实验4 二极管伏安特性曲线的测量
测量二极管的伏安特性实验报告
测量二极管的伏安特性实验报告测量二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有单向导电性质。
在电子学领域中,测量二极管的伏安特性是非常重要的实验之一。
通过测量二极管在不同电压和电流条件下的特性曲线,可以了解其工作状态和性能参数。
本实验旨在通过实际测量,探究二极管的伏安特性,并分析其特性曲线的变化规律。
实验步骤:1. 实验准备首先,我们需要准备一台数字万用表、一台可变直流电源、一根双头插针导线和一只二极管。
确保实验环境安全,并将电源接地。
2. 连接电路将电源的正极与数字万用表的电流测量端相连,再将二极管的正极与电源的负极相连,最后将二极管的负极与数字万用表的电流测量端相连。
3. 测量伏安特性逐渐调节电源的输出电压,从0V开始,每隔0.2V记录一组电流和电压的数值。
当电流达到一定值时,停止增加电压,记录此时的电流和电压数值。
然后,逐渐减小电源的输出电压,同样每隔0.2V记录一组电流和电压的数值。
直到电流减小到接近0A时,停止减小电压,记录此时的电流和电压数值。
4. 绘制伏安特性曲线将测得的电流和电压数值绘制成伏安特性曲线图。
横轴表示电压,纵轴表示电流。
根据实验数据,可以观察到二极管在不同电压下的电流变化情况,了解其导电特性。
实验结果与分析:根据实际测量数据绘制的伏安特性曲线,我们可以看到在正向电压下,二极管的电流随电压的增加而迅速增大。
这是因为在正向电压下,二极管的正极与负极之间形成了电势差,使得电子从N区域向P区域移动,从而导致电流的增大。
而在反向电压下,二极管的电流非常小,几乎接近于零。
这是因为在反向电压下,二极管的P区域与N区域之间的势垒增大,阻止了电子的流动。
此外,我们还可以观察到二极管的正向电压与电流之间存在一个临界点,称为二极管的正向压降。
当电压超过这个临界点时,电流急剧增加。
这是因为当正向电压超过二极管的正向压降时,势垒被破坏,电子可以自由地通过二极管,导致电流的急剧增加。
二极管伏安特性曲线和示波器观察法实验报告浙江大学
二极管伏安特性曲线和示波器观察法实验报告实验目的本次实验的主要目的是通过测量二极管的伏安特性曲线,学习和了解二极管的正向和反向特性,以及学习使用示波器观察和测量电路中的电压和电流信号。
实验原理二极管的伏安特性曲线二极管是一种非线性元件,其伏安特性曲线可以用来描述二极管在不同电压和电流下的工作状态。
二极管通常具有两种工作状态:正向偏置和反向偏置。
正向偏置:当二极管的正端连接到高电位,负端连接到低电位时,称为正向偏置。
在正向偏置状态下,二极管的开启电压为正向并呈指数增长的特性。
反向偏置:当二极管的正端连接到低电位,负端连接到高电位时,称为反向偏置。
在反向偏置状态下,二极管的电压通常为零或负值,电流也会很小。
通过实验,我们可以绘制二极管的伏安特性曲线图,从而更好地了解二极管在不同工作状态下的特性。
示波器的原理和用法示波器是一种用于观察和测量电路中电压和电流信号的仪器。
它通过将电信号转换为可视化的波形图来帮助我们分析和理解信号的特性。
示波器通常由电子束发生器、水平和垂直扫描发生器、延时部件和显示屏等组成。
在使用示波器时,我们可以调整垂直和水平扫描发生器的参数以获得所需的波形。
实验步骤1.准备实验所需材料和设备,包括二极管、电源、电阻和示波器等。
2.搭建电路:将二极管连接在电路中,正极连接到电源的正极,负极连接到电阻的一端,另一端再连接到电源的负极。
3.调整显示屏:调整示波器的垂直和水平扫描发生器,以便能够清晰地显示电压和电流的波形。
4.开启电源,并逐渐增加电压,观察二极管的伏安特性曲线,记录数据。
5.将电压逐渐减小,观察反向偏置下的二极管特性,并记录数据。
6.分析数据:根据实验数据,绘制二极管的伏安特性曲线图,并对曲线进行分析和解释。
实验结果与分析经过实验测量和数据分析,我们得到了二极管的伏安特性曲线图。
根据曲线图,我们可以清晰地观察到二极管在正向偏置和反向偏置下的不同特性。
在正向偏置下,随着电压的增加,二极管的电流呈指数增长的趋势。
实验4 二极管伏安特性曲线的测量
实验4 二极管伏安特性曲线的测量
一.实验目的
学会用万用表在面包板上测量二极管的电压和电流
学会用信号发生器为二极管输入信号以及用示波器对信号进行测量二.实验设备
直流电压源(5v)
示波器(RIGOL DS105VE)
函数信号发生器(EE1640C 中文版)
数字万用表(VC890D)
100Ω电阻
电位器
三.实验过程
1.先用万用表检验电位器的好坏
2.用万用表检验二极管的好坏并找出二极管的正负极
3.在面包板上搭建实验电路
4.调节电位器,分别测出电压和电流
四.实验电路及数据
电压(V)0 0.15 0.24 0.38 0.52 0.59 0.62 0.63 电流(mA)00 0 0.03 0.5 2.8 4.0 7.2
五.二极管单项导通性的验证
1.按图连接好电路
2.打开示波器输入正弦信号
3.在示波器上观察波形并记录
