康华光数电第六版课件ch01-2..
合集下载
康华光-电子技术基础(第六版)模拟部分ch04资料108页PPT
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
ቤተ መጻሕፍቲ ባይዱ
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
康华光-电子技术基础(第六版)模拟部分 ch04资料
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
康华光数电第六版课件ch01-2
1.2
数制
1.2.1十进制 1.2.2 二进制 1.2.3 二-十进制之间的转换 1.2.4十六进制和八进制
1.2 数制
数制:多位数码中的每一位数的构成及低位向高位进位的规则
1.2.1十进制
十进制采用0, 1, 2, 3, 4, 5, 6, 7, 8, 9十个数码,其进位的规则是
“逢十进一”。
4587.29=4103+5102+8101+7100+2101+9102
b. 小数的转换: 对于二进制的小数部分可写成
( N ) D b1 2 1 b2 2 2 b(n1) 2 (n1) bn 2 n
将上式两边分别乘以2,得
2 ( N ) D b1 2 0 b2 2 1 b(n1) 2 (n2) b n 2 (n1)
二进制数的一般表达式为:
+ 0 × 20
系数
i K 2 i
位权
( N )B
各位的权都是2的幂。
i
2、 二进制的优点 (1)易于电路表达---0、1两个值,可以用管子的导 通或截止, 灯泡的亮或灭、继电器触点的闭合或断开来表示。
VDD Rd
iD/mA
VCC
vO
iC VCC Rc
1 1
0 1
0 1
21 22 MSB 23
0
0 1
0 0 1 1 1
0 0 1 1 1 1 1 1 1 1 十进制 数
0 0 0 0
1 1
0 0 1
0 0 0 0 0 0
0 0 0
1 1 1
1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
数制
1.2.1十进制 1.2.2 二进制 1.2.3 二-十进制之间的转换 1.2.4十六进制和八进制
1.2 数制
数制:多位数码中的每一位数的构成及低位向高位进位的规则
1.2.1十进制
十进制采用0, 1, 2, 3, 4, 5, 6, 7, 8, 9十个数码,其进位的规则是
“逢十进一”。
4587.29=4103+5102+8101+7100+2101+9102
b. 小数的转换: 对于二进制的小数部分可写成
( N ) D b1 2 1 b2 2 2 b(n1) 2 (n1) bn 2 n
将上式两边分别乘以2,得
2 ( N ) D b1 2 0 b2 2 1 b(n1) 2 (n2) b n 2 (n1)
二进制数的一般表达式为:
+ 0 × 20
系数
i K 2 i
位权
( N )B
各位的权都是2的幂。
i
2、 二进制的优点 (1)易于电路表达---0、1两个值,可以用管子的导 通或截止, 灯泡的亮或灭、继电器触点的闭合或断开来表示。
VDD Rd
iD/mA
VCC
vO
iC VCC Rc
1 1
0 1
0 1
21 22 MSB 23
0
0 1
0 0 1 1 1
0 0 1 1 1 1 1 1 1 1 十进制 数
0 0 0 0
1 1
0 0 1
0 0 0 0 0 0
0 0 0
1 1 1
1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
电子技术基础数字部分第六版康华光
模数转换的实现
模拟信号 3V
模数转换器
00000011 数字输出
1.1.4 数字信号的描述方法
1、二值数字逻辑和逻辑电平 二值数字逻辑
0、1数码---表示数量时称二进制数
表示方式
---表示事物状态时称二值逻辑
a 、在电路中用低、高电平表示0、1两种逻辑状态
逻辑电平与电压值的关系(正逻辑)
