(专题精选)初中数学命题与证明的难题汇编含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(专题精选)初中数学命题与证明的难题汇编含答案
一、选择题
1.下列命题中,真命题的是()
A.两条直线被第三条直线,同位角相等
B.若a⊥b,b⊥c,则a⊥c
C.点p(x,y),若y=0,则点P在x轴上
D a,则a=﹣l
【答案】C
【解析】
【分析】
根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.
【详解】
A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;
B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;
C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;
D a,则a=0或a=1,所以D选项为假命题.
故选:C.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
2.“两条直线相交只有一个交点”的题设是()
A.两条直线 B.相交
C.只有一个交点 D.两条直线相交
【答案】D
【解析】
【分析】
任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.
【详解】
“两条直线相交只有一个交点”的题设是两条直线相交.
故选D.
【点睛】
本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.
3.下列命题中正确的是().
A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D
【解析】
【分析】
根据相似三角形进行判断即可.
【详解】
解:A、所有等腰三角形不一定都相似,原命题是假命题;
B、两边成比例的两个等腰三角形不一定相似,原命题是假命题;
C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;
D、有一个角是100°的两个等腰三角形相似,是真命题;
故选:D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
4.下列命题是假命题的是()
A.有一个角为60︒的等腰三角形是等边三角形
B.等角的余角相等
C.钝角三角形一定有一个角大于90︒
D.同位角相等
【答案】D
【解析】
【分析】
【详解】
解:选项A、B、C都是真命题;
选项D,两直线平行,同位角相等,选项D错误,是假命题,
故选:D.
5.下列命题是假命题的是()
A.四个角相等的四边形是矩形
B.对角线相等的平行四边形是矩形
C.对角线垂直的四边形是菱形
D.对角线垂直的平行四边形是菱形
【答案】C
【解析】
试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;
B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;
C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;
D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.
故选C.
考点:命题与定理.
6.下列命题中,正确的命题是()
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
【答案】C
【解析】
【分析】
根据等弧或垂径定理,正多边形的性质一一判断即可;
【详解】
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
故选:C.
【点睛】
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
7.下列命题中,是真命题的是()
A.将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x
B.若一个数的平方根等于其本身,则这个数是0和1
C.对函数y=2
x
,其函数值y随自变量x的增大而增大
D.直线y=3x+1与直线y=﹣3x+2一定互相平行
【答案】A
【解析】
【分析】
利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.
【详解】
解:A、将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x,正确,符合题
意;
B 、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;
C 、对函数y =
2x
,其函数值在每个象限内y 随自变量x 的增大而增大,故错误,是假命题,不符合题意; D 、直线y =3x +1与直线y =﹣3x +2因比例系数不相等,故一定不互相平行,故错误,是假命题,
故选:A .
【点睛】
本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.
8.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12
l l P ,直线23l l P ,那 么13
l l P .其中真命题的序号是( ) A .①②
B .①③
C .②③
D .①②③
【答案】B
【解析】
【分析】
利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.
【详解】
解:①直角三角形的两个锐角互余,正确,是真命题;
②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12
l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .
【点睛】
本题主要考查了命题与定理,掌握命题与定理是解题的关键.
9.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合; ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )
A .2
B .3
C .4
D .5
【答案】A
【解析】
【分析】
利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.
【详解】
解:①等腰三角形底边的中点到两腰的距离相等;正确;
②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确: ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;正确; ④有一个角是60度的等腰三角形是等边三角形;不正确;
⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.
正确命题为:2①③,个;
故选:A
【点睛】
本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.
10.下列命题正确的是( )
A .矩形对角线互相垂直
B .方程214x x =的解为14x =
C .六边形内角和为540°
D .一条斜边和一条直角边分别相等的两个直角三角形全等
【答案】D
【解析】
【分析】
由矩形的对角线互相平分且相等得出选项A 不正确;
由方程x 2=14x 的解为x=14或x=0得出选项B 不正确;
由六边形内角和为(6-2)×180°=720°得出选项C 不正确;
由直角三角形全等的判定方法得出选项D 正确;即可得出结论.
【详解】
A .矩形对角线互相垂直,不正确;
B .方程x 2=14x 的解为x=14,不正确;
C .六边形内角和为540°,不正确;
D .一条斜边和一条直角边分别相等的两个直角三角形全等,正确;
故选D.
【点睛】
本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.
11.下列命题中哪一个是假命题( )
A .8的立方根是2
B .在函数y =3x 的图象中,y 随x 增大而增大
C .菱形的对角线相等且平分
D .在同圆中,相等的圆心角所对的弧相等
【答案】C
【解析】
【分析】
利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.
