绘制切角长方体的三视图1
庐山真面目31绘制切角长方体的三视图
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
——苏轼《题西林壁》
揭开“庐山“真面目
——3.1绘制切角长方体的三视图 (第二课时)
横看成岭侧成峰,远近高低各不同
多 1.苏轼从哪些方向看?
角
横看、侧看、远看、近看、高看、低看
度
看
待
事
从从
从
物
前左
上
往 往 三视图视角 往
后右
下
看看
看
横看成岭侧成峰,远近高低各不同
2.是岭还是峰,如何成像(投影)?
一、形成投影的要素以及投影法的种类
中心投影
投影分类
平行投影
正投影 斜投影
横看成岭侧成峰,远近高低各不同
2.是岭还是峰,如何成像(投影)?
二、投影面 三 投 影 面 体 系
不识“庐山”真面目,只缘身在此山中。
揭面步骤三: 绘制切角长方体的
三视图,并由组长拍摄 上传至蓝墨云班课的三 视图绘制展示组。
不识“庐山”真面目,只缘身在此山中。
揭开“庐山”真面目 ——切角长方体的三视图的绘制(微课)
一、投影法的分类及三投影面体系 二、三视图的绘制原理和步骤
课堂测试(打开蓝墨云班课的三视图课堂测试)
课堂测试
前方—正立投影面(V面) 下—水平投影面(H面) 侧—侧立投影面(W面)
横看成岭侧成峰,远近高低各不同
投影面(展开图)
多 角 度 看 待 事 物
不识“庐山”真面目,只缘身在此山中。
揭面步骤一:用橡皮泥捏出“庐山”——切角长方体
不识“庐山”真面目,只缘身在此山中。
揭面步骤二: 寻找投影的感
绘制切割类组合体三视图
标注尺寸
标注组合体的整体尺寸和 各个部分的尺寸,以及必 要的定位尺寸和定形尺寸 。
04
实例分析:复杂切割类组合体三 视图绘制
多面体切割
切割方式
多面体切割是指通过平面或曲面 将多面体进行切割,形成新的多
面体形态。
切割后的视图表达
在绘制三视图时,需要准确表达 切割后的形状和大小,包括切割
面的位置、形状和尺寸等。
标注尺寸及技术要求
在三视图中标注组合体的总体 尺寸、定位尺寸和定形尺寸, 确保尺寸的准确性和完整性。
根据实际需要,标注必要的表 面粗糙度、形位公差等技术要 求。
在标注尺寸时,要注意尺寸线 的放置位置,避免与轮廓线重 叠或交叉,保持图形的清晰易 读。
பைடு நூலகம்
03
实例分析:简单切割类组合体三 视图绘制
长方体切割成三棱柱
切割类组合体特点
具有规则的几何形状,表面由平 面、曲面或平面与曲面组合而成 ,各组成部分之间有明显的分界 线。
常见类型与实例
长方体切割实例:角钢、槽 钢等;
常见类型:长方体切割、圆 柱切割、圆锥切割、球体切
割等。
01
02
03
圆柱切割实例:轴承座、法 兰盘等;
圆锥切割实例:圆锥齿轮、 锥度塞规等;
04
问题描述
在绘制组合体三视图时,未能充分考虑到技术要求或理解错误等原因,导致技术要求不明确或错误,无法满足设 计要求和工艺要求。
解决方法
在绘制组合体三视图时,应认真阅读和理解技术要求,确保技术要求的准确性和可行性。对于不明确或错误的技 术要求,应及时与设计人员或工艺人员沟通协商,以确保技术要求的正确实施。同时,在绘制过程中应注意细节 和规范性,避免出现不必要的误解和歧义。
几何体的截面、三视图、平面展开图
1.截面可能是圆的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥2.截面可能是三角形的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥3.截面可能是矩形的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥4.截面可能是梯形的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥5.截面可能是平行四边形的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥6.用一个平面截下面的几何体,截面不可能是三角形的是_______A 圆锥B圆柱C长方体 D 六棱柱7. 正方体的截面不可能是________A 三角形B 四边形C 五边形D 六边形E 七边形8. 基本几何体的三视图(主视图反映物体的长和高,俯视图是长和宽,左视图是高和宽)几何体主视图左视图俯视图圆柱圆锥四棱锥空心圆柱9.由一些大小相同的小正方体搭成的几何体的主视图与俯视图如图所示,则搭成这个几何体的小正方体的个数最多为___,最少为____。
