由此可确定B =6.再根据能被9整除的数的特征,329A B 的各位数字之和为A +3+2+9+B =A +3-f -2+9+6=A +20,因为l ≤A ≤9,所以21≤A +20≤29.在这个范围内只有27能被9整除,所以A =7.[前铺2] 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.分析:分别由能被9,25和8整除的数的特征,很难推断出这个七位数.因为9,25,8两两互质,由整除的性质知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4.这个七位数是4735800.[拓展1] 买28支价格相同的钢笔共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?分析:∵9□.2□元=9□2□分,28=4×7,∴根据整除“性质2”可知4和7均能整除9□2□.4|2□可知□处能填0或4或8.因为79020,79424,所以□处不能填0和4;因为7|9828,所叫□处应该填8.又∵9828分=98.28元,98.28÷28=3.51(元),即每支钢笔3.51元.[拓展2] 仓库有两个箱子,其中一个装了74个大杯子,另一个装了75个小杯子.地上有两个价格牌,一个写着总价“132.××元”,另一个写着“总价123.××元”.已知这两个价格牌原来贴在箱子上,但现在已经弄不清楚哪个价格牌贴在哪个箱子上了,唯一知道的是大杯子的单价比小杯子的贵,那么小杯子的单价是多少元?分析:设大杯子和小杯子的价格分别为S和s.如果s×75=132.××,S×74=123.××,因为S>s,所以s>132.××-123.×× > 8元.可是如此小杯子的总价格大于8×75=300元,不符合题目要求.所以123.××是小杯子的总价钱.由此可得出123××是75=3×25的倍数,则××可以为00、25、50、75,经实验12300和12375是75的倍数.相应的s分别为:12300÷75=1.64元、12375÷75=1.65元.【例10】求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除.分析:所求的数写成100a+56的形式.由于100a+56能被56整除,所以a能被14整除,所以a应是14的倍数.而且a的数字和等于56-5-6=45.具有数字和45的最小偶数是199998,但这个数不能被7整除.接下来数字和为45的偶数是289998和298998,但前者不能被7除尽,后者能被7整除,所以本题的答数就是29899856.[前铺] 求最小的偶数,它的各位数数字之和为40.分析:各位数数字之和为40的数,至少有5位,万位上的数至少为4,否则,各位数数字之和最多为3+9+9+9+9=39,当万位数上的数为4是,这个数只能是49999,不是偶数,所以最小的偶数只能是59998.[拓展]在五位数中,能被11整除且各位数字和等于43,这样的数有多少?分析:因为5×8=40,5个数字的和等于43时,其中至少有3个9,并且只有以下两种情况.(1)数字中4个9、1个7,则奇数位数字和减去偶数位数字和只能是3×9-(9+7)=11,这样的书有99979和97999,(2)数字中3个9,一个7,则奇数位数字和减去偶数位数字的和只可能是3×9-2×8=11,这样的数有98989.专题展望数的整除性是数论中最基本的内容,在数论问题中经常被用到,而奇偶性质是数的整除性中的特殊情形,有关奇偶数性质的运用将在下一讲中详细教授.练习三1. (例1)有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和;还能表示成5个连续自然数的和,例如:30满足上述要求,因为30=9+10+11;30=6+7+8+9;30=4+5+6+7+8.请你找出700至1000之间,所有满足上述要求的数,并简述理由.分析:3个连续自然数的和,一定能够被3整除;4个连续自然数的和,一定能够被2整除,且除以2所得的商是奇数,也就是说它不能被4整除,也即除以4所得余数为2;5个连续自然数的和,一定能够被5整除.3、4、5的最小公倍数是60.60以内满足上述三个条件的数是30,所以60的整数倍加上30就可以满足条件.700=60×11+40,所以第一个符合题意的数是750=60×12+30,最大的一个数是990=60×16+30,共计16-12+1=5个数,分别为750、810、870、930、960.关键是让学生把该问题转化到整除问题,也可简单复习连续自然数求和与项数的关系.2. (例3)在1,2,3,……,1995,这1995个数中找出所有满足下面条件的数a 来:(1995+a )能整除1995×a.分析:1995a 1995+a ⨯是自然数,所以1995a 199519951995-=1995+a 1995+a⨯⨯也是自然数,即1995+a 是1995×1995的约数.因为:1995×1995=32×52×72×192,,它在1995与2×1995之间的约数有32×192=3249,7×192=2527,3×72×19=2793,52×7×19=3325,32×5×72=2205,3×52×72=3675,于是a 的值有6个,即3249-1995=1254,2527-1995=532,2793-1995=798,3325-1995=1330,2205-1995=210,3675-1995=1680.3. (例4)已知p 、q 都是大于1的整数,并且qp 12-和p q 12-都是整数,那么p +q 的值是多少? 分析:根据对称性,不妨设p q ≥,于是21q p-为大于0、小于2的整数,只能等于1.由于21q p -=,可将21p q -化为34q-,这样3q =,5p =,所以8p q +=.4. (例5)把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:1到10的乘积里会出现2×5和10两次末尾添零的情况,估算从200开始,是49个0,还要扩大至220时加4个0,所以最小的数应该是220,而最大应该是224.5. (例6)二百零一位数11…1□22…2(其中1和2各有100个)能被13整除,那么中间方格内应填什么数?分析:由111111被13整除,而100=6×16+4,故原来被13整除的算式即变为13|1111□2222;还可变为13|333-1□2,即可知方格应填1.6. (例7)已知数022983298329832983个 n 能被18整除,那么n 的最小值是多少?分析:13n+2=9k ,所以k=6 时,n=4位最小值.人生要学会遗忘人生在世,忧虑与烦恼有时也会伴随着欢笑与快乐的.正如失败伴随着成功,如果一个人的脑子里整天胡思乱想,把没有价值的东西也记存在头脑中,那他或她总会感到前途渺茫,人生有很多的不如意.所以,我们很有必要对头脑中储存的东西,给予及时清理,把该保留的保留下来,把不该保留的予以抛弃.那些给人带来诸方面不 利的因素,实在没有必要过了若干年还值得回味或耿耿于怀.这样,人才能过得快乐洒脱一点.众所周知,在社会这个大家庭里,你要想赢得别人的尊重,你首先必须尊重别人,多记住别人的优点,而学会遗忘别人的过失.其次,一个人要学会遗忘自己的成绩,有些人稍微做了一点成绩就骄傲起来,沾沾自喜,这显然是造成失败的一个原因.成绩只是过去,要一切从零开始,那样才能跨越人生新的境界.同时,一个人自己对他人的帮助,应该看作是一件微不足道小事,以至于遗忘.这样,你的处事之道方能获得他人的赞许.人生需要反思,需要不断总结教训,发扬优点,克服缺点.要学会遗忘,用理智过滤去自己思想上的杂质,保留真诚的情感,它会教你陶冶情操.只有善于遗忘,才能更好地保留人生最美好的回忆.成长故事。
