(北师大版七年级数学上册)第五章一元一次方程章末测试题
2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)
2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)一.选择题(共12小题,满分48分)1.方程kx=3的解为自然数,则整数k等于()A.0,1B.1,3C.﹣1,﹣3D.±1,±32.①x﹣2=;②0.3x=1;③=5x﹣1;④x2﹣4x=3;⑤x=6;⑥x+2y=0,其中一元一次方程的个数是()A.3B.4C.5D.63.下列各式中是方程的是()A.2x﹣3B.2+4=6C.x﹣2>1D.2x﹣1=34.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=15.解决实际问题“某班原分成两个小组进行课外体育活动,第一小组26人,第二小组22人,根据学校活动器材的数量,要将第一小组的人数调整为第二小组的一半,应从第一小组调多少人到第二小组?”时,若设应从第一小组调x人到第二小组,依题意可得的方程为()A.2(26﹣x)=22+x B.2(22﹣x)=26+xC.2(26﹣x)=22D.2(22﹣x)=266.下列变形中:①由方程=2去分母,得x﹣12=10;②由方程6x﹣4=x+4移项、合并得5x=0;③由方程2﹣=两边同乘以6,得12﹣x+5=3x+3;④由方程x=两边同除以,得x=1;其中错误变形的有()个.A.0B.1C.2D.37.如果关于x的方程与的解相同,那么m的值是()A.1B.±1C.2D.±28.新兴商场出售一个A型和一个B型的吹风机,售价都是300元,同进价比,A型电吹风赚了20%,B型电吹风赔了20%,则新兴商场出售一个A型和一个B型电吹风后()A.盈利25元B.赔了25元C.不盈不亏D.盈利50元9.我们定义一种运算:=ad﹣bc例如,=2×5﹣3×4=﹣2,=3x﹣2,按照这种定义的运算,当=时,x=()A.﹣B.﹣C.D.10.已知等式3a=2b+5,则下列关于等式的变形不正确的是()A.3a﹣5=2b B.a=b+C.3ac=2bc+5D.3a+1=2b+6 11.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4B.5.7C.7.2D.7.512.已知关于x的方程ax=b(a,b为有理数),给出下列结论:①当a=b时,方程的解为x=1;②当|a|>b>0时,方程的解x满足:0<|x|<1,其中判断正确的是()A.①,②都对B.①,②都错C.①错,②对D.①对,②错二.填空题(共5小题,满分20分)13.已知方程(m﹣1)x|m|=0是关于x的一元一次方程,则m的值是.14.如果关于x的方程2x+1=3和方程2﹣=1的解相同,那么a的值为.15.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:x﹣3=2(x+1)﹣,怎么办呢?小明想了想,便翻看书后答案,此方程的解是x =﹣5,于是很快就补好了这个常数,他补出的这个常数是.16.方程|2x﹣3|=4的解为.17.如图是2022年5月份的日历,如图中那样,用一个圈竖着圈住3个数,如果被圈住的三个数的和为30,则这三个数最小一个所表示的日期为2022年5月日.三.解答题(共6小题,满分52分)18.检验下列各题括号内的值是否为相应方程的解(1)2x﹣3=5(x﹣3)(x=6,x=4)(2)4x+5=8x﹣3(x=3,x=2)19.解关于x的方程:(2a+1)x=2(x+1).20.若(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,求m2﹣2m+1994的值.21.已知(a2﹣1)x2﹣(a+1)x+8=0是关于x的一元一次方程.(1)求代数式2008(a+x)(x﹣2a)+3a+5的值;(2)求关于y方程a|y|=x的解.22.已知x=3是方程的解,n满足关系式|2n+m|=1,求m+n的值.23.根据题意,列出关于x的方程(不必解方程):(1)如图是2021年2月份的日历:如果用如图所示的十字形框,框住日历上的五个数,这五个数的和为80,求这五个数中最小的那个数.解:设最小的那个数为x,根据题意可列出方程.(2)某农场有试验田1080m2,种植A、B、C三种农作物.已知三种农作物的种植面积比是2:3:4,求三种农作物的种植面积分别是多少.解:设A种农作物的种植面积是2xm2,根据题意可列出方程.(3)小明参加1000米比赛,他以4米/秒的速度跑了一段路程后,又以5米/秒的速度跑完了剩余的路程,一共用时4分钟.求小明以5米/秒的速度跑了多少米?解:设小明以5米/秒的速度跑了x米,根据题意可列出方程.参考答案一.选择题(共12小题,满分48分)1.解:系数化为1得,x=.∵关于x的方程kx=3的解为自然数,∴k的值可以为:1、3.故选:B.2.解:①x﹣2=,分母中含有未知数,不是一元一次方程;②0.3x=1,是一元一次方程;③=5x﹣1,是一元一次方程;④x2﹣4x=3,未知数的最高次数是2,不是一元一次方程;⑤x=6,是一元一次方程;⑥x+2y=0,方程中有2个未知数,不是一元一次方程;所以其中一元一次方程的个数是3.故选:A.3.解:A.2x﹣3含有未知数,但不是等式,所以不是方程,故不符合题意;B.2+4=6不含有未知数,且不是等式,所以不是方程,故不符合题意;C.x﹣2>1不是等式,所以不是方程,故不符合题意;D.2x﹣1=3符合方程的定义,故符合题意.故选:D.4.解:解是x=4的方程是3x﹣8=4,故选:C.5.解:设应从第一小组调x人到第二小组,依题意可得的方程为:2(26﹣x)=22+x.故选:A.6.解:①由方程=2去分母,得x﹣12=10,不符合题意;②由方程6x﹣4=x+4移项、合并得5x=8,符合题意;③由方程2﹣=两边同乘以6,得12﹣x+5=3x+9,符合题意;④由方程x=两边同除以,得x=;其中错误变形的有3个:②、③、④.故选:D.7.解:=,去分母得5x﹣1=14,移项、合并同类项得5x=15,系数化为1得x=3,把x=3代入得1=2|m|﹣3,∴2|m|=4,∴|m|=2,∴m=±2,故选:D.8.解:设一个A型吹风机的进价为x元,由题意得(1+20%)x=300,解得x=250;设一个B型吹风机的进价为y元,由题意得(1﹣20%)y=300,解得y=375,∴300×2﹣(250+375)=﹣25(元),故新兴商场出售一个A型和一个B型电吹风后赔了25元,故选:B.9.解:因为=ad﹣bc,所以=2(﹣1)﹣2x=x﹣2﹣2x=﹣x﹣2,=1(x﹣1)﹣(﹣4)×=x﹣1+2=x+1,所以﹣x﹣2=x+1,﹣x﹣x=1+2,﹣2x=3,x=﹣.