___.10. 如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )A.6个B.7个C.8个D.9个11. 如图是由若干个大小相同的正方体搭成的几何体 的三视图,则该几何体所用的正方形的个数是________12.由一些完全相同的小正方体搭成的几何体的主视图和左视图 如图所示,则组成这个几何体的小正方体的个数可能是13. 几个棱长为1的正方体组成的几何体的 三视图如图所示,则这个几何体的体积是____14.几个立方块所搭几何体的俯视图如图所示,小正方形的数字表示在该位置小立方块的个数.请画出这个几何体的主视图和左视图.15.下图,该几何体是_______. 16. 下图,则这个几何体是______17. 下图,该几何体是_______. 18. 下图,三视图表示的几何体是________19.主视图、俯视图和左视图都是..长方形的几何体是_________(填一个即可) 20. 三视图都相同的几何体可能是_________、____________.(有两种类型)3 2 1 1 2 24 1 3主视图左视图2 2 1 3421.下列四个水平放置的几何体中,三视图如图所示的是( )A.B.C.D22.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )A.B.C.D.23.如图所示,下列水平放置的几何体中,俯视图是矩形的是( )A.B.C.D.24. 下列四个几何体中,主视图是三角形的是( )A.B.C.D.25. 下列几何体中,俯视图相同的是( )A①② B①③C②③ D ②④26.下面四个几何体中,左视图是四边形的几何体共有 ( )A 1 个B 2个C 3个D 4个27.下列四个几何体中,主视图与左视图相同的几何体有( )A.1个B.2个C.3个D.4个28.球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是( )A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆29.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )。
中职职高机械加工技术数控技术专业《机械识图》课程全套教案设计
项目任务名称
项目一学习导读
学时分配
二次4节
教学目标
知识目标
1.了解机械识图课程的性质、内容和作用。
7.天生我材必人用——正确认识和评价自己。
技能内容与要求
1.根据自己的认识,说出社会上的工作岗位,每人二个以上。
2.讨论表达物体的方法。
3.说出自己的特长。
任务训练设计
1.说出你知道的工作岗位,每人二个以上。
2.工程界为了表达图1-1物体,应该如何进行?
3.机械识图是什么,为什么要学习?
4.你觉得应该如何学习机械识图课?
预习准备
利用课前5—10分钟和课外时间自学该任务。
2.分组讨论
合作探究
根据任务设计,分配各组每两节课一个任务,并要求小组讨论答案,20—25分钟完成。
3.项目训练
任务展示
各组指派一名组员上台展示讨论结果,一名组员解析,其他人员观察核对,发现错误及时指出修订,25—30分钟完成。
4.点评提高
总结反馈
先由别组点评,然后由老师补充点评总结。10—15分钟。
任务训练设计
一、分析P49图3—23立体图,回答“任务内容”第一题。
二、分析P49图3—22三视图,完成“任务内容”第二题。
三、回答直线对一个投影面的投影情况和特性。
四、回答直线对三个投影面的投影情况、投影名称和特性。
五、回答P52想一想3个题。
六、回答平面对一个投影面的位置关系有几种?举例说明。
七、回答平面对三个投影面的位置有哪些?