2020北京 初二数学竞赛 数论专题:整数的整除性质(含答案)
2020北京 初二数学竞赛 数论专题:整数的整除性质(含答案)1. 下面这个41位数20555L 123个2099L 23个能被7整除,问中间方格代表的数字是几? 解析 因为5555555111111=⨯,9999999111111=⨯,11111137111337=⨯⨯⨯⨯,所以555555和999999都能被7整除,那么由18个5和18个9分别组成的18位数,也能被7整除.而原数=185230555000L L 123123个个1851890999+L L 123123个个,因此右边的三个加数中,前后两个数都能被1整除,那么只要中间的能被7整除,原数就能被7整除.把拆成两个数的和:5599BA B +.因为7|55300,7|399336+=.评注 记住111111能被7整除很有用.2. 一位魔术师让观众写下一个六位数a ,并将a 的各位数字相加得b ,他让观众说出a b -中的5个数字,观众报出1、3、5、7、9,魔术师便说出余下的那个数,问那个数是多少?解析 由于一个数除以9所得的余数与这个数的数字和除以9所得的余数相同,所以a b -是9的倍数.设余下的那个数为x ,则()9|13579x +++++,即 ()9|7x +,由于09x ≤≤,所以,2x =.3. 若p 、q 、21p q -、21q p-都是整数,并且1p >,1q >.求pq 的值. 解析 若p q =,则212112p p q p p--==- 不是整数,所以p q ≠.不妨设p q <,于是2121212p q q q q q--<<=≤, 而21p q -是整数,故211p q-=,即21q p =-.又 214334q p p p p--==- 是整数,所以p 只能为3,从而5q =.所以3515pq =⨯=.4. 试求出两两互质的不同的三个正整数x 、y 、z 使得其中任意两个的和能被第三个数整除.解析 题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.不妨设x y z <<,于是y z x +、z x y +、x y z+都是正整数.先考虑最小的一个:12x y z z z z++<=≤, 所以1x y z+=,即z x y =+.再考虑z x y +,因为()|y z x +,即()|2y y x +,所以|2y x ,于是2212x y y y <=≤, 所以21x y=,即2y x =,从而这三个数为x 、2x 、3x .又因为这三个数两两互质,所以1x =.所求的三个数为1、2、3.5. 证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.解析 要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.设三个连续的奇数分别为21n -、21n +、23n +(其中n 是整数),于是 ()()()()22222121231121n n n n n -+++++=++. 所以 ()()()22212|212123n n n ⎡⎤-++++⎣⎦. 又()2111n n n n ++=++,而n 、1n +是相邻的两个整数,必定一奇一偶,所以()1n n +是偶数,从而21n n ++是奇数,故()()()22224212123n n n ⎡⎤-++++⎣⎦Œ. 6. 若x 、y 为整数,且23x y +,95x y +之一能被17整除,那么另一个也能被17整除. 解析 设23u x y =+,95x y =+.若17|u ,从上面两式中消去y ,得3517v u x -=.① 所以 17|3v .因为(17,3)=1,所以17|v 即17|95x y +.若17|v ,同样从①式可知17|5u .因为(17,5)=1,所以17|u ,即17|23x y +.7. 设n 是奇数,求证:60|6321n n n ---.解析 因为260235=⨯⨯,22、3、5是两两互质的,所以只需证明22、3、5能整除6321n n n ---即可.由于n 是奇数,有22|62n n -,22|31n +,所以22|6231n n n ---;又有3|63n n -,3|21n +,所以3|6321n n n ---;又有5|61n -,5|32n n +,所以5|6321n n n ---.所以60|6321n n n ---.评注 我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k 表示,奇数常用21k +表示,其实这就是按模2分类.又如,一个整数a 被3除时,余数只能是0、1、2这三种可能,因此,全体整数可以分为3k 、31k +、32k +这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.8. 设n 为任意奇正整数,证明:15961000270320n n n n +--能被2006整除.解析 因为200621759=⨯⨯,所以为证结论成立,只需证n 为奇正整数时,15961000270320n n n n +--能被2、17、59整除.显然,表达式能被2整除.应用公式,n 为奇数时,()()121n n n n n a b a b a a b b ---+=+-++L ,()()121n n n n n a b a b a a b b ----=-+++L .由于159610005944+=⨯,2703205910+=⨯,所以15961000270320n n n n +--能被59整除.又159627013261778-==⨯,10003206801740-==⨯,所以15961000270320n n n n +--能被17整除.9. 若整数a 不被2和3整除,求证:()224|1a -.解析 因为a 既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k 、61k +、62k +、63k +、64k +、65k +这六类.由于6k 、62k +、64k +是2的倍数,63k +是3的倍数,所以a 只能具有61k +或65k +的形式,有时候为了方便起见,也常把65k +写成61k -(它们除以6余数均为5).故a 具有61k ±的形式,其中k 是整数,所以()()222161136121231a k k k k k -=±-=±=±. 由于k 与31k ±为一奇一偶(若k 为奇数,则31k ±为偶数,若k 为偶数,则31k ±为奇数),所以()2|31k k ±,于是便有()224|1a -.10. 求证:31n +(n 为正整数)能被2或22整除,但不能被2的更高次幂整除. 解析 按模2分类.若2n k =为偶数,k 为正整数,则()22313131n k n +=+=+. 由3k 是奇数,()23k 是奇数的平方,奇数的平方除以8余1,故可设()2381k l =+,于是 ()3182241n l l +=+=+,41l +是奇数,不含有2的因数,所以31n +能被2整除,但不能被2的更高次幂整除. 