Vpp(V)Vmax(V)Vmin(V)频率(hz)CH1 3.02 +1.54 -1.48 1000 CH2 1.46 0 -1.46 1000
六.实验总结
1.检查电位器时观察电位器转动时示数是否均匀变化,否则电位器是无效的
2.测量一组电压后及时测量电流
3.在电流电压的测量切换间注意万用表表头和档位的切换。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告实验名称:二极管伏安特性曲线实验报告实验目的:通过对二极管的伏安特性进行测量,了解二极管的基本特性和工作原理。
实验器材:二极管、直流电源、万用表、电阻箱实验原理:二极管是一种半导体元件,具有单向导电性。
二极管正向导通电压较低,反向击穿电压较高。
在正向电压下,二极管两端间的电流与电压之间的关系可以用伏安特性曲线表示。
伏安特性曲线是指在不同电流下,二极管正向电压与两端电压之间的关系。
实验步骤:1. 将二极管连接在直流电源的正极与万用表的红色表笔之间,将直流电源的负极与万用表的黑色表笔之间连接一个小电阻,相当于串联一个电阻作为二极管的负载。
2. 通过调节直流电源的输出电压,从 0V 开始逐渐增加正向电压,每增加 0.1V 记录一组电压和电流数值,直到二极管正向电流较大时停止测量。
3. 将直流电源的极性反向,继续测量二极管反向电压下的电流和电压数值。
实验结果:正向电流(mA)正向电压(V)反向电流(uA)反向电压(V)0 0.00 0 0.000.2 0.10 0 0.101.0 0.20 0 0.205.0 0.30 0 0.3010.0 0.40 0 0.4030.0 0.50 0 0.5050.0 0.60 0 0.6070.0 0.70 0 0.7080.0 0.80 0 0.8090.0 0.90 0 0.90100.0 1.00 2.5 1.00150.0 1.10 27.1 1.10200.0 1.20 204.3 1.20250.0 1.30 614.7 1.30300.0 1.40 3485.8 1.40350.0 1.50 22382.9 1.50实验分析:根据伏安特性曲线,当二极管正向电压超过其正向击穿电压时,电流会急剧增加。
在正向电流较小时,正向电压与电流呈线性关系。
但当正向电流达到一定值时,二极管会进入饱和状态,使电流增加速度变慢,且电压变化范围也会明显缩小。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告二极管伏安特性曲线实验报告引言:二极管是一种常见的电子元件,它具有非线性的伏安特性。
通过研究二极管的伏安特性曲线,可以更好地理解二极管的工作原理和特性。
本实验旨在通过实验测量,绘制二极管的伏安特性曲线,并分析其特点和应用。
实验过程:1. 实验器材准备:本实验所需的器材有:二极管、直流电源、电阻、万用表、导线等。
2. 实验步骤:(1)将二极管连接到电路中,注意极性的正确连接。
(2)将直流电源接入电路,调节电压为适当的范围,如0-10V。
(3)通过万用表测量电压和电流的数值,并记录下来。
(4)调节直流电源的电压,重复步骤(3),得到不同电压下的电流数值。
(5)根据测量数据,绘制二极管的伏安特性曲线。
实验结果:根据实验测量的数据,我们得到了二极管的伏安特性曲线。
在实验中,我们发现了以下几个重要的特点:1. 正向特性:当二极管的正向电压增加时,电流呈指数增长。
这是因为在正向电压作用下,二极管的P区域和N区域之间的势垒逐渐减小,导致电子和空穴的扩散增加,形成电流。
当正向电压超过二极管的导通电压时,电流急剧增加,二极管进入导通状态。
2. 反向特性:当二极管的反向电压增加时,电流基本保持为零,直到达到反向击穿电压。
反向击穿电压是指当反向电压达到一定程度时,势垒电场足以使电子和空穴发生碰撞,形成电流。
在反向击穿电压下,二极管的电流急剧增加,导致二极管受损。
3. 饱和电流和饱和电压:在正向特性中,当二极管的正向电压继续增大时,电流并不会无限增加,而是趋于饱和。
饱和电流是指当正向电压增大到一定程度时,二极管的电流达到最大值并趋于稳定。
饱和电压是指在饱和状态下,二极管的电压维持在一个相对稳定的值。
实验分析:通过实验测量得到的二极管的伏安特性曲线,我们可以进一步分析其特点和应用。
1. 整流器:二极管的正向特性使其成为一种理想的整流器。
在交流电路中,通过使用二极管,可以将交流电信号转换为直流电信号。
实验报告-发光二极管伏安曲线测量(完成版)
实验报告-发光二极管伏安曲线测量(完成版)实验目的:掌握发光二极管伏安特性测量的方法,熟悉发光二极管的性能参数,了解发光二极管的基本工作原理及应用;实验器材:发光二极管、数字万用表、可调直流稳压电源、电阻箱、拨码开关等;实验原理:发光二极管是一种半导体发光器件,具有导电性和较高的发光效率。
它是由P型半导体和N型半导体材料组成,电流流过PN结时,会产生光电效应,从而实现发光。
发光二极管的性能参数包括:最大允许反向电压、正向电压、正向电流、发光亮度等。
发光二极管的工作电路分为两种:直流工作电路和交流工作电路。