电压(V) 二值逻辑
3、数字电路的分析、设计与测试
(1)数字电路的分析方法 数字电路的分析:根据电路确定电路输出与输入之间的逻辑关系。 分析工具:逻辑代数。 电路逻辑功能主要用真值表、功能表、逻辑表达式和波形图。
(2) 数字电路的设计方法 数字电路的设计:从给定的逻辑功能要求出发,选择适当的 逻辑器件,设计出符合要求的逻辑电路。 设计方式:分为传统的设计方式和基于EDA软件的设计方式。
1.8万个电子管
保存80个字节
晶体管时代
器件
电流控制器件 —半导体技术
半导体二极管、三极管
半导体集成电路
电路设计方法伴随器件变化从传统走向现代
a)传统的设计方法: 采用自下而上的设计方法;由人工组装,经反复调试、验证、 修改完成。所用的元器件较多,电路可靠性差,设计周期长。
b)现代的设计方法: 现代EDA技术实现硬件设计软件化。采用从上到下设计方 法,电路设计、 分析、仿真 、修订 全通过计算机完成。
--数字电路可分为TTL 和 CMOS电路
从集成度不同 --数字集成电路可分为小规模、中规模、大规模、超
大规模和甚大规模五类。
集成度:每一芯片所包含的门个数
分类
小规模 中规模 大规模 超大规模
甚大规模
门的个数
典型集成电路
模拟信号 3V
模数转换器
00000011 数字输出
1.1.4 数字信号的描述方法
1、二值数字逻辑和逻辑电平 二值数字逻辑
0、1数码---表示数量时称二进制数
表示方式
---表示事物状态时称二值逻辑
a 、在电路中用低、高电平表示0、1两种逻辑状态
逻辑电平与电压值的关系(正逻辑)
电压(V) 二值逻辑
3、数字电路的分析、设计与测试
(1)数字电路的分析方法 数字电路的分析:根据电路确定电路输出与输入之间的逻辑关系。 分析工具:逻辑代数。 电路逻辑功能主要用真值表、功能表、逻辑表达式和波形图。
(2) 数字电路的设计方法 数字电路的设计:从给定的逻辑功能要求出发,选择适当的 逻辑器件,设计出符合要求的逻辑电路。 设计方式:分为传统的设计方式和基于EDA软件的设计方式。
1.8万个电子管
保存80个字节
晶体管时代
器件
电流控制器件 —半导体技术
半导体二极管、三极管
半导体集成电路
电路设计方法伴随器件变化从传统走向现代
a)传统的设计方法: 采用自下而上的设计方法;由人工组装,经反复调试、验证、 修改完成。所用的元器件较多,电路可靠性差,设计周期长。
b)现代的设计方法: 现代EDA技术实现硬件设计软件化。采用从上到下设计方 法,电路设计、 分析、仿真 、修订 全通过计算机完成。
--数字电路可分为TTL 和 CMOS电路
从集成度不同 --数字集成电路可分为小规模、中规模、大规模、超
大规模和甚大规模五类。
集成度:每一芯片所包含的门个数
分类
小规模 中规模 大规模 超大规模
甚大规模
门的个数
典型集成电路
数电第01章数字逻辑概论康华光-课件
——相邻两组二进制数之间只变化一位二进制数
十进制数
0 1 2 3 4 5 6 7
8421码 0000 0001 0010 0011 0100 0101 0110 0111
格雷码 0000 0001 0011 0010 0110 0111 0101 0100
十进制数
8 9 10 11 12 13 14 15
加法运算规则如下:
0+0=0 1+0=1
0+1=1 1+1=10
——逢2进1
进位
例 : 1101+ 1001=?
2、减法运算 减法运算规则如下: 0-0=0 1-0=1 1-1=0 0-1=11
借位
例 : 1110-1001=?
1101 +1001
10 0 1
10 1 1 0
1110 -1 0 0 1
(2)并行方式(P15图1.2.3)
——n 位数据需n根连接线进行传输。传输速度快,传 输时间为串行方式的1/n 。工作时, n 位数据信号在 一个时钟脉冲的控制下同时传输。
2、二进制数的波形表示方法
低电平表示数据“0” 高电平表示数据“1”
0
1
0
(1-17)
一组波形如何用二进制数表示出来?