工程制图与识图4-1:切割体三视图的识读
【例4-2】已知物体的三视图如图4-6a所示,试想象出该物体的形状。
• 原形应为一正 五棱柱;
• 根据主视图左上角 的竖线,并找出对 应投影,如图4-6b 所示,
【例4-2】已知物体的三视图如图4-6a所示,试想象出该物体的形状。
• 可知截平面是侧平 面; • 根据主视图左上角 的斜线,并在俯视 图和左视图上找出 对应投影,如图46c所示,
作业
• 可选作业: • 《工程制图与识图习题集》 • P33:4-5
第4章 切割体三视图绘制与识读
• 4.1 切割体三视图的识读
•4.1 切割体三视图的识读 •4.1.1 线面分析法 •4.1.2 识图的一般步骤 •4.1.3 线面分析法读图的注意点 •4.1.4 读图示例
单击动画
复习
3.4.3 平面的空间位置判断
1.根据三面投影判断 若三面投影均为类似形,则平面为一般位置平面; 若三面投影为一个平面形和两条直线,即“一面对两线”, 则平面为平行面,且为平面形投影所在投影面的平行面; 若三面投影为一条斜线和两个平面形,即“一线对两面”, 则平面为垂直面,且为斜线投影所在投影面的垂直面。
• 可知截平面是三个平面,一个水平 面和两个侧平面; • 综合想象物体是圆柱上方,左右两 边上角被一个水平面和两个侧平面 切割,立体图如图4-7d所示。
4.1.3 线面分析法读图的注意点
• 1.在视图中找出点、线、面的对应投影 • 读图时在视图中找出点、线、面的对应投影 是很重要的。 • 按投影特征分析相邻视图中对应的一对线框 若为同一平面的投影,它们必定是类似形; 相邻视图中的对应投影若无类似形,必定积 聚成直线。
• 所以由图4-10a所示的二视图,可以想象出图410b、c两种形状。
《三视图》PPT课件
案例二
通过三视图还原组合体的空间 形状,理解辅助线和辅助面在 投影中的作用。
案例三
比较不同辅助线和辅助面对投 影结果的影响,掌握其使用技 巧。
案例四
针对复杂组合体,综合运用辅 助线和辅助面进行投影分析。
05
CATALOGUE
尺寸标注与技术要求在三视图 中体现
尺寸标注基本原则和方法
基本原则
01
中心线平行。
辅助面构造方法及作用
基本辅助面
通过平移或旋转基本投影 面得到,用于生成新的投 影。
局部辅助面
根据需要截取形体的一部 分而构造,用于表达形体 的局部结构。
综合辅助面
结合基本辅助面和局部辅 助面的特点构造,用于解 决复杂形体的投影问题。
案例分析:组合体三视图
案例一
分析组合体的结构特点,选择 合适的辅助线和辅助面进行投
04
CATALOGUE
辅助线与辅助面在三视图中的 应用
辅助线类型及使用场景
中心线
用于表示对称形体的中 心,或用于定位非对称
形体的主要部分。
轮廓线
用于表示形体的外轮廓 或内轮廓,通常与视图
的主要轮廓线重合。
剖面线
用于表示形体被剖切后 的内部结构,通常与剖
视图的剖面线对应。
尺寸线
用于标注形体的尺寸, 通常与形体的轮廓线或
圆锥体主视图为三角形,俯视 图为圆形和圆心点,左视图为
三角形和一条斜线。
球体的三视图
球体主视图、俯视图和左视图 均为圆形。
03
CATALOGUE
物体表面交线与三视图绘制技 巧
物体表面交线类型及特点
截交线
截平面与立体表面的交线。特点 :截交线的形状取决于立体的几 何性质及其与截平面的相对位置
工程制图第4章基本体的三视图.ppt
1′ 2′
y 1“
2″
⑴过点的V面投影1’作水平投 射线,投射线与W面相应棱线 投影的交点即为投影1”;根 据“宽一致”的投影规律, 在W面投影中量取1”的Y坐标 值,然后在H面相应棱线的投 影上直接量取Y,得H面投影1。
2
y
1
⑵过点的V面投影2’分别作水 平投射线和垂直投射线,水 平投射线与W面相应棱线投影 的交点即为投影2”,垂直投 射线与H面相应棱线投影的交 点即为投影2。
拉伸前
拉伸后
(三)创建旋转实体
1. 功能 2. 调用
菜单:绘图(D)→实体(I)→旋转(R) 命令行:REVOLVE 工具栏:
按给定角度旋转实体
㈣ 创建组合实体
“实体编辑”子菜单 “实体编辑”工具栏
并集实例
差集实例
交运算前 并集、差集综合实例
交运算后 交集实例
实体的布尔运算
㈤ 用剖切的方法绘制实体
●
s●
A
O1 ●s
在图示位置,俯视图为一圆。
另两个视图为等边三角形,三 角形的底边为圆锥底面的投影, 两腰分别为圆锥面不同方向的 两条轮廓素线的投影。
k(n)
●(n) k
n● s
k
如过何锥在顶圆作锥一面 条上素作线直。线?
