《核医学仪器》PPT课件

合集下载

《核医学仪器》课件

《核医学仪器》课件

核医学仪器在肿瘤诊断中的应用
核磁共振成像
利用核磁共振原理,可清晰地显示肿瘤的位置、大小和形态 ,对肿瘤的早期发现和诊断具有重要意义。
正电子发射计算机断层显像
通过示踪剂标记肿瘤细胞,利用正电子发射计算机断层扫描 仪检测肿瘤细胞的代谢活性,有助于肿瘤的早期诊断和病情 监测。
核医学仪器在心血管疾病诊治中的应用
核医学仪器在医学研究领域也发 挥着重要的作用,可以帮助科学 家更好地理解疾病的发病机制和 发展过程,推动医学研究的进步 。
核医学仪器的使用可以减少患者 的诊疗时间和痛苦,提高患者体 验和满意度。
THANKS
谢谢您的观看
核医学仪器与其他医学影像设备的比较
• 与其他医学影像设备相比,核医学仪器具有独特的 优势:例如,在肿瘤治疗中,核医学仪器可以提供 更准确的诊断和靶向治疗,提高治疗效果并降低副 作用;在心血管疾病诊断中,核医学仪器可以提供 心肌血流、心肌功能和代谢信息,为临床提供更准 确的诊断依据。
04
核医学仪器的应用案例
核医学仪器能够提供动 态和功能信息
通过测量放射性核素标记的化合物在 人体内的分布、代谢和排泄过程,可 以获得器官或组织的血流、功能和代 谢信息,为临床提供更全面的诊断依 据。
核医学仪器具有广泛的 应用范围
核医学仪器可以应用于全身多个器官 和系统的诊断和治疗,如肿瘤、心血 管、神经系统等,为临床提供多种疾 病的有效诊疗方案。
20世纪70年代,随着间接测量仪器的出现和计算机技术的进步,核医学仪器开始向体内 测量发展,并逐渐应用于肿瘤诊断和治疗。
21世纪初,随着纳米技术和生物技术的发展,核医学仪器进一步发展,出现了分子成像、 纳米探针等新型核医学仪器,进一步提高了诊断的精度和治疗效果。

核医学仪器-精品医学课件

核医学仪器-精品医学课件

γ闪烁探测器结构

前置

放大



晶体 光导

主放大器 低

PMT


PHA

自动换样
计算机系统

显示
打印
10
(1)探测器
由闪烁体、光电倍增管和前置放大器组成。
闪能烁转体化:为分光无子机。和有机晶铊体,作用是将辐射
如:ZnS(Ag), NaI(Tl), LiI(Eu), Cs ( Tl ),蒽、芪等无机和有机物质 光电倍增管:将光子转化为电脉冲。 前置放大器:将电脉冲放大。
69
(二)肾图仪
肾图仪由带铅屏蔽壳和准直器的闪烁探头和计数率 仪的微机组成。
将检查时获得肾图曲线相应计数率和参数结果记录 并打印在报告纸上。
应用
对上尿路通畅情况和肾功能作出判断。
70
三、SPECT成像特点
• (1)得到真正的三维立体信息,而γ 相机只能得到二维重叠图像;
• (2)反映机体功能与代谢。 • (3)提供全定量的分析手段;
53
四、SPECT数据采集和断层重建
• 滤波反投影技术
• 模拟图像(仪器获得的图像)——数字图 像(计算机贮存)——数字图像(输出)
54
五、符合探测
62
飞行时间示意图
63
二、PET/CT及图像融合
• 图像融合: 将来自相同或不同成像方式的图像
进行一定的变换处理,使其之间的空 间位置、空间坐标达到匹配的一种技 术。
功能影像与解剖影像融合; 同一受检者不同时间影像融合; 受检者与标准影像融合。
64
解剖学成像
65
核医学显像

