多边形的内角和与外角和
多边形的内角和外角和

多边形的内角和外角和多边形是几何学中经常研究的一个重要概念。
在学习多边形的性质时,我们常常会接触到内角和外角的概念。
一、内角的概念首先,让我们来了解一下什么是多边形的内角。
内角指的是多边形中两条边所夹的角。
例如,对于三角形ABC来说,我们可以定义三个内角:∠A、∠B和∠C,它们分别是边BC与边CA、边AB所夹的角。
在多边形中,我们还可以根据多边形的边数n,利用内角和的公式来计算多边形的内角和。
对于n边形而言,其内角和的计算公式为:(n-2) × 180°。
这个公式得出的结果告诉我们,不管多边形的边数是多少,其内角和的总和永远是一个固定值。
二、外角的概念接下来,我们来了解一下多边形的外角。
外角指的是多边形中一个内角与其相邻内角的补角之间的角。
例如,对于三角形ABC 来说,我们可以定义三个外角:∠D、∠E和∠F,它们分别是内角∠A、∠B和∠C的补角。
与内角和类似,多边形的外角和也存在一个固定的计算公式。
对于n边形而言,其外角和的计算公式为:360°。
这意味着,多边形的外角和永远等于360°。
三、内角和外角的关系在多边形中,内角和与外角和之间存在着一定的关系。
具体来说,内角和与外角和之间存在着一个重要的性质,即内角和与外角和的差等于360°。
我们可以利用这个性质来解决一些与多边形的内外角有关的问题。
例如,当我们已知一个多边形的内角和时,可以通过360°减去内角和的值,得到多边形的外角和。
四、实例解析为了更好地理解内角和外角的概念和关系,让我们通过一个实例来进行解析。
假设我们有一个五边形ABCDE,每个内角的度数分别为120°、130°、140°、150°和160°。
我们可以通过计算这些内角的和来得到五边形的内角和,即120°+130°+140°+150°+160°=700°。
多边形的内角和与外角和

多边形的内角和与外角和多边形是几何学中的一个基本概念,它是由多条线段连接而成的封闭图形。
在这篇文章中,我们将探讨多边形的内角和与外角和的关系。
【引言】多边形的内角和与外角和是几何学中的一个基本定理,它是研究多边形性质的重要基础。
了解内角和与外角和的关系,可以帮助我们更好地理解多边形的形状和特性。
【多边形的内角和】多边形的内角和是指多边形内部各个角度的和。
对于 n 边形来说,它的内角和可以用以下公式表示:内角和 = (n-2) * 180°。
这个公式的推导可以通过将多边形分解成 n-2 个三角形,再计算每个三角形的角度和得出。
【多边形的外角和】多边形的外角是指多边形内部的一条边与其邻近两条边所成的角。
对于任意多边形来说,它的外角和总是等于360°。
这个定理可以通过多边形的逆时针顺序求和得出。
将每一个外角相加,总和一定等于完整的一圈360°。
【内角和与外角和的关系】多边形的内角和与外角和存在着一定的关系。
考虑一个 n 边形,它共有 n 个内角和 n 个外角。
每个内角和对应一个外角,它们的差值总是等于180°,即:内角和 - 外角和 = 180°。
举例来说,对于三角形来说,它的内角和是180°,外角和是360°,二者之差为180°,符合上述的关系。
同样地,四边形的内角和是360°,外角和也是360°,差值为0°。
这一关系同样适用于五边形、六边形以及更多边形。
【应用举例】1. 设想一个六边形,已知其中一个内角为120°,我们可以计算出该六边形的内角和为 (6-2) * 180° = 720°。
同时,根据内角和与外角和的关系,我们可以推断出该六边形的外角和为 720° - 120° = 600°。
2. 推广到任意 n 边形,我们可以利用内角和与外角和的关系来解决各种几何问题。
多边形的内角和与外角和计算