故选:A.10.解:A.∵3a=2b+5,∴等式两边都减去5,得3a﹣5=2b,故本选项不符合题意;B.∵3a=2b+5,∴等式两边都除以3,得a=b+,故本选项不符合题意;C.∵3a=2b+5,∴等式两边都乘c,得3ac=2bc+5c,故本选项符合题意;D.∵3a=2b+5,∴等式两边都加1,得3a+1=2b+6,故本选项不符合题意故选:C.11.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.12.解:①当a=b=0时,方程的解不一定为x=1,故①判断错误;②当|a|>b>0时,解ax=b得到:x=,此时0<x=<1,所以0<|x|<1,故②判断正确.故选:C.二.填空题(共5小题,满分20分)13.解:∵方程(m﹣1)x|m|=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.14.解:方程2x+1=3,解得:x=1,把x=1代入第二个方程得:2﹣=1,去分母得:6﹣a+1=3,解得:a=4,故答案为:415.解:设被污染的常数为a,把x=﹣5代入x﹣3=2(x+1)﹣a,得﹣﹣3=2(﹣5+1)﹣a,解得a=﹣.故答案为:﹣.16.解:根据题意,2x﹣3=4,或2x﹣3=﹣4,解这两个方程得:x=,或x=﹣,故答案为:x=,或x=﹣.17.解:设最小一个所表示的日期为x,则另两个数为(x+7),(x+14),则x+(x+7)+(x+14)=30解得:x=3故填3.三.解答题(共6小题,满分52分)18.解:(1)把x=6代入,左边=12﹣3=9,右边=5×3=15,左边≠右边,x=6不是方程的解,把x=4代入,左边=8﹣3=5,右边=5×1=5,左边=右边,x=4是方程的解;(2)把x=3代入,左边=12+5=17,右边=24﹣3=21,左边≠右边,x=3不是方程的解;把x=2代入,左边=8+5=13,右边=16﹣3=13,左边=右边,x=2是方程的解.19.解:(2a+1)x=2(x+1),去括号,得2ax+x=2x+2,移项,得2ax+x﹣2x=2,合并同类项,得(2a﹣1)x=2,当2a﹣1≠0时,即x时,得x=;当2a﹣1=0,即x=时,方程无解.20.解:∵(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,∴m﹣4≠0且2|m|﹣7=1,解得:m=﹣4,∴原式=16+8+1994=2018.21.解:(1)根据题意得:,解得:a=1,则方程是:﹣2x+8=0,解得:x=4,原式=2008(1+4)(4﹣2)+3+5=20088.(2)当a=1,x=4时,|y|=4,∴y=±4.22.解:把x=3代入方程,得:3(2+)=2,解得:m=﹣.把m=﹣代入|2n+m|=1,得:|2n﹣|=1得:①2n﹣=1,②2n﹣=﹣1.解①得,n=,解②得,n=.∴(1)当m=﹣,n=时,m+n=﹣;(2)当m=﹣,n=时,m+n=﹣;综上所述,m+n的值为﹣或﹣.23.解:(1)设最小的那个数为x,根据题意可列出方程:x+x+6+x+7+x+8+x+14=80,故答案为:x+x+6+x+7+x+8+x+14=80;(2)设A种农作物的种植面积是2xm2,根据题意可列出方程2x+3x+4x=1080,故答案为:2x+3x+4x=1080;(3)设小明以5米/秒的速度跑了x米,根据题意可列出方程+=240,故答案为:+=240。
北师大版七年级数学上册第五章《一元一次方程》单元练习题(含答案)
北师大版七年级数学上册第五单元《一元一次方程》单元练习题(含答案)一、单选题1.已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( ) A .﹣2 B .2 C .±2 D .±1 2.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( ) A .1800元 B .1700元 C .1710元 D .1750元 3.一艘轮船在甲、乙两地之间航行,已知水流速度是5千米/小时,顺水航行需要6小时,逆水航行需要8小时,则甲乙两地间的距离是( )A .220千米B .240千米C .260千米D .350千米 4.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .12y y+= 5.某商品的标价为300元,打六折销售后获利50元,则该商品进价为( ) A .120元B .130元C .140元D .150元 6.在以下的式子中:3x +8=3;12-x ;x -y =3;x +1=2x +1;3x 2=10;2+5=7;其中是方程的个数为( )A 、3B 、4C 、5D 、67.下列方程是一元一次方程的是( )A .x+3y=-4B .21231()()n n n b b b b b b ⋅==2C .2x -3=0D .5-3=1-(-1)8.下列各组方程中,解相同的是( )A .x =3与4x +12=0B .x +1=2与2(x +1)=2xC .7x -6=25与7165x -= D .x =9与x+9=0 9.若a=b ,则下列各式不一定成立的是( )A .-a=-bB .a-2=b-2C .a b c c =D .22a b = 10.若关于x 的方程x m ﹣1+2m +1=0是一元一次方程,则这个方程的解是( ) A .﹣5 B .﹣3 C .﹣1D .511.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为小时,则可列方程得( ) A .B .C .D .12.一列匀速前进的火车,从它进入600m 的隧道到离开,共需20s ,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5s ,则这列火车的长度是( )A .100mB .120mC .150mD .200m二、填空题13.若关于x 的方程3x -7=2x +a 的解为x=-1,则a 的值为 .14.若关于x 的方程315ax x -=的解为5x =,则a 等于__________.15.已知数组:11211222,,,,123211333334,,,,,,234331444444,,,,,,…记第一个数为a 1,第二个数为a 2,第n 个数为a n ,若a n 是方程13123x x +--=1的解,则n 等于_____.16.若方程213x +=和203a x --=的解相同,则a 的值是__________. 17.方程2x ﹣3=0的解是__.18.当a 、b 满足关系式________时,等式99a b -=-成立.19.