若21n k =+为奇数,k 为非负整数,则()()()22131313313811461n k k l l ++=+=⋅+=++=+. 由于61l +是奇数,所以此时31n +能被22整除,但不能被2的更高次幂整除.11. 设p 是质数,证明:满足22a pb =的正整数a 、b 不存在.解析 用反证法.假定存在正整数a 、b ,使得22a pb =.令() , a b d =,1a a d =,1b b d =,则()11 , 1a b =.所以222211a d pb d =,2211a pb =,所以21|p a .由于p 是质数,可知,1|p a .令12a pa =,则22221a p pb =,所以2221pa b =.同理可得,1|p b .即1a 、1b 都含有p 这个因子,这与()11 , 1a b =矛盾.12. 如果p 与2p +都是大于3的质数,那么6是1p +的约数.解析 每一整数可以写成6n 、61n -、61n +、62n -、62n +、63n +中的一种(n 为整数),其中6n 、62n -、62n +、63n +在1n ≥时都是合数,分别被6、2、2、3整除.因此,质数p 是61n -或61n +的形式.如果()611p n n =+≥,那么()263321p n n +=+=+是3的倍数,而且大于3,所以2p +不是质数.与已知条件矛盾.因此()611p n n =-≥.这时16p n +=是6的倍数.评注 本题是将整数按照除以6,所得的余数分为6类.质数一定是61n +或61n -的形式.当然,反过来,形如61n -或61n +的数并不都是质数.但可以证明形如61n -的质数有无穷多个,形如61n +的质数也有无穷多个.猜测有无穷多个正整数n ,使61n -与61n +同为质数.这是孪生质数猜测,至今尚未解决.13. 已知a 、b 是整数,22a b +能被3整除,求证:a 和b 都能被3整除.证 用反证法.如果a 、b 不都能被3整除,那么有如下两种情况:(1)a 、b 两数中恰有一个能被3整除,不妨设3|a ,3b Œ.令3a m =,31b n =±(m 、n 都是整数),于是()222222996133321a b m n n m n n +=+±+=+±+,不是3的倍数,矛盾.(2)a ,b 两数都不能被3整除.令31a m =±,31b n =±,则()()2222223131961961a b m n m m n n +=++±=±++±+()22333222m n m n =+±±+,不能被3整除,矛盾.由此可知,a 、b 都是3的倍数.14. 若正整数x 、y 使得2x x y+是素数,求证:x y ≤. 解析 设2x p x y =+是素数,则()py x x p =-,所以()|p x x p -,故|p x ,或者|p x p -,故可得|p x ,且p x <.令x kp =,k 是大于1的整数,则()1y x k x =-≥.15. 证明:形如abcabc 的六位数一定被7、11、13整除.解析 100171113abcabc abc abc =⨯=⨯⨯⨯. 由此可见,abcabc 被7、11、13整除.16. 任给一个正整数N ,把N 的各位数字按相反的顺序写出来,得到一个新的正整数N ',试证明:N N '-被9整除.解析 N 除以9,与N 的数字和除以9,所得余数相同.N '除以9,与N '的数字和除以9,所得余数相同.N 与N '的数字完全相同,只是顺序相反,所以N 与N '的数字和相等.N 除以9与N '除以9,所得的余数相同,所以N N '-被9整除.17. 19991999199919991999N =L 144424443连写个.求N 被11除所得的余数.解 显然,N 的奇数位数字和与偶数位数字和的差为()1999999119998⨯+--=⨯.19998⨯除以11的余数与88⨯除以11的余数相同,即余数为9.从而N 除以11,所得的余数为9.18. 在568后面补上三个数字,组成一个六位数,使它能被3、4、5分别整除.符合这些条件的六位数中,最小的一个是多少?解析 要命名这个六位数尽可能小,而且能被5整除,百位数字和个位数字都应选0.这样,已知的五个数位上数字之和是5+6+8+0+0=19.要使这个六位数能被3整除,十位上可填2、5、8.由能被4整除的数的特征(这个数的末两位数应该能被4整除)可知,应在十位上填2.这个六位数是568020.19. 已知四位数abcd 是11的倍数,且有b c a +=,bc 为完全平方数,求此四位数. 解析 在三个已知条件中,b c a +=说明给出b 和c ,a 就随之给定,再由11|abcd ,可定d .而bc 为完全平方数,将b 和c 的取值定在两位平方数的十位和个位数字范围中,只要从这个范围中挑选符合要求的即可.由bc 完全平方数,只可能为16、25、36、49、64、81这六种情况.由b c a +=,此时相应的a 为7、7、9、13、10、9.其中13和10显然不可能是四位数的千位数字. 在716d 、725d 、936d 、981d ,这四种可能性中,由11|abcd ,应有()()11|d b a c +-+.()()11|176d +-+时,d 可为1;()()11|275d +-+时,这种d 不存在;()11|396d +-+时,d 可为1;()11|891d +-+时,d 可为2.故满足条件的四位数有:7161、9361、9812.评注 bc 为完全平方数,表示bc 是两位整数,0b ≠,因此,不考虑00、01、04、09这四种情况,否则还应加上1012、4048、9097这三个四位数.20. 用0,1,2,…,9这十个数字组成能被11整除的最大的十位数是多少?解析 因为0+1+2+…+9=45.这个最大十位数若能被11整除,其奇数位上数字之和与偶数位上的数字之和的差(大减小)为0或11的倍数.由于这十个数字之和是45(奇数),所以这个差不可能是0、22、44(偶数).若这个差为33,则只能是396-,但0+1+2+3+4=10,即最小的五个数字之和都超过6,不可能.若这个差为11,()4511228+÷=,452817-=.如果偶数位为9、7、5、3、1,其和为25;奇数位为8、6、4、2、0,其和为20.交换偶数位上的1与奇数位上的4,可得偶数位上的数为9、7、5、4、3,奇数位上的数为8、6、2、1、0.于是所求的最大十位数为9876524130.21. 一个六位数88的倍数,这个数除以88所得的商是多少?解析 设这个六位数为1234A B ,因为它是88的倍数,而88811=⨯,8与11互质,所以,这个六位数既是8的倍数,又是11的倍数.由1234A B 能被8整除,可知34B 能被8整除(一个数末三位组成的数能被8整除,这个数就能被8整除),所以B 是4.由能被11整除的数的特征(一个数奇数位数字之和与偶数位数字之和的差能被11整除,这个数就能被11整除),可知奇数位数字之和与偶数位数字之和的差()()234144A A ++-++=-能被11整除,则40A -=,即4A =.124344881413÷=. 所以,这个六位数是124344,它除以88的商是1413.22. 如果六位数105整除,那么,它的最后两位数是多少?