①串行方式时:
(1-4)
第一章 数字逻辑概论
重点: 1.了解数字电路的基本概念、数制; 2.掌握基本逻辑门的逻辑符号、真值表和 逻辑表达式; 3.掌握逻辑函数的各种表示方法及其相互 转换方法。
§1.1 数字电路的基本概念
一、模拟信号与数字信号
1、模拟信号 ——随时间连续变化的信号
u t 正弦波信号
2、数字信号 ——时间和幅度都是离散的
A
电子技术基础模拟部分(第六版) 康华光ch
允许低频信号通过,抑制高频信 号。
全通滤波电路(APF)
对所有频率的信号都有相同的传 递函数。
滤波电路的分析方法
解析法
通过数学公式推导电路的 传递函数和频率响应。
实验法
通过实验测试电路的实际 性能。
近似法
对电路进行近似处理,简 化分析过程。
滤波电路的应用实例
音频信号处理
用于消除噪音、增强音质。
图像信号处理
感谢您的观看
振荡电路用于产生本机振荡信号,用于调制和解调无 线信号。
音频信号处理
振荡电路可以用于产生音频信号,如合成器和效果器 中的音源。
测量仪器
振荡电路用于产生稳定的频率信号,如示波器和频谱 分析仪中的信号源。
06 电源电路
电源电路的组成和工作原理
电源电路的组成
电源电路主要由电源、负载和中间环节组成。电源是产生电 能的装置,负载是消耗电能的装置,中间环节则起到传输电 能的作用。
用于图像增强、去噪。
通信系统
用于信号的提取、抑制干扰。
05 振荡电路
振荡电路的组成和工作原理
1 2 3
组成
振荡电路由放大器、反馈网络和选频网络三个部 分组成。
工作原理
振荡电路通过正反馈和选频网络的选频作用,将 输入信号中的特定频率成分不断放大,最终输出 稳定的振荡信号。
振荡条件
要产生振荡,必须满足一定的相位和幅度条件, 即|AF|=1和ΔΦ=2π(n-1),其中A为放大倍数,F 为反馈系数,n为自然数。
电子技术基础模拟部分(第六版) 康华光ch
目 录
• 电子技术概述 • 模拟电路基础 • 放大电路 • 滤波电路 • 振荡电路 • 电源电路
01 电子技术概述
全通滤波电路(APF)
对所有频率的信号都有相同的传 递函数。
滤波电路的分析方法
解析法
通过数学公式推导电路的 传递函数和频率响应。
实验法
通过实验测试电路的实际 性能。
近似法
对电路进行近似处理,简 化分析过程。
滤波电路的应用实例
音频信号处理
用于消除噪音、增强音质。
图像信号处理
感谢您的观看
振荡电路用于产生本机振荡信号,用于调制和解调无 线信号。
音频信号处理
振荡电路可以用于产生音频信号,如合成器和效果器 中的音源。
测量仪器
振荡电路用于产生稳定的频率信号,如示波器和频谱 分析仪中的信号源。
06 电源电路
电源电路的组成和工作原理
电源电路的组成
电源电路主要由电源、负载和中间环节组成。电源是产生电 能的装置,负载是消耗电能的装置,中间环节则起到传输电 能的作用。
用于图像增强、去噪。
通信系统
用于信号的提取、抑制干扰。
05 振荡电路
振荡电路的组成和工作原理
1 2 3
组成
振荡电路由放大器、反馈网络和选频网络三个部 分组成。
工作原理
振荡电路通过正反馈和选频网络的选频作用,将 输入信号中的特定频率成分不断放大,最终输出 稳定的振荡信号。
振荡条件
要产生振荡,必须满足一定的相位和幅度条件, 即|AF|=1和ΔΦ=2π(n-1),其中A为放大倍数,F 为反馈系数,n为自然数。
电子技术基础模拟部分(第六版) 康华光ch
目 录
• 电子技术概述 • 模拟电路基础 • 放大电路 • 滤波电路 • 振荡电路 • 电源电路
01 电子技术概述
电子技术基础模拟部分(第六版) 康华光ch
2. 巴特沃斯传递函数及 其归一化幅频响应
A(jω)
A0
