多边形的定义及内角和、外角和知识分享
多边形的内角和与外角和知识点-例题-习题
第二十四讲 多边形的内角和与外角和【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形. 知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n≥3). 要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°;知识点三、多边形的外角和 多边形的外角和为360°. 要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形 凹多边形【典型例题】类型一、多边形的概念例1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
多边形的内角和与外角和
多边形的内角和与外角和多边形是数学中一个重要的概念,它是由若干条线段组成的封闭曲线。
每个多边形都有内角和与外角和,本文将详细介绍这两个概念以及它们之间的关系。
1. 多边形的内角和内角是指多边形内部相邻线段所形成的角度。
对于任意一个n边形(n≥3),其内角和可以用公式 (n-2) × 180°计算。
这是因为一个n边形可以被分割成n-2个三角形,而每个三角形内角和为180°。
所以,n 边形的内角和为 (n-2) × 180°。
2. 多边形的外角和外角是指多边形外部与相邻线段所形成的角度。
对于任意一个n边形,其外角和等于360°。
这是因为多边形的每个外角都与其相邻内角互补,而一个完整的圆周角为360°。
3. 内角和与外角和的关系多边形的内角和与外角和有一个重要的关系,即它们的和等于n个直角。
这可以通过数学归纳法来证明。
对于一个三角形来说,它的内角和为180°,外角和为360°,两者的和正好等于一个直角。
假设对于任意一个n边形,其内角和与外角和的关系成立,即内角和加上外角和等于n个直角。
现在考虑一个n+1边形,我们可以通过在原来的n边形的任意一个顶点处添加一个顶点来构造它。
根据我们的假设,原来的n边形的内角和与外角和的和等于n个直角。
对于新添加的顶点,它对应的内角为180°,外角为360°。
所以,我们可以得到新的n+1边形的内角和为原来n边形的内角和加上180°,外角和为原来n边形的外角和加上360°。
将它们相加,得到新的内角和加上外角和为原来n个直角加上180°加上360°,即n+1个直角。
综上所述,对于任意一个多边形,它的内角和与外角和的和等于顶点数目乘以直角的个数。
因此,内角和与外角和是有确定关系的,可以相互转换。
总结起来,多边形的内角和等于顶点数目减去2乘以180°,外角和等于360°,而内角和与外角和的和等于顶点数目乘以直角的个数。
《多边形的内角和与外角和》知识清单
《多边形的内角和与外角和》知识清单一、多边形的定义在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
如果一个多边形有 n 条边,那么就称这个多边形为 n 边形。
比如,三角形就是有 3 条边的多边形,四边形就是有 4 条边的多边形,以此类推。
二、多边形的内角和1、三角形的内角和三角形的内角和是 180°。
这是一个基本且重要的定理,可以通过多种方法来证明,比如将三角形的三个角剪下来拼在一起,可以形成一个平角,也就是 180°。
2、四边形的内角和四边形可以分成两个三角形,因为三角形内角和是 180°,所以四边形的内角和是 360°。
3、 n 边形的内角和从 n 边形的一个顶点出发,可以引出(n 3)条对角线,将 n 边形分成(n 2)个三角形。
所以 n 边形的内角和为(n 2)×180°。
例如:五边形的内角和=(5 2)×180°= 540°六边形的内角和=(6 2)×180°= 720°三、多边形的外角和1、外角的定义多边形的一边与另一边的延长线所组成的角叫做多边形的外角。
2、外角和的定义在每个顶点处取一个外角,这些外角的和叫做多边形的外角和。
3、多边形外角和的性质任意多边形的外角和都为 360°。
不管是三角形、四边形还是 n 边形,它们的外角和始终是 360°。
例如,三角形的三个外角和为 360°,四边形的四个外角和也是 360°。
四、内角和与外角和的应用1、已知内角和求边数如果已知一个多边形的内角和,可以通过内角和公式(n 2)×180°来求出边数 n。
例如,一个多边形的内角和为1080°,则有(n 2)×180°=1080°,解得 n = 8,所以这个多边形是八边形。
2、已知边数求内角和如果已知多边形的边数 n,可以直接使用公式(n 2)×180°求出内角和。
多边形的内角和外角计算
多边形的内角和外角计算多边形是几何学中的重要概念,它由若干条边和相应的顶点组成。
在研究多边形的性质时,我们经常会遇到内角和外角的计算问题。
