热力学与统计物理答案第三章.(DOC)

合集下载

2020智慧树知道网课《热力学与统计物理》课后章节测试满分答案

2020智慧树知道网课《热力学与统计物理》课后章节测试满分答案

第一章测试1【多选题】(1分)杨振宁认为中国大学生的学习方法有利有弊,最大的弊端是:A.讲课循序渐进B.他不能对整个物理学,有更高超的看法C.课外活动较少D.它把一个年轻人维持在小孩子的状态,老师要他怎么学,他就怎么学2【多选题】(1分)杨振宁认为“我一生中最重要的一年,不是在美国做研究,而是当时和黄昆同住一舍的时光。

”原因是:A.黄昆会做饭并经常和杨振宁共享B.杨振宁和黄昆都喜欢争论物理问题C.黄昆经常把听课笔记借给杨振宁参考D.黄昆对物理学的理解常常有独到之处,对杨振宁有启发3【多选题】(1分)杨振宁说:“我们学校里有过好几个非常年轻、聪明的学生,其中有一位到我们这儿来请求进研究院,那时他才15岁的样子,后来他到Princeton去了。

我跟他谈话以后,对于他前途的发展觉得不是那么最乐观。

”原因是这位学生:A.学到一些知识,学到一些技术上面的特别的方法,而没有对它的意义有深入的了解和欣赏B.只是学了很多可以考试得该高分的知识,不是真正做学问的精神C.对量子力学知识茫茫一片,不知道哪里更加好玩D.尽管吸收了很多东西,可是没有发展成一个taste4【多选题】(1分)梁启超的“智慧日浚则日出,脑筋日运则日灵”说明如下道理:A.人的智慧需要挖掘才会涌现出来B.大学生一开始接受教育的时候,就要弄清楚事物的本质C.人脑越用会越聪明D.认为初学之人不能穷凡物之理,而这种观点是不对的5【判断题】(1分)因为1=0.999…,所以对任何函数f(x),总有f(1)=f(0.999…)。

A.错B.对6【判断题】(1分)液态的水从100°C下降到0°C的过程中,密度单调下降。

A.对B.错7【判断题】(1分)温度和热是一个概念。

A.对B.错8【判断题】(1分)在冰箱中放一瓶纯净水,这瓶水在零下10°时依然不能结冰。

A.错B.对9【判断题】(1分)理想气体就是满足方程pV=nRT的气体。

A.错B.对10【判断题】(1分)所有相变都类似气液相变或者固液相变,总会有伴随相变潜热。

热力学与统计物理答案(汪志诚)

热力学与统计物理答案(汪志诚)

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV = V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnT P P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ= ,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1TL L ∂∂=等杨氏摸量定义为T L A L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学与统计物理课后答案.docx

热力学与统计物理课后答案.docx

《热力学与统计物理学》课后习题及解答选用教材:汪志诚主编,高等教育出版社第一章热力学的基本规律1.1试求理想气体的体胀系数压强系数卩和等温压缩系数為。

解:由理想气体的物态方程为PV = uRT 可得:1.2证明任何一种具有两个独立参量T,尸的物质,其物态方程可由实验测得的 体胀系数Q 及等温压缩系数紡,根据下述积分求得:\nV = \(adT-K T dP)以八尸为自变量,物质的物态方程为:V = V(T,P)如耘〒 专’试求物态方程。

解: 体胀系数: 其全微分为:dV dT + p ar dP dP = aVdT-VK T dP, y- = adT-K T dP体胀系数:压强系数:0 =等温压缩系数: 丄P等温压缩系数:这是以八P 为自变量的全微分,沿任意的路线进行积分得:}nV = j (adT-K T dP ) 根据题设,将6(=丄,K T =丄,代入:ln/=f 丄dT -丄dPT T P }{T P 丿得:lnr = ln- + C, PV = CT,其中常数c 由实验数据可确定。

P1.5描述金属丝的儿何参量是长度厶,力学参量是张力£,物态方程是 ./、(£, L, r ) = o,实验通常在1几下进行,其体积变化可以忽略。

线胀系数定义为:“丄(学],等温杨氏模量定义为:Y = -(^},其中/是 L (打人 牡。

厶力金属丝的截面积。

一般来说,a 和Y 是厂的函数,对£仅有微弱的依赖关系。

如 果温度变化范围不大,可以看作常量。

假设金属丝两端固定。

试证明,当温度由 7;降至3时,其张力的增加为:\^ = -YAa (T 2-T^ 解:由/(£,厶,T )= 0,可得:£ = £(L, T )微分为:〃£ = (等)血+ (善]刃\由题意可知:dL = O.即:d£ = -aAYdT,积分得:A£ = -aAY(T 2 ・TJ1. 7在25 °C 下,压强在0至1000 p n 之间,测得水的体积为:K = (18.066-0.715x 10~3P + 0.046x 1 O'6P 2\m\mor [Q 如果保持温度不变,将 1 mol 的水从1几加压至1000 求外界所作的功。