1 (ωc / ω)2n
归一化幅频响应 | A(j ) |
Ao
1.0
0.9 0.8
n=2 n=3
0.7 n=1
0.6
0.5
0.4
0.3
0.2
n=4
0.1
0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
R1 同相比例 放大电路
Vi (s) VA (s) VA (s) Vo (s) VA (s) VP (s) 0
R
1 / sC
R
得滤波电路传递函数
A(s) Vo (s) Vi (s)
1
(3
-
AVF
AVF )sCR
( sCR )2
(二阶)
9
华中科技大学 张林
10.3.1 有源低通滤波电路
10.1 滤波电路的基本概念与分类
1. 基本概念
滤波器:是一种能使有用频率信号通过而同时抑制或衰减无
用频率信号的电子装置。 有源滤波器:由有源器件构成的滤波器。
滤波电路传递函数定义
A(s) Vo (s)
vI (t)
Vi (s)
s j 时,有 A(j ) A(j ) ( )
和电阻对换,便成为高
vA
通电路。
R
传递函数
A(s)
s2
A0 s2
c
Q
s
c2
+
vO
- (AVF -1)R1
R1 同相比例 放大电路
归一化的幅频响应
A(j )
康华光 数字电路课件
2.1.2 半导体的共价键结构
硅晶体的空间排列 硅和锗的原子结构简化模型及晶体结构
共价键结构
2.1.3的半导体。 化学成分纯净的半导体 它在物理结构上呈单晶体态。 它在物理结构上呈单晶体态 。 本征激发——价电子获得 价电子获得 本征激发 热振动能量而挣脱共价键 束缚,成为自由电子 自由电子的现 束缚,成为自由电子的现 象。 空穴——共价键中的空位。 共价键中的空位。 空穴 共价键中的空位 电子空穴对——由热激发而产生的自由电子 由热激发而产生的自由电子——空穴成对出现。 空穴成对出现 电子空穴对 由热激发而产生的自由电子 空穴成对出现。 空穴的移动——空穴的运动是靠相邻共价键中的价电子依次充 空穴的运动是靠相邻共价键中的价电子依次充 空穴的移动 填空穴来实现的。 填空穴来实现的。*本征半导体导电能力很弱。为什么?
热击穿——不可逆 不可逆 热击穿 雪崩击穿 齐纳击穿
iD
VBR O
υD
电击穿——可逆 可逆 电击穿
本节中的有关概念
• 本征半导体、杂质半导体 本征半导体、 • 施主杂质、受主杂质 施主杂质、 • N型半导体、P型半导体 型半导体、 型半导体 型半导体 • 自由电子、空穴 自由电子、 • 多数载流子、少数载流子 多数载流子、 • PN结的单向导电性 结的单向导电性
2. PN结的单向导电性 结的单向导电性
当外加电压使PN结中 区的电位高于 区的电位, 当外加电压使 结中P区的电位高于 区的电位,称为 结中 区的电位高于N区的电位 正向电压,简称正偏 反之称为加反向电压,简称反偏 正偏; 称为加反向电压 反偏。 加正向电压,简称正偏;反之称为加反向电压,简称反偏。 (1) PN结加正向电压时(如图) 结加正向电压时(如图) 结加正向电压时
电子技术基础数字部分第六版康华光逻辑门电路共节课件
详细描述
逻辑门电路是数字电路中的基本单元,它能够实现逻辑运算,即根据输入信号的状态,决定输出信号 的状态。逻辑门电路通常由晶体管等电子元件构成,通过组合不同的逻辑门电路,可以实现复杂的逻 辑功能。
逻辑门电路的基本功能
总结词
逻辑门电路的基本功能是根据输入信号的状态,决定输出信号的状态。具体来说,与门能够实现逻辑与运算,或 门能够实现逻辑或运算,非门能够实现逻辑非运算等。
电子技术基础数字部分第六版康 华光逻辑门电路课件