本文将介绍多边形内角和外角的定义和计算方法。
一、多边形的内角和外角定义多边形的内角是指由多边形的两条边所夹角度,而外角是指多边形内一条边的延长线和下一条边所夹角度。
二、多边形内角和外角的计算方法1. 内角的计算方法:对于n边形,内角和的计算公式为:(n-2)×180°。
例如,三角形的内角和为(3-2)×180°=180°,四边形的内角和为(4-2)×180°=360°。
2. 外角的计算方法:外角和的计算公式为360°。
每个外角可通过360°除以n来得到。
例如,对于正五边形,每个外角为360°/5=72°。
三、多边形内角和外角的举例说明1. 三角形的内角和:三角形是最简单的多边形,由三条边和三个顶点组成。
根据前述计算方法,三角形的内角和为180°。
2. 四边形的内角和:四边形是常见的多边形,例如矩形、正方形和平行四边形等。
根据前述计算方法,四边形的内角和为360°。
3. 五边形的内角和和外角:五边形是一种五边形多边形,常见的有正五边形和不规则五边形。
根据前述计算方法,五边形的内角和为540°,每个外角为72°。
四、多边形内角和外角计算的意义1. 内角和:多边形的内角和是多边形几何性质的重要指标,它能反映出多边形的形状和结构。
通过计算多边形的内角和,我们可以判断多边形是凸多边形还是凹多边形,并进一步研究多边形的各种性质和规律。
2. 外角和:多边形的外角和也是多边形几何性质的重要指标,它与内角和之间存在着一定的数学关系。
通过计算多边形的外角和,我们可以推导出内角和与外角和的关系公式,并应用于解决复杂的多边形计算问题。
(完整版)多边形及其内角和知识点
知识要点梳理边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n (n-3)3、4、6/。
拼成360度的角3、4。
知识点一:多边形及有关概念 1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意: ①一些线段(多边形的边数是大于等于3的正整数); ②首尾顺次相连,二者缺一不可; ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间 多边形. 2、多边形的分类: (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸 多边形. 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。
要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。
多边形的内角和与外角和
三、多边形的内角和与外角和学前热身自学提示1.了解多边形及多边形的内角、外角等概念,2.掌握多边形的内角和与外角和定理,并会利用它们进行有关计算.释疑解惑1.多边形的定义一般地,由n条不在同一条直线上的线段首尾顺次连结组成的平面图形称为n边形,又称为多边形.2.正多边形的定义如果多边形的各边都相等,各内角也都相等,则称为正多边形.3.多边形的内角和定理n边形的内角和等于(n-2)·180°.4.多边形的外角和定理注意任何多边形的外角和都为360°.5.多边形的对角线条数公式n边形,从一个顶点出发可引(n-3)条对角线,共有3)n(n21-条对角线.6.研究多边形的问题经常转化为研究三角形的问题资料查阅将多边形“转化”成三角形来研究“转化”的方法,是一种化繁为简﹑化难为易﹑化未知为已知的重要数学方法.比如我们在熟知了三角形的许多性质后,就可将四边形﹑五边形﹑…﹑n边形的问题,转化为三角形问题来研究.如图,连接AC,四边形ABCD的内角和就转化成△ADC﹑△ABC这两个三角形内角之总和;或如图,在四边形的一边上任取一点P,将四边形的四个内角和化成△APD ﹑△DPC﹑△CPB的内角总和减去平角∠APB(或△APB的内角和):或如图,在四边形外任取一点P,将四边形的四个内角和化成△APD﹑△DPC﹑△CPB的内角之和与△APB 的内角和的差:或如图,在四边形内任取一点P,则四边形的内角和等于四个三角形的内角总和减去周角∠P. 不论用哪一种方法,都容易求出四边形的内角和为360°.尽管这些方法各有不同,但都具有一个共同点:将四边形问题转化成三角形问题来研究.其中以第一种转化方法最简易.类似地不难求出五边形﹑六边形﹑七边形﹑…n边形的内角和分别为540°﹑720°﹑900°﹑(n-2)180°.又比如,三角形没有对角线,四边形有两条对角线,五边形有五条对角线,那么六边形﹑七边形﹑…n边形有多少条对角线呢?我们可以知道,当n>3时,从多边形的一个顶点出发有(n-3)条对角线,这样n个顶点就有n(n-3)条对角线,但其中有重复的对角线,如AC与CA实际上是一条,所以n边形总共有n(n-3)/2条对角线。
多边形讲义