《核医学仪器》课件

《核医学仪器》课件

对高辐射源进行严格管理,防止丢失或被盗。
定期进行辐射监测,确保仪器运行正常,辐射在安全范围内;
核医学仪器应安装在经过专门设计、符合安全标准的机房内;
核医学仪器使用后的处理及环保要求
对泄露的放射性物质应及时清除,防止扩散和污染环境。
对有潜在污染的场所和设备应进行去污处理,并经监测合格后方可重新使用;
核医学仪器的工作原理
01
核辐射衰减与核辐射探测的基本原理
介绍原子核、核素、同位素等基本概念,以及核辐射的衰减规律和探测原理。
02
γ闪烁照相机的工作原理
介绍γ闪烁照相机的结构、工作原理及其在核医学中的应用。
探测效率与能量分辨率
空间分辨率与灵敏度
图像质量与伪影
核医学仪器的主要技术参数及意义
介绍物理因素(如散射、本底、猝发等)、技术因素(如扫描时间、扫描层厚、重建算法等)和临床因素(如患者体位、器官运动等)对核医学仪器性能的影响。
核医学仪器在神经科学研究中的应用
甲状腺疾病诊断
核医学仪器可以利用放射性碘元素检测甲状腺的功能和状态,对甲状腺疾病的诊断具有重要意义。
肾上腺疾病诊断
核医学仪器可以检测肾上腺皮质醇、醛固酮等激素的分泌情况,对肾上腺疾病的诊断具有重要意义。
核医学仪器在内分泌疾病诊断中的应用
THANK YOU.
谢谢您的观看
全身显像仪器
用于全身检查,可发现肿瘤、炎症等异常病变;
pet
用于正电子显像,可得到人体各部位放射性分布情况;
γ相机
用于平面显像,可得到人体各部位放射性分布情况;
spect
用于单光子显像,可得到人体各部位放射性分布情况;
核医学仪器的工作原理及技术参数
03

核医学仪器设备PPT课件

核医学仪器设备PPT课件
? (1)、准直器:目前常用的是平行孔准直器和针孔准直器。 ? (2)、晶体:目前常用的晶体是NaI(Tl)晶体。 ? (3)、光电倍增管 ? 2、电路 ? 3、扫描床 ? 4、计算机
7
? 二、工作原理概述
? SPECT的基本本成像原理是:首先病人需要摄入含有半衰期适当的放射性同位素 药物,在药物到达所需要成像的断层位置后,由于放射性衰变,将从断层处发 出γ光子,位于外层的γ照相机探头的每个灵敏点探测沿一条投影线(Ray)进来的γ 光子,通过闪烁体将探测到的高能γ射线转化为能量较低但数量很大的光信号, 通过光电倍增管将光信号转化为电信号并进行放大,得到的测量值代表人体在 该投影线上的放射性之和。在同一条直线上的灵敏点可探测人体一个断层上的 放射性药物,它们的输出称作该断层的一维投影(Projection)。图中各条投影线都 垂直于探测器并互相平行,故称之为平行束,探测器的法线与X轴的交角θ称为 观测角(View)。γ照相机是二维探测器,安装了平行孔准直器后,可以同时获取 多个断层的平行束投影,这就是平片。平片表现不出投影线上各点的前后关系。 要想知道人体在纵深方向上的结构,就需要从不同角度进行观测。可以证明, 知道了某个断层在所有观测角的一维投影,就能计算出该断层的图像。从投影 求解断层图像的过程称作重建(Reconstruction)。这种断层成像术离不开计算机, 所以称作计算机断层成像术(Computed Tomography ,CT)。CT设备的主要功能是 获取投影数据和重建断层图像。
8
? 三、断层图像的重建 ? SPECT常用的是 ? 1、滤波反投影法 ? 2、迭代法:核医学图像重建的首选方法。
9Leabharlann ? 四、仪器性能指标 ? 1、γ相机性能指标:5点 ? 2、SPECT断层性能指标:3点