★辅助直线法
圆的半径?
★辅助圆法
3.圆球
⑴ 圆球的形成
圆母线以它的直径为轴旋转而成。
B
s
k
k
n׳
﴾n﴿
b c a(c) b
c s n k
b
棱锥表 面取点 方法:
在棱线上的点: 利用棱线的投影求之。
利用棱面的积聚性投影求之; 在棱面上的点: 利用素线法求之;
初中数学三视图
从顶部方向观察物体所得到的 视图,反映物体的长和宽。
左视图
从左侧方向观察物体所得到的 视图,反映物体的高和宽。
作用
三视图能够全面、准确地表达 物体的形状、大小和空间位置 关系,是工程制图中不可或缺
的一部分。
正投影原理与性质
01
正投影定义
平行投影的一种,光线与投影面垂直时的投影。
02
正投影性质
艺术家利用三视图原理绘制立体造型的草图或效果图。
工程制图
工程师运用三视图进行工程设计和施工图的绘制。
06
总结回顾与拓展延伸
关键知识点总结回顾
三视图基本概念
正视图、侧视图、俯视图
简单几何体的三视图
如长方体、正方体、圆柱、圆锥等
三视图的投影规律
长对正、高平齐、宽相等
组合体的三视图
识别组合体的构成方式,画出其三视图
想象与表达
创意实践
引导学生通过想象和描述来表达空间形状 和位置关系,培养他们的空间想象力。
鼓励学生运用所学知识进行创意实践,如 设计建筑模型、制作立体拼图等,提高他 们的实践能力和创新意识。
THANKS
感谢观看
不同视角下的视图。例如,通过主视图和俯视图可 以确定物体的长度和宽度,进而推算出左视图的形 状和大小。同样地,通过左视图和俯视图也可以确 定物体的高度和宽度,进而推算出主视图的形状和 大小。这种转换方法在工程制图中非常实用,可以 帮助工程师更加准确地理解和表达物体的形状和结 构。
02
绘制三视图方法与技巧
确定主视图、俯视图和左视图
主视图
左视图
从正面看到的图形,反映物体的前面 形状。
从左面看到的图形,反映物体的左面 形状。
机械制图《绘制切角长方体的三视图》电子教案
【教学过程】引入:(1)表扬上次作业优秀的学生(2)机械图样中表达物体的形状的图形按正投影法绘制的;正投影法是绘制和阅读机械图样的理论基础。
讲授:任务1 绘制切角长方体的三视图(1)一、投影法的概念(多媒体演示)1.生活中随处可见的投影现象,比如树、球、正方体等等。
2.中心投影法(1)原理:投影中心→投射线→投影面→投影(大小随物体位置改变);(2)特点:投影不能反映物体的真实大小,适用于建筑图、美术图。
3.平行投影法投射线相互平行→投影(反映物体的实际形状)(1)斜投射法:投射线与投影面做斜一定的角度;(2)正投影法:投射线与投影面垂直——投影能够表达物体的真实形状(多媒体演示)。
二、三视图的形成物体是有长、宽、高三个尺度的立体,只取单一的投影面,无法正确认识物体的形状,故要多取几个投影面。
1.三投影面体系:三轴——三投影面正投影面VX、Y、Z轴侧投影面W水平投影面H2.三视图的形成(1)三视图——用正投影法投影到三投影面中所得到的视图;正面投影——主视图水平投影——俯视图侧面投影——左视图三、三视图的关系及投影规律1.位置关系:主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右方;见图3-62.投影关系:长对正、高平齐、宽相等,或等长、等宽、等高,即“三等”关系,如图。
3.方位关系,即上下、左右、前后各方位,如图所示。
主视图反映上下、左右方位;俯视图反映前后、左右方位;左视图反映上下、前后方位;四、绘制切角长方体的三视图按照表3-1中步骤,依次绘制切角长方体的三视图。