解析 因为这个六位数能被105整除,而105357=⨯⨯,3、5、7这三个数两两互质,所以,这个六位数能同时被3、5、7整除.根据能被5整除的数的特征,它的个位数可以是0或5.根据能被3整除的数的特征,可知这个六位数有如下七种可能:199320,199350,199380,199305,199335,199365,199395.而能被7整除的数的特征是:这个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7整除.经试算:395199196-=,196能被7整除.所以,199395能被105整除,它的最后两位数是95.23. 形如1993199319931993520n L 1442443个,且能被11整除的最小数是几? 解析 本题实质上确定n 的最小值.利用被11整除的数的特征:偶数位数字之和与奇位数字之和的差能被11整除.该数的偶数位数字之和为122n +,奇数位数字之和为105n +,两者之差为()12210523n n n +-+=-.要使()11|23n -,不难看出最小的7n =,故所求最小数为71993199319931993520L 1442443个. 24. 是否存在100个不同的正整数,使得它们的和与它们的最小公倍数相等?解析 存在满足条件的100个数.事实上,对任意正整数()3n ≥,下述n 个数3,23⨯,223⨯,…,223n -⨯,13n -,它们的最小公倍数为123n -⨯,和为221222132323233323233n n n n ----+⨯+⨯++⨯+=+⨯++⨯+L L 33211113232333323n n n n n -----=+⨯++⨯+==+=⨯L L .所以,这几个数的和等于它们的最小公倍数.取100n =,可知存在符合要求的100个数.。
奥数专题数论-数的整除附答案
(数论问题数的整除性)1、五年级数论问题:数的整除难度:中难度/高难度四位数“3AA1”是9的倍数,那么A=_____.答:2、五年级数论问题:数的整除难度:中难度/高难度在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.答3、五年级数论问题:数的整除难度:中难度/高难度能同时被2、3、5整除的最大三位数是_____.答:4、五年级数论问题:数的整除难度:中难度/高难度能同时被2、5、7整除的最大五位数是_____.答:5、五年级数论问题:数的整除难度:中难度/高难度1至100以内所有不能被3整除的数的和是_____.答:(数论问题)1、五年级数的整除习题答案:解答:7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771÷9=419.2、五年级数的整除习题答案:解答:1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.3、五年级数的整除习题答案:解答:990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4、五年级数的整除习题答案:解答:99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填 6.所以,能同时被2、5、7整除的最大五位数是99960. 解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5、五年级数的整除习题答案:解答:3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+...+100)-(3+6+9+12+ (99)=(1+100)÷2⨯100-(3+99)÷2⨯33=5050-1683=3367。
小升初专练-数论问题-数的整除特征通用版(含答案)
小升初专练-数论问题-数的整除特征【知识点归纳】整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b 的倍数数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数,那么它必能被2整除.(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除.(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.【经典题型】例1:下列4个数都是六位数,A是大于0小于10的自然数,B是0,一定能同时被2、3、5整除的数是( )A、AAABAAB、ABABABC、ABBABBD、ABBABA 分析:这个六数个位上的数字是0,能被2和5整除,不管A是比10小的哪个自然数,A+A+A的和一定是3的倍数,所以ABABAB一定能被3整除解:B=0,ABABAB能被2和5整除,A+A+A的和一定是3的倍数,ABABAB也一定能被3整除,故选:B.点评:此题主要考查能被2、3、5整除的数的特征:一个数个位上是0或5,这个数就能被5整除;个位是0、2、4、6、8的数能倍2整除;一个数各数位上的数字之和是3的倍数,这个数就能被3整除.【常考题型】例2:有一个四位数3AA1能被9整除,A是().分析:已知四位数3AA1能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数然后再根据题意进一步解答即可.因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么3+A+A+1=22,22<27,所以3AA1的各位数字和只能是9的1倍或2倍,即9或18.解:根据题意可得:四位数3AA1,它能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数;因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9;若A=9,那么3+A+A+1=3+9+9+1=22,22<27,所以,3AA1的各位数字和只能是9的1倍或2倍,即9或18;当3+A+A+1=9时,A=2.5,不合题意;当3+A+A+1=18时,A=7,符合题意;所以,A代表7,这个四位数是3771.答:A是7,故答案为:7.点评:本题主要考查能被9整除数的特征,即一个数能被9整除,那么这个数的数字和一定是9的倍数,然后在进一步解答即可.一.选择题1.下面四个数都是六位数,N是比10小的自然数,S是0,一定能被3和5整除的数是( )A.NNNSNN B.NSNSNS C.NSSNSS D.NSSNSN2.某班有一个小图书馆,共有300多本,从1开始,图书按自然数的顺序编号,即1,2,3…,小光看了这图书馆里都被2,3和8整除的书号,共16本,这个图书馆里至少有( )本图书.A.381B.382C.383D.3843.四位数同时是2、3和5的倍数,第一个里最大能填( )A.9B.8C.7D.64.用0,3,4,5四个数字组成的所有四位数都能被( )整除.A.2B.3C.55.用1~8八个数字组成两个四位数,每个数字只用1次.已知两个四位数都是9的整数倍,则两个四位数的差的最大值为( )A.5286B.4184C.7531D.70656.下列各数中是11的倍数的是( )A.75087B.117208C.632599D.4563517.从1,2,3,4,5这五个数字中选取四个组成一个四位数,使它能同时被3、5、7整除,这个四位数是( )A.1235B.1245C.2415二.填空题8.有一个号码是六位数,前四位是2857,后两位忘记了,但是这个六位数能被11和13整除,那么这个号码是 。