核医学仪器及放射防护课件

核医学仪器及放射防护课件

SPECT成像具有操作简便、价格相对较 低和能够反映血流灌注和代谢变化的优 点,因此在心血管、脑和骨关节疾病的
诊断中具有广泛应用。
SPECT成像的基本原理是利用单光子发 射示踪剂,在人体内产生γ射线,通过 探测器测量γ射线的能量和方向,重建
出人体内部的图像。
核磁共振成像技术
MRI成像具有高分辨率、无辐射损伤和非侵入性的优 点,因此在神经系统、骨骼肌肉系统和心血管疾病的 诊断中具有广泛应用。
Hale Waihona Puke 监测治疗效果通过核医学仪器监测治疗 效果,医生可以及时调整 治疗方案,提高治疗效果 。
科学研究
核医学仪器在生物学、医 学、药学等领域的研究中 发挥着重要作用,有助于 推动相关学科的发展。
核医学仪器的分类与特点
核磁共振成像仪
利用磁场和射频波激发原子核,通过测量和解析共振信号进行成像。
正电子发射断层扫描仪(PET)
利用正电子标记的示踪剂进行生物体功能成像。
单光子发射断层扫描仪(SPECT)
利用放射性示踪剂和γ相机进行生理功能成像。
X射线机
利用X射线穿透人体组织,检测异常病变。
核医学仪器的发展历程与趋势
发展历程
从最早的X射线机到现代的核磁共振成像仪和PET、SPECT等 高端设备,核医学仪器经历了漫长的发展历程。
有力保障。
核医学仪器在食品安全检测中也 有广泛应用,如放射性同位素标 记的农药残留检测试剂盒等,有 助于保障食品安全和公众健康。
THANKS
感谢观看
核医学仪器及放射 防护课件
contents
目录
• 核医学仪器概述 • 核医学仪器原理与技术 • 放射防护基础知识 • 核医学仪器操作与安全 • 核医学仪器在医疗领域的应用 • 未来核医学仪器的发展趋势与挑战

核医学PPT课件 核医学仪器和药物

核医学PPT课件 核医学仪器和药物
可测性
– 放射性核素在体内发出射线
示踪原理基于示踪剂以上两个性质
用量足够小:注入的量要足够小,体内不会因 “示踪剂+被示踪物质”
过量而 干扰生物系统的正常状态
三、放射性核素显像
定义 将放射核素及其标记性化合物引入体内,实现脏器、组织、病变的
显像检查的方法。
– 放射性药物参与机体的代谢过程、核素发出合适的射线,显像仪器 探测并定位定量,了解核素标记物在体内的分布量变规律--诊断疾 病。
4、准直器 (1)、准直器的作用 (2)、准直器的技术参数
(1)、准直器的作用
准直器(collimator) 仅局限于某一空间单元的射线能进入闪烁计数器,
其他区域射线不得进入,排除干扰成像的射线,建立放射 性核素与图像的空间对应关系。
(2)、准直器的技术参数(了解)
1.灵敏度(sensitivity)
第二节 放射性核素显像
66
一、放射性核素示踪技术
• 放射性核素示踪技术
–利用放射性核素及其标记化合物作为示踪剂(tracer)来研究生物 体内各种物质的代谢规律及研究诊断疾病的一门技术。
–临床上脏器显像及脏器功能测定基本原理——放射性核素示踪技术
• PET、SPECT、γ相机、肾图仪等都是基于放射性核素示踪技术
32
单光子发射型计算机断层的技术优势
1.SPECT在空间分辨力、定位的精确度 计算病变部位的大小和体积等远优于照相机
2.图像受脏器大小、厚度影响大大低于照相机 3.对一些深度组织的探测能力显著提高 4.发现早期病变优于X-CT 和B超甚至MR
单光子发射型计算机断层的技术优势
99mTc-MIBI心肌血流灌注SPECT
二、正电子发射型计算机断层的技术优势