多边形的内角和与外角和计算多边形是几何学中的重要概念,它由一系列连续的线段组成,每条线段称为边,相邻的两条边之间的交点称为顶点。
多边形可以根据边的数量进行分类,其中最常见的是三角形、四边形和五边形,不同类型的多边形具有不同的特性和性质。
在本文中,我们将探讨多边形的内角和与外角和的计算方法。
首先,我们来了解一下多边形的内角和是指多边形所有内角的总和,而外角和则是指多边形所有外角的总和。
多边形的内角和计算方法如下:假设多边形有n个边,那么内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180度例如,对于三角形来说,它有3个内角,那么内角和 = (3 - 2) × 180度 = 180度。
同样地,四边形有4个内角,内角和 = (4 - 2) × 180度 = 360度。
接下来,我们来探讨多边形的外角和的计算方法。
外角是指多边形的边与其相邻的两条边所夹的角,我们可以通过以下公式计算多边形的外角和:外角和 = 360度这是因为任何一个多边形的外角和总是等于360度。
不论多边形的边数是多少,它的外角和始终保持不变。
这也是多边形的一个重要性质。
以五边形为例,它有5个外角,每个外角都等于360度/5 = 72度。
同样地,六边形的每个外角为360度/6 = 60度。
在实际应用中,计算多边形的内角和和外角和可以帮助我们解决许多几何问题。
例如,当我们知道一个多边形的内角和时,我们可以计算出其中每个内角的大小,进而推导出多边形的性质和特点。
而通过计算多边形的外角和,我们可以验证多边形是否闭合以及各个角之间的关系。
总结起来,多边形的内角和与外角和是多边形几何性质中的重要概念。
通过简单的公式计算,我们可以得到多边形的内角和和外角和的数值。
在解决几何问题时,这些计算结果可以帮助我们推导出多边形的各种性质,进而深入理解和应用几何学知识。
通过本文对多边形的内角和与外角和的计算方法进行了深入探讨,相信读者对于多边形的性质有了更清晰的认识。
初中数学:多边形的内角和与外角和题型总结

1、多边形的内角和等于(n-2)180˚,n是多边形的边数。
2、多边形的外角和等于360˚。
这两个结论的证明也比较简单,在这里简单说明一下。
1、一个多边形,边数为n,将一个顶点与其它顶点相连,可以把这个多边形分割成(n-2)个三角形,每个三角形的内角和是360˚,所以多边形的内角和就是(n-2)180˚。
2、一个多边形,边数为n,每一个内角和它相邻的外角构成一个平角,n条边就构成n 个平角。
外角和就等于n个平角减去多边形的内角和,也就是360˚。
这两个知识在考查时,主要有四种类型,我们来看一下。
1、考查多边形边数和内角和的关系。
这类型题主要是知道边数求出内角和,或者知道内角和求出边数。
第(1)题,知道边数,求内角和。
第(2)题,知道内角和,求边数。
第(3)题,稍微复杂,两个多边形,知道边数之比和内角和之比,列方程求出边数。
第(4)、(5)、(6)题,稍为复杂,知道边数,先求出内角和,再去求多边形中的某个内角。
这些题型都比较简单。
这里还有一道题比较复杂一点,同学们可以尝试做一下。
2、外角和与内角和相结合这类型的关键点是,要知道多边形的内角和是隐藏的已知量,它等于360˚。
这类题型都是根据多边形内角和与外角和的关系,列一个方程,求出边数。
3、多边形,少一个角,其余内角和是一定值。
这种题型,运用到了不等式,是一个难点和重点。
它的运用的知识是,多边形的一个内角,它的取值范围是大于0,小于180。
除去的这个角的度数等于内角和减去其余内角和,据此,可以列一个不等式组,进行求解。
下面有练习,大家可以试一下。
4、正多数形正多边形的内角相等,边相等。
考查类型,1、知道边数,求内角;2、知道内角,求边数;3、知道外角,求边数。
在考试中,经常考察的方式是这样的。
多边形的内角和与外角和