小学数论整除综合(含答案)由浅入深,题型全
1.已知10□8971能被13整除,求□中的数。
解:10□8-971=1008-971+□0=37+□0。
上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8。
2.判断18937能否被29整除;3.判断296416与37289能否被59整除。
解:(1)上述变换可以表示为:由此可知,296416能被59整除,37289不能被59整除4.九位数8765□4321能被21整除,求中间□中的数。
5.在下列各数中,哪些能被27整除?哪些能被37整除?1861026, 1884924, 2175683, 2560437,11159126,131313555,266117778。
6.在下列各数中,哪些能被19整除?哪些能被79整除?55119, 55537, 62899, 71258,186637,872231,5381717。
7.在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?234,789,7756,8865,3728,8064。
解:能被4整除的数有7756,3728,8064;能被8整除的数有3728,8064;能被9整除的数有234,8865,8064。
8.在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5 632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。
9.五位数能被72整除,问:A与B各代表什么数字?分析与解:已知能被72整除。
因为72=8×9,8和9是互质数,所以既能被8整除,又能被9整除。
数的整除特征练习题
数的整除特征练习题一、判断题1. 一个数的个位是0,那么这个数能被2整除。
2. 一个数各位数字之和能被3整除,那么这个数能被3整除。
3. 一个数的个位是5,那么这个数能被5整除。
4. 一个数能被4整除,那么这个数一定能被2整除。
5. 一个数能被6整除,那么这个数一定能被9整除。
二、选择题A. 123B. 124C. 125D. 126A. 212B. 213C. 214D. 215A. 432B. 435C. 438D. 439A. 100B. 101C. 102D. 103A. 357B. 358C. 359D. 360三、填空题1. 一个数能被2整除的条件是:这个数的个位是______。
2. 一个数能被3整除的条件是:这个数的各位数字之和能被______整除。
3. 一个数能被5整除的条件是:这个数的个位是______或______。
4. 一个数能被4整除的条件是:这个数的末两位数能被______整除。
5. 一个数能被6整除的条件是:这个数既能被______整除,也能被______整除。
四、解答题1. 请写出三个能被2整除的数。
2. 请写出三个能被3整除的数。
3. 请写出三个能被5整除的数。
4. 请写出三个能被4整除的数。
5. 请写出三个能被6整除的数。
五、匹配题请将下列数字与其能整除的数配对:A. 48B. 51C. 100D. 121E. 1441. 能被2整除的是______2. 能被3整除的是______3. 能被5整除的是______4. 能被11整除的是______5. 能被12整除的是______六、简答题1. 请简述一个数能被8整除的条件。
2. 请简述一个数能被9整除的条件。
3. 请简述一个数能被10整除的条件。
4. 请简述一个数能被12整除的条件。
5. 请简述一个数能被18整除的条件。
七、应用题1. 小明有一堆糖果,如果每3个糖果分给一个小朋友,糖果正好分完。
请问这堆糖果的数量可能是多少?(至少写出三个可能的答案)2. 小红有若干本书,如果每5本书放一层书架,书架正好放满。
数论中的整除性质模拟试题
数论中的整除性质模拟试题数论作为数学的一个分支,研究的是整数的性质和规律。
整除性质是数论中的一个重要概念,描述了一个数能够被另一个数整除的情况。
本文将通过模拟试题的方式,来详细介绍数论中的整除性质。
试题一:已知整数 a、b 和 c 满足 a | b,b | c 和 c | a,证明 a = b = c。
解答:根据题意,a | b 表示 a 能够整除 b,即存在整数 k1,使得 b = a * k1。
同理,b | c 和 c | a 的含义可得 b = c * k2 和 a = c * k3。
将 b = a * k1 和b =c * k2 代入 a = c * k3 的等式中,得到 a = (a * k1) * k3,整理可得 1= k1 * k3。
由于 k1 和 k3 都是整数,所以 k1 * k3 = 1 只有两种情况,即 k1 = 1,k3 = 1 或者 k1 = -1,k3 = -1。
情况一:k1 = 1,k3 = 1。
将 k1 和 k3 的值代入 a = c * k3 和 b = a *k1 的等式中,得到 a = c 和 b = a,即 a = b = c。
情况二:k1 = -1,k3 = -1。
同样将 k1 和 k3 的值代入 a = c * k3 和 b = a * k1 的等式中,得到 a = -c 和 b = -a,即 a = b = c。
综上所述,无论 k1 和 k3 的取值是什么,都有 a = b = c 成立。
因此,证明了 a | b,b | c 和 c | a 的情况下必有 a = b = c。
试题二:已知整数 a、b 和 c 满足 a | b,a | c 和 b | c,证明 a | (b + c)。
解答:根据题意,a | b 和 a | c 可得到存在整数 k1 和 k2,使得 b = a * k1 和c = a * k2。
将 b 和 c 代入 b + c 的等式中,得到 b + c = a * k1 + a * k2 = a * (k1 + k2)。
数的整除练习题
数的整除练习题一、选择题:1. 一个数能被4整除,那么这个数的个位数字是:A. 0B. 2C. 8D. 62. 以下哪个数是3的倍数?A. 12B. 14C. 16D. 183. 一个数的末两位数能被4整除,那么这个数:A. 一定被4整除B. 可能被4整除C. 不一定被4整除D. 一定不被4整除二、填空题:1. 一个数的个位是5,十位是偶数,这个数能被______整除。
2. 一个数的个位和十位数字交换位置后,得到的新数比原数大18,原数的个位数字是______。
3. 如果一个数的各位数字之和能被9整除,那么这个数也能被______整除。
三、判断题:1. 一个数是偶数,那么它一定可以被2整除。
(对/错)2. 一个数的各位数字之和是3的倍数,那么这个数也是3的倍数。
(对/错)3. 一个数的末尾是0或5,那么这个数一定是5的倍数。
(对/错)四、计算题:1. 计算下列各数的各位数字之和,并判断它们是否能被3整除。
- 123- 456- 7892. 一个数是9的倍数,且它的个位数字是6,求这个数的十位数字。
3. 一个数是11的倍数,且它的个位和百位数字相同,求这个数。
五、解答题:1. 证明:如果一个整数的末三位能被8整除,那么这个整数也能被8整除。