热力学_统计物理学答案第三章

热力学_统计物理学答案第三章


pv 3 = a(v − 2b)
RT a ⎛ p + a ⎞(v − b ) = RT ; p= − 2 ⎜ 2 ⎟ v ⎠ v −b v ⎝
极值点组成的曲线:
RT 2a RT a = 3 ;由 = p+ 2 2 v−b (v − b ) v v
⎞ ⎟ ⎟ ⎠V
⎛ ∂S ⎞ ⎛ ∂µ ⎞ ⎜ ⎟ = −⎜ ⎟ ⎝ ∂n ⎠T ,V ⎝ ∂T ⎠V ,n (2) 由式(3.2.6)得:
⎛ ∂ 2G ⎞ ⎛ ∂ 2G ⎞ ⎛ ∂µ ⎞ ⎛ ∂V ⎞ ⎟ ⎜ ⎟ = =⎜ ⎟ ⎜ ⎟ =⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎝ ∂n ⎠T , p ⎝ ∂p∂n ⎠ T ⎝ ∂n∂p ⎠ T ⎜ ⎝ ∂p ⎠T , n
ww
=⎜
∂(T , S ) ∂ (V , T ) ∂(T , S ) ⎛ ∂p ⎞ ⋅ ⋅ ⎟ + ⎝ ∂V ⎠ S ∂ (V , T ) ∂(V , S ) ∂(V , T )
∂ (V , T ) ⎛ ∂p ⎞ ⋅ =⎜ ⎟ + ⎝ ∂V ⎠ S ∂(V , S ) ⎛ ∂p ⎞ ⎛ ∂T ⎞ =⎜ ⎟ + ⎜ ⎟ ⎝ ∂V ⎠ S ⎝ ∂S ⎠ V
∂V ⎞ ⎛ ∂p ⎞ ⎛ ⎟ ⋅ CV =⎜ ⎟ ⋅⎜ ⎜ ⎝ ∂V ⎠ S ⎝ ∂p ⎟ ⎠T
w.
kh da
后 课
⎛ ∂G ⎞ ⎜ ⎟ =µ ⎝ ∂n ⎠T ,V
证:
(1) 开系吉布斯自由能
答 案
∂µ ⎞ ⎛ ∂µ ⎞ ⎛ ∂S ⎞ 习题 3.4 求 证 : ( 1) ⎛ ⎜ ⎟ = − ⎜ ⎟ ;( 2) ⎜ ⎜ ∂p ⎟ ⎟ =− ⎝ ∂T ⎠ V , n ⎝ ∂n ⎠T ,V ⎝ ⎠T,n

热力学统计物理第三章

热力学统计物理第三章
可能的变动。孤立系统与外界没有热量和功的交换, 若只有体积功,其约束条件是内能和体积不变。
孤立系统处在稳定平衡状态的必要和充分条件是,虚 变动引起的熵变
S 0
将S作泰勒展开,准确到二级,有 S S 1 2S
2
由数学上的极值条件:
当 S 0, 2S 0 时,熵函数有极大值。
可得
S 0 2S 0
( 相变平衡条件)
即整个系统达到平衡时,两相的温度、压强和化 学势分别相等。
分析:若平衡条件未满足,复相系的变化将朝着熵增加 ( S 0 )的方向进行:
(1)若只有热平衡条件未满足,则向 的方向变化:
U
(
1 T
1 T
)
0
如 T T 则 U 0 即能量从高温的相传到低 温的相。
(2)若只有力学平衡条件未满足,则向 的方向变化:
•因为两相的化学势相等,所以两相可以以任意比例共存; •整个系统的吉布斯函数保持不变,系统处在中性平衡。
(3)单元三相平衡共存,必须满足
T T T p p p
(T , p) (T , p) (T , p)
由上面的方程可以唯一地确定温度和压强的一组解
TA和PA ,即单元系的三相平衡共存的三相点。 水的三相点为:TA = 273.16 K, pA = 610.9 Pa .
dH TdS Vdp
若S, p不变,则 dH 0 ,即过程向焓H减少的方向 进行,因此平衡态的焓H最小。
热力学判据 过程遵循规律
U
dU TdS pdV
H
dH TdS Vdp
F
dF SdT pdV
G
dG SdT Vdp
TdS dU pdV S
TdS dH Vdp

热力学与统计物理 - 习题课一 2024-11-18

热力学与统计物理 - 习题课一 2024-11-18

第一章 习题10.(a)等温条件下,气体对外作功为22ln 2V VVVdVW pdV RT RT V===⎰⎰ln 2Q W RT =-=- ()0U ∆=(b)等压条件下,由PV RT =,得RTP V =所以 o o o o o o RT V P V V P W ==-=)2( 当体积为2V 时 22P VPV T T R R=== 1252TP P T Q C dT C T RT ===⎰11.(1) ()521 2.110P Q C n T T cal =-=⨯⎪⎭⎫⎝⎛==25041000n (2) 51.510VU nC T cal ∆=∆=⨯ (3)4610W Q U cal =-∆=⨯ (4) 因为0W =,所以51.510Q U cal =∆=⨯12.由热力学第肯定律Q d W d dU += (1)对于准静态过程有PdV W d -=对志向气体V dU C dT =气体在过程中汲取的热量为dTC Q d n =由此()n V C C dT PdV -= (2)由志向气体物态方程RT n PV += (3) 且 P VC C n R +-= 所以 ()()n V P V dT dVC C C C T V-=- (4) 对志向气体物态方程(3)求全微分有dV dP dT V P T+= (5)(4)与(5)联立,消去dTT ,有()()0n V n P dP dVC C C C P V-+-= (6)令n Pn V C C n C C -=-,可将(6)表示为0dV dPn V P += (7)若,,n V P C C C 均为常量,将(7)式积分即得nPV C = (8)式(8)表明,过程是多方过程.14. (a) 以T,P 为电阻器的状态参量,设想过程是在大气压下进行的,假如电阻器的温度也保持为27C 不变,则电阻器的熵作为状态函数也保持不变.(b) 若电阻器被绝热壳包装起来,电流产生的焦耳热Q 将全部被电阻器汲取而使其温度由i T 升为f T ,所以有2()P f imC T T i Rt -= 2600f i Pi RtT T K mC =+= (1卡 = 4.1868焦耳)139.1ln-•===∆⎰K cal T T mC TdT mC S ifT T p p fi15.依据热力学第肯定律得输血表达式Q d W d dU += (1)在绝热过程中,有0=Q d ,并考虑到对于志向气体dT C dU v = (2)外界对气体所作的功为:pdV w d -=,则有0=+pdV dT C v (3)由物态方程nRT pV =,全微分可得nRdT Vdp pdV =+ (4)考虑到对于志向气体有)1(-=-=γv v p C C C nR ,则上式变为dTC Vdp pdV v )1(-=+γ (5)把(5)和(3)式,有0=+pdV Vdp γ (6)所以有 V p V p sγ-=⎪⎭⎫⎝⎛∂∂ (7)若m 是空气的摩尔质量,m +是空气的质量,则有V m +=ρ和m m n +=ss s VV p p ⎪⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ρρ ssV p m V p ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+2ρ (8)将式(7)代入(8)式,有+=⎪⎪⎭⎫ ⎝⎛∂∂m pV p sγρ (9) 由此可得+=⎪⎪⎭⎫ ⎝⎛∂∂=m pV p v sγρ有物态方程RT m m nRT pV +==,代入上式,得m RTmpVv γγ==+17.(1) 0C 的水与温度为100C 的恒温热源接触后水温升为100C ,这一过程是不行逆过程.为求水、热源和整个系统的熵变,可以设想一个可逆过程,通过设想的可逆过程来求不行逆过程前后的熵变。