知识点一:多边形及其有关概念(1)多边形定义: 在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形. 多边形按组成它的线段的条数分为三角形、四边形、五边形、 六边形、……由n 条线段组成的多边形就叫做n 边形•如图,是一个五边形,可表示为五边形ABCDE三角形是最简单,边数最少的多边形 ⑵多边形的边:组成多边形的线段叫做多边形的边. (3) 多边形的内角、外角:是五边形的外角.(4) 多边形的对角线:①「定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线•如图, AC AD就是五边形 ABCD 囲的两条对角线.② 拓展理解:一个n 边形从一个顶点可以引(n — 3)条对角线,把n 边形分成(n — 2)个三角形•一个n多边形多边形相邻两边组成的角叫做多边形的内角, 边的延长线组成的角叫做多边形的外角•如图,/也称为多边形的角;多边形的边与它的邻 B,Z C,Z D,…是五边形的内角,/ 1边形一共有n(n~3)条对角线.(5) 凸多边形和凹多边形:①在图(1)中,画出四边形ABCD勺任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;②在图(2)中,画出DC或BC所在直线,整个四边形不都在这条直线的同一侧,我们称这个四边形为凹四边形,像这样的多边形称为凹多边形.【例1】填空:(1) 十边形有_______ 个顶点,_________ 个内角,__________ 个外角,从一个顶点出发可画_______ 条对角线,它共有__________ 条对角线.(2) 从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________ 边形.变式1:过n边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是()•A. 8 B • 9 C • 10 D • 11变式3: 一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和.知识点二:正多边形(1) 定义:各个角都相等,各条边都相等的多边形叫做正多边形.如等边三角形、正方形等.(2) 特点:不仅边都相等,角也都相等,两个条件必须同时具备才是正多边形.如长方形四个角都是直角,都相等,但边不等,所以不是正多边形.注:正多边形外角的特征因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.【例2】下列说法正确的个数有().(1) 由四条线段首尾顺次相接组成的图形是四边形;(2) 各边都相等的多边形是正多边形;(3) 各角都相等的多边形一定是正多边形;(4) 正多边形的各个外角都相等.知识点三:多边形的内角和(1) 公式:n 边形内角和等于(n — 2) x 180°.形的内角和等于 180°x 3= 540°形的内角和等于 180°x 4= 720°形,n 边形的内角和等于 180°x ( n — 2).所以多边形内角和等于(n — 2) x 180°. ⑶应用:①运用多边形内角和公式可以求出任何边数的多边形的内角和; 边数相同的多边形内角和也相等, 因此已知多边形内角和也能求出边数.【例3】选择:150°,则此多边形的一个顶点引出的对角线的条数是A. 7 B . 8 C . 9 D . 10变式1 :若一个四边形的四个内角度数的比为 3 : 4 : 5 : 6,则这个四边形的四个内角的度数分别为 ___________ .变式2: 一个多边形的内角和等于1 440 °,则它的边数为 ___________ .变式3: 一个多边形的内角和不可能是 ().A. 1 800 ° B . 540° C. 720° D . 810①从五边形的一个顶点出发,2条对角线,它们将五边形分成 3个三角形,五边②从六边形的一个顶点出发, 可以画 3条对角线,它们将六边形分成 4个三角形,六边③从n 边形的一个顶点出发,可以画 (n — 3)条对角线,它们将n 边形分成(n — 2)个三角②由多边形内角和公式可知,(1) 十边形的内角和为( A. 1 260 ° B . 1 440 ° C. 1 620 ° D . 1 8 00°一个多边形的内角和为 720°,那么这个多边形的对角线共有( ).A. 6条B . 7条C. 8条(3)多边形的每一个内角都是 (2)探究过程:如图,可以画知识点四:多边形的外角和(1) 公式:多边形的外角和等于360°(2) 探究过程:如图,以六边形为例.①外角和:在每个顶点处各取一个外角,即/ 1,/ 2,/ 3,/ 4,/ 5,/ 6,它们的和为外角和.②因为同顶点处的一个内角和外角互为邻补角,所以六边形内、外角和等于180°X6 =1 080。
什么是多边形的内角和外角和
什么是多边形的内角和外角和?