《核医学仪器》课件

《核医学仪器》课件
放射性粒子植入治疗可用于肿瘤的近距离放射治疗,而放射免疫疗法则利用抗体与 肿瘤抗原的结合,将放射性药物定向作用于肿瘤组织。
这些治疗方法具有创伤小、副作用少等优点,为患者提供了更加安全有效的治疗选 择。
在药物研发中的应用
核医学仪器在药物研发中发挥着关键作用,通过放射性标记技术可以对 药物进行追踪和监测,了解其在体内的分布、代谢和排泄情况。
医学治疗案例
案例二:神经性疼痛治疗
神经性疼痛是一种常见的慢性疼痛,核医学治疗可以提供有效的缓解。医生可以使用放射性药物来破 坏引起疼痛的神经纤维,从而减轻患者的痛苦。核医学仪器在监测治疗效果和调整治疗方案方面具有 重要作用。
药物研发案例
案例一:靶向抗癌药物研发
VS
核医学仪器在靶向抗癌药物的研发过 程中发挥了关键作用。通过放射性标 记技术,研究人员可以追踪药物在体 内的分布和代谢,了解药物与肿瘤的 结合情况,为药物的进一步优化提供 依据。
药物研发案例
案例二:免疫疗法药物研发
免疫疗法是一种新兴的治疗方法,核医学仪器在免疫疗法的药物研发中具有重要 作用。研究人员可以使用核医学仪器来监测免疫细胞在体内的活化和分布,了解 免疫反应的强度和持久性,为药物的研发提供重要的实验依据。
THANKS
感谢观看
02
核医学仪器通过测量放射性物质 的发射、衰变和分布等特性,提 供有关人体生理、病理和药物代 谢等方面的信息。
核医学仪器的发展历程
核医学仪器的发展始于20世纪初, 随着科技的不断进步,核医学仪器经 历了从简单计数器到复杂成像系统的 演变。
近年来,随着计算机技术和数字化技 术的引入,核医学仪器在图像质量、 操作便捷性和智能化等方面取得了显 著进步。
02
核医学仪器的工作原理

《核医学仪器》PPT课件

《核医学仪器》PPT课件
SPECT的图像是反映放射性药物在体内的断层 分布图
放射性药物能够选择性聚集在特定脏器、组织 或病变部位,使其与邻近组织之间的放射性分 布形成一定程度浓度差
精品文档
(三)SPECT与CT的异同:
精品文档
四、正电子发射型计算机断层仪
(positron emission tomography,PET) (一)探测原理:
精品文档
(二)探测系统:
1、闪烁探头:将光子转换成可见光 锗酸铋(BGO)晶体 硅酸镥(LSO)晶体、硅酸钆(GSO)晶体
精品文档
2、脉冲处理:将探头传过来的电信号转换成时间信号, 经过数字化、常分鉴别器处理后的脉冲信号用于符合电 路信号处理。
低能鉴别器、高能鉴别器 3、符合电路系统:通过符合电路系统处理获得湮灭反应 产生的信号后,就能确定有无正负电子符合事件发生。
精品文档
PET/CT的特点:
CT与PET硬件、软件同机融合。 解剖图像与功能图像同机融合。 同一幅图像既有精细的解剖结构又有丰富生理、
生化分子功能信息。 可用于肿瘤诊断、治疗及预后随诊全过程。 高灵敏度,高特异性,高准确性。 PET、CT单独能实现的,PET/CT一定能实现;
PET/CT能实现的, PET或CT单独不一定能实现。
三维采集:取消环间隔,在所有的环内进行符合计算 计数率高,散射严重,分辨率低。
精品文档
PET系统流程图:
回旋加速器
产生同位素
化学合成同位素示踪剂
PET扫描器
注入人体
进行PET扫描
采集得到投影原始数据
重建获得浓度分布图像
动态建模及功能图像生成算法
计算机系统
获得功能图像
精临品文床档分析诊断
(四)校正技术:

核医学仪器与方法课件

核医学仪器与方法课件
闪烁计数器利用闪烁物质在射线作用下发光的现象,测 量放射性物质的活度和能量。
常用的放射性测量仪器包括闪烁计数器、半导体探测器 等。
半导体探测器利用半导体材料对射线的高灵敏度特性, 测量放射性物质的活度和分布等参数。
03
核医学仪器应用方法
放射性核素显像技术
总结词
利用放射性核素标记的药物作为示踪剂,通过体外成像技术显示组织器官的生理和病理变化。
详细描述
放射性核素显像技术是核医学中应用最早、最广泛的技术之一。它利用放射性核素标记的药物作为示踪剂,通过 体外成像技术显示组织器官的生理和病理变化。该技术可用于诊断肿瘤、心血管疾病、神经系统疾病等多种疾病 。
正电子发射断层显像技术
总结词
利用正电子发射断层扫描技术,对体内正电子示踪剂进行成像,以获取分子和代谢水平的信息。
核医学仪器与超声成像的比较
超声成像利用高频声波显示脏器和组织的结构,而核医学仪器则利用放射性核素发出的 射线进行成像。两者原理和应用场景不同,但都是无创、无痛、无辐射的检查方法。
感谢您的观看
THANKS
如遇到无法解决的问题,应及时联系厂家或专业维修人员进 行维修,避免影响正常工作。同时,应建立完善的维修档案 ,记录故障现象、排除方法和维修结果等,以便日后参考和 总结。
05
核医学仪器发展趋势与展 望
核医学仪器的发展趋势
核医学仪器向高精度、高灵敏度方向发展
01
随着科技的不断进步,核医学仪器在探测器和成像技术方面取
核医学仪器的发展历程
20世纪50年代
核医学仪器开始应用于临床, 最初是用于检测体内放射性物
质的分布情况。
20世纪70年代
随着计算机技术的发展,核医 学仪器开始实现数字化和自动 化,提高了成像质量和效率。

核医学仪器与方法 ppt课件

核医学仪器与方法  ppt课件

ppt课件
21
一、 基本结构
1.3 光电倍增管(PMT)
基本结构
ppt课件
22
一、 基本结构
1.3 光电倍增管(PMT)
基本结构
ppt课件
23
一、 基本结构
基本结构
1.4预放大器 预放大器对PMT输出脉冲作初步放大,同时匹配PMT
与后续电路之间阻抗,以便系统对该脉冲的进一步处理。 PMT与预放大器之间接有一只电容C,起到隔离高压作用。 由于PMT输出脉冲幅度很小,为了减小外界干扰,预放大 器通常安装在紧靠PMT管座的上方。经过预放大器后脉冲 有一定幅度,再通过线路送到线性放大器。
ppt课件
14
一、 基本结构
基本结构
1.2 碘化钠(铊)(Nal(Tl))晶体探测器 增加晶体厚度可增加γ 射线被完全吸收的概率,因此
提高探测灵敏度。然而也同时增加多次康普顿散射的概率, 导致γ 射线X-Y坐标作用点错位,降低成像分辨率。基于 这一原因, γ 相机采用较薄的Nal(Tl)晶体。但由于许多 γ 射线会穿透晶体,不能于晶体发生相互作用,降低了成 像灵敏度,这一问题在高能核素成像时,如18F,变得更 为突出。目前能够进行高能核素成像的γ 相机多采用5/8 英寸晶体,以获得较高的灵敏度,同时又保证低能核素成 像的分辨率。
ppt课件
2
一、 基本结构
基本结构
ppt课件
3
一、 基本结构
基本结构
如γ 相机原理框图, γ 相机通常由以下主要部分组成: 准直器,探测器(晶体),光电倍增管(PMT),预放 大器,放大器,脉冲高度分析器(PHA),X、Y位置 电路、总和电路,以及显示或记录器件。带有计算机的 γ 相机还有模/数(A/D)转换器和数字计算机。探测 器,PMT、放大器、X、Y位置电路和总和电路组装在 一个单元中,称为γ 相机探头。探头被安装在支架上, 通过开关控制上下移动和转动,以便对准患者的检查部 位。