例:一个正多边形的一个内角为150°,它是几 边形?
解法一:依题意可得 (n-2)·180°=n·150
解得n=12 答:它是十二边形。
解法二:依题意可得 它的每一个外角 180°-150°=30°
n=360°÷30°=12
课后作业
1.(1)如图,小陈从点O出发,前进5m后向右转20°,再前进
5m后又向右转20°,…,这样一直走下去,他第一次回到出
0
5.【分类讨论思想】(2018·聊城)如果一个正 方形被截掉一个角后,得到一个多边形,那么
这个多边形的内角和是 180°或360°.或540°
6.(自贡·中考)一个多边形截取一个角后, 形成的另一个多边形的内角和是1620°,则原 来多边形的边数是( D ). A.10 B.11 C.12 D.以上都有可能
边形的边数是___2__4___
2.若一个十边形的每个外角都相等,则它的每个外角的
度数为__3_6_____度,每个内角的度数为__1_4__4___度.
3.若一个多边形的内角和等于它的外角和,
则它的边数是_____4__.
4.多边形的边数增加1,则内角和增加
_1_8__0_度.外角和增加_____度
第六章 平行四边形
6.4 多边形的内角和与外角和
1.能说出多边形的有关概念及多边形内角和定理. 2.能说出正多边形的定义. 3.能熟练运用多边形的内角和定理解决问题. 4.能说出并会熟练运用多边形的外角和定理解决问题.
知识回顾 问题1:你还记得三角形内角和是多少度吗? (三角形内角和 180°)
4
计算规律 1 ×180° 2 ×180° 3 ×180° 4 ×180°
…
… … … … …
多边形的内角和与外角和的关系

多边形的内角和与外角和的关系在我们的日常生活中,很少有形状是一个简单的正方形或长方形的东西。
相反,我们更经常遇到的是有许多条边和角的形状,这些形状被称为多边形。
了解多边形的内角和与外角和的关系非常重要,因为这可以帮助我们更好地理解和处理这些形状。
内角和和外角和的概念首先,我们需要了解一些术语。
一个多边形是一个由三条或更多边组成的形状。
顶点是相邻的两条边的端点。
内角是多边形中的一个角,内角和是多边形内所有角的度数和。
外角是多边形内与内角相邻的角之一和外侧相邻直线的夹角,即外角等于与之相对的内角。
内角和公式多边形的内角和可以通过几种方式计算。
对于一个n边形,内角和的公式为:sum = (n-2) * 180°这个公式的意思是,将n边形划分成n-2个三角形,每个三角形的内角和为180度,所以n边形的内角和就等于(n-2)乘以180度。
对于一个三角形,它只有三个内角,所以它的内角和是固定的,为180度。
外角和公式现在我们来看看如何计算多边形的外角和。
对于一个n边形,外角和的公式为:sum = 360°也就是说,多边形的外角和总是恒定的,为360度。
这是因为每一个内角都有一个相对的外角,而所有外角相加的结果等于一个完整的圆的角度,即360度。
例如,一个四边形的内角和是360度,而外角和也是360度。
任何非直线多边形的外角和也都是360度。
内角和和外角和的关系既然我们已经知道了如何计算多边形的内角和和外角和,那么它们之间的关系是什么呢?事实上,多边形的内角和和外角和之间存在一个重要的关系。
对于任何一个n边形,它的内角和和外角和之间满足以下公式:内角和 + 外角和 = (n * 180°)换句话说,多边形的内角和和外角和的和总是等于n乘以180度。
例如,一个四边形的内角和为360度,其外角和也为360度。
因此,它们的总和为720度,也就是4乘以180度。
理解多边形的内角和与外角和的关系可以帮助我们更好地理解和计算多边形的角度,特别是当涉及到更复杂的多边形时。
11、多边形的内角和与外角和

二变: 二变:一个多边形每一 个外角都相等, 个外角都相等,它的内 角和与外角和的总和等 1620º, 于1620 ,则这个多边形 的每一个外角等于 40º。
看你的表现
1已知六边形 已知六边形 ABCDEF中 中 ∠A=∠B=∠ C=∠D=∠E =∠F=120° =∠F=120°. 求证:AB+BC 求证:AB+BC =EF+ED
例2.一个多边形除一个 2.一个多边形除一个 内角外, 内角外,其余各内角的 和为2030 ,求这个多边 和为2030º, 2030 形的边数。 形的边数。 14
例3.一个多边形每个内 3.一个多边形每个内 角都是150 150° 角都是150°,求这个多 边形的内角和. 边形的内角和.
解:设这个多边形的边 设这个多边形的边 数为n,由题意得 数为 由题意得 (n-2)180°=150°n ° ° n=12 (n-2)180°=180°× °×10=1800° ° °× °
多边形的 内角和与 外角和
背记知识
1、n边形的内角和 为 (n-2)×180º 。 × 2、任意多边形的外角和都 为 360º 。
重点
多边形内角和的计算公式, 多边形内角和的计算公式, 多边形内角和的推导方法 体现了将多边形问题转化 为三角形问题来解决的基 本思想。 本思想。
难点
灵活运用多边形内角和的 计算公式和外角和为360 360º 计算公式和外角和为360 解决有关问题。 解决有关问题。
例4.已知一个多 已知一个多 边形,它的内角和等于 边形 它的内角和等于 外角和的三倍,求这个 外角和的三倍 求这个 多边形的边数. 多边形的边数
解:(n-2)180°=3×360° ° × ° n=8
(二)教材变型题
什么是多边形的内角和外角和