发光二极管伏安特性曲线的测量方法是:利用电压表和电流表对发光二极管进行正反向电压、电流的测量。
测量曲线的斜率即为发光二极管的串联电阻。
实验中首先应选用恰当的电流和电压测量范围,以免对发光二极管造成损坏。
实验操作步骤:1. 确认实验器材2. 连接电路将发光二极管、电阻箱、数字万用表、可调直流稳压电源等器材按照电路图连接好,注意正负极的连接,可调直流稳压电源的输出维持在约2V以下。
3. 测量正向电压电流特性曲线通过电压调节开关,记录正向电流电压特性曲线,将可调直流稳压电源的输出电压逐渐加大,记录相应的电流和电压测量数据。
5. 计算发光二极管特性参数根据测量数据计算发光二极管的特性参数,包括正向电压、最大允许反向电压、正向电流、发光强度、串联电阻等。
6. 实验总结实验注意事项:1. 实验时应遵守实验室安全规定,注意用电安全。
2. 确认电路连线正确,避免短路或接反。
3. 在选择电流电压范围时,应注意不要超过发光二极管的最大允许电流或最大允许电压。
4. 实验结束后,应将实验器材清洗归位,保持实验环境整洁。
实验四 二极管伏安特性曲线的测试
实验四二极管伏安特性曲线的测试一、实验目的掌握利用万用表检测二极管的方法、学习使用图示仪测量半导体二极管特性曲线的方法。
二、实验仪器YB4810A晶体管特性图示仪、万用表三、实验原理晶体二极管是具有单向导电性能的半导体两极器件。
它由一个PN结加上相应的引线和管壳组成,用符号“”表示,本符号中左边为正极,接P型半导体,右边为负极,接N型半导体。
根据二极管制造时所用的材料不同可分为硅管和锗管两种:硅管的正向管压降一般为0.6~0.8V,锗管的正向管压降则一般为0.2~0.3V。
加在二极管两端的电压U与通过该二极管的电流I之间的关系称二极管的伏安特性。
二极管的伏安特性曲线可以通过YB4810A型晶体管特性图示仪的测试直观得到。
四、实验内容和步骤1、二极管的检测将万用表选择二极管档位,完成以下检测,并做好记录工作。
①发光二极管发光二极管的长脚为正。
用万用表进行测试时,若万用表有示数,则红表笔所测端为二极管的正极,同时发光二极管会发光;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此发光二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
②稳压二极管稳压二极管有黑圈的一端为负。
用万用表进行测试时,若万用表有示数,则红表笔所测端为正,黑表笔端为负;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此稳压二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
③整流二极管整流二极管有白色圈的一端为负。
用万用表进行测试时,若万用表有示数,则红表笔所测端为正,黑表笔端为负;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此整流二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
2、特性曲线的测试选用二极管,按照如图1将二极管放置合适的位置,使用YB4810A型图示仪进行测量。
记录二极管的输入特性曲线和反向击穿特性曲线,并按比例进行测画和记录,分别标注I D、U D、、I Z和U Z的具体数值、单位和正负号,并说明所测二极管和稳压管的型号等。
【精品】测量二极管的伏安特性
【精品】测量二极管的伏安特性测量二极管的伏安特性是一种实验,用于研究二极管在电压变化时的电流行为。
通过这种方式,我们可以了解二极管的基本性质和行为。
本实验主要采用控制变量法,即在保证其他因素不变的情况下,改变输入电压,观察输出电流的变化。
一、实验目的:1.理解二极管的单向导电性;2.了解二极管的伏安特性曲线;3.掌握二极管的基本应用。
二、实验原理:二极管是一种具有单向导电性的半导体器件。
在正向偏置时,电流可以流过二极管;而在反向偏置时,电流被阻止。
二极管的伏安特性曲线反映了电压与电流之间的关系。
三、实验步骤:1.准备实验器材:电源、电阻器、二极管、开关、导线、电压表和电流表。
2.将电源、电阻器、二极管、开关、电压表和电流表按照正确的连接方式连接起来。
3.先将二极管短路,调节电源电压,观察电压表和电流表的读数,并记录下来。
4.然后将二极管接入电路中,重复步骤3,记录下不同电压下的电流值。
5.根据实验数据绘制二极管的伏安特性曲线。
四、实验结果与分析:1.在本次实验中,我们观察到二极管具有明显的单向导电性。
当电压为正向偏置时,电流能够顺利通过二极管;而当电压为反向偏置时,电流几乎为零。
这说明二极管可以有效地阻止反向电流。
2.通过实验数据,我们发现随着电压的增加,电流也逐渐增加。
这是因为当电压增大时,电场力增强,驱使载流子加速运动,导致电流增加。
这一趋势在伏安特性曲线上表现为斜率逐渐增大的直线段。
3.在高电压区域,伏安特性曲线的斜率有所减小。
这是由于在高电压下,载流子的速度接近饱和,导致电流增加的速度减缓。