一项工程,甲单独做 10 天可以完成,乙单独做 15 天可以完成,甲队先做两天,余下的工程由两队合做 x 天可以完成,则由题意可列出的方程是________.20.一家商店将某款棉衣按进价提高40%标价,又以8折卖出,结果每件棉衣可获利15元,则这款棉衣的进价是_____元.三、解答题21.将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用式子表示十字框中的五个数之和;(3)若十字框中的五数之和为220,求十字框中的正中心的数是多少?(4)若将十字框上、下、左、右平移,可框住另外的五个数,则十字框中的五个数之和可能等于2010吗?若可能,写出这五个数;如不可能,请说明理由.22.当x为何值时,整式12x++1和24x-的值互为相反数?23.如果13a+1与273a-的值互为相反数,求a的值.24.将正整数1至2019按照一定规律排成下表:记a ij表示第i行第j个数,如a14=4表示第1行第4个数是4.(1)直接写出a42=_________,a53=_________;(2)①如果a ij=2019,那么i=_________,j =_________;②用i,j表示a ij=_____________;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由。
第5章一元一次方程-北师大版七年级数学上册期末单元练习(详解)
第五章《一元一次方程》期末复习单元练习卷(详解)一.选择题(每小题3分共36分)1. 一件商品的进价是a 元,提价30%后出售,则这件商品的售价是( )A.0.7a 元B.1.3a 元C. a 元D.3a 元2. 下面是一个被墨水污染过的方程:-=-x x 23,答案显示此方程的解是2=x ,被墨水遮盖的是一个常数,则这个常数是( ) A.2 B. ﹣2 C. −12 D. 12 3. 下列方程:①7y x =-;②226x x -=;③253m m -=;④211x =-;⑤312x -=,其中是一元一次方程的有( ) A. 2个 B. 3个 C. 4个 D. 以上答案都不对4. 下列解方程去分母正确的是( )A. 由1132x x --=,得2x ﹣1=3﹣3x B. 由2124x x --=-,得2x ﹣2﹣x =﹣4 C. 由135y y -=,得2y-15=3y D. 由1123y y +=+,得3(y+1)=2y+6 5. 在“足球进校园”活动中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队踢了10场球,负了3场,得17分,这个足球队共胜了( )A. 2场B. 4场C. 5场D. 7场6. 某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A. 40分钟B. 42分钟C. 44分钟D. 46分钟7. 右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A. 22元B. 23元C. 24元D. 26元8. 阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为( )A. 26元B. 27元C. 28元D. 29元9.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x天,则所列方程为()A.13584x x++= B.-13584x x+= C.13-584x x+= D.-13-584x x=10. 下列变形中:①由方程x−125=2去分母,得x-12=10;②由方程29x=92两边同除以29,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2−x−56=x+32两边同乘以6,得12-x-5=3(x+3).错误变形的个数是( )A. 4B. 3C. 2D. 111. 阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A. 1 B. ﹣1 C. ±1 D. a≠112.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是( )A. 2019B. 2018C. 2016D. 2013二.填空题(每小题3分共12分)13. 一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .14. 规定:用{m}表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x}+2[x]=23,则 x =________________. 15. 如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为______.16. 我们称使3232++=+y x y x 成立的一对数y x 、为“甜蜜数对”,记为(),,y x 如:当0==y x 时,等式成立,记为(0,0),若()()n m ,、,23都是“甜蜜数对”,则n m -的值为_______.三.解答题17.解方程:(1)x x -=-324 (2)431312=--+x x (3)3273+=--x x (4)132825=--+x x (5)5x −1=3x −2 ; (6)x−32−4x+15=118.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克?(2)当天卖完这些番茄和长豆角能盈利多少元?19. 列方程解应用题如图,在数轴上的点A表示-4,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度/秒,乙的平均速度为1单位长度/秒.请问:(1)两只蜗牛相向而行,经过______秒相遇,此时对应点上的数是______.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?20. 2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书箱原价是a元,当a超过300时,实际付款元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书箱,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?21. 甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?22. 一个三位数,十位数字是0,个位数字是百位数字的2倍,如果将这个三位数的个位数字与百位数字调换位置得到一个新的三位数,则这个新的三位数比原三位数的2倍少9,设原三位数的百位数字是x :(1)原三位数可表示为_______,新三位数可表示为________;(2)列方程求解原三位数。