• 逻辑门电路的原理与结构 • 逻辑门电路的应用 • 逻辑门电路的实验与实践 • 逻辑门电路的常见问题与解决方案
01
逻辑门电路概述
逻辑门电路的定义与分类
总结词
逻辑门电路是实现逻辑运算的电路,能够根据输入信号的状态,决定输出信号的状态。根据功能不同, 逻辑门电路可以分为与门、或门、非门、与非门、或非门等。
采取有效的噪声抑制措施,如加入去 耦电容等,以减小噪声对逻辑门电路 性能的影响。
逻辑门电路的应用前景与展望
嵌入式系统领域
随着嵌入式系统的发展,逻辑门电路在其 中的应用将更加广泛,特别是在控制、信
号处理等方面。
人工智能领域
人工智能技术的快速发展对逻辑门电路提 出了更高的要求,其在算法实现、数据处
理等方面将发挥重要作用。
高速通信领域
在高速通信领域,逻辑门电路在信号调制、 解调等方面具有重要应用,未来随着通信 技术的发展,其需求也将持续增长。
绿色能源领域
随着绿色能源技术的推广,逻辑门电路在 太阳能逆变器、风能控制系统等领域的应 用也将得到进一步拓展。
THANK YOU
感谢各位观看
05
逻辑门电路的常见问题与解决方案
逻辑门电路的常见故障与排除方法
逻辑门电路是数字电路中的基本单元,它能够实现逻辑运算,即根据输入信号的状态,决定输出信号 的状态。逻辑门电路通常由晶体管等电子元件构成,通过组合不同的逻辑门电路,可以实现复杂的逻 辑功能。
逻辑门电路的基本功能
总结词
逻辑门电路的基本功能是根据输入信号的状态,决定输出信号的状态。具体来说,与门能够实现逻辑与运算,或 门能够实现逻辑或运算,非门能够实现逻辑非运算等。
电子技术基础数字部分第六版康 华光逻辑门电路课件
• 逻辑门电路的原理与结构 • 逻辑门电路的应用 • 逻辑门电路的实验与实践 • 逻辑门电路的常见问题与解决方案
01
逻辑门电路概述
逻辑门电路的定义与分类
总结词
逻辑门电路是实现逻辑运算的电路,能够根据输入信号的状态,决定输出信号的状态。根据功能不同, 逻辑门电路可以分为与门、或门、非门、与非门、或非门等。
采取有效的噪声抑制措施,如加入去 耦电容等,以减小噪声对逻辑门电路 性能的影响。
逻辑门电路的应用前景与展望
嵌入式系统领域
随着嵌入式系统的发展,逻辑门电路在其 中的应用将更加广泛,特别是在控制、信
号处理等方面。
人工智能领域
人工智能技术的快速发展对逻辑门电路提 出了更高的要求,其在算法实现、数据处
理等方面将发挥重要作用。
高速通信领域
在高速通信领域,逻辑门电路在信号调制、 解调等方面具有重要应用,未来随着通信 技术的发展,其需求也将持续增长。
绿色能源领域
随着绿色能源技术的推广,逻辑门电路在 太阳能逆变器、风能控制系统等领域的应 用也将得到进一步拓展。
THANK YOU
感谢各位观看
05
逻辑门电路的常见问题与解决方案
逻辑门电路的常见故障与排除方法
康华光数电课件触发器资料讲解共63页文档
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
康华光数电课件触发器资料讲解
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则ห้องสมุดไป่ตู้。——孔子
数字电路康华光逻辑门电路概要PPT课件
2019/12/5
9
数字电子技术
不同系列的集成电路,输入和输出为逻辑1或0所对应的电 压范围也不同。一般厂家在数据手册中都给出如下4种逻辑电 平参数:
1 vO
vI 1
驱动门 G1
vO
输出
+VDD
高电平
VOH(min)
负载门 G2
+VDD
vI
输入
高电平
VIH(min)
VIL(max)
输出 低电平
VOL(max) 0
漏极d
直流负载线
栅极g
Vi=VGs.