什么是多边形的内角和外角和?
多边形是指由多个线段连接而成的封闭图形。
每个多边形都由一系列顶点和边组成。
在多边形中,内角和外角是两个重要的概念。
下面将分别介绍多边形的内角和外角的定义、性质和计算方法。
1. 多边形的内角:
多边形的内角是指多边形内部两条相邻边所夹的角度。
在一个n边形中,内角的总和等于(n-2) * 180°。
具体地,每个内角的度数可以通过以下公式计算:
内角度数= (n-2) * 180° / n
多边形的内角性质:
-内角和定理:在一个n边形中,内角的和等于(n-2) * 180°。
-内角的平均值:在一个n边形中,每个内角的平均值等于(n-2) * 180° / n。
2. 多边形的外角:
多边形的外角是指多边形内部一条边的延长线与另一条边所夹的角度。
在一个n边形中,外角的总和等于360°。
具体地,每个外角的度数可以通过以下公式计算:
外角度数= 360° / n
多边形的外角性质:
-外角和定理:在一个n边形中,外角的和等于360°。
-外角与内角关系:在一个n边形中,外角和对应的内角之和等于180°。
多边形的内角和外角计算方法:
-已知内角求外角:通过内角和定理,可以根据内角的个数计算外角的度数。
-已知外角求内角:通过外角和定理,可以根据外角的个数计算内角的度数。
通过掌握多边形的内角和外角的定义、性质和计算方法,我们可以在几何中计算多边形的内角和外角,并在实际问题中应用这些概念进行推导和解题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.4多边形的内角和与外角和
1.理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式;(重点) 2.灵活运用多边形的内角和与外角和定理解决有关问题.(难点)
一、情境导入
多媒体演示:清晨,小明沿一个多边形广场周围的小路按逆时针方向跑步.
提出问题:
(1)小明是沿着几边形的广场在跑步?
(2)你知道这个多边形的各部分的名称吗?
(3)你会求这个多边形的内角和吗?
导入:小明每从一条小路转到下一条小路时,身体总要转过一个角,你知道是哪些角吗?
你知道它们的和吗?就让我们带着这些问题同小明一起走进今天的课堂.
二、合作探究
探究点一:多边形的内角和定理
【类型一】利用内角和求边数
一个多边形的内角和为540°,则它是()
A.四边形B.五边形
C.六边形D.七边形
解析:熟记多边形的内角和公式(n-2)·180°.设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.
方法总结:熟记多边形的内角和公式是解题的关键.
【类型二】求多边形的内角和
一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为() A.1620°B.1800°
C.1980°D.以上答案都有可能
解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.
方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多
边形的内角和公式求出原多边形的边数是解题的关键.
【类型三】复杂图形中的角度计算
如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()
A.450°B.540°
C.630°D.720°
解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=540°,故选B.
方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.
【类型四】利用方程和不等式确定多边形的边数
一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?
解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.
解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x <180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.
探究点二:多边形的外角和定理
【类型一】已知各相等外角的度数,求多边形的边数
正多边形的一个外角等于36°,则该多边形是正()
A.八边形B.九边形
C.十边形D.十一边形
解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.
方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.
【类型二】多边形内角和与外角和的综合运用
一个多边形的内角和与外角和的和为540°,则它是()
A.五边形B.四边形
C.三角形D.不能确定
解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.
方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系
列出方程从而解决问题.
三、板书设计
多边形的内角和与外角和
1.性质:多边形的内角和等于(n -2)·180°,多边形的外角和等于360°.
2.多边形的边数与内角和、外角和的关系:
(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.
(2)多边形的外角和等于360°,与边数的多少无关.
3.正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为n
360.
本节课先引导学生用分割的方法得到四边形内角和,再探究多边形的内角和,然后采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决.。