北师大版第5章 一元一次方程测试卷(含答案)
《第五章一元一次方程》章末测试卷一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.(3分)若2a与1﹣a互为相反数,则a=.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为.3.(3分)如果3x2a﹣2﹣4=0是关于x的一元一次方程,那么a=.4.(3分)在等式中,已知S=800,a=30,h=20,则b=.5.(3分)(2018•牡丹江)小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为元.6.(3分)(2018•南通)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为.7.(3分)(2018•呼和浩特)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.(3分)下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0 C.x+y=1 D.10.(3分)与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2x B.x=2x+1 C.x=2x﹣1 D.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=式是解答此题的关键.12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九13.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1 B.2 C.3 D.414.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6 15.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c 三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c16.(3分)(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5B.4C.3D.2三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).18.(9分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?19.(5分)(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.20.(6分)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.22.(7分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.23.(9分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?24.(9分)(2018•随州)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x,于是得0..同理可得0.,1.1+0.1根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.,5.;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0.1,2.0;(注:0.10.315315…,2.0 2.01818…)【探索发现】(4)①试比较0.与1的大小:0.=1(填“>”、“<”或“=”)②若已知0.8571,则3.1428.(注:0.857l0.285714285714…)参考答案一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.(3分)若2a与1﹣a互为相反数,则a=﹣1.【考点】解一元一次方程;相反数.【专题】计算题.【分析】本题考查列一元一次方程和解一元一次方程的能力,因为2a与1﹣a互为相反数,所以可得方程2a+1﹣a=0,进而求出a值.【解答】解:由题意得:2a+1﹣a=0,解得:a=﹣1.故填:﹣1.【点评】根据题意列方程要注意题中的关键词的分析理解,只有正确理解题目所述才能列出方程.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为5.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于a的方程,即可求得a的值.【解答】解:把x=2代入方程得:4+a﹣9=0,解得:a=5.故答案是:5.【点评】本题考查了方程的解得定义,理解定义是关键.3.(3分)如果3x2a﹣2﹣4=0是关于x的一元一次方程,那么a=.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.据此即可得到一个关于a的方程,从而求解.【解答】解:根据题意,得2a﹣2=1,解得:a=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.4.(3分)在等式中,已知S=800,a=30,h=20,则b=50.【考点】解一元一次方程.【专题】计算题.【分析】将S=800,a=30,h=20,代入中,求出b的值即可.【解答】解:把S=800,a=30,h=20,代入中,800=,解得b=50.故答案为50.【点评】本题比较简单,只是考查一元一次方程的解法.5.(3分)(2018•牡丹江)小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为160元.【分析】等量关系为:标价×0.8=标价﹣40,依此列出方程,解方程即可.【解答】解:设这双鞋的标价为x元,根据题意,得0.8x=x﹣40x=200.200﹣40=160(元)故答案是:160.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.6.