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结第一篇:热力学与统计物理第三章知识总结§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。

这些条件可以利用一些热力学函数作为平衡判据而求出。

下面先介绍几种常用的平衡判据。

oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。

于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。

孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。

如果只有体积变化功,孤立系条件相当与体积不变和内能不变。

因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。

如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变稳定的平衡状态。

如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,这相当于中性平衡了。

,该状态的熵就具有极大值,是熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。

2、自由能判据表示在等温等容条件下,系统的自由能永不增加。

这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。

我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。

热力学与统计物理习题解答03

热力学与统计物理习题解答03
3
2
.代入(3.6)式,即可得到 pv3 = a(v − 2b) .
区域 I 和 III 中等温线上的状态满足平衡稳定性要求,但自由焓在给定 温度和压强下不是最小,属亚稳态,分别对应过热液体和过饱和蒸气,在
∂p 一定条件下可观测到. 区域 II 中等温线上的状态 > 0 , 不满足平衡稳 ∂v T
3.5 解:
∂U ∂µ 求证: − µ = −T . ∂n T , V ∂T V , n ∂S ∂S ∂S 由 dU = TdS − pdV + µ dn 和 dS = dT + dV + dn ∂T V , n ∂V T , n ∂n T , V 得
p
C
I
J
II
III N v
解: 对单位摩尔范氏气体,物态方程为
a p + 2 ( v − b ) = RT . v
(3.6)
等温线上的极值点满足
RT 2a ∂p + 3 =0, =− 2 ∂v T (v − b) v
由(3.7)式得 RT =
(3.7)
2a ( v − b ) v
∂2 F ∂2 F 得 = ∂n∂T ∂T ∂n
∂S ∂µ = − . ∂n T , V ∂T V , n ∂U ∂µ 根据式(3.1)与(3.2)可得 = µ −T .命题得证. ∂n T , V ∂T V , n
∂S ∂S ∂S T T p V T dU = T d d µ + − + + dn . (3.1) ∂T V , n ∂V T , n ∂n T , V

热力学与统计物理——第03章单元系的相变习题解ok

热力学与统计物理——第03章单元系的相变习题解ok

第三章 单元系的相变习题3.3试由0>v C 及0)(<∂∂T V p 证明0>p C 及0)(<∂∂S Vp 。

证: 由式(2.2.1) T C C V p =-⇒VT p ⎪⎭⎫⎝⎛∂∂pT V ⎪⎭⎫ ⎝⎛∂∂ =P Cp T H ⎪⎭⎫ ⎝⎛∂∂=pT S T ⎪⎭⎫⎝⎛∂∂;=V C V T U ⎪⎭⎫⎝⎛∂∂V T S T ⎪⎭⎫ ⎝⎛∂∂= =dp dV V p T ⎪⎭⎫ ⎝⎛∂∂dT T p V⎪⎭⎫⎝⎛∂∂+=dp +⎪⎭⎫ ⎝⎛∂∂dV V p S dS S p V⎪⎭⎫ ⎝⎛∂∂=+⎪⎭⎫ ⎝⎛∂∂dV V p S V S p ⎪⎭⎫ ⎝⎛∂∂⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂dT T S dV V S V T⇒=⎪⎭⎫ ⎝⎛∂∂T V p VS p ⎪⎭⎫ ⎝⎛∂∂T V S ⎪⎭⎫ ⎝⎛∂∂+SV p ⎪⎭⎫⎝⎛∂∂ (1) =⎪⎭⎫ ⎝⎛∂∂V T p VS p ⎪⎭⎫ ⎝⎛∂∂TT S ⎪⎭⎫ ⎝⎛∂∂ (2) 由麦氏关系(2.2.3)代入(1)式中 ⇒=⎪⎭⎫ ⎝⎛∂∂S V T -VS p ⎪⎭⎫⎝⎛∂∂⇒=⎪⎭⎫ ⎝⎛∂∂T V p -⎪⎭⎫ ⎝⎛∂∂S V p SV T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂T V S -⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂S V S T ,,()()T V T S ,,∂∂ =+⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂T V S T ,,()()⋅∂∂S V T V ,,()()T V S T ,,∂∂ =+⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂S V T V ,,()()2,,⎥⎦⎤⎢⎣⎡∂∂T V S T =+⎪⎭⎫ ⎝⎛∂∂S V p V S T ⎪⎭⎫ ⎝⎛∂∂()()2,,⎥⎦⎤⎢⎣⎡∂∂T V S T 由式(2.2.5) ⇒V C V T S T ⎪⎭⎫ ⎝⎛∂∂=;即0>=⎪⎭⎫⎝⎛∂∂VV C T S T . 于是: 0>=⎪⎭⎫ ⎝⎛∂∂T V p +⎪⎭⎫⎝⎛∂∂S V p 正数于是: SV p ⎪⎭⎫⎝⎛∂∂<0=P C P T S T ⎪⎭⎫ ⎝⎛∂∂()()=∂∂=p T p S T ,,()()⋅∂∂V S p S T ,,()()=∂∂p T V S ,,⋅⎪⎭⎫ ⎝⎛∂∂SV p T ()()p T V S ,,∂∂ ⋅⎪⎭⎫ ⎝⎛∂∂=S V p T ()()⋅∂∂V T V S ,,()()=∂∂p T V T ,,⋅⎪⎭⎫ ⎝⎛∂∂S V p T V T S ⎪⎭⎫ ⎝⎛∂∂Tp V ⎪⎪⎭⎫ ⎝⎛∂∂⋅ ⋅⎪⎭⎫⎝⎛∂∂=SV p V TC p V ⋅⎪⎪⎭⎫⎝⎛∂∂ 0>V C ; 因而0>P C习题3.7试证明在相变中物质摩尔内能的变化为:1p dT U L T dp ⎛⎫∆=-⋅ ⎪⎝⎭如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简。