2. 一个数的个位数字是4,且这个数是11的倍数,求这个数的百位数字。
3. 一个数的各位数字之和是33,且这个数能被7整除,求这个数。
六、应用题:1. 一个班级有48名学生,如果每组有相同数量的学生,且每组至少有一名学生,那么可能的组数有几种?2. 一个数的各位数字之和是35,且这个数能被9整除,求这个数的可能值。
3. 一个数的末尾两位数是45,且这个数是7的倍数,求这个数。
整除练习题及答案
整除练习题及答案整除是数学中的一个基本概念,指的是一个整数除以另一个不是零的整数,得到的商是整数,而没有余数。
以下是一些整除练习题及答案,供同学们练习和参考。
练习题1:判断以下哪些数字可以整除10。
A. 2B. 5C. 3D. 7答案:B. 5解析:10除以5等于2,没有余数,所以5可以整除10。
练习题2:找出100以内能被3整除的所有整数。
答案:3, 6, 9, 12, ..., 99解析:从3开始,每次加3,得到的数都能被3整除。
练习题3:如果一个数能同时被2和3整除,那么这个数能被6整除吗?答案:是的。
解析:如果一个数能同时被2和3整除,那么这个数是6的倍数,因为6是2和3的最小公倍数。
练习题4:找出最小的能被7整除的三位数。
答案:105解析:从100开始,第一个能被7整除的数是105。
练习题5:如果一个整数的个位是偶数,那么这个数能被2整除吗?答案:是的。
解析:任何个位是偶数的整数都能被2整除,因为2的倍数的个位只能是0, 2, 4, 6, 或8。
练习题6:一个数如果能被9整除,那么它也能被3整除吗?答案:是的。
解析:如果一个数能被9整除,那么它也能被3整除,因为9是3的倍数。
练习题7:找出100以内能被11整除的所有整数。
答案:11, 22, 33, ..., 99解析:从11开始,每次加11,得到的数都能被11整除。
练习题8:如果一个数的各位数字之和能被3整除,那么这个数本身能被3整除吗?答案:是的。
解析:如果一个数的各位数字之和能被3整除,那么这个数本身也能被3整除,这是3的整除规则。
练习题9:找出最小的能被13整除的四位数。
答案:104解析:从1000开始,第一个能被13整除的数是104。
练习题10:如果一个数能被4整除,那么它的最后两位数能被4整除吗?答案:是的。
解析:如果一个数能被4整除,那么它的最后两位数也能被4整除,因为4的倍数的最后两位数必须是4, 8, 12, ..., 96, 100。
数的整除性质练习题
数的整除性质练习题1. 数的整除性质在数学中,我们经常研究数的整除性质。
整除是指一个数能够被另一个数整除,也就是没有余数的除法。
在解决问题时,理解和熟悉数的整除性质是非常重要的。
下面是一些数的整除性质的练习题,通过解答这些题目,我们可以更好地掌握数的整除性质。
2. 练习题一已知数a能够被数b整除,数b能够被数c整除,那么数a能否被数c整除?请给出理由。
解答:根据整除的定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
假设数a能够被数b整除,即a=kb,其中k为整数。
同时,数b能够被数c整除,即b=mc,其中m为整数。
将b代入第一个等式中得到a=k(mc)。
根据乘法结合律,可以得到a=(km)c。
根据定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
因此,数a能够被数c整除。
3. 练习题二已知数a能够被数b整除,数a能够被数c整除,那么数b能否被数c整除?请给出理由。
解答:根据整除的定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
假设数a能够被数b整除,即a=kb,其中k为整数。
同时,数a能够被数c整除,即a=mc,其中m为整数。
将b代入第二个等式中得到kb=mc。
根据乘法结合律,可以得到k(b-c)=0。
根据乘法的性质,当两个数的乘积等于0时,至少有一个数为0。
因此,根据k(b-c)=0,可以得出结论b-c=0,即b=c。
所以,数b能够被数c整除。
4. 练习题三已知数a能够被数b整除且b不为0,数c能够被数a整除且c不为0,那么数c能否被数b整除?请给出理由。
解答:根据整除的定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
假设数a能够被数b整除,即a=kb,其中k为整数,且b不为0。
同时,数c能够被数a整除,即c=ma,其中m为整数,且a不为0。
将a代入第二个等式中得到c=mkb。
根据定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
数的整除特征练习题
数的整除特征练习题一、选择题1. 一个数能被2整除,这个数一定是:A. 奇数B. 偶数C. 质数D. 合数2. 一个数能被3整除的特征是:A. 各位数字之和能被3整除B. 百位数字能被3整除C. 十位数字能被3整除D. 个位数字能被3整除3. 一个数能被4整除,这个数的:A. 个位数必须是偶数B. 十位数必须是偶数C. 百位数必须是偶数D. 任意两位数必须是偶数4. 一个数能被5整除的特征是:A. 个位数是0或5B. 十位数是0或5C. 百位数是0或5D. 千位数是0或55. 一个数能被8整除,这个数的:A. 个位数必须是偶数B. 十位数必须是偶数C. 任意连续的三位数字之和能被8整除D. 任意连续的四位数字之和能被8整除二、填空题6. 一个数能被9整除的特征是:各位数字之和________。
7. 一个数能被11整除的特征是:从左到右,奇数位上的数字之和与偶数位上的数字之和的差能被11整除。
8. 一个数能被13整除的特征是:从左到右,隔一位数字相加,再隔一位数字相加,两次结果之差能被13整除。
三、判断题9. 一个数如果个位是偶数,那么这个数一定能被2整除。
()10. 一个数如果个位是5,那么这个数一定能被5整除。
()11. 一个数如果各位数字之和能被4整除,那么这个数一定能被4整除。
()12. 一个数如果个位是0,那么这个数一定能被10整除。
()13. 一个数如果各位数字之和能被3整除,那么这个数一定能被3整除。
()四、简答题14. 请列举出能被7整除的最小三位数和最大三位数。
15. 请说明一个数能被12整除需要满足哪些条件。
五、计算题16. 计算下列数中哪些能被3整除:123,456,789,321。
17. 计算下列数中哪些能被6整除:102,204,306,408。
18. 计算下列数中哪些能被9整除:999,1000,1001,1002。
六、应用题19. 某班级有48名学生,如果需要将他们平均分成若干小组,每组人数相同,且每组人数必须是偶数,问最多可以分成多少个小组?20. 某商店需要将一批货物平均分配给8个仓库,如果每个仓库分配的货物数量必须是5的倍数,问这批货物最少有多少件?通过这些练习题,可以帮助学生掌握数的整除特征,提高他们的数学思维能力和解题技巧。
数论习题-整除练习1
整除练习1:某个六位数23456A是9的倍数,求A的值。