(3分)(2018•南通)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为240x=150x+12×150.【分析】设快马x天可以追上慢马,根据快马和慢马所走的路程相等建立方程即可.【解答】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,故答案为:240x=150x+12×150【点评】本题考查了一元一次方程的应用,解答本题的关键是设出未知数,挖掘出隐含条件.7.(3分)(2018•呼和浩特)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款486元.【分析】设小华购买了x个笔袋,根据原单价×购买数量(x﹣1)﹣打九折后的单价×购买数量(x)=节省的钱数,即可得出关于x的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论.【解答】解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是738.【考点】一元一次方程的应用.【专题】数字问题.【分析】设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,根据这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,列出方程解答即可.【解答】解:设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,由题意得100(3x﹣1)+10x+(2x+1)=100(2x+1)+10x+(3x﹣1)+99解得:x=3,则2x+1=7,3x﹣1=8,所以原来的三位数为738.故答案为:738.【点评】此题考查一元一次方程的实际运用,掌握数的计数方法,找出题目蕴含的数量关系是解决问题的关键.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.(3分)下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0 C.x+y=1 D.【考点】一元一次方程的定义.【专题】计算题.【分析】根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0),进行选择.【解答】解:A、x2+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.(3分)与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2x B.x=2x+1 C.x=2x﹣1 D.【考点】同解方程.【分析】求出已知方程的解,再把求出的数代入每个方程,看看左、右两边是否相等即可.【解答】解:x﹣1=2x,解得:x=﹣1,A、把x=﹣1代入方程得:左边≠右边,故本选项错误;B、把x=﹣1代入方程得:左边=右边,故本选项正确;C、把x=﹣1代入方程得:左边≠右边,故本选项错误;D、把x=﹣1代入方程得:左边≠右边,故本选项错误;故选B.【点评】本题考查了一元一次方程的解的应用,注意:使方程左右两边相等的未知数的值叫方程的解.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=【考点】等式的性质.【分析】根据等式的基本性质对各选项进行逐一分析即可.【解答】解:A、不符合等式的基本性质,故本选项错误;B、不论c为何值,等式成立,故本选项正确;C、∵=,∴•6c=•6c,即3a=2b,故本选项错误;D、当a≠b时,等式不成立,故本选项错误.故选B.【点评】本题考查的是等式的基本性质,熟知等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解答此题的关键.12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九【考点】一元一次方程的应用.【分析】设该商品的打x折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【解答】解:设该商品的打x折出售,根据题意得,3200×=2400(1+20%),解得:x=9.答:该商品的打9折出售.故选:D.【点评】本题考查了一元一次方程的应用,正确区分利润与进价,打折与标价的关系是解题关键.13.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1 B.2 C.3 D.4【考点】解一元一次方程.【专题】计算题.【分析】设所缺的部分为x,2y+y﹣x,把y=﹣代入,即可求得x的值.【解答】解:设所缺的部分为x,则2y+y﹣x,把y=﹣代入,求得x=2.故选:B.【点评】考查了一元一次方程的解法.本题本来要求y的,但有不清楚的地方,又有y的值,则把所缺的部分当作未知数来求它的值.14.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6【考点】解一元一次方程.【分析】方程两边都乘以6即可得出答案.【解答】解:﹣=1,方程两边都乘以6得:3x﹣2(x﹣1)=6,故选B.【点评】本题考查了解一元一次方程的应用,注意:解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化成1.15.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c 三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c【考点】等式的性质.【专题】分类讨论.【分析】根据等式的基本性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.分别列出等式,再进行变形,即可解决.【解答】解:由图a可知,3a=2b,即a=b,可知b>a,由图b可知,3b=2c,即b=c,可知c>b,∴a<b<c.故选B.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.16.(3分)(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5B.4C.3D.2【分析】可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.