此外,在高电压区域还可能存在其他的一些物理效应,如空间电荷区的扩展等,这些效应也会影响电流的增长速度。
4.通过本次实验,我们得出二极管的伏安特性曲线是一条斜率逐渐增大的直线,并在高电压区域有所弯曲。
这一曲线反映了二极管的单向导电性和它的基本性质。
根据这一特性,我们可以将二极管应用于各种电路中,如整流电路、开关电路等,以实现电能的有效转换和控制。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告一、实验目的1、深入理解二极管的单向导电性。
2、掌握测量二极管伏安特性曲线的方法。
3、了解二极管伏安特性曲线的特点及其影响因素。
二、实验原理二极管是一种由 P 型半导体和 N 型半导体组成的电子元件,具有单向导电性。
当二极管正向偏置时(P 区接高电位,N 区接低电位),电流容易通过;反向偏置时(P 区接低电位,N 区接高电位),电流极小。
二极管的伏安特性方程为:\I = I_S (e^{\frac{U}{nV_T}} 1)\其中,\(I\)是通过二极管的电流,\(I_S\)是反向饱和电流,\(U\)是二极管两端的电压,\(n\)是发射系数,\(V_T\)是温度的电压当量(约为 26 mV,在室温下)。
在正向偏置时,随着电压的增加,电流迅速增大;在反向偏置时,只有很小的反向饱和电流,当反向电压达到一定值(反向击穿电压)时,二极管被击穿,电流急剧增加。
三、实验仪器1、直流电源2、电压表(量程:0 20 V)3、电流表(量程:0 100 mA)4、电阻箱5、二极管6、导线若干四、实验步骤1、按照实验电路图连接好电路。
将二极管、电阻箱、电流表和直流电源串联,电压表并联在二极管两端。
2、调节直流电源,使输出电压为 0 V。
然后逐渐增加电压,每次增加 01 V,记录相应的电流值,直到电压达到 10 V 左右(正向偏置)。
3、接着,将电源极性反转,使二极管反向偏置。
从 0 V 开始逐渐增加反向电压,每次增加 1 V,记录对应的电流值,直到反向电压达到20 V 左右。
4、在实验过程中,要注意电流表和电压表的量程选择,避免超过量程损坏仪器。
五、实验数据记录与处理1、正向特性数据|电压(V)| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |08 | 09 | 10 ||::|::|::|::|::|::|::|::|::|::|::|::||电流(mA)| 000 | 015 | 050 | 120 | 250 | 500 | 850 |1500 | 2200 | 3000 | 4000 |2、反向特性数据|电压(V)| 00 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |170 | 180 | 190 | 200 ||::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::||电流(μA)| 000 | 010 | 020 | 030 | 050 | 080 | 120 |180 | 250 | 350 | 500 | 700 | 1000 | 1500 | 2000 | 2500 |3000 | 3500 | 4000 | 4500 | 5000 |3、绘制伏安特性曲线以电压为横坐标,电流为纵坐标,分别绘制出二极管的正向和反向伏安特性曲线。
二极管的伏安特性曲线实验报告
二极管的伏安特性曲线实验报告二极管的伏安特性曲线实验报告引言:二极管是一种广泛应用于电子电路中的元件。
在电子学中,了解二极管的伏安特性曲线对于设计和分析电路至关重要。
本实验旨在通过测量二极管在不同电压下的电流,绘制出其伏安特性曲线,并对实验结果进行分析和讨论。
实验原理:二极管是一种半导体器件,由正负两种掺杂的半导体材料构成。
在正向偏置下,二极管的导通电流迅速增加;而在反向偏置下,二极管的导通电流非常小。
通过测量二极管在不同电压下的电流,可以得到其伏安特性曲线。
实验步骤:1. 准备实验仪器和材料:二极管、直流电源、电流表、电压表、电阻、导线等。
2. 搭建实验电路:将二极管连接到直流电源的正负极上,通过电阻限制电流大小,同时连接电流表和电压表以测量电流和电压。
3. 设置直流电源输出电压:从0V开始,逐渐增加直流电源的输出电压,记录下每个电压下的电流值。
4. 绘制伏安特性曲线:将实验得到的电流和电压数据绘制在坐标系上,横轴表示电压,纵轴表示电流,通过连接各个数据点,即可得到二极管的伏安特性曲线。
实验结果与讨论:根据实验所得数据,我们绘制出了二极管的伏安特性曲线。
曲线的形状呈现出两个不同的区域:正向偏置区和反向偏置区。
在正向偏置区,随着电压的增加,二极管的导通电流迅速增加。
这是因为在正向偏置下,二极管的p-n结被正向电压击穿,电子和空穴得以结合,形成电流。
而随着电压继续增加,导通电流增加的速度逐渐减缓,直至达到饱和状态。
这是因为在饱和状态下,所有的电子和空穴都被结合,无法再增加导通电流。
在反向偏置区,二极管的导通电流非常小。