多边形是指由多个线段连接而成的封闭图形。
每个多边形都由一系列顶点和边组成。
在多边形中,内角和外角是两个重要的概念。
下面将分别介绍多边形的内角和外角的定义、性质和计算方法。
1. 多边形的内角:
多边形的内角是指多边形内部两条相邻边所夹的角度。
在一个n边形中,内角的总和等于(n-2) * 180°。
具体地,每个内角的度数可以通过以下公式计算:
内角度数= (n-2) * 180° / n
多边形的内角性质:
-内角和定理:在一个n边形中,内角的和等于(n-2) * 180°。
-内角的平均值:在一个n边形中,每个内角的平均值等于(n-2) * 180° / n。
2. 多边形的外角:
多边形的外角是指多边形内部一条边的延长线与另一条边所夹的角度。
在一个n边形中,外角的总和等于360°。
具体地,每个外角的度数可以通过以下公式计算:
外角度数= 360° / n
多边形的外角性质:
-外角和定理:在一个n边形中,外角的和等于360°。
-外角与内角关系:在一个n边形中,外角和对应的内角之和等于180°。
多边形的内角和外角计算方法:
-已知内角求外角:通过内角和定理,可以根据内角的个数计算外角的度数。
-已知外角求内角:通过外角和定理,可以根据外角的个数计算内角的度数。
通过掌握多边形的内角和外角的定义、性质和计算方法,我们可以在几何中计算多边形的内角和外角,并在实际问题中应用这些概念进行推导和解题。
多边形的内角和外角
实例二:五边形的内角和与外角和
总结词
五边形可以被划分为3个三角形,因此其内 角和为540度,外角和也为360度。
详细描述
五边形可以被划分为3个三角形,每个三角 形的内角和为180度。因此,五边形的内角 和为3 * 180度 = 540度。同时,由于多边 形的外角和总是等于360度,所以五边形的 外角和也为360度。
了解多边形的内角和 外角在几何学中的应 用。
掌握多边形的内角和 外角的计算方法。
02 多边形的内角和外角的基 本概念
内角和外角的定义
内角
多边形内部相邻两边的夹角。
外角
多边形外部与一个内角相邻的两边的夹角。
内角和外角的关系
01
02
03
外角和内角互补
一个内角与相邻的外角的 和为180度。
外角和的性质
06 总结与回顾
本章重点回顾
1 2
多边形的内角和外角的概念
多边形的内角是指多边形内部的角,而外角则是 与内角相对的,位于多边形外部的角。
内角和外角的性质
多边形的内角和等于其边数减2的乘积再乘以 180度,而外角和则等于360度。
3
内角和外角的应用
内角和外角的性质在几何学中有着广泛的应用, 例如在计算多边形的面积、判断多边形的类型等 方面。
总结词
计算多边形内角和的公式是(n-2) *180度,其中n是多边形的边数。
详细描述
这个公式是计算多边形内角和的关键。 通过将多边形的边数代入公式,即可 得到多边形的内角和。例如,一个五 边形的内角和为(5-2)*180度=540 度。
04 多边形的外角和性质
外角的定义和性质
总结词
外角的定义是指多边形各边延长线所形成的角。每个外角的大小与相邻的内角互补,即它们的角度之 和为180度。
多边形的内角和外角性质
多边形的内角和外角性质多边形是由若干条线段依次连接而成的图形,它具有许多有趣的性质。
其中,关于多边形的内角和外角性质是我们探讨的重点。
在本文中,我们将会详细介绍多边形内角和外角的定义、计算方法以及它们之间的关系。
一、多边形的内角性质多边形的内角是指多边形内部两条相邻边所形成的角。
对于n边形(n≥3),它的内角和公式为:(n-2) × 180°。
举例来说,三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,以此类推。
在多边形的内角性质中,有一个重要的定理是内角和定理。
该定理表明,任意n边形的内角和等于(n-2) × 180°。
通过这个定理,我们可以推导出各种多边形的内角和。
二、多边形的外角性质多边形的外角是指多边形内部的一条边与其相邻边的延长线所形成的角。
与内角不同,多边形的外角是通过延长边而得到的。
多边形的外角性质有一个重要的定理是外角和定理。
该定理表明,任意n边形的外角和等于360°,即多边形外角的总和始终等于一个圆周角。
三、内角和与外角和的关系多边形的内角和与外角和之间存在着紧密的联系。
我们可以通过比较发现,对于任意一个n边形,其内角和与外角和之间存在以下关系:内角和 + 外角和 = n × 180°这个关系式可以通过多边形的特殊情况来验证。