课堂练习:习题集P23课堂小结:平面图形的画法,重点学习如何进行分析尺寸【教学过程】引入:(1)作业点评,表扬优秀的学生;(2)点、线、面是构成物体形状的基本几何元素,而点是最基本、最简单的几何元素;讲授:任务1 绘制切角长方体的三视图(2)一、点的投影特性点的投影永远是点。
二、点的三面投影(可以看挂图)正面投影a’,水平投影a,侧面投影a”三、点的投影与坐标1.点的坐标格式:A(XA,YA,ZA),如A(20,10,15)2.点的三面投影规律1)aa’垂直ox 反映同一个X坐标;2)a’a”垂直oz 反映用一个Z坐标;3)a”az=oax 反映同一个Y坐标。
任务一 绘制切角长方体的三视图
2.2.1三投影面体系
图2.2.2(a) 投影体系
笛卡儿直角坐标系将三维空间分为8个象限(分角) 。 在国家标准GB/T 4458.1—2002中规定,我国采用第一分 角投影法(简称第一角画法)绘制图样,而国际上有的国家(如 美国、日本等)则采用第三角投影法(简称第三角画法)。
. . (b)
2.2.1三投影面体系
中心投影法形成透视图,立体感较强。 一般用于表达较大的场景或目标如建筑物等,用来作 为一种效果图,不注重物体的实际尺寸表达。
平行投影法
投射线相互平行,在投影面上作出物体投 影的方法,就称为平行投影法。
平行投影法中分为两种,正投影法和斜投 影法
正投影法:投影线方向垂直于投影面。得到的投影图 称为正投影图(正投影)。
侧面投影是对物体由左向右进行投影,在侧面上所得到 的投影。
三面投影体系的展开: 为了画图和看图的方便,假想地将三个投影面展开、摊平在同一平面(纸面)上,
并且规定:正面V不动;水平面H绕OX轴向下旋转90°;侧面W绕OZ轴向右旋转90°,分别 重合到正立投影面(这个平面就是图纸),应注意,水平投影面和侧立投影面旋转时, OY轴被分为两处,随H面旋转的用OYH表示,随W面旋转的用OYW表示 。
2.2.2三面投影的形成
将物体置于三投影面体系中,用正投影法分别向3个投 影面投影后,得到了物体的三面投影。
在机械制图中,可把人的视线设想成一组平行的投射线 ,而把物体在投影面上的投影称为视图。
国家标准规定:
正面投影是对物体由前向后进行投影,在正面上所得到 的投影。
水平投影是对物体由上向下进行投影,在水平面上所得 到的投影。
图 2 2 2
投 影 体 系
三个投影面分别为: 正立投影面:简称正面 用 V 表示 水平投影面:简称水平面 用 H 表示 侧立投影面:简称侧面 用 W 表示
三视图培训ppt课件
主视图与俯视图长对正,主视图与左视 图高平齐,俯视图与左视图宽相等。同 时,各视图之间要保持一定的比例关系。
02
绘制三视图方法与步骤
确定主视图方向
选择最能反映物体形状特征的方向作为主视图的投射 方向。
通常选择物体自然安放状态或工作位置的正前方或正 上方为主视图方向。
主视图方向的选择应使得三个基本视图之间具有最佳 的内在联系和合理的配置。
04
复杂零件三视图识别与绘制技巧
剖视图概念及应用场景
剖视图概念
假想用剖切面剖开机件,将处在 观察者与剖切面之间的部分移去,
而将其余部分向投影面投射所得 的图形称为剖视图。
应用场景
当机件的内部结构形状较复杂,用 视图不易表达清楚时,常采用剖视 图来表达机件的内部结构形状。
绘制技巧
选择合适的剖切位置,使得剖切后 能够清晰地表达机件的内部结构; 标注剖切符号和剖切线,标明剖视 图的名称和投影方向。