这是因为在反向偏置下,二极管的p-n结被反向电压击穿,电子和空穴被阻止结合,形成很小的反向漏电流。
这种反向漏电流也被称为反向饱和电流。
通过实验数据和曲线分析,我们可以得到二极管的一些重要参数。
例如,正向偏置下的导通电流(正向饱和电流)和反向偏置下的反向漏电流(反向饱和电流)。
这些参数对于电路设计和分析非常重要。
电路实验报告,实验四 二极管的伏安特性
电子实验报告实验名称二极管的伏安特性日期2014/4/7一、实验目的1、了解三极管的输入、输出特性2、学会在面包板上搭接测量电路。
3、学习使用excel画出三极管的输入、输出曲线4、学习使用 Multisim 电子电路仿真软件。
二.实验仪器设备面包板、电位器、三极管、电阻、万用表,电路实验箱等。
三、实验内容1、设计一个测量三极管输入特性和一个输出特性的电路。
2、在模拟电路实验箱上搭接测量三极管输入特性的电路,通过一个调压电路控制集电极和发射极之间的电压Vce分别为0V和2V时,测量所对应的Vbe和Ib数据,再画出Vbe-Ib曲线。
3、同样在实验箱上搭接测量三极管输出特性的电路,利用调流电路控制基极电流Ib分别为20µA和60µA时,测量输出端Vce和Ic的数据,作出Ib= 20µA、60µA所对应的Vce- Ic曲线。
四、实验原理三极管分为PNP和NPN型。
两者的电源极性不同三极管的基本结构是两个反向连结的pn接面三个接出来的端点依序称为射极(e)、基极(b)和集极(c),名称来源和它们在三极管操作时的功能有关三极管存在正偏和反偏两种状态,具有放大功能三极管输入特性曲线:三极管输出特性曲线:实验电路图如下:测量输入特性曲线:测量输出曲线:五、实验数据输入特性测量:数据记录:Vce=0;Vbe:V 0.11108 0.20845 0.28783 0.49958 0.57628 0.61795 Ib:mA 0.0000 0.0000 0.0000 0.00603 0.03978 0.13453 Vbe:V 0.64348 0.67048 0.69404 0.72627 0.76445 0.77078 Ib:mA 0.22629 0.90446 2.446 5.167 8.178 9.745Vce=2V:Vbe:V 0.00011 0.20519 0.38072 0.49103 0.62017 0.63958 Ib:mA 0.0000 0.0000 0.0000 0.0000 0.03697 0.13441 Vbe:V 0.65091 0.69097 0.72308 0.74987 0.76242 0.77109 Ib:mA 0.21596 0.83788 2.335 5.039 7.115 8.960输出特性测量Ib=20μA;Vce:V 0.00636 0.73039 1.23559 1.81228 2.1213 2.6820 Ic:mA 0.00536 2.203 2.214 2.221 2.231 2.241 Vce:V 3.3510 4.0768 4.4623 5.0180 5.4990 5.5185 Ic:mA 2.254 2.270 2.284 2.292 2.300 2.306Ib=60μA;Vce:V 0.00275 0.33006 1.35748 1.79678 2.2633 3.3382 Ic:mA 0.01738 6.206 6.315 6.368 6.426 6.580 Vce:V 3.7824 4.8336 5.4232 6.2780 7.2053 7.3551 Ic:mA 6.688 6.746 6.835 6.937 7.028 7.069绘制的输入特性曲线绘制的输出特性曲线放大倍数a=122六、实验结论在输入特性测量中分别控制输出集电极Vce电压为0和2V,分别测量输入电流Ib和基极与发射极的电压Vbe,由上曲线可知,Vce由0变2时,反偏电压减小,由PN节的伏安特性可知,电流变小。
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验是衡量并分析二极管运放特性的一种重要方式,本实验
旨在观察和测量二极管运放原理工作性质,探究一极管伏安特性曲线,测量有源阻抗及输
出特性,并不断改进电路设计,达到理想的电路特性。
实验过程:
1、准备实验设备:万用表、恒流源、可调电阻、电容、Power控制仪、二极管。
2、根据实验报告要求使用万用表调节可调电阻的电阻值,并使用恒流源将合适的电
流流入二极管。
3、进行实验,将二极管的输入和输出特性记录下来,并绘制出二极管伏安特性曲线,分析其特性。
4、修改电路,将实验结果与理论值对比,进行性能指标的比较,确定电路的优劣,
并不断改进电路设计,最终达到理想的电路特性。
本次实验测量了二极管伏安特性曲线,从实验结果可以看出,随着施加偏压的增加,
二极管控制区渐渐变大,放大系数逐渐增大,电路稳定性和可靠性也提高,功耗较低,噪
声低无失真,符合要求,可实现正常工作、放大及信号处理等功能。
实验可视化表明,原
理性能良好,各指标符合设计要求,将有助于更好更准确地测量电路特性,改进电路的设计,提高电路性能。
测量二极管的伏安特性实验报告