热力学统计物理课后习题答案.doc

热力学统计物理课后习题答案.doc

第七章 玻耳兹曼统计7. 1 试根据公式 Pa lL证明,对于非相对论粒子lVP21 2 22 U 222n x , n y , n z2m 2mL n x n yn z ,( 0, 1, 2, )有P3 V上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明: 处在边长为 L 的立方体中,非相对论粒子的能量本征值为P21 222 22n x , n y , n z 0, 1, 2, ) ------- (1)n x , n y ,n z2m 2mLn x n yn z(为书写简便,我们将上式简记为aV 23----------------------- ( 2)其中 V=L 3 是系统的体积,常量a(2 ) 2222l 代表 n x ,n y ,n z 三2m n xn y n z ,并以单一指标个量子数。

由( 2)式可得L2aVV35 32l--------------------- ( 3)3 V代入压强公式,有 PL2 2 Ua lal l---------------------- ( 4)lV3V l3 V式中 Ual l是系统的内能。

l上述证明未涉及分布的具体表达式, 因此上述结论对于玻尔兹曼分布, 玻色分布和费米分布都成立。

注:( 4)式只适用于粒子仅有平移运动的情形。

如果粒子还有其他的自由度,式( 4)中的U 仅指平动内能。

7. 2 根据公式 Pa lL证明,对于极端相对论粒子lVcp c2n x 2 n y 2 n z 2 11 U2 , n x , n y , n z 0, 1, 2, 有PL3 V 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为2 n x 2 n y 2 n z 2 1c 2 , n x , n y , n z 0, 1, 2,-------( 1)n x ,n y ,n zL1为书写简便,我们将上式简记为aV 3 ----------------------- ( 2)其中 V=L 3 是系统的体积, 常量 a 2 c n x 2 n y 2n z 212,并以单一指标 l 代表 n x ,n y ,n z 三个量子数。

《热力学与统计物理》第四版(汪志诚)课后题答案

《热力学与统计物理》第四版(汪志诚)课后题答案



Y
是T 的函数,对J仅有微弱的依赖关系,如果温度变化范
围不大,可以看作常量,假设金属丝两端固定。试证明,当温度由
1
J YA T2 T1
降至
2
时,其张力的增加为
解:由物态方程
f J , L, T 0
(1)
知偏导数间存在以下关系:
L T J 1. T J J L L T

如果 解:以
1 1 , T T p
,试求物态方程。
T, p
为自变量,物质的物态方程为
V V T , p ,
其全微分为
V V dV dp. dT T p p T
全式除以
(1)
V
,有
dV 1 V 1 V dp. dT V V T p V p T
(3)
T
1 V 1 nRT 1 . V p T V p 2 p
(4)
1.2 证明任何一种具有两个独立参量 系数
T, p
的物质,其物态方程可由实验测得的体胀系数

及等温压缩

,根据下述积分求得:
lnV = αdT κT dp
L L0
0.5, 1.0, 1.5
A 1 106 m 2 , 0 5 104 K 1
,试计算当
分别为

2.0
时的
J, Y,
值,并画出
J, Y,

L L0
的曲线.
解:(a)根据题设,理想弹性物质的物态方程为
L L2 0 J bT 2 , L0 L

最新热力学统计物理 课后习题 答案资料

最新热力学统计物理  课后习题  答案资料

第三章 单元系的相变3.4求证 (1)VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ (2)PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂μ 证明:(1)由自由能的全微分方程dF=-SdT-PdV+μdn 及偏导数求导次序的可交换性,可以得到VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ 这是开系的一个麦氏关系。

(2)由吉布斯函数的全微分方程dG=-SdT+VdP+μdn 及偏导数求导次序的可交换性,可以得到PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂μ 这是开系的一个麦氏关系。

3.5求证μ-⎪⎭⎫⎝⎛∂∂V T n U ,nV T T ,⎪⎭⎫⎝⎛∂∂-=μ 解:自由能TS U F -=是以n V T ,,为自变量的特性函数,求F 对n 的偏导数,有VT V T V T n S T n U n F ,,,⎥⎦⎤⎢⎣⎡∂-⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ (1) 但自由能的全微分dn pdV Sdt dF μ=--=可得V T n F ,⎪⎭⎫⎝⎛∂∂=μ, V T n S T ,⎥⎦⎤⎢⎣⎡∂=-n V T ,⎪⎭⎫⎝⎛∂∂μ (2) 代入(1),即有V T n U ,⎪⎭⎫⎝⎛∂∂-μ=-T nV T ,⎪⎭⎫⎝⎛∂∂μ 3.6两相共存时,两相系统的定压热容量C P =pT S T ⎪⎭⎫⎝⎛∂∂,体胀系数 P T V V ⎪⎭⎫ ⎝⎛∂∂=1α和等温压缩系数TP V V k T ⎪⎭⎫⎝⎛∂∂-=1均趋于无穷。