05
实际案例分析与讨论
案例一:简单零件三视图识别与绘制
视图选择
根据零件形状和复杂程度, 选择主视图、俯视图和左 视图等合适视图。
视图布局
合理安排各视图位置,保 持视图间投影关系正确, 便于看图和理解。
尺寸标注
完整、清晰、合理地标注 零件各部分尺寸,包括定 形尺寸、定位尺寸和总体 尺寸。
案例二:复杂零件三视图识别与绘制
绘制其他两个基本视图
02
01
03
根据已确定的主视图方向,选择适当的比例和图幅,绘 制出主视图。
根据物体的长、宽、高尺寸,在主视图的下方和右方分 别绘制出俯视图和左视图。
注意三个基本视图之间要保持“长对正、高平齐、宽相 等”的投影关系。
《三视图的形成及投影规律》教学设计
《三视图的形成及投影规律》教学设计一、教材分析1、课程名称:《机械识图》(高等教育出版社)2、课题:项目三基本体的表达与识读任务1绘制切角长方体的三视图3、课时:任务1共4课时,本节为第二课时“三视图的形成及投影规律”(40分钟)4、教材处理:本次课内容为项目三任务1的第二课时的内容,该任务是三视图入门的最重要且最基础的知识,是培养学生从空间物体向平面图形转换的关键一环,也是培养学生识图和绘图能力的重要基本理论,为学生后续能够顺利学习组合体视图、零件图等知识奠定扎实的基础。
考虑到数控班级男生的好动、活跃的性格,本次教学设计,我尽量用学生感兴趣的,同时生动直观地东西吸引学生,调动起他们的学习兴趣。
二、学情分析对于中职数控专业的高一大多数学生来说,刚开始接触机械识图内容时,感觉非常新鲜,充满兴趣,但后来面对枯燥的基础理论知识,学习兴趣就逐渐减退,课堂教学有效性不理想。
本教学内容安排在高一第二学期,之前学生已经学习了机械识图的基本知识,具备了基本的识图和绘图的能力;项目五已经学习了零件图的内容和看零件图的方法步骤,是一些识读零件图的共性知识。
项目六任务1《识读锥度轴零件图》是学生第一个接触的典型零件图的识读,学生在车工技能学习中对于锥度轴是很熟悉的,因此学生已经具有了识读锥度轴零件图的知识储备和能力要求。
三、教学目标分析1、知识目标:(1)能解释三视图的形成和投影规律。
(2)能准确区分三视图的位置关系和方位关系。
2、技能目标:(1)具备从空间物体向平面图形转换的思维能力;(2)学会分析判断的方法能力;3、情感目标:(1)通过设疑,激发学生的好奇心和求知欲;(2)在“任务驱动”教学中,培养学生交流、合作精神;通过让学生自己看书,看视频思考,充分发挥学生的主观能动性,增强自信心和成就感。
四、教学重点与难点分析重点:三视图之间的位置关系、投影关系和方位关系。
难点:1. 三视图间的宽度尺寸方向和等量关系;2. 三视图间的前后方位的判定。
绘制切角长方体三视图(教案)
【课题】绘制切角长方体三视图【课时数】2课时【学习目标】1.能分析出三维空间的三面、三轴、一点。
2.能叙述三维空间的展开过程。
3.掌握三视图的投影规律。
4.能正确的绘制出扳手的平面图形。
【教学重点】三面投影体系的认识【教学难点】三面视图的投影规律【教学过程】一、预习检测1.指出三面投影体系中的三面、三轴。
并说出三视图的名称。
二、合作探究、新知学习(一)投影法与正投影的基本规律知识点:1.投影法的基本定义。
2.投影法的种类及应用(1)中心投影法(2)平行投影法 a.斜投影法 b.正投影法3.正投影的基本特性:真实性、积聚性、收缩性探究一:空间一个条直线或一个平面与一个投影面的位置关系有三种(见下表),请完成下表空间直线与投影面位置关系所得投影特性空间平面与投影面位置关系所得投影特性平行平行垂直垂直倾斜倾斜设计意图:掌握投影法的概念及分类,理解正投影法中的特性。