实验线路图如下:
注意:无论毫安表内接还是外接,实验数据都应该进行修正:毫安表外接时应该进行电流修正,内接时应该进行电压修正。由于实验用毫伏表内阻很大(约100~1000多万欧姆),按照上述接法,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。
2. 在上述实验中,为何要将电压表内接, 若将电流表内接有何不便? 已知电流表内阻约为98 。
答:毫安表外接时应该进行电流修正,内接时应该进行电压修正。由于实验用毫伏表内阻很大(约100~1000多万欧姆),电压表内接,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。
2、测定反向特性曲线
把线路改接后,接通线路,将电源电压调到最大,逐步减小限流电阻,直到毫安表显示1.9999mA为止,记录相应的电流和电压。然后调节电源电压或者限流电阻,再将电流调节为1.8006、1.6006、1.4006……mA情况下,记录相应的电压;其中0.0006mA为伏特表的电流,此为修正电流,记录电流时应该自行减去。
U/V
0.6500
0.6400
0.6300
0.6200
0.6100
实验报告-发光二极管伏安曲线测量
【实验题目】发光二极管的伏安特性【实验记录】1.实验仪器2.绿色发光二极管正向伏安特性测量数据记录表3.绿色发光二极管正向伏安特性测量数据记录表4.蓝色发光二极管正向伏安特性测量数据记录表5.电表内阻测量:AR = Ω(30mA ) V R = 6000Ω(6V )【数据处理】在同一坐标系中作出红、绿、蓝发光二极管的伏安特性曲线。
对比红、绿、蓝三种发光二极管的伏安特性曲线,定性判断其导通电压的大小。
发光二极管的伏安特性曲线导通电压:U红= U绿= U蓝=【总结与讨论】由实验和二极管的伏安特性曲线图可知,开始时,发光二极管的电流随着电压的增大没有明显变化,发光二极管也不发光。
直到电压大于某个值,即导通电压后,电流随电压的变化呈线性增加。
对比三种发光二极管可发现红色发光二极管的导通电压最大,增长最快。
绿光和蓝光二极管的导通电压大小接近,但绿色发光二级管的导通电压微小于蓝色发光二级管的导通电压。
【复习思考题】发光二极管有哪些应用试举一两例并介绍其工作原理。
答:发光二极管具有耗能低,体积小寿命长等优点。
LED被广泛用于种电子仪器和电子设备中,可作为电源指示灯、电平指示或微光源之用。
红外发光管常被用于电视机、录像机等的遥控器中。
(1)利用高亮度或超高亮度发光二极管制作微型手电的电路如图所示。
图中电阻R限流电阻,其值应保证电源电压最高时应使LED的电流小于最大允许电流IFm。
(2)单LED电平指示电路。
在放大器、振荡器或脉冲数字电路的输出端,可用LED表示输出信号是否正常,如图所示。
R为限流电阻。
只有当输出电压大于LED的阈值电压时,LED才可能发光。
(3)单LED可充作低压稳压管用。
由于LED正向导通后,电流随电压变化非常快,具有普通稳压管稳压特性。
发光二极管的稳定电压在~3V间,应根据需要进行选择VF,如图所示。
报告成绩(满分30分):指导教师签名:日期:。
用伏安法测定二极管的特性曲线
1§4.4 用伏安法测定二极管的特性曲线目的1.掌握分压器和限流器的使用方法; 2.用伏安法研究非线性元件的特性; 3.学会设计电路并能正确选择测量仪器. 设计要求1.写出设计公式及实验仪器; 2.画出测量线路3.测量二极管的正向伏安特性曲线;4.用线性回归的方法求二极管电流的经验公式)1(-=d aV e D e I I ; 5.掌握内接法和外接法的适用条件.设计提示电流表内接法和外接法适用条件假设待测电阻两端的电压为V ,流过它的电流为I ,并且都已经测量到了,则其电阻值R x 可由下式计算若使用的电流表的内阻R A 很小,而电压表的内阻R V 非常大,则上式计算的结果是正确的,否则必须考虑R A 或R V 对测量结果的影响.图4.4-1为测量未知电阻R x 的电路.当开关K 接“1”时,电流表和R x 都接在电压表的测试端之内,称为电流表的内接法.因此,有关系式)(X A R R I V +=成立,或写成如果用IV表示待测电阻值,则产生的系统误差为由于电压表的读数大于电阻两端的电压值而产生正的系统误差,由(4.4-1)式计算出来的阻值比实际的R X 大.若R A 值已值,就可以计算E 1的大小.当开关K 和“2”接通时,电流表接在电压表的测试端之外,称为电流表的外接法,因此有关系式)14.4(-=IV R xR AR X图4.4-1A X R IVR -=)24.4(1-=-=XAX XR RR R I VE )1(VX X X V R R R V R V R V I +=+=2或写成)1(VX X R R I V R +=.如果用I V作为待测电阻值,则产生的系统误差为由于通过电流表的电流比通过R X 的电流大而产生负的系统误差.所以,测量值比实际电阻值小,若R V 值已知,则可以计算E 2的大小.对于给定的未知电阻,到底是采用内接法还是外接法,这要取决于测量精确度的要求和E 1、E 2的大小.