试加以说明。

解: 我们知道,两相平衡共存时,两相的温度,压强和化学式必须相等。

如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变。

两相系统吸取热量而温度不变表明他的热容量 C P 趋于无穷。

在上述过程中两相系统的体积也将变化而温度不变,说明两相系统的体胀系数PT V V ⎪⎭⎫ ⎝⎛∂∂=1α也趋于无穷。

热力学统计物理第三章3

热力学统计物理第三章3

这时有
dU α = TdS α − pα dV α + µ α dnα
dU β = TdS β − p β dV β + µ β dn β
dU γ = TdS γ + σdA
假定热平衡条件已经满足,温度保持不变, 假定热平衡条件已经满足 , 温度保持不变 , 用自由能 判据推求系统的力学平衡条件和相变条件。 判据推求系统的力学平衡条件和相变条件。 假想在温度和总体积保持不变的条件下, 假想在温度和总体积保持不变的条件下,系统发生一个 虚变动。在这虚变动中,三相的摩尔数,体积和面积分 虚变动。 在这虚变动中,三相的摩尔数, 的变化。 别有 δ n α , δV α ; δn β,δV β ; δA 的变化 。由于在虚变动 中系统的总摩尔数和总体积保持不变, 中系统的总摩尔数和总体积保持不变,应有
Tα = T β = T
pα = p β + 2σ r
µ α T , pα = µ β T , p β
(
)
(
)
分界面为平面)气液两相的平衡条件为: (分界面为平面)气液两相的平衡条件为:
Tα = T β = T
pα = p β = p
µ α (T , p ) = µ β (T , p )
分界面为曲面)气液两相的平衡条件为: (分界面为曲面)气液两相的平衡条件为:
δ nα + δ n β = 0
δV α + δV β = 0
δF = −( pα − p β )δV α + σδA + ( µ α − µ β )δnα = 0
如果假定液滴是球形的,有 如果假定液滴是球形的,
Vα =
4π 3 r 3
A = 4πr 2

2023年大学_热力学统计物理第五版(汪志诚著)课后答案下载

2023年大学_热力学统计物理第五版(汪志诚著)课后答案下载

2023年热力学统计物理第五版(汪志诚著)课后答案下载热力学统计物理第五版(汪志诚著)内容简介导言第一章热力学的基本规律1.1 热力学系统的平衡状态及其描述1.2 热平衡定律和温度1.3 物态方程1.4 功1.5 热力学第一定律1.6 热容和焓1.7 理想气体的内能1.8 理想气体的绝热过程附录1.9 理想气体的卡诺循环1.10 热力学第二定律1.11 卡诺定理1.12 热力学温标1.13 克劳修斯等式和不等式1.14 熵和热力学基本方程1.15 理想气体的熵1.16 热力学第二定律的数学表述1.17 熵增加原理的简单应用1.18 自由能和吉布斯函数习题第二章均匀物质的热力学性质2.1 内能、焓、自由能和吉布斯函数的全微分 2.2 麦氏关系的简单应用2.3 气体的节流过程和绝热膨胀过程2.4 基本热力学函数的确定2.5 特性函数2.6 热辐射的热力学理论2.7 磁介质的.热力学2.8 获得低温的方法习题第三章单元系的相变3.1 热动平衡判据3.2 开系的热力学基本方程3.3 单元系的复相平衡条件3.4 单元复相系的平衡性质3.5 临界点和气液两相的转变3.6 液滴的形成3.7 相变的分类3.8 临界现象和临界指数3.9 朗道连续相变理论习题第四章多元系的复相平衡和化学平衡热力学第三定律 4.1 多元系的热力学函数和热力学方程4.2 多元系的复相平衡条件4.3 吉布斯相律4.4 二元系相图举例附录4.5 化学平衡条件4.6 混合理想气体的性质4.7 理想气体的化学平衡4.8 热力学第三定律习题第五章不可逆过程热力学简介5.1 局域平衡熵流密度与局域熵产生率 5.2 线性与非线性过程昂萨格关系5.3 温差电现象5.4 最小熵产生定理5.5 化学反应与扩散过程5.6 非平衡系统在非线性区的发展判据 5.7 三分子模型与耗散结构的概念习题第六章近独立粒子的最概然分布6.1 粒子运动状态的经典描述6.2 粒子运动状态的量子描述6.3 系统微观运动状态的描述6.4 等概率原理6.5 分布和微观状态6.6 玻耳兹曼分布6.7 玻色分布和费米分布……第七章玻耳兹曼统计第八章玻色统计和费米统计第九章系综理论第十章涨落理论第十一章非平衡态统计理论初步附录A 热力学常用的数学结果B 概率基础知识C 统计物理学常用的积分公式索引参考书目物理常量表热力学统计物理第五版(汪志诚著)图书目录《“十二五”普通高等教育本科国家级规划教材:热力学统计物理(第5版)》是“十二五”普通高等教育本科国家级规划教材,是作者在第四版的基础上全面修订而成的。

热力学统计物理 课后习题 答案 (4)

热力学统计物理  课后习题  答案 (4)

第三章 单元系的相变3.4求证 (1)VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ (2)PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂μ 证明:(1)由自由能的全微分方程dF=-SdT-PdV+μdn 及偏导数求导次序的可交换性,可以得到VT n V n S T ,,⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂μ 这是开系的一个麦氏关系。

(2)由吉布斯函数的全微分方程dG=-SdT+VdP+μdn 及偏导数求导次序的可交换性,可以得到PT n T n V P ,,⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂μ 这是开系的一个麦氏关系。