【解答】解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x+3﹣2x﹣4=2x+3,移项合并得:x=﹣4;(2)去括号得:x﹣2﹣4﹣2x=3,移项合并得:﹣x=9,解得:x=﹣9;(3)去分母得:6x﹣2+2x=x+2﹣6,移项合并得:7x=﹣2,解得:x=﹣;(4)方程整理得:﹣=,去分母得:8﹣90x﹣78+180x=200x+40,移项合并得:110x=﹣110,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.(9分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.(5分)(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x100解得x=75.答:城中有75户人家.【点评】考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.20.(6分)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【考点】二元一次方程组的应用.【专题】应用题.【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.【解答】解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需注意:两个甲种部件和三个乙种部件配成一套的等量关系为:3×甲种部件的个数=2×乙种部件的个数.21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.【考点】一元一次方程的应用.【分析】(1)首先设摩托车经过x小时追上自行车,由题意得摩托车速度是每小时行45km,再根据等量关系:骑自行车者2小时路程+x小时路程+180km=骑摩托车x小时路程,根据等量关系列出方程,再解即可;(2)利用船的速度与水速,进而表示出顺流与逆流所用时间,再利用一共航行了7小时得出等式求出即可.【解答】解:(1)设摩托车经过x小时追上自行车,由题意得:2×15+15x+180=3×15×x,解得:x=7.答:摩托车经过7小时追上自行车.(2)设:A、B两地距离为y千米.则B、C两地距离为(y﹣10)千米;根据题意可得:+=7,解得:y=32.5.答:A、B两地之间的路程为32.5km.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.用到的公式是:路程=速度×时间.22.(7分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【考点】一元一次方程的应用.【专题】图表型.【分析】(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;(2)设小红购买跳绳x根,根据等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(9分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?【考点】一元一次方程的应用.【专题】应用题;经济问题.【分析】(1)要知道到那个商店省钱,就要知道小明要买20本,要付多少钱.依题意列方程求出甲店所需付款和乙商店所需付款,然后进行比较到哪个商店省钱;(2)根据给两个商店付相等的钱这个等量关系列方程求解.(3)找出等量关系列方程求出用24元钱在甲商店可买多少本,在乙商店可买多少本,即可知道最多能买多少本.【解答】解:(1)甲店需付款10+10×0.7=17元;乙商店需付款:20×0.8=16元,故到乙商店省钱.(2)设买多少本时给两个商店付相等的钱,依题意列方程:10+(x﹣10)×70%=80%x,解得:x=30.故买30本时给两个商店付相等的钱.(3)设最多可买X本,则甲商店10+(X﹣10)×70%=24,解得:X=30;乙商店80%X=24解得:X=30.故最多可买30本.【点评】此题的关键是要比较,比较哪个店买多少本时便宜.24.(9分)(2018•随州)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x,于是得0..同理可得0.,1.1+0.1根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.,5.;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0.1,2.0;(注:0.10.315315…,2.0 2.01818…)【探索发现】(4)①试比较0.与1的大小:0.=1(填“>”、“<”或“=”)②若已知0.8571,则3.1428.(注:0.857l0.285714285714…)【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节.【解答】解:(1)由题意知0.、5.5,故答案为:、;(2)0.0.232323……,设x=0.232323……①,则100x=23.2323……②,②﹣①,得:99x=23,解得:x,∴0.;(3)同理0.1,2.02故答案为:,(4)①0.1故答案为:=②3.14280.8571 3.4∴4﹣0.85714故答案为:【点评】本题考查了规律探索和简单一元一次方程的应用,解答时注意按照阅读材料的示例找到规律.。
初中七年级上数学试卷与解析-北师大版第5章 一元一次方程测试卷(2)
《第五章一元一次方程》章末测试卷一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=52.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7 D.x=﹣33.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1 C.D.04.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣25.(3分)(2018•恩施州)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元6.(3分)若2x+1=4,则4x+1等于()A.6 B.7 C.8 D.97.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312 B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=3128.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17 B.18 C.19 D.209.