源极s
Vo=VD s
(a)N沟道MOS管开关
:VGS<VT,iD = 0,
(b)N沟道MOS管的输出特性曲线:iD
电路
= f (VDS) 对应不同的VGS下的一组曲线。
(1)当υI < VT : MOS管截止, 输出高电平
(2)当υI > VT :MOS管工作在可变电阻区,输出低电平
个数。
负载门的输入电流
高电平扇出数:
N OH
IOH ( 驱 动 门) I IH (负 载 门)
IOH :驱动门的输出端为高电平电流 IIH :负载门的输入电流为。
2019/12/5
14
数字电子技术
(b)带灌电流负载
当驱动门输出低电平时,负载电流IOL流入驱动门,它是负载
门输入端电流IIL之和。当负载门的个数增加时,总的灌电流IOL 将增加,同时也将引起输出低电压VOL的升高。
故当输出为低电平,并且保证不超过输出低电平的上限值时, 驱动门所能驱动同类门的个数为:
N OL
I OL ( ቤተ መጻሕፍቲ ባይዱ 动 门) I IL (负 载 门)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机 计算机 A
LSB
MSB
计算机 计算机 B
A
0 1 1 0 1 1 0 0
B
串行数据传输
CP 1 0 0 1 2 3 4 5 6 7
串行数据
1 MSB 0 0
LSB 0 1 1 0 1 1 0
(2)二进制数据的并行传输
将一组二进制数据所有位同时传送。 传送速率快,但数据线较多,而且发送和接收设备较复杂。
1.2
数制
1.2.1十进制 1.2.2 二进制 1.2.3 二-十进制之间的转换 1.2.4十六进制和八进制
1.2 数制
数制:多位数码中的每一位数的构成及低位向高位进位的规则
1.2.1十进制
十进制采用0, 1, 2, 3, 4, 5, 6, 7, 8, 9十个数码,其进位的规则是
“逢十进一”。
4587.29=4103+5102+8101+7100+2101+9102
2 4 2 2 2 1 0
由上得 (37)D=(100101)B
当十进制数较大时,有什么方法使转换过程简化?
例1.2.3 将(133)D转换为二进制数 解:由于27为128,而133-128=5=22+20, 所以对应二进制数b7=1,b2=1,b0=1,其余各 系数均为0,所以得 (133)D=(10000101)B
由此可见,将十进制小数乘以2,所得乘积的整数即为 b 1
不难推知,将十进制小数每次除去上次所得积中的整数再乘以2, 直到满足误差要求进行“四舍五入”为止,就可完成由十进制小数 转换成二进制小数。
例 将十进制小数(0.39)D转换成二进制数,要求精度达到1% 解 由于精度要求达到1%,需要精确到二进制小数7位,
即1/27=1/128。
0.39×2 = 0.78
0.78×2 = 1.56 0.56×2 = 1.12 0.12×2 = 0.24
b-1= 0
b-2= 1 b-3= 1 b-4= 0
0.24×2 = 0.48 0.48×2 = 0.96 0.96×2 = 1.92 0.92×2 = 1.84
b-5= 0 b-6 = 0 b-7 = 1 b-8 = 1
1 1
0 1
0 1
21 22 MSB 23
0
0 1
0 0 1 1 1
0 0 1 1 1 1 1 1 1 1 十进制 数
0 0 0 0
1 1
0 0 1
0 0 0 0 0 0
0 0 0
1 1 1
1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
4、 二进制数据的传输 (1)二进制数据的串行传输 在时钟脉冲CP控制下,数据由最高位MSB到最低位LSB 逐位送。
例1.2.2 将十进制数(37)D转换为二进制数。 解:根据上述原理,可将(37)D按如下的步骤转换为二进制数
2 37 2 18 2 9 …………… 余 1 … 余 …………… 0 … 余 …………… 1 … 余 …………… 0 … …………… 余 0 … …………… 余 1 … …… b0 …… b1 ……b2 …… b3 …… b4 ……b5