3.5求证μ-⎪⎭⎫⎝⎛∂∂V T n U ,nV T T ,⎪⎭⎫⎝⎛∂∂-=μ 解:自由能TS U F -=是以n V T ,,为自变量的特性函数,求F 对n 的偏导数,有VT V T V T n S T n U n F ,,,⎥⎦⎤⎢⎣⎡∂-⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ (1) 但自由能的全微分dn pdV Sdt dF μ=--=可得V T n F ,⎪⎭⎫⎝⎛∂∂=μ, V T n S T ,⎥⎦⎤⎢⎣⎡∂=-n V T ,⎪⎭⎫⎝⎛∂∂μ (2) 代入(1),即有V T n U ,⎪⎭⎫⎝⎛∂∂-μ=-T nV T ,⎪⎭⎫⎝⎛∂∂μ 3.6两相共存时,两相系统的定压热容量C P =pT S T ⎪⎭⎫⎝⎛∂∂,体胀系数 P T V V ⎪⎭⎫ ⎝⎛∂∂=1α和等温压缩系数TP V V k T ⎪⎭⎫⎝⎛∂∂-=1均趋于无穷。

试加以说明。

解: 我们知道,两相平衡共存时,两相的温度,压强和化学式必须相等。

如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变。

两相系统吸取热量而温度不变表明他的热容量 C P 趋于无穷。

在上述过程中两相系统的体积也将变化而温度不变,说明两相系统的体胀系数PT V V ⎪⎭⎫ ⎝⎛∂∂=1α也趋于无穷。

热力学与统计物理第三章

热力学与统计物理第三章

推论: 粒子数不守恒系统的化学势等于零。
1 1 p p S ( )U ( )V n n 0 T T T T T T
n n


C
T T
2017/9/8


0; 0 G ni i 0
p p



19
i
2.勒夏特列(Le Chatelier)原理
讨论:假如上述平衡条件不满足,系统中过程进行的方向如何?
p p , (1) 若相变平衡条件不满足,即 T T ,


因为整个孤立系的变化必定朝着熵增加方向进行,即 δS 0 若:

2017/9/8 4
二、自由能判据和吉布斯函数判据 1. 自由能判据
在等温等容过程中,系统的自由能永不增加。这就 是说,在等温等容条件下,对于各种可能的变动,以平 衡态的自由能为最小。
等温等容系统处在稳定平衡状态的必要且充分条件为:
~ ΔF 0 1 ~ 泰勒级数展开为: Δ F δF δ 2 F 2 2 δF 0 δ F 0 平衡条件和平衡稳定性条件。
2
2S 2 U V 2 V 0 V
2S
CV 1 p 2 2 T V 0 2 T T V T p CV 0, 稳定性条件 0 V T
平衡满足稳定性条件时,系统对平衡发生偏离时,系 统将自发产生相应的过程,以恢复系统的平衡。适用于均 匀系统的任何部分。
2017/9/8 10
a 气体的范德瓦耳斯方程: p 2 V b RT V