【详解】能被9整除,其数字和是9的倍数;2+3+4+5+6+A=20+A;大于20小于30且是9的倍数只有27;所以A=7;2:某个七位数2008ABC能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数ABC是多少?【详解】能被8整除,必然被2、4整除;能被9整除,必然被3整除;能被8和9整除,一定能被6整除;可以认为能够同时被5、7、8、9整除;被5整除,C只能是0;被9整除,B+C为8或17;被7整除,先割去末位的0形成2008AB六位数,再用截位法,得到6AB;被8整除且末位是0的ABC必须是40的倍数;分别检验24组3位数,满足被7整除和后2位的数字和是否8或7;只有440符合要求;3:形如12343434…...34,有n个34,能被11整除的最小自然数中的n等于几?【详解】奇数位上的数字和是4n+2,偶数位上的数字和是3n+1,它们差是n+1能被11整除时n+1=11,所以n最小是104:两个四位数A275和275B,如果他们的乘积能被72整除,求A和B。
【详解】考虑到72=8*9,而A275 是奇数,所以 275B 必为8的倍数,因此可得B=2 ;四位数 2752 各位数字之和为 2+7+5+2=16,不是3的倍数也不是9的倍数,因此275A必须是9的倍数,其各位数字之和A+2+7+5= A +14,能被9整除,所以A=4;5:用1、2、3、4(每个数恰好用一次)可组成24个四位数,其中共有多少个能被11整除?【详解】被11整除的数的特征是:奇数位上数字的和与偶数位上数字的和之差能被11整除。
因为1、2、3、4这几个数字的和之差不可能大于11,因此要被11整除,只能是奇数位上数字的和与偶数位上数字的和之差等于0。
所以1和4必须同是奇数位上的数字或者同时偶数位上的数字,这样才能满足以上要求。
当1和4都是奇数位上的数字时,这样的四位数有:1243、1342、4213、4312;当1和4都是偶数位上的数字时则为:2134、3124、2431、3421。
数论-(数的)整除性
数的整除性1、六位数2003**能被99整除,那么这个六位数的末两位**为多少2、有一个三位数等于它的各位数字和的42倍,这个三位数是多少3、下面这个199位整数19910011001001001⋅⋅⋅被13整除的余数是多少4、一个数的20倍减1能被153整除,这样的自然数中最小的是多少5、一个三位自然数正好等于它各位数字之和的18倍,那么这个三位数为6、三个连续自然数的和能被13整除,且三个数中最大的数被9除余4,那么符合条件的最小的三个数是多少、、、。
7、如果n 200501....20052005能被11整除,那么n最小是多少8、有一个六位数,前四位是2857,并且这个六位数能被13和11整除,那么这个六位数的后两位是多少9、将1996加上一个整数,使和能被23与19整除,加的整数要尽可能的小,那么所加的整数是10、把若干个自然数1、2、3、4…..连乘到一起,如果已知这个乘积最末十三位都是零,那么最后出现的自然数最小应该是多少11、将数字4、5、6、7、8、9各使用一次,组成一个被667整除的六位数,那么,这个六位数除以667的结果是多少?12有15个同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,其余同学都说这个说能被自己的编号数整除.1号做了检验,只有编号连续的两个同学说了谎话,其余的同学说的都是对的,那么(1)说谎话的同学的编号是哪两个,(2)如果这个自然数是个五位数,那么这个五位数最小是多少13、若四位数9a8a能被15整除,则a代表的数字是多少14、如果九位数A1999311B能被72整除,试求A-B的值为多少15、六位自然数1082**能被12整除,末两位数字有几种情况?16、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.作业1、已知九位数2005*****是2008的倍数,这样的九位数共有多少个?2、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?知识点小结1、如果一个数的末两位能被4或者25整除,那么这个数就一定能被4或者25整除.2、如果一个数的末三位数能被8或者125整除,那么这个数就一定能被8或者125整除.3、若一个整数的数字和能被3整除,则这个数能被3整除.4、若一个数能被2和3整除,那么这个数一定能被6整除.5、若一个整数的数字和能被9整除,则这个整数能被9整除.6、能被11整除的数的特征;把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.→奇位数字的和9+6+8=23→偶位数位的和4+1+7=12 23-12=11 因此,491678能被11整除.这种方法叫“奇偶位差法”.7、如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11、13整除,那么这个数能被7、11、13整除.。
数论 整除问题练习题
数论整除问题练习题整除问题是数论中的一个重要概念。
在数学中,整除是指一个整数除以另一个整数,得到的商是整数且余数为零。
本文将介绍一些整除问题的练习题,帮助读者加深对整除的理解。
1. 整除的定义整数a能被整数b整除(记作b|a),当且仅当存在整数c,使得a= b * c。
整除的概念相当于将一个整数分解成若干个较小的整数的乘积。
2. 奇偶性与整除根据整除的定义,如果一个整数a能被2整除,则a为偶数;如果一个整数a不能被2整除,则a为奇数。
这是因为若a为偶数,则可以表示为a = 2 * c,其中c为整数;若a为奇数,则可以表示为a = 2 * c+ 1,其中c为整数。
练习题1:判断以下整数的奇偶性,并给出证明:a) 12b) 25c) -8d) 03. 整除的性质整除具有以下性质:a) 传递性:如果b|a且c|b,则c|a。
即若整数b能整除整数a,整数c能整除整数b,则整数c能整除整数a。
b) 相反性:如果b|a,则-a|b。
即若整数b能整除整数a,则整数-a 能整除整数b。
练习题2:利用整除的性质回答以下问题:a) 如果5能整除x,且7能整除x,那么35能整除x吗?b) 如果12能整除x,那么-12能整除x吗?4. 最大公约数与最小公倍数最大公约数(Greatest Common Divisor,简称GCD)表示两个或多个整数共有的最大约数。
最小公倍数(Least Common Multiple,简称LCM)表示两个或多个整数除以其最大公约数的商所得的最小正整数倍数。
练习题3:a) 计算24和36的最大公约数和最小公倍数。
b) 计算15、20和25的最大公约数和最小公倍数。
5. 质数与素数质数是指只能被1和本身整除的正整数。
素数是指只有1和自身两个约数的正整数。
练习题4:判断以下数是否为质数,给出证明:a) 17b) 9c) 2d) 66. 基本定理与唯一分解定理基本定理(Fundamental Theorem of Arithmetic)是指任何一个大于1的正整数都可以唯一地表示为质数的乘积。
数的整除(简单练习题及答案)
1、 将分别写有数字3,7,8的三张卡片排成三位数abc ———,使它是43的倍数,求abc ———。
2、 求被7除,余数是3的最小的三位数。
3、 求被7除,余数是4的最大的四位数。
4、 从1开始,依次写出1234…20032004,这个多位数除以9的余数是多少?5、 一个两位数与109的乘积为四位数,它能被23整除且商是一位数,这个两位数最大等于 。
6、 已知六位数□9786□是99的整数倍,这个六位数除以99的商是 。