核医学概论核医学仪器ppt课件

核医学概论核医学仪器ppt课件

三、核医学仪器
• 探头(辐射探测器):利用射线和物质相互 作用产生的各种效应将射线的辐射能转变为 电子线路部分能处理的电信号。
• 电子学单元:根据不同的测量要求和探测器 的特点而设计的分析和记录电信号的电子测 量仪器。
• 数据处理系统(附加部件):按不同的检测 目的和需要而配备的计算机数据处理系统、 自动控制系统、显示系统和储存系统等。
三、核医学仪器
核探测仪器的种类
按照测量 原理分
• 电离探测仪(ionization detector)
• 闪烁探测仪(scintillation detector)
按用途分
• 显像仪器(γ 相机、SPECT、 SPECT/CT、PET、PET/CT、PET/MR)
• 功能测定仪器
• 体外样本测量仪器
核医学的发展历史与现状
SPECT/CT
PET/CT
(3) SPECT与γ 相机的机架、扫描 床与图像处理计算机系统
显示记录装置 由脉冲高度分析器输出的信号进入显示
记录系统,显示记录系统主要有: 定标仪、计数率仪、显像仪器组成。
2、SPECT与γ 相机工作原理
NaI晶体 光电倍增管(PMT) 前置放大器
经过放大到几伏至几十 伏,才能触发电子测量 仪器而被记录下来。
(2) SPECT与γ 相机的电路
定位电路和能量电路 在晶体中发生一个γ 闪烁事件,就会使排
列有序的光电倍增管阳极端输出众多幅度不等 的电脉冲信号,对这些信号经过一系列分析电 路的权重处理,就可以得到这一闪烁事件的位 置信号和能量信号,在显示屏的相应位置上出 现一个荧光信号,荧光的亮度与射线能量大小 成正比。
三、核医学仪器
1、SPECT与γ 相机结构 自1957年Anger研制出第一台γ 照相机以来,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简称闪烁探头,主要部件由闪烁体、光电倍增管 (photomultiplier,PMT)和前置放大器组成。
按化学性质分 无机闪烁体:NaI(Tl)晶体、ZnS(Ag)晶体 有机闪烁体:塑料晶体
按状态分 固体闪烁体
液体闪烁体
基本结构 管 器
闪烁体 光电倍增
前置放大
γ闪烁探测器的工作原理
(二)电子测量装置和/或计算机装置
常用图像重建方法:滤波反射投影法(filter back projection,FBP)、迭代法(iterative)。
成像方法:
一个探头可以围绕病人某一脏器进行360°旋转的γ相机,在旋转时每隔一定 角度采集一帧图片。
经电子计算机自动处理,将图像叠加,利用滤波反射投影法可以从一系列投 影像重建横向断层影像,由横向断层影像的三维信息再经影像重新组合可以 得到矢状、冠状断层和任意斜位方向的断层影像。
放射性药物能够选择性聚集在特定脏器、组织或病变部位,使其与邻近组织 之间的放射性分布形成一定程度浓度差
SPECT
(一)基本结构:
1、探头及电子学线路
结构和形状与γ照相机相似,探头有单探头、 双探头、多探头之分。
2、机架
机架要求重量轻、大环孔径大、体积小等特 点,还应具有可变角和滑环等新功能。
3、病人检查床
SPECT的重要部分,新的要求应有二维运动功 能,水平移动的精度要求高。
4、工作站
(1)采集工作站:要求速度快,网络功能, 能同时控制两台以上的机架和探头;
4.电子学线路
前置放大器 主放大器及均匀性校正电路 脉冲幅度分析器 位置电路
5.计算机系统
显示系统 成像系统
(二)成像原理:
1、注入人体的放射性药物发射出的γ射线,经过准直器的准 直作用,选择性地打在碘化钠晶体上。
2、碘化钠晶体产生的闪烁光由一组光电倍增管收集。
3、任何一次闪烁将在各个光电倍增管上产生不同的响应,将 所有的光电倍增管的响应加起来可以产生位置信号和能量信 号。
(2)处理工作站:图像局部放大,局部定量 分析,分析动态图像制出的时间放射性曲线,振幅和相 位分析。
(二)成像原理:
SPECT的成像原理与CT是相同的,都要用图像 重建的方法得到断层图像。