(二)三视图的形成与投影规律探究二:请找出教室里的三面投影体系,并指出三面、三轴知识点1.以立体为实例,将立体向三面投影。
探究三:请叙述并演示三面投影体系的展开过程。
知识点2.三视图的方位关系。
知识点3.三视图的投影规律探究四:请将预习案中图1投影在三面投影体系中并展开,找到其方位(上、下、左、右、前、后)及长度(长、宽、高)关系。
三、当堂检测、巩固提升1.对照立体图形请选择正确的三视图2.按照三等关系要求,请对照立体图形画出三视图(尺寸从图中量取,按照1:1的比例)四、课堂小结:1.投影方法。
2.三视图投影规律(长对正、宽相对、高平齐)五、作业:习题册P25-P29教学反思:。
机械制图《切角长方体的轴测图绘制》电子教案
【教学过程】引入:(1)复习三视图中三个轴反应的实际物体的空间位置的那个方向。
并找同学回答。
X轴反应物体左右位置即长度方向的尺寸Y轴反应物体前后位置即宽度方向的尺寸Z轴反应物体上下位置即高度方向的尺寸通过之前所学习的三视图,可以完整的表达出物体的真实形状和尺寸,能较完整、准确的反应物体的形状和大小,但是其立体感不强,只有具有一定的读图能力的人才能看懂。
所以为了能够让更多的人看懂图纸,我们有时候应该选用一种方式能够既表达清楚形状和尺寸,又能够较好的反应物体的立体形状,这就是我们今天要学习的正等轴测图。
讲授:任务1 绘制切角长方体的三视图(1)一、正等轴测图的形成及其参数(1)正等轴测图坐标系的绘制不管是画什么图形,如果要表达一个物体的真实形状,最好的办法就是通过坐标系的形式来表达。
正等轴测图也是一样。
首先我们要了解正等轴测图的坐标系的形成。
如下图3-20(b)中图形所示即为正等轴测图的坐标系。
他由OX、OY、OZ三轴所组成,我们成为轴测轴。
三轴将空间360°等分成三等分。
即三轴两两之间的轴间角均为120°在坐标系的绘制过程中,我们首先作一根竖直的射线作为OZ轴。
然后可以做一条水平的辅助线,接下来再借助三角尺中有一个角为30°,这样就可以绘制出我们所要的正等轴测图的三坐标系(2)正等轴测图的轴向伸缩系数轴测轴上的单位长度与空间直角坐标轴上对应长度的比值成为轴向伸缩系数。
OX、OY、OZ的轴向伸缩系数分表用p、q、r表示,为作图简便,实际画正等轴测图时采用p=q=r=1的简化伸缩系数画图,即沿各轴的所有尺寸都按物体的实际长度绘制。
二、长方体的正等轴测图的绘制(以教师演示为主)已经一个长方体的三视图投影如下图所以,要求绘制出这个三方体的正等轴测图。
作图步骤:(1)根据形体的结构特点,确定坐标原点的位置,一般放在顶面或地面处。
(2)根据轴间角120°画轴测图。
注意Z轴必须竖直向上。
人教版九年级数学下册第1课时(三视图的概念及画法)课件
知识点一:几何体的三视图
新知探究
我对们一用个三物个体互(例相如垂一直个的长平方面体作) 为在投三影个面投,影其面中内进行正投影, 正在对正着面我内们得的到平的面 由叫 前做 向正 后面 观, 察 下物方体的平视面图叫,做叫水 做平主面视,图; 右在边侧的面平内面得叫到做的侧 由面 左向. 右观察 物体的视图,叫做 左视图.
人教版数学九年级下册
第29章 投影与视图 29.2 三视图
第1课时 三视图的概念及画法
情景引入
你能说出上面左侧英汉词典三个图分别是从什么方向观察得 到的吗? 这三个图象就是今天要学习的三视图.