7、判断15158能否被7、11或13整除。
8、六位数 能被18整除,则两位数 最大是多少?9、在所有五位数中,各位数字之和等于43,且能够被11整除的数有多少个?其中最大的一个五位数是多少?10、有72名学生共捐款□94.9□元,那么平均每人捐了多少元?11、已知五位数能被8和9整除,则x+y 是多少?12、一个六位数能被99整除,这个六位数最小是多少?13、在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。
14、若四位数能被11整除,那么a 表示哪个数?15、(难度系数:四颗星)如果653整除a b 2347—————————————,则a + b= 。
分析与答案1、(387)方法一、三张卡片可以排成 =6种可能,把这六种可能进行枚举,再一一被43除。
方法二、根据积的个位数字是由两个乘数的个位数字决定的性质。
当c=8时,分别用16、26 与43相乘,计算时可以先做估算,以便快速排除。
如26×43>20×43>800。
【点评】因为这个三位数的可能性只有6种,所以方法一所花的时间不会太长。
而方法二要求有较高的估算能力。
大家可以试试把方法一和方法二进行融合。
2、(101)方法一:找最小的三位数去除以7。
100÷7=14……2,3>2,3-2=1,∴100+1=101方法二:用字母表示N=7k+3,k为自然数。
∵N≥100,∴k≥(100-3)÷7=13 (6)【点评】方法一能够快速定位,但容易忽略题目的条件而出错;方法二是一般法,但要求学生有代数思想。
初等数论整除练习题
初等数论整除练习题初等数论是数学中的一个分支,主要研究自然数的性质和整数的性质。
在初等数论中,整除是一个重要的概念。
整除是指一个数能够被另一个数整除,也就是能够被另一个数整除的数称为这个数的倍数。
在初等数论中,整除的性质和应用非常广泛。
下面我将通过一些练习题来帮助大家更好地理解和应用整除的概念。
1. 练习题一:判断是否整除题目:判断以下数能否被2整除:12、17、20、25、30。
解析:能否被2整除就是判断一个数是否为偶数。
偶数的特点是个位数为0、2、4、6、8。
因此,我们可以逐个判断这些数的个位数是否满足这个条件。
答案:12、20、30可以被2整除,17、25不能被2整除。
2. 练习题二:最大公约数题目:求以下两组数的最大公约数:(a)12和18;(b)24和36。
解析:最大公约数是指能够同时整除两个数的最大正整数。
我们可以通过列举两个数的所有因数,然后找出它们的公共因数,再从中找出最大的那个。
答案:(a)12和18的公约数有1、2、3、6,其中最大的是6,所以最大公约数为6。
(b)24和36的公约数有1、2、3、4、6、8、12,其中最大的是12,所以最大公约数为12。
3. 练习题三:最小公倍数题目:求以下两组数的最小公倍数:(a)8和12;(b)15和20。
解析:最小公倍数是指能够同时被两个数整除的最小正整数。
我们可以通过列举两个数的倍数,然后找出它们的公共倍数,再从中找出最小的那个。
答案:(a)8和12的倍数有8、16、24、32、40、48,其中最小的是24,所以最小公倍数为24。
(b)15和20的倍数有15、30、45、60、75、90,其中最小的是60,所以最小公倍数为60。
4. 练习题四:素数判断题目:判断以下数是否为素数:13、21、29、35、41。
解析:素数是指只能被1和自身整除的数,大于1的自然数中只有2、3、5、7、11、13、17、19、23、29、31、37、41等为素数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论中的整除性质练习题
数论作为数学的一个重要分支,研究的是整数的性质和规律。
其中,整除性质是数论中的基础概念之一,广泛运用于解决各种数学问题。
本文将提供一些数论中的整除性质练习题,以帮助读者加深对该概念
的理解和应用。
1. 题目:求证任意正整数的连续相加一定可以被连续相乘整除。
解析:对于任意正整数 n,我们需要证明它的连续相加一定可以被
连续相乘整除。
设连续相加的和为 S,连续相乘的积为 P。
由于我们要证明的是对于任意正整数 n 都成立,所以我们可以通过
归纳法来进行证明。
当 n = 1 时,显然连续相加的和和连续相乘的积都是 1,满足整除性质。
假设对于 n = k 成立,即 k 个连续正整数的和一定可以被连续正整
数的乘积整除。
那么对于 n = k + 1,我们需要证明 (1 + 2 + ... + k + k+1) 能够被 (1 *
2 * ... * k * (k+1)) 整除。
根据归纳假设,(1 + 2 + ... + k) 能够被 (1 * 2 * ... * k) 整除。
所以我们可以将 (1 + 2 + ... + k + k+1) 分解为 [(1 + 2 + ... + k) + k+1]。
由于 (1 + 2 + ... + k) 和 (k+1) 都是正整数,根据整除定义,整数 a 能够整除整数 b,等价于 b 可以被 a 整除。
因此,(1 + 2 + ... + k + k+1) 能够被 (1 * 2 * ... * k * (k+1)) 整除。
由此可见,任意正整数的连续相加一定可以被连续相乘整除,得证。
2. 题目:找出 1000 以内的所有素数。
解析:素数是只能被 1 和本身整除的正整数,大于 1。
我们需要找
出 1000 以内的所有素数。
对于这个问题,我们可以使用试除法。
即对于每一个整数 n,从 2
开始依次将 n 除以 2、3、4、5 等小于或等于 n 开平方根的整数,判断
是否存在能够整除 n 的整数。
如果没有找到整除 n 的整数,说明 n 是
素数。
具体步骤如下:
1) 初始化一个长度为 1000 的列表 primes,用于存储素数。
2) 遍历 2 到 1000 的每一个整数 i。
3) 对于每个 i,判断是否存在小于或等于 i 开平方根的整数 j 能够整
除 i。
4) 如果存在能够整除 i 的整数 j,说明 i 不是素数,跳过后续步骤。
5) 如果不存在能够整除 i 的整数 j,说明 i 是素数,将其添加到primes 列表中。
6) 完成遍历,primes 列表中存储了 1000 以内的所有素数。
通过上述步骤,我们可以得到 1000 以内的所有素数。
3. 题目:证明 2 的任意正整数次幂减一一定能被 3 整除。
解析:要证明 2 的任意正整数次幂减一一定能被 3 整除,我们可以通过归纳法来进行证明。
当 n = 1 时,2^1 - 1 = 1,显然能被 3 整除。
假设对于 n = k 成立,即 2^k - 1 能被 3 整除。
那么对于 n = k + 1,我们需要证明 2^(k+1) - 1 能被 3 整除。
根据幂运算法则,2^(k+1) - 1 = (2^k * 2) - 1 = (2^k - 1) * 2 + 1。
由归纳假设可知,2^k - 1 能被 3 整除,而 2 和 1 都是正整数。
根据整除的性质,整数 a 能够整除整数 b 和整数 c,等价于 a 能够整除 b + c。
因此,2^k - 1 能被 3 整除,2 和 1 也都能被 3 整除。
根据整除的传递性,2^(k+1) - 1 能被 3 整除,得证。
通过数论中的整除性质练习题,我们可以加深对整除性质的理解,并提高解决数学问题的能力。
希望以上练习题能够对您的学习有所帮助。