的幂。 例如
(A6.C) 10 16 6 16 12 16
1 0 H
1
一般表达式:
( N) H
n 1
i m
i a 16 i
各位的权都是16的幂。
2、二--十六进制之间的转换 二进制转换成十六进制: 因为16进制的基数16=24 ,所以,可将四位二进制数表示 一位16进制数,即 0000~1111 表示 0-F。 例 (111100010101110)B == (78AE)H 十六进制转换成二进制: 将每位16进制数展开成四位二进制数,排列顺序不变即可。 例 (BEEF)H =(1011 1110 1110 1111)B
Rb vI
Rc vo
可变电阻区
vI
V GS4 V GS3 V GS2 V GS1
饱和区
O
vCE VCC
截止区
v DS / V
(2)二进制数字装置所用元件少,电路简单、可靠 。 (3)基本运算规则简单, 运算操作方便。
3、二进制数波形表示
0 LSB 2 0
1
0 1 1
0
1 0
1 0 1 0 1 0 0 0 0 1 1 1
b. 小数的转换: 对于二进制的小数部分可写成
( N ) D b1 2 1 b2 2 2 b(n1) 2 (n1) bn 2 n
将上式两边分别乘以2,得
2 ( N ) D b1 2 0 b2 2 1 b(n1) 2 (n2) b n 2 (n1)
计算机 MSB 0 0 1 1 0 1 1 0 LSB 并行数据传输
打印机
CP
1 0
1
23Βιβλιοθήκη 4567
8
20 21 2
2 3
0 1 1 0 1 1 0 0
(LSB)
并行数据
2
24 25 26 27
(MSB)
1.2.3 二-十进制之间的转换(自学)
整数部分 1)、十进制数转换成二进制数: 小数部分
a. 整数的转换: “辗转相除”法:将十进制数连续不断地除以2 , 直至商 为零,所得余数由低位到高位排列,即为所求二进制数
二进制数的一般表达式为:
+ 0 × 20
系数
i K 2 i
位权
( N )B
各位的权都是2的幂。
i
2、 二进制的优点 (1)易于电路表达---0、1两个值,可以用管子的导 通或截止, 灯泡的亮或灭、继电器触点的闭合或断开来表示。
VDD Rd
iD/mA
VCC
vO
iC VCC Rc
计算时要多算1位,然后考虑“4舍5入”。 b-8 = 1产生进位。 所以
0.39 D 0.0110010 B
1.2.4 十六进制和八进制
1.十六进制 十六进制数中只有0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , A、B、C、D、E、
F十六个数码,进位规律是“逢十六进一”。各位的权均为16
系数 一般表达式: 各位的权都是10的幂。
( N )D
i i K 10 i
位权
任意进制数的一般表达式为:
(N) r
i
i K r i
1.2.2 二进制
1、二进制数的表示方法 二进制数只有0、1两个数码,进位规律是:“逢二进一” .
例如:1+1= 10 = 1×21
LSB
MSB
计算机 计算机 B
A
0 1 1 0 1 1 0 0
B
串行数据传输
CP 1 0 0 1 2 3 4 5 6 7
串行数据
1 MSB 0 0
LSB 0 1 1 0 1 1 0
(2)二进制数据的并行传输
将一组二进制数据所有位同时传送。 传送速率快,但数据线较多,而且发送和接收设备较复杂。
1.2
数制
1.2.1十进制 1.2.2 二进制 1.2.3 二-十进制之间的转换 1.2.4十六进制和八进制
1.2 数制
数制:多位数码中的每一位数的构成及低位向高位进位的规则
1.2.1十进制
十进制采用0, 1, 2, 3, 4, 5, 6, 7, 8, 9十个数码,其进位的规则是
“逢十进一”。
4587.29=4103+5102+8101+7100+2101+9102
2 4 2 2 2 1 0
由上得 (37)D=(100101)B
当十进制数较大时,有什么方法使转换过程简化?