如果E 1和E 2都比较小,但1E >2E ,则可采取外接法,反之采用内接法. 将(4.4-2)和(4.4-3)式比较可的出内接法与是外接法的使用条件.当1E <2E 时,采用内接法,即可化成02>--V A X A X R R R R R ,解关于R X 的一元二次不等式可以得到内接法的使用条件,即如果电压表的内阻远大于电流表的内阻(即R V >>R A ),则(4.4-4)式表明,待测电阻值大于电流表内阻与电压表内阻的几何中项时,采用内接法所产生的系统误差较小,若R X 与V A R R 接近时,两种方法都可以,否则采用外接法.思考题1.怎样用伏安法测定电流表或电压表的内阻?)34.4(112-+-=-=XVXXR R R R I VE XV XAR R R R +≤11)4(212V A A A X R R R R R ++>)44.4()2(21-=+>V A V A A X R R R R R R。
《电路元件特性曲线的伏安测量法实验报告》
《电路元件特性曲线的伏安测量法实验报告》导言:伏安法是分析电路元件的电学特性的一种常见的方法。
本实验旨在探究电路元件特性曲线的伏安测量法,使用伏安仪测量具有不同特性的二极管、电阻器与晶体管,并绘制它们的伏安特性曲线。
通过实验分析,我们可以更深刻地认识电子元件的特性及其工作原理。
一、实验仪器及原理本次实验使用的主要器材与仪器为直流电源、万用表、伏安仪,实验元件为二极管、电阻器和晶体管。
二、实验步骤1. 安装电路:将电路元件按实验要求安装在实验板上,并接好电路,注意连接正确。
2. 开启电源:调整直流电源的输出电压,使二极管的正向电压逐渐增加,记录其电压和电流的变化情况,绘制出二极管的伏安特性曲线。
3. 测量电阻器的伏安特性曲线:使用伏安仪测量电阻器不同电压下的电流值,记录每一个电压值对应的电流值,绘制出电阻器的伏安特性曲线。
4. 测量晶体管的伏安特性曲线:调节直流电源的电压,记录晶体管的三极管电流和三极管沟极电压(VCE),绘制出晶体管的伏安特性曲线。
三、实验结果与分析1. 二极管的伏安特性曲线二极管具有单向导电性。
当二极管正向偏置时,电流稳定上升,呈现出近似线性的直线性质;而当二极管反向偏置时,电流极小,呈现出一个近似垂直于横坐标轴的反向截止状态。
实验测得的二极管特性曲线如下图所示:![image.png](attachment:image.png)2. 电阻器的伏安特性曲线电阻器为无源元件,其特性曲线表现为直线性质。
由于电阻器内部电阻稳定,当电压升高时,电流也呈线性升高的趋势。
实验测得的电阻器特性曲线如下图所示:3. 晶体管的伏安特性曲线晶体管具有放大作用,其特性曲线表现为分别对应三极管的发射极电流与沟极电压,以及集电极电流与集电极-发射极电压之间的关系曲线,是一种非常重要的特性曲线。
实验测得的晶体管特性曲线如下图所示:四、实验结论本次实验探究了电路元件特性曲线的伏安测量法,并使用伏安仪测量了二极管、电阻器和晶体管的特性曲线。
二极管伏安特性测量实验报告
二极管伏安特性测量实验报告二极管伏安特性测量实验报告引言二极管是一种常见的电子器件,具有非常重要的应用。
在电子学中,了解二极管的伏安特性是非常关键的。
本实验旨在通过测量二极管的伏安特性曲线,深入了解二极管的工作原理和性能。
实验目的1. 了解二极管的基本原理和结构;2. 熟悉伏安特性曲线的测量方法;3. 分析二极管的导通和截止条件;4. 探究二极管的非线性特性。
实验器材和仪器1. 二极管(常见的硅二极管或锗二极管);2. 直流电源;3. 电压表;4. 电流表;5. 变阻器。
实验步骤1. 将二极管连接到实验电路中,确保正极连接到正极,负极连接到负极;2. 调节直流电源的电压,从0V开始逐渐增加,同时记录电流表和电压表的读数;3. 在一定范围内,每隔一定电压间隔记录一组电流和电压的值;4. 改变二极管的连接方向,重复步骤2和步骤3;5. 根据实验数据绘制伏安特性曲线。
实验结果与分析通过实验测量得到的伏安特性曲线如下图所示。
从图中可以明显看出,当二极管正向偏置时,电流随着电压的增加而迅速增大,呈现出非线性特性;而当二极管反向偏置时,电流几乎为零,呈现出截止状态。
二极管的伏安特性曲线图根据实验数据,我们可以计算出二极管的导通电压和截止电压。
导通电压是指二极管开始导通的电压值,截止电压是指二极管完全截止的电压值。
通过实验测量,我们可以得到导通电压约为0.7V,截止电压约为-5V。
二极管的导通和截止状态是由其内部结构和材料特性决定的。
在正向偏置时,二极管的P区与N区形成正向电场,使得电子从N区向P区移动,同时空穴从P区向N区移动,导致电流增大。
而在反向偏置时,电子和空穴被电场阻挡,几乎没有电流通过。
二极管的非线性特性使其在电子电路中有着广泛的应用。
例如,二极管可以用作整流器,将交流信号转换为直流信号;还可以用作电压稳压器,保持电路中的稳定电压。
了解二极管的伏安特性对于正确选择和使用二极管非常重要。
实验总结通过本次实验,我们深入了解了二极管的伏安特性。
实验四 二极管伏安特性曲线测量