数字图像可划分成许多小单元,常用的图像 矩阵有64×64、128×128、256×256,知道了图像矩 阵中每一个单元的值,也就可知整幅图像的性质。
第二章 核医学仪器
定义:凡在医学中探测和纪录放射性 核素放出射线的种类、能量、活度及 其随时间变化在空间分布的仪器,统 称为核医学仪器。
第一节 基本原理、结构及质量控制
一、基本原理
1.电离作用: 物质电离产生电信号→探测器采集→计量分析
2.荧光现象: 带电粒子使闪烁物质发荧光→光电倍增管→测量
电3.路感光作用: 射线使感光材料形成潜影→显影定影→定位定量
厚度最薄6.2mm,最厚12.5mm,通用9.3mm
不同晶体材料的性能比较
3.光电倍增管
作用:将光能转变成电信号
外形:圆柱状、六边形、正方形
PMT个数:因视野大小和PMT大小而异
圆形视野PMT最少19个,最多91个
探头均匀性
增加PMT个数可改善空间分辨率,但影响
光电倍增管按外形分类及性能
光导:用以提高光的传输效应,改善光的空间分布 塑料材料、硅油
由用来分析和记录脉冲信号的一些仪器组合 而成。 放大器
脉冲幅度分析器 计数器 计算机装置
第二节 脏器显像仪器
一、概况
脏器显像仪器是从人体外探测体内放射性核素 分布,在体外观察体内组织器官的病理或生理变化情况的 一种特殊的探测装置。
1951年
ห้องสมุดไป่ตู้
闪烁扫描机
1958年
γ照相机
1963年 断层图像
放射性核素
二、基本结构
核医学仪器一般由两大部分组成: 辐射探测器(radiation
detector) 电子测量装置和/或计算机装置
(一)辐射探测器: 实际上是一种能量转换器,其作用是将
探测到的射线能量转换成可以记录的电脉冲信号。
电离室 计数管 闪烁探测器 半导体探测器
闪烁探测器(scintillation detector)
1.准直器:
作用:限制散射光子
按外形分:针孔准直器、平行孔准直器、扩散孔准直器、
斜孔准直器、扇形准直器
按接受能量分:低能准直器(<150KeV)、中能准直器(150~300KeV) 、
直器
高能准直器(>350KeV) 、超高能准
不同种类准直器的物理性能
按能量不同区分准直器
2.晶体
作用:将γ光子转变成可见光,一般为碘化钠晶体[NaI(Tl)] 外形:圆形、方形、矩形 规格:φ280~500mm、400mm×400mm、640mm×400mm
成像基本步骤:
用短半衰期核素Tc-99m等标记某些特殊化合物,经静脉注入人体。 探测聚集于人体一定器官、组织内标记与化合物上的Tc-99m衰变所发出的γ
射线。 将γ射线转化为电信号并输入计算机,经计算机断层重建为反映人体某一器
官生理状况的断层或三维图像。
SPECT成像特点:
SPECT的图像是反映放射性药物在体内的断层分布图
4、有了位置信号和能量启辉信号,在显示器上就可以显示出 一个闪烁点,众多的闪烁点就可以产生一幅图像。
三、单光子发射型计算机断层仪
单光子发射型计算机断层仪(single photon emission computed tomography,SPECT)是一台高性能 的γ照相机的基础上增加了支架旋转的机械部分、断层 床和图像重建(reconstruction)软件,使探头能围绕 躯体旋转360o或180o,从多角度、多方位采集一系列平面 投影像。通过图像重建和处理,可获得横断面 (transverse section)、冠状面(coronal section) 和矢状面(sagittal section)的断层影像 (tomogram)。
20世纪80年代
SPECT
20世纪90年代
PET
1999年 PET/CT
SPECT/CT
二、γ照相机 (一)基本结构:
γ照相机(γcamera)是一种采用大型晶体、一次性成 像的核医学仪器。 由探头及支架、电子线路、计算机操作和显示系统组成。
γ照相机
γ照相机结构示意图
探头(detector):准直器、晶体、光电倍增管、光导
相关文档
最新文档