(3分)(2018•邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人10.(3分)(2018•武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.2013二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是x=9.12.(3分)如果关x的方程与的解相同,那么m的值是±2.13.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距504km.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=.15.(3分)已知关于x的方程=4的解是x=4,则a=.16.(3分)当x=时,3x+4与4x+6的值相等.17.(3分)如果单项式3a4x+1b2与可以合并为一项,那么x与y的值应分别为.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x 的方程(a+b)x2+3cd•x﹣p2=0的解为x=.20.(3分)三个连续奇数的和是75,这三个数分别是.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)(2018•攀枝花)解方程:1.22.(10分)用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?25.(2018•镇江)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?26.(2018•长春)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.(10分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的平均电费为0.36元,则九月份共用电90千瓦时,应交电费是32.40元.28.(10分)(2018•张家界)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?参考答案一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是0.2.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7 D.x=﹣3【考点】一元一次方程的解.【专题】计算题.【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=﹣1分别代入四个选项进行检验即可.【解答】解:A、把x=﹣1代入方程的左边=右边=﹣2,是方程的解;B、把x=﹣1代入方程的左边=﹣14≠右边,所以不是方程的解;C、把x=﹣1代入方程的左边=﹣12≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;故选A.【点评】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1 C.D.0【考点】一元一次方程的解.【专题】计算题.【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:﹣=1,解得:k=1故选:B.【点评】本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.4.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2【考点】由实际问题抽象出一元一次方程.【专题】几何图形问题.【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.5.(3分)(2018•恩施州)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.6.(3分)若2x+1=4,则4x+1等于()A.6 B.7 C.8 D.9【考点】代数式求值.【专题】计算题.【分析】由已知等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,则原式=6+1=7.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312 B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=312【考点】由实际问题抽象出一元一次方程.【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x(1+30%)×80%=312,故选D.【点评】本题考查了由实际问题抽象出一元一次方程,掌握找出等量关系是解题的关键.8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17 B.18 C.19 D.20【考点】一元一次方程的应用.【专题】应用题.【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.故选C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(3分)(2018•邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用,关键以和尚数和馒头数作为等量关系列出方程.10.(3分)(2018•武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.2013【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×8+7,∴三个数之和为2013.故选:D.【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是x=9.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.(3分)如果关x的方程与的解相同,那么m的值是±2.【考点】同解方程.【分析】本题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程=整理得:15x﹣3=42,解得:x=3,把x=3代入=x+4+2|m|得=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距504km.