热力学与统计物理第三章

热力学与统计物理第三章

P.6/55
单元系的相变
等温等容系统处在稳定平衡状态 的必要和充分条件为
G 0
将G作泰勒展开,准确到二级,有
F 0
将F作泰勒展开,准确到二级,有
1 2 G G G 2
由 G 0 和 2 G 0 可以确定平衡 条件和平衡的稳定性条件。
1 2 F F F 2
泰勒展开,准确到二级有:
1 1 p p s U V 0 T T0 T T0 由于U和V 可独立变化,所以上
式成立,必有平衡条件:
1 S S 2 S 2 1 2 S 0 S 0 S 0 2
2013-7-31
T T0 ,
p p0
意义:达到平衡时,子系统与媒质 具有相同的温度和压强。子系统是 任选的,所以达到平衡时整个系统 的温度和压强是均匀的。
P.9/55
s S S0
平衡时有:
1 2 S 2 S0 2
单元系的相变
2、平衡的稳定性条件 平衡的稳定性条件应满足:
2 S0 2 S
2 ①式近似为: s S 0 2
p 0 V T
讨论:系统处于稳定平衡时,由 于扰动偏离时,系统将自动回落 到平衡态。
根据泰勒展开公式: 2S 2 2 S 2 U U
2S 2 U V
2S 2 U V
2S 2 U V 2 V 0 V P.10/55
单元系的相变
2、平衡的稳定性条件 平衡的稳定性条件应满足:
通过导数变换将上式化为平方和:
s 0 T T0 ; p p0 2 s 2S 2S 0 ①
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 单元系的相变3.1 证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,稳定平衡态的H 最小.(c )在,H p 不变的情形下,稳定平衡态的S 最小.(d )在,F V 不变的情形下,稳定平衡态的T 最小.(e )在,G p 不变的情形下,稳定平衡态的T 最小.(f )在,U S 不变的情形下,稳定平衡态的V 最小.(g )在,F T 不变的情形下,稳定平衡态的V 最小.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发生各种可能的自发虚变动. 由于不存在自发的可逆变动,根据热力学第二定律的数学表述(式(1.16.4)),在虚变动中必有đ,U T S W δδ<+ (1) 式中U δ和S δ是虚变动前后系统内能和熵的改变,đW 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度. 由于虚变动只涉及无穷小的变化,T 也等于系统的温度. 下面根据式(1)就各种外加约束条件导出相应的平衡判据.(a ) 在,S V 不变的情形下,有0,đ0.S W δ==根据式(1),在虚变动中必有0.U δ< (2) 如果系统达到了U 为极小的状态,它的内能不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,有0,đ,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极小的状态,它的焓不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最小.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有đ.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,đ,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极大的状态,它的熵不可能再增加,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最大.(d )由自由能的定义F U TS =-和式(1)知在虚变动中必有đ.F S T W δδ<-+在F 和V 不变的情形下,有0,đ0,F W δ==故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最小.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有đ.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,đ,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最小.(f )在,U S 不变的情形下,根据式(1)知在虚变动中心有đ0.W >上式表明,在,U S 不变的情形下系统发生任何的宏观变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最小.(g )根据自由能的定义F U TS =-和式(1)知在虚变动中必有δδđ.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T ==必有đ0W > (8)上式表明,在,F T 不变的情形下,系统发生任何宏观的变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最小.3.2 试由式(3.1.12)导出式(3.1.13)解:式(3.1.12)为()()22222222δδ2δδδ0.S S S S U U V V U U V V ⎡⎤⎛⎫⎛⎫∂∂∂=++<⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎣⎦ (1)将2δS 改写为2δδδδδδδ.S S S S S U V U U V V U U V U U V V V ⎡∂∂∂∂⎤⎡∂∂∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ (2)但由热力学基本方程TdS dU pdV =+可得 1,,V U S S p U T V T∂∂⎛⎫⎛⎫== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 代入式(2),可将式(1)表达为211δδδδδδδS p p S U V U U V V U T V T U T V T ⎡∂∂⎤⎡∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 1δδδδ0.p U V T T ⎡⎤⎛⎫⎛⎫=+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (4) 以,T V 为自变量,有δδδV TU U U T V T V ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ δδ,V V p C T T p V T ⎡⎤∂⎛⎫=+- ⎪⎢⎥∂⎝⎭⎣⎦(5) 111δδδV TT V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ 21δ,T T =- (6) δδδV Tp p p T V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ 211δδ.V T p p T p T V T T T V ⎡⎤∂∂⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦(7) 将式(5)—(7)代入式(4),即得 ()()22221δδδ0,V TC p S T V T T V ∂⎛⎫=-+< ⎪∂⎝⎭ (8)这就是式(3.1.13).3.3 试由0V C >及0Tp V ∂⎛⎫< ⎪∂⎝⎭证明0p C >及0.S p V ∂⎛⎫< ⎪∂⎝⎭ 解:式(2.2.12)给出 2.p V TVT C C ακ-= (1) 稳定性条件(3.1.14)给出 0,0,V Tp C V ∂⎛⎫>< ⎪∂⎝⎭(2) 其中第二个不等式也可表为 10,T TV V p κ⎛⎫∂=-> ⎪∂⎝⎭(3) 故式(1)右方不可能取负值. 由此可知0,p V C C ≥>(4) 第二步用了式(2)的第一式.根据式(2.2.14),有 .S SV T pTVpC C Vp κκ⎛⎫∂ ⎪∂⎝⎭==⎛⎫∂ ⎪∂⎝⎭(5) 因为Vp C C 恒正,且1VpC C ≤,故 0,S TV V p p ⎛⎫⎛⎫∂∂≤< ⎪ ⎪∂∂⎝⎭⎝⎭(6)第二步用了式(2)的第二式.3.4 求证:(a ),,;V n T V S T n μ∂∂⎛⎫⎛⎫=- ⎪⎪∂∂⎝⎭⎝⎭ (b ),,.T pt n V p n μ⎛⎫∂∂⎛⎫=⎪⎪∂∂⎝⎭⎝⎭解:(a )由自由能的全微分(式(3.2.9))dF SdT pdV dn μ=--+ (1) 及偏导数求导次序的可交换性,易得 ,,.V n T VS T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这是开系的一个麦氏关系.(b ) 类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn μ=-++ (3)可得,,.T p T n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 这也是开系的一个麦氏关系.3.5 求证:,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ 解:自由能F U TS =-是以,,T V n 为自变量的特性函数,求F 对n 的偏导数(,T V 不变),有 ,,,.T V T V T VF U S T n n n ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (1) 但由自由能的全微分dF SdT pdV dn μ=--+可得 ,,,,,T VT V V n F n S n T μμ∂⎛⎫= ⎪∂⎝⎭∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1),即有,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)3.6 两相共存时,两相系统的定压热容量p pS C T T ∂⎛⎫= ⎪∂⎝⎭,体胀系数1p V V T α∂⎛⎫= ⎪∂⎝⎭和等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭均趋于无穷,试加以说明. 解:我们知道,两相平衡共存时,两相的温度、压强和化学势必须相等.如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变. 两相系统吸取热量而温度不变表明它的(定压)热容量p C 趋于无穷. 在上述过程中两相系统的体积也将发生变化而温度保持不变,说明两相系统的体胀系 数1pV V T α∂⎛⎫= ⎪∂⎝⎭也趋于无穷. 如果在平衡温度下,以略高(相差无穷小)于平衡压强的压强准静态地施加于两相系统,物质将准静态地从比容较高的相转移到比容较低的相,使两相系统的体积发生改变. 