例如,对于三角形而言,内角和为180°,外角和也是180°,符合上述的关系式。
四、常见多边形的内角和与外角和计算在实际应用中,常见的多边形包括三角形、四边形、五边形和六边形。
对于这些多边形,它们的内角和和外角和计算如下:1. 三角形:内角和为180°,外角和也为180°。
2. 四边形:内角和为360°,外角和为360°。
3. 五边形:内角和为540°,外角和为360°。
多边形的内角和外角
多边形的内角和外角多边形是几何学中的基本概念之一,它由连接在一起的线段组成,每条线段都被称为多边形的边。
而多边形的内角和外角则是研究多边形性质时非常重要的概念。
一、多边形内角和外角的定义1. 多边形的内角:多边形的内角是指多边形的两条相邻边所夹的角。
例如,三角形有三个内角,四边形有四个内角,五边形有五个内角,以此类推。
2. 多边形的外角:多边形的外角是指多边形的一条边与其相邻的另一条边的延长线之间形成的角。
例如,三角形有三个外角,四边形有四个外角,五边形有五个外角,以此类推。
二、多边形内角和外角的性质1. 多边形内角和:对于任意一个n边形(n≥3),其内角和总是等于180°×(n-2),即n-2个直角。
2. 多边形外角和:对于任意一个n边形(n≥3),其外角和总是等于360°,即4个直角。
三、多边形内角和与外角和的证明1. 多边形内角和的证明:设一个n边形的内角和为S,根据几何学的知识可知,一条直线与多边形的两条边相交时,所形成的内角和为180°。
因此,可以将n边形看作是由n-2个三角形组成,每个三角形的内角和为180°,所以整个n边形的内角和为180°×(n-2)。
2. 多边形外角和的证明:同样设一个n边形的外角和为T,根据内角和的性质可知,一个n边形的内角和为180°×(n-2)。
而每个外角和内角之和为180°,因此n个外角和n个内角的和为180°×n。
又根据内角和的结论可得,180°×(n-2)+180°×n=360°。
从而证明了多边形的外角和为360°。
四、实例分析以三角形、四边形和五边形为例,验证多边形内角和和外角和的性质。
1. 三角形的内角和:根据性质1可知,三角形的内角和为180°×(3-2)=180°。
多边形的内角和外角
多边形的内角和外角多边形是指由一定数量的直线段组成的图形,其中相邻直线段之间没有交点且连续组成闭合曲线。
多边形的内角和外角是我们在几何学中经常遇到的概念。
一、多边形的内角和外角定义多边形的内角是指从多边形的一个顶点出发,所得到的两条相邻边之间的夹角。
多边形的外角是指从多边形的一个顶点出发,所得到的一条边的延长线与另一条边之间的夹角。
二、多边形的内角和外角的性质1. 多边形的内角和为180°:对于一个n边形(n≥3),其内角和为 (n-2)×180°。
也就是说,不管多边形有多少个边,其内角和的度数总是相同的。
例如三角形的内角和为180°,四边形的内角和为360°,五边形的内角和为540°,以此类推。
2. 多边形的外角和为360°:同样地,在一个n边形中,其外角和也是固定的。
外角和的度数等于360°。
这是因为多边形的每个顶点都可以作为外角的顶点,而多边形有n个顶点,因此外角和为n×360°。
3. 多边形的内角和与外角和的关系:多边形的内角和和外角和之间有一个重要的关系:内角和与外角和的和为360°。
也就是说,多边形的内角和加上外角和等于360°。
这一性质对于任何多边形都成立。
三、多边形内角和外角的示例让我们以一个三角形和一个四边形作为例子来说明多边形内角和外角的应用。
1. 三角形三角形是一种有三条边和三个内角的多边形。
它的内部角度和为180°,而外角和为360°。
具体来说,三角形的每个内角都是直角的三分之一,即60°。
相应地,三角形的每个外角也是120°。
2. 四边形四边形是一种有四条边和四个内角的多边形。
它的内部角度和为360°,而外角和为720°。
对于普通的四边形,内角之和为360°,外角之和为720°。
多边形及其内角和知识点
多边形及其内角和一、知识点总结定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
凸多边形分类1:凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。
分类2:多边形非正多边形:1、n边形的内角和等于180°(n-2)。
多边形的定理2、任意凸形多边形的外角和等于360°。
3、n边形的对角线条数等于1/2·n(n-3)只用一种正多边形:3、4、6/。
镶嵌拼成360度的角只用一种非正多边形(全等):3、4。