【考点】一元一次方程的应用.【专题】应用题.【分析】根据逆流速度=静水速度﹣水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港与B港相距xkm,根据题意得:+3=,解得:x=504,则A港与B港相距504km.故答案为:504.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=1.【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】根据0的绝对值为0,得3y﹣2=0,解方程得x,y的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】本题的关键是正确解一元一次方程以及绝对值的定义.15.(3分)已知关于x的方程=4的解是x=4,则a=0.【考点】一元一次方程的解.【专题】计算题.【分析】把x=4代入方程=4得关于a的方程,再求解即得a的值.【解答】解:把x=4代入方程=4,得:=4,解方程得:a=0.故填0.【点评】本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(3分)当x=﹣2时,3x+4与4x+6的值相等.【考点】一元一次方程的解.【专题】计算题.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,解方程得:x=﹣2.故填﹣2.【点评】解决此类问题的关键是列方程并求解,属于基础题.17.(3分)如果单项式3a4x+1b2与可以合并为一项,那么x与y的值应分别为1和2.【考点】同类项.【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】本题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=4.【考点】同解方程.【专题】计算题.【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题主要考查了一元一次方程解的定义.解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x 的方程(a+b)x2+3cd•x﹣p2=0的解为x=.【考点】解一元一次方程;相反数;绝对值;倒数.【专题】计算题.【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p=±2,将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,可得:3x﹣4=0,解得:x=.【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.(3分)三个连续奇数的和是75,这三个数分别是23,25,27.【考点】一元一次方程的应用.【专题】数字问题.【分析】利用“三个连续奇数的和是75”作为等量关系列方程求解.就要先设出一个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,则其他的为x+2,x+4∴x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题中要熟悉连续奇数的表示方法.相邻的两个连续奇数相差2.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)(2018•攀枝花)解方程:1.【解答】解:(1)去括号得:2x+5=3x﹣3,解得:x=8;解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(10分)用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?【考点】一元一次方程的应用.【专题】应用题.【分析】设x张制盒身,则可用(150﹣x)张制盒底,那么盒身有16x个,盒底有43(150﹣x)个,然后根据一个盒身与两个盒底配成一套罐头盒就可以列出方程,解方程就可以解决问题.【解答】解:设x张制盒身,则可用(150﹣x)张制盒底,列方程得:2×16x=43(150﹣x),解方程得:x=86.答:用86张制盒身,64张制盒底,可以正好制成整套罐头盒.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.25.(2018•镇江)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?【分析】设这本名著共有x页,根据头两天读的页数是整本书的,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这本名著共有x页,根据题意得:36(x﹣36)x,解得:x=216.答:这本名著共有216页.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.26.(2018•长春)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【考点】含绝对值符号的一元一次方程;绝对值;解一元一次方程.【专题】计算题.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k﹣1=2,k﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】本题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.(10分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【考点】一元一次方程的应用.【专题】应用题;行程问题.【分析】本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时同向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的平均电费为0.36元,则九月份共用电90千瓦时,应交电费是32.40元.【考点】一元一次方程的应用.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×90=32.40(元).答:九月份共用电90千瓦时,应交电费32.40元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(10分)(2018