知识点一:几何体的三视图
当我们从某一方向观察一个物体时,所看到的平面图形 叫做物体的一个视图.
视图可以看作物体在某一方向光线下的正投影. 对于同一个物体, 如果从不同方向观察, 所得到的视图可能不同. 如图是英汉词典的三个 不同的视图.
左视图
做一做:由几个相同的小立方块搭成的几何体的俯视图如图 所示。方格中的数字表示该位置的小方块的个数.请画出这个 几何体的三视图。
1
3
2
同学们,再见!
•
9、 人的价值,在招收诱惑的一瞬间被决定 。21.4.321.4.3Saturday, April 03, 2021
•
10、低头要有勇气,抬头要有低气。12:30:2912:30:2912:304/3/2021 12:30:29 PM
球的三视图:
主视图
左视图
俯视图
圆柱的三视图:
主视图
左视图
俯视图
圆锥的三视图:
主视图
左视图
注意
点不要漏画哦!
俯视图
正三棱柱的三视图: 注意
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下图是四棱台的立体图和视图:
二、三视图
1.三投影面体系: 三投影面体系由三个互相垂
直的投影面所组成,相交轴用X、 Y、Z表示,原点为“O”。三个投 影面分别为:
正立投影面:用V表示; 水平投影面:用H表示; 侧立投影面:用W表示。
2. 三视图的形成
按正投影法并根据有关标准和规定画出的物体的图形,称为视图。正 面投影(由物体的前方向后方投射所得到的视图)称为主视图,水平面投 影(由物体的上方向下方投射所得到的视图)称为俯视图,侧面投影(由物 体的左方向右方投射所得到的视图)称为左视图。
一、投影法
1.平行投影法: 投射线互相平行的投影法。有斜投影和正投影两种
(1)斜投影法:(斜投影) 在平行投影法中,投射线与投影面倾斜的投影法。 (2)正投影法:(正投影,能反映零件的真实形状和大小, 在工程中普遍采用。) 在平行投影法中,投射线与投影面垂直的投影法。
(1) 斜投影法
a b
投 射 线 方 向
三视图的展开
投影面展开摊平在同一平面上的三视图
三视图的投影对应关系
长对正、高平齐、宽相等
图在上, 俯视图在主视图之下, 左视图在主视图之右。
3.三视图的关系及投影规律:
⑵ 投影关系
主视图反映物体的长度和高度, 俯视图反映物体的长度和宽度, 左视图反映物体的宽度和高度。 三视图之间的对应关系为“长对正、高平齐、宽相等”。
项目三 基本体的表达与识读
机械图样是应用正投影的原理将零 件投射到平面上而得到的图形,正投影 法是物与图、立体与平面之间互相转换 的理论基础。
点、线、面是构成零件的最基本的 几何元素。
任务1 绘制切角长方体的三视图
一、投影法
1.平行投影法 2.中心投影法
二、三视图
1.三投影面体系 2.三视图的形成 3.三视图的关系及投影规律
c
90°
(2)正投影法
投 射 线 方 向
90°
一、投影法
2.中心投影法: 投射线都从投射中心发出,投射线互不平行,当投影
面一定时,所得投影的大小随着物体到投射中心的距离大 小而变化,不反映实形,不适用于机械图样的绘制。
S 投射中心 投射线
形体
a b
物体的中 心投影
c
3.正投影法基本性质
1.真实性
3.三视图的关系及投影规律:
⑶ 方位关系
主视图反映物体的上、下、左、右方位; 俯视图反映物体的前、后、左、右方位; 左视图反映物体的上、下、前、后方位。
三视图与物体的方位对应关系
物体上平行于投影面 的平面P,其投影反映实形; 平行于投影面的直线AB的
投影ab反映实长。
2.积聚性
物体上垂直于投影面 的平面Q,其投影q积聚成 一条直线;垂直于投影面 的直线CD的投影积聚成一
点。
3.类似性
物体上倾斜于投影面 的平面R,其投影r是原图 形的类似形;倾斜于投影 面的直线EF的投影比实长