【详解】
A 、8的立方根是2,正确,是真命题;
B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;
C 、菱形的对角线垂直且平分,故错误,是假命题;
D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,
故选C .
【点睛】
考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.
12.39.下列命题中,是假命题的是( )
A .同旁内角互补
B .对顶角相等
C .直角的补角仍然是直角
D .两点之间,线段最短
【答案】A
【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.
13.下列命题中,假命题是( )
A .同旁内角互补,两直线平行
B .如果a b =,则22a b =
C .对应角相等的两个三角形全等
D .两边及夹角对应相等的两个三角形全等
【答案】C
【解析】
【分析】
根据平行线的判定、等式的性质、三角形的全等的判定判断即可.
【详解】
A 、同旁内角互补,两直线平行,是真命题;
B 、如果a b =,则22a b =,是真命题;
C 、对应角相等的两个三角形不一定全等,原命题是假命题;
D 、两边及夹角对应相等的两个三角形全等,是真命题;
故选:C .
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
14.下列命题中,假命题是()
A.平行四边形的对角线互相垂直平分
B.矩形的对角线相等
C.菱形的面积等于两条对角线乘积的一半
D.对角线相等的菱形是正方形
【答案】A
【解析】
【分析】
不正确的命题是假命题,根据定义依次判断即可.
【详解】
A. 平行四边形的对角线互相平分,故是假命题;
B. 矩形的对角线相等,故是真命题;
C. 菱形的面积等于两条对角线乘积的一半,故是真命题;
D. 对角线相等的菱形是正方形,故是真命题,
故选:A.
【点睛】
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
15.下列命题是假命题的是()
A.有一个角是60°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.线段垂直平分线上的点到线段两端的距离相等
【答案】C
【解析】
【分析】
根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.
【详解】
A.正确;有一个角是60°的等腰三角形是等边三角形;
B.正确.等边三角形有3条对称轴;
C.错误,SSA无法判断两个三角形全等;
D.正确.线段垂直平分线上的点到线段两端的距离相等.
故选:C.
【点睛】
本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
16.已知下列命题:
①若a>b,则ac>bc;
②若a=1;
③内错角相等;
④90°的圆周角所对的弦是直径.
其中原命题与逆命题均为真命题的个数是()
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
先对原命题进行判断,再判断出逆命题的真假即可.
【详解】
解:①若a>b,则ac>bc是假命题,逆命题是假命题;
②若a=1是真命题,逆命题是假命题;
③内错角相等是假命题,逆命题是假命题;
④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;
其中原命题与逆命题均为真命题的个数是1个;
故选A.
点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.
17.下列命题是真命题的是()
A.同旁内角相等,两直线平行
B.对角线互相平分的四边形是平行四边形
C.相等的两个角是对顶角
D.圆内接四边形对角相等
【答案】B
【解析】
【分析】
由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由圆内接四边形的性质得出D是假命题;综上,即可得出答案.【详解】
A.同旁内角相等,两直线平行;假命题;
B.对角线互相平分的四边形是平行四边形;真命题;
C.相等的两个角是对顶角;假命题;
D.圆内接四边形对角相等;假命题;
故选:B.
【点睛】
本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;熟练掌握相关性质和定理、定义是解题关键.
18.交换下列命题的题设和结论,得到的新命题是假命题的是()
A.两直线平行,同位角相等B.相等的角是对顶角
C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3
【答案】C
【解析】
【分析】
写出原命题的逆命题,根据相关的性质、定义判断即可.
【详解】
解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;
交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;
交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;
交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,
故选C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
19.下列命题错误的是()
A.平行四边形的对角线互相平分
B.两直线平行,内错角相等
C.等腰三角形的两个底角相等
D.若两实数的平方相等,则这两个实数相等
【答案】D
【解析】
【分析】
根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.
【详解】
解:A、平行四边形的对角线互相平分,正确;
B、两直线平行,内错角相等,正确;
C 、等腰三角形的两个底角相等,正确;
D 、若两实数的平方相等,则这两个实数相等或互为相反数,故D 错误;
故选:D.
【点睛】
本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.
20.下列命题中:①;②在同一平面内,若a ⊥b ,a ⊥c
,则b ∥c ;③若ab =0,则P(a ,b)表示原点;9.是真命题的有( )
A .1 个
B .2 个
C .3 个
D .4 个
【答案】A
【解析】
【分析】
根据立方根、平行线的判定和算术平方根判断即可.
【详解】
解:①≥0≤0不一定成立,错误; ②在同一平面内,若a b ⊥r r ,a c ⊥,则//b c ,正确; ③若0ab =,则(,)P a b 表示原点或坐标轴,错误;
3,错误;
故选:A .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.。