知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD 的一条对角线。
小学数学知识归纳多边形的内角和与外角和
小学数学知识归纳多边形的内角和与外角和多边形是数学中的基本几何图形之一,它由多个直线段组成,每个直线段称为边。
每个边的两个端点称为顶点。
在小学数学中,我们学习了各种各样的多边形,如三角形、正方形、矩形等,并且还学习到了一些与多边形相关的概念和性质。
其中一个重要的性质就是多边形的内角和与外角和的关系。
一、多边形的内角和对于任意一个多边形,它的内角和是指所有内角的度数之和。
我们先来看一下不同多边形内角和的计算方法。
1. 三角形三角形是最简单的多边形,它由三条边组成。
根据三角形的性质,我们知道三角形的内角和总是等于180度。
无论是等边三角形、等腰三角形还是一般三角形,它们的内角和始终保持不变。
2. 四边形四边形是由四条边组成的多边形。
常见的四边形有矩形、正方形、平行四边形等。
根据四边形的性质,我们知道四边形的内角和总是等于360度。
无论是矩形的四个角、正方形的四个角还是平行四边形的四个角,它们的内角和始终保持不变。
3. 五边形及以上的多边形对于五边形及以上的多边形,如五边形、六边形等,它们的内角和的计算稍微复杂一些。
我们可以利用一个简单的公式来计算内角和,公式如下:内角和 = (n-2) × 180度其中,n代表多边形的边数。
比如,五边形的内角和为(5-2) × 180度 = 540度;六边形的内角和为(6-2) × 180度 = 720度。
通过以上计算,我们可以得出结论:对于任意一个多边形,它的内角和都可以通过相应的公式进行计算。
二、多边形的外角和除了内角和之外,我们还可以研究多边形的外角和。
多边形的外角是指该多边形的内角的补角。
我们先来看一下不同多边形外角和的计算方法。
1. 三角形三角形的外角和总是等于360度,与四边形的内角和相等。
这是因为对于任意一个三角形,其三个外角的补角之和等于360度。
2. 四边形四边形的外角和总是等于360度,与三角形的内角和相等。
这是因为对于任意一个四边形,其四个外角的补角之和等于360度。
多边形的概念及特征
多边形的概念及特征一、多边形的定义多边形是由多条线段组成封闭平面图形,其中每条线段称为边,相邻两边之间的夹角称为内角,多边形的每个内角都大于0度而小于180度。
二、多边形的边和角1.边:多边形有若干条边,边数称为多边形的边数,用n表示,n≥3。
2.角:多边形有n个内角,每个内角都大于0度而小于180度,多边形的外角和为360度。
三、多边形的分类1.根据边数不同,多边形可分为三角形、四边形、五边形、六边形等。
2.根据边是否相等,多边形可分为不等边多边形和等边多边形。
3.根据角是否相等,多边形可分为不等角多边形和等角多边形。
四、多边形的面积1.面积公式:多边形的面积=(边长1×边长2×……×边长n)/(n×(n-2)×π)。
2.特殊多边形面积公式:三角形面积=底×高/2;平行四边形面积=底×高;矩形面积=长×宽;正方形面积=边长×边长。
五、多边形的对角线1.对角线:多边形的一条线段,连接两个非相邻顶点。
2.对角线数量:n边形的对角线数量为(n(n-3))/2。
3.对角线长度:对于任意多边形,对角线长度小于等于边长,且对角线将多边形分成两个面积相等的三角形。
六、多边形的性质1.多边形内角和定理:n边形的内角和为(n-2)×180度。
2.多边形外角和定理:n边形的外角和为360度。
3.多边形对角线定理:n边形的对角线数量为(n(n-3))/2,且对角线将多边形分成n-2个三角形。
七、多边形与圆的关系1.圆内接多边形:多边形的所有顶点都在圆上。
2.圆外切多边形:多边形的所有边都与圆相切。
3.圆的内接与外切多边形,其边数、内角和等性质均有所不同。
八、多边形的应用1.平面几何中的多边形问题,如计算面积、周长、对角线长度等。
2.实际生活中的多边形应用,如设计图形、计算土地面积等。
以上是对多边形的概念及特征的详细归纳,希望对您的学习有所帮助。
初中数学 什么是多边形的内角和外角和
初中数学什么是多边形的内角和外角和多边形是指由多条边和多个顶点组成的平面图形。
在本文中,我们将详细讨论多边形的内角和外角的概念以及它们之间的关系。
一、多边形的内角和外角:1. 内角:多边形的内角是指多边形内部两条边所夹角度的度数。
对于一个n 边形(n≥3),它的内角的总和可以通过公式(n - 2) × 180°来计算。