无穷小的压强导致有限的体 积变化说明,两相系统的等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭也趋于无穷.3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭ 如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足.m m m U H p V ∆=∆-∆ (1) 平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ∆=克拉珀龙方程(式(3.4.6))给出,m dp L dT T V =∆ (3) 即 .m L dT V T dp∆= (4) 将式(2)和式(4)代入(1),即有 1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭(5) 如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为2.dp Lp dT RT = (6) 式(5)简化为1.m RT U L L ⎛⎫∆=- ⎪⎝⎭ (7)3.8 在三相点附近,固态氨的蒸气压(单位为Pa )方程为3754ln 27.92.p T=- 液态氨的蒸气压力方程为 3063ln 24.38.p T =-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸气压方程是固相与气相的两相平衡曲线,液态氨的蒸气压方程是液相与气想的两相平衡曲线. 三相点的温度t T 可由两条相平衡曲线的交点确定:3754306327.9224.38,t tT T -=- (1) 由此解出195.2.t T K = 将t T 代入所给蒸气压方程,可得5934Pa.t p =将所给蒸气压方程与式(3.4.8)In L p A RT =-+ (2) 比较,可以求得443.12010J,2.54710J.L L =⨯=⨯升汽氨在三相点的熔解热L 溶等于40.57310J.L L L =-=⨯溶升汽3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m p V L C C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ 如果β相是蒸气,可看作理想气体,α相是凝聚相,上式可简化为,p L C C Tββα=- 并说明为什么饱和蒸气的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升高1K 所吸收的热量C βα为 .m m m p TdS S S dp C T T T dT T p dT ββββα⎛⎫⎛⎫⎛⎫∂∂==+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ (1) 式(2.2.8)和(2.2.4)给出 ,.m p p m m T p S T C T S V p T ββββ⎛⎫∂= ⎪∂⎝⎭⎛⎫⎛⎫∂∂=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1)可得 .m p p V dp C C T T dT βββα⎛⎫∂=- ⎪∂⎝⎭ (3) 将克拉珀龙方程代入,可将式(3)表为.m p m m p V L C C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ (4) 如果β相是气相,可看作理想气体,α相是凝聚相,m m V V αβ,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为 .p L C C Tββα=-(5) C βα是饱和蒸气的热容量. 由式(5)可知,当p L C T β<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p m mp p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ 如果β相是气相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα=- (1)相变潜热随温度的变化率为 .m m m m p T p T H H H H dL dp dp dT T p dT T p dTββαα⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂=+-- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 式(2.2.8)和(2.2.10)给出 ,,p pp T H C T H V V T p T ∂⎛⎫= ⎪∂⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dTβαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+---⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦ 将式中的dp dT用克拉珀龙方程(3.4.6)代入,可得 ,m m p p m m p p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ (4)这是相变潜热随温度变化的公式.如果β相是气相,α相是凝聚相,略去m V α和m pV T α⎛⎫∂ ⎪∂⎝⎭,并利用m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5)3.11 根据式(3.4.7),利用上题的结果计及潜热L 是温度的函数,但假设温度的变化范围不大,定压热容量可以看作常量,试证明蒸气压方程可以表为ln ln .Bp A C T T=-+ 解: 式(3.4.7)给出了蒸气与凝聚相两平衡曲线斜率的近似表达式21.dp Lp dT RT = (1) 一般来说,式中的相变潜热L 是温度的函数. 习题3.10式(5)给出.p p dL C C dTβα=- (2) 在定压热容量看作常量的近似下,将式(2)积分可得()0,p p L L C C T βα=+- (3)代入式(1),得021,p pC C L dL p dT RT RTβα-=+ (4) 积分,即有ln ln ,Bp A C T T=-+ (5) 其中0,,p pC L B C A R C βα==是积分常数.3.12 蒸气与液相达到平衡. 以mdV dT表示在维持两相平衡的条件下,蒸气体积随温度的变化率. 试证明蒸气的两相平衡膨胀系数为111.m m dV LV dT T RT⎛⎫=-⎪⎝⎭解:蒸气的两相平衡膨胀系数为11.m m m p m m T dV V V dp V dT V T p dT ⎡⎤⎛⎫∂∂⎛⎫=+⎢⎥⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦(1) 将蒸气看作理想气体,m pV RT =,则有11,11.m p m m m T V V T T V V p p∂⎛⎫= ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭ (2)在克拉珀龙方程中略去液相的摩尔体积,因而有2.m dp L LpdT TV RT== (3) 将式(2)和式(3)代入式(1),即有111.m m dV L V dT T RT⎛⎫=-⎪⎝⎭(4)3.13 将范氏气体在不同温度下的等温线的极大点N 与极小点J 联起来,可以得到一条曲线NCJ ,如图所示. 试证明这条曲线的方程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范氏方程为2.m mRT ap V b V =-- (1) 求偏导数得()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (3) 等温线的极大点N 与极小点J 满足0,m Tp V ⎛⎫∂= ⎪∂⎝⎭ 即()232,mm RTa V Vb =- 或()()32.m m mRT aV b V b V =-- (3) 将式(3)与式(1)联立,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的方程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸气;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ⎛⎫∂> ⎪∂⎝⎭,不满足平衡稳定性的要求.3.14 证明半径为r 的肥皂泡的内压强与外压强之差为4rσ. 解:以p β表示肥皂泡外气体的压强,p γ表示泡内气体的压强,p α表示肥皂液的压强,根据曲面分界的力学平衡条件(式(3.6.6)),有2,p p r αβσ=+(1)2,p p rγασ=+ (2)式中σ是肥皂液的表面张力系数,r 是肥皂泡的半径. 肥皂液很薄,可以认为泡内外表面的半径都是r . 从两式中消去p α,即有4.p p rγβσ-=(3)3.15 证明在曲面分界面的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα=-=- 解:以指标α和β表示两相. 在曲面分界的情形下,热平衡条件仍为两相的温度相等,即.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββμμ= (3)根据化学势的定义 ,m m m U TS pV μ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)3.16 证明爱伦费斯特公式:()(2)(1)(2)(1)(2)(1)(2)(1),.p p dp dT C C dp dT TV αακκαα-=--=- 解:根据爱氏对相变的分类,二级相变在相变点的化学势和化学势的一级偏导数连续,但化学势的二级偏导数存在突变. 因此,二级相变没有相变潜热和体积突变,在相变点两相的比熵和比体积相等. 在邻近的两个相变点(),T p 和(),T dT p dp ++,两相的比熵和比体积的变化也相等,即(1)(2)v v ,d d = (1)(1)(2).ds ds = (2)但v v v v .p Td υdT dp T p dT dp ακ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 由于在相变点(1)(2)v v =,所以式(1)给出(1)(1)(2)(2),dT dp dT dp ακακ-=-即(2)(1)(2)(1).dp dT αακκ-=- (3) 同理,有v .p T p pp s s ds dT dp T p C υdT dpT T C dT dp Tα⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂⎛⎫=- ⎪∂⎝⎭=- 所以式(2)给出(1)(2)(1)(1)(2)(2)v v ,ppC C dT dp dT dp TTαα-=-即()(2)(1)(2)(1),v p p C C dp dT T αα-=- (4)式中(2)(1)v v v ==. 式(3)和式(4)给出二级相变点压强随温度变化的斜率,称为爱伦费斯特方程.3.17 试根据朗道自由能式(3.9.1)导出单轴铁磁体的熵函数在无序相和有序相的表达式,并证明熵函数在临界点是连续的。

相关文档
最新文档