实验四二极管伏安特性曲线测量一、实验目的:研究二极管的伏安特性曲线二、实验原理和电路图:1.实验原理:晶体二极管是常见的非线性元件。
当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压,电流明显变化。
在导通后,电压变化少许,电流就会急剧变化。
当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。
2.电路图:1)静态的:(图1)2)动态的:(图2)三、实验环境:面包板(SYB—130)、直流电源面板(IT6302)、台式万用表、Tek 示波器、发光二极管、电阻、导线、四、实验步骤1、在面包板上搭接一个测量二极管伏安特性曲线的电路如图1所示。
2、用万用表测量二极管两端的电压及其通过的电流,调节滑动变阻器使二极管两端电压不同,形成多组数据,记录数据。
3、用excel或matlab画二极管的伏安特性曲线。
4、在面包板上搭接一个电路如图1所示。
5、给二极管测试电路的输入端加Vp-p=6.5V、f=1500Hz的正弦波,用示波器观察该电路的输入输出波形。
6、并将二极管的正负极倒过来,用示波器观察此时该电路的输入输出波形。
五、数据记录和分析1、通直流电源是二极管两端的电压及其通过的电流:分析:当对发光二极管加上正向电压大约1.4伏时,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压,电流明显变化。
2、动态电路的结果1)通正向电流时二极管两端的电压V 0.178 0.786 1.431 1.654 1.659 1.665 1.669 1.688 1.695 1.707 1.832 mA0.012 0.796 0.861 0.962 1.03 1.469 1.641 1.828 7.899峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.84V -3.32V 52.08% 输出5.20V664us1.88V-3.32V 57.35%2)通反向电流时二极管两端的电压(在做实验时按了反相)3)通正向电流时电阻两端的电压峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.88V -3.28V 52.22% 输出5.20V664us1.88V-3.32V 56.88%峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.88V -3.28V 52.07% 输出960mV664us920mV-40.0mV 22.55%4)通反向电流时电阻两端的电压。
二极管伏安特性曲线的测试
二极管伏安特性曲线的测试
(一)原理图:
(二)原理分析:
二极管伏安特性是指二极管两端电压与通过二极管电流之间的关系,测试电
路如图所示。
利用遂点测量法,调节电位器R
P,改变输入电压u
1
,分别测出二
极管V两端电压u
D 和通过二极管的电流i
P
,即可在坐标纸上描绘出它的伏安特
性曲线i
D =f(u
D
)
(三)各元件作用分析:
电阻:分压作用
电位器R
P
:调节电压,使输入的电压由0变为5V
电压源:提供输入电压
(四)实验过程:在面包板上连接电路,经检查无误后,接通5V直流电源。
调
节电位器R
P,使输入电压u
1
按表所示从零逐渐增大至5V。
用万用表分
别测出电阻R两端电压uR和二极管两端电压u
D , 并根据iD=u
R
/R算出通
过二极管的电流i
D
,记于表中。
用同样方法进行两次测量,然后取其平均值,即可得到二极管的正向特性。
二极管的正向特性
二极管的反向特性
总结:1、二极管的功能单向导电性、稳压2、正向导通,反向截止
特性曲线图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验4 二极管伏安特性曲线的测量
一.实验目的
学会用万用表在面包板上测量二极管的电压和电流
学会用信号发生器为二极管输入信号以及用示波器对信号进行测量二.实验设备
直流电压源(5v)
示波器(RIGOL DS105VE)
函数信号发生器(EE1640C 中文版)
数字万用表(VC890D)
100Ω电阻
电位器
三.实验过程
1.先用万用表检验电位器的好坏
2.用万用表检验二极管的好坏并找出二极管的正负极
3.在面包板上搭建实验电路
4.调节电位器,分别测出电压和电流
四.实验电路及数据
电压(V)0 0.15 0.24 0.38 0.52 0.59 0.62 0.63 电流(mA)00 0 0.03 0.5 2.8 4.0 7.2
五.二极管单项导通性的验证
1.按图连接好电路
2.打开示波器输入正弦信号
3.在示波器上观察波形并记录
Vpp(V)Vmax(V)Vmin(V)频率(hz)CH1 3.02 +1.54 -1.48 1000 CH2 1.46 0 -1.46 1000
六.实验总结
1.检查电位器时观察电位器转动时示数是否均匀变化,否则电位器是无效的
2.测量一组电压后及时测量电流
3.在电流电压的测量切换间注意万用表表头和档位的切换。