例如,三角形是一个三边形,它的内角的总和为(3 - 2) × 180° = 180°。
四边形是一个四边形,它的内角的总和为(4 - 2) × 180° = 360°。
2. 外角:多边形的外角是指多边形内部的一条边与与之相邻的一条边所夹角度的度数。
对于一个n 边形(n≥3),它的外角的总和为360°。
例如,三角形是一个三边形,它的外角的总和为360°。
四边形是一个四边形,它的外角的总和为360°。
二、多边形内角和外角的关系:多边形的内角和外角之间存在着一定的关系,即内角和加上外角等于180°。
这个关系可以通过以下推理来证明:我们以n 边形为例,假设n 边形的一条边与另一条边所夹角度为a°,则该边的外角为180° - a°。
由于多边形有n 条边,那么多边形的外角的总和为n × (180°- a°)。
根据外角的定义,多边形的外角的总和为360°。
因此,我们可以得到以下等式:n × (180° - a°) = 360°解方程可得:180° - a° = 360° / na° = 180° - 360° / n这个等式说明了多边形的内角和外角之间的关系。
三、应用举例:我们可以通过一些例题来加深对多边形的内角和外角的理解和应用。
多边形的内角和及外角和
DB OC A ② C O A BD ③ 多边形的内角和及外角和知识体系:1.多边形的定义:在平面内,由若干条不在同一条直线上的线段;首尾顺次相接组成的封闭图形叫做多边形,在多边形中,组成多边形的各条线段叫做多边形的边,每相邻两条边的公共点叫做多边形的顶点,连接不相邻两个顶点的线段叫做多边形的对角线.2.多边形的内角和:n 边形的内角和=(n -2)180°.3.正多边形:在平面内,内角都相等,边也相等的多边形叫做正多边形.4.多边形的外角:多边形内角的一边与另一边的反向延长线所组成的角,叫做这个多边形的外角.在多边形的每个顶点处取这个多边形的一个外角,它们 的和叫做多边形的外角和,多边形的外角和都等于360°.5.过n 边形的一个顶点共有(n -3)条对角线,n 边形共有(3)2n n 条对角线. 6.过n 边形的一个顶点将n 边形分成(n -2)个三角形.题型体系:例1.正n 边形的内角和等于1080°,那么这个正n 边形的边数n=______解:8 点拨:主要考查n 边形的内角和公式.例2.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?(1)为了更直观的发现问题,我们不 妨先在特殊的四边形――平行四边形中,研究这个问题:已知:在平行四边形ABCD 中,O 是对角线BD 上任意一点(如图①);求证:S △OBC ·S △OAD =S △OAE ·S △OCD .(2)有了(1)中的探索过程作参照,你一定能类比出在一般四边形(如图②)中,解决问题的办法了吧!填写结论并写出证明过程。
已知:在四边形ABCD 中,O 是对角线BD 上任意一点(如图②)求证:_________________。
人教版八年级上册_多边形及其内角和(解析版)(仅供参考)
)除以边数(n)以外,还可以通过
利用外角和( )除以边数(n),得到一个顶点处外角的度数,再拿 180 减去它即可.
易错点:每个多边形在其一个顶点处对应的外角也都只有一个,它们的和等于 .
题模一:对角线条数
例 1.1.1 若一个正 n 边形的每个内角为 144°,则这个正 n 边形的所有对角线的条数是( )
本题中,设这个多边形是 n 边形. 代入公式,得 n 3 10 , ∴ n 13 .
例 1.1.3
【答案】7 【解析】从一个 9 边形的某个顶点出发,分别连接这个点与其他顶点可以把这个 9 边形分割成三角形的个 数是 7 个
例 1.1.4
【答案】(1)2;5;9,(2)14; n(n 3) 2
D.7 或 8 或 9
拓展 4 如图,小明从点 A 出发,向前走 2 米,左拐 20 ,再向前走 2 米,再左拐 20 ,如此下去,小明能
否回到出发点 A ?如果能,第一次回到出发点共走了多少路程?
A2
2 20
2 20 2
20
拓展 5 如图,∠1=m°,∠2+∠4+∠6+∠8=n°,则∠3+∠5+∠7 的大小是__.
例 1.2.1
【答案】C 【解析】该题考查的是多边形的角度计算.
多边形内角和公式为 n 2 180 ,外角度数和为定值 360 , 本题中, n 2 180 1980 ,解得 n 13
而多边形从某一个顶点出发截去一个角,边数有两种可能,一种是边数不变,一种是边数减少 1 条,所以 原来的多边形边数可能是 13 或 14,故答案是 C.