例1.2.3 将(133)D转换为二进制数 解:由于27为128,而133-128=5=22+20, 所以对应二进制数b7=1,b2=1,b0=1,其余各 系数均为0,所以得 (133)D=(10000101)B
由此可见,将十进制小数乘以2,所得乘积的整数即为 b 1
不难推知,将十进制小数每次除去上次所得积中的整数再乘以2, 直到满足误差要求进行“四舍五入”为止,就可完成由十进制小数 转换成二进制小数。
例 将十进制小数(0.39)D转换成二进制数,要求精度达到1% 解 由于精度要求达到1%,需要精确到二进制小数7位,
即1/27=1/128。
0.39×2 = 0.78
0.78×2 = 1.56 0.56×2 = 1.12 0.12×2 = 0.24
b-1= 0
b-2= 1 b-3= 1 b-4= 0
0.24×2 = 0.48 0.48×2 = 0.96 0.96×2 = 1.92 0.92×2 = 1.84
b-5= 0 b-6 = 0 b-7 = 1 b-8 = 1
1 1
0 1
0 1
21 22 MSB 23
0
0 1
0 0 1 1 1
0 0 1 1 1 1 1 1 1 1 十进制 数
0 0 0 0
1 1
0 0 1
0 0 0 0 0 0
0 0 0
1 1 1
1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
4、 二进制数据的传输 (1)二进制数据的串行传输 在时钟脉冲CP控制下,数据由最高位MSB到最低位LSB 逐位送。
例1.2.2 将十进制数(37)D转换为二进制数。 解:根据上述原理,可将(37)D按如下的步骤转换为二进制数
2 37 2 18 2 9 …………… 余 1 … 余 …………… 0 … 余 …………… 1 … 余 …………… 0 … …………… 余 0 … …………… 余 1 … …… b0 …… b1 ……b2 …… b3 …… b4 ……b5
的幂。 例如
(A6.C) 10 16 6 16 12 16
1 0 H
1
一般表达式:
( N) H
n 1
i m
i a 16 i
各位的权都是16的幂。
2、二--十六进制之间的转换 二进制转换成十六进制: 因为16进制的基数16=24 ,所以,可将四位二进制数表示 一位16进制数,即 0000~1111 表示 0-F。 例 (111100010101110)B == (78AE)H 十六进制转换成二进制: 将每位16进制数展开成四位二进制数,排列顺序不变即可。 例 (BEEF)H =(1011 1110 1110 1111)B
Rb vI
Rc vo
可变电阻区
vI
V GS4 V GS3 V GS2 V GS1
饱和区
O
vCE VCC
截止区
v DS / V
(2)二进制数字装置所用元件少,电路简单、可靠 。 (3)基本运算规则简单, 运算操作方便。
3、二进制数波形表示
0 LSB 2 0
1
0 1 1
0
1 0
1 0 1 0 1 0 0 0 0 1 1 1
b. 小数的转换: 对于二进制的小数部分可写成
( N ) D b1 2 1 b2 2 2 b(n1) 2 (n1) bn 2 n
将上式两边分别乘以2,得
2 ( N ) D b1 2 0 b2 2 1 b(n1) 2 (n2) b n 2 (n1)
计算机 MSB 0 0 1 1 0 1 1 0 LSB 并行数据传输
打印机
CP
1 0
1
23Βιβλιοθήκη 4567
8
20 21 2
2 3
0 1 1 0 1 1 0 0
(LSB)
并行数据
2
24 25 26 27
(MSB)
1.2.3 二-十进制之间的转换(自学)
整数部分 1)、十进制数转换成二进制数: 小数部分
a. 整数的转换: “辗转相除”法:将十进制数连续不断地除以2 , 直至商 为零,所得余数由低位到高位排列,即为所求二进制数
二进制数的一般表达式为:
+ 0 × 20
系数
i K 2 i
位权
( N )B
各位的权都是2的幂。
i
2、 二进制的优点 (1)易于电路表达---0、1两个值,可以用管子的导 通或截止, 灯泡的亮或灭、继电器触点的闭合或断开来表示。
VDD Rd
iD/mA
VCC
vO
iC VCC Rc
计算时要多算1位,然后考虑“4舍5入”。 b-8 = 1产生进位。 所以
0.39 D 0.0110010 B
1.2.4 十六进制和八进制
1.十六进制 十六进制数中只有0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , A、B、C、D、E、
F十六个数码,进位规律是“逢十六进一”。各位的权均为16
系数 一般表达式: 各位的权都是10的幂。
( N )D
i i K 10 i
位权
任意进制数的一般表达式为:
(N) r
i
i K r i
1.2.2 二进制
1、二进制数的表示方法 二进制数只有0、1两个数码,进位规律是:“逢二进一” .
例如:1+1= 10 = 1×21