A.2 个
B.3 个
C.4 个
D.5 个
拓展 2 一个多边形,把一个顶点与其它各顶点连接起来,把这个多边形分成了 12 个三角形,则这个多边 形的边数__________
(完整版)多边形的定义及内角和、外角和
多边形相关定义:多边形:在平面内,有一些线段首尾顺序依次相接组成的封闭图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
凸多边形:画出多边形的任何一条边所在直线,如果整个多边形都是在这条直线的同一侧,那么这个多边形就是凸多边形。
正多边形:各个角都相等,各条边都相等的多边形叫做正多边形。
一个n变形从一个顶点出发有(n-3)条对角线,所有对角线的数量是n(n-3)/2条。
多边形的内角和、外角和设多边形有n条边,N边形内角和公式:(N-2)×180°(注n边形可分成(n-2)个三角形,(n-2)个三角形没有内角是重合的)正n边形的每个内角等于n-2/n×180°,每个外角等于360°/n任何多边形外角和为360度,与多边形的边数无关。
设多边形的边数为N则其内角和=(N-2)*180°因为N个顶点的N个外角和N个内角的和=N*180°(每个顶点的一个外角和相邻的内角互补)所以N边形的外角和=N*180°-(N-2)*180°=N*180°-N*180°+360°=360°即N边形的外角和等于360°设多边形的边数为N 则其外角和=360°因为N个顶点的N个外角和N个内角的和=N*180°(每个顶点的一个外角和相邻的内角互补)所以N边形的内角和=N*180°-360°=N*180°-2*180°=(N-2)*180°即N边形的内角和等于(N-2)*180°。
多边形的内角和外角和
多边形的内角和外角和多边形是几何学中的一个基本概念,指的是由多条线段组成的闭合图形。
在多边形中,每个顶点都有相应的内角和外角。
本文将探讨多边形内角和外角的性质以及它们的和。
一、内角和的性质1. 正多边形的内角和:对于一个正多边形,内角和等于360°。
例如,一个正三角形的每个内角为60°,三角形的内角和为180°;一个正四边形的每个内角为90°,四边形的内角和为360°。
2. 不规则多边形的内角和:对于不规则多边形,内角和取决于它的边数和形状。
我们可以通过以下公式来计算不规则多边形的内角和:内角和 = (n - 2) × 180°,其中n表示多边形的边数。
3. 三角形的内角和:三角形是最简单的多边形,它的内角和始终为180°。
这可以通过欧拉公式证明:每个三角形可以划分为三个顶点,每个顶点都对应了一个内角,因此三角形的内角和为180°。
二、外角和的性质1. 外角和的性质:在任何一个凸多边形中,外角和等于360°。
凸多边形的外角和是通过将每个顶点的外角相加得出的。
2. 凹多边形的外角和:与凸多边形不同,凹多边形中的外角和可能大于360°。
原因在于凹多边形中某些外角的度数可能大于180°。
三、内角和与外角和的关系内角和和外角和存在一个重要的关系:内角和加上外角和等于360°。
这是因为内角和和外角和分别计算了多边形内部和外部的角度总和,它们加起来完全覆盖了一个平面。
结论:多边形的内角和是由多边形的边数和形状所决定的,而外角和则是由多边形的凸凹性质决定的。
无论多边形的类型如何,内角和加上外角和始终等于360°,这是一个重要的性质。
在几何学中,了解多边形内角和和外角和的性质对于解决各种与多边形相关的问题非常有帮助。
通过计算内角和和外角和,我们可以更好地理解多边形的结构和性质,从而应用于实际问题的解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形的定义及内角和、外角和
精品资料
多边形相关定义:
多边形:在平面内,有一些线段首尾顺序依次相接组成的封闭图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
凸多边形:画出多边形的任何一条边所在直线,如果整个多边形都是在这条直线的同一侧,那么这个多边形就是凸多边形。
正多边形:各个角都相等,各条边都相等的多边形叫做正多边形。
特别提示:
一个n变形从一个顶点出发有(n-3)条对角线,所有对角线的数量是n(n-3)/2条。
多边形的内角和、外角和
设多边形有n条边,
N边形内角和公式:(N-2)×180°(注n边形可分成(n-2)个三角形,(n-2)个三角形没有内角是重合的)
正n边形的每个内角等于n-2/n×180°,每个外角等于360°/n
任何多边形外角和为360度,与多边形的边数无关。
设多边形的边数为N
则其内角和=(N-2)*180°
因为N个顶点的N个外角和N个内角的和=N*180°(每个顶点的一个外角和相邻的内角互补)所以N边形的外角和=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N边形的外角和等于360°
设多边形的边数为N 则其外角和=360°
因为N个顶点的N个外角和N个内角的和=N*180°(每个顶点的一个外角和相邻的内角互补)所以N边形的内角和=N*180°-360°=N*180°-2*180°=(N-2)*180°
即N边形的内角和等于(N-2)*180°
仅供学习与交流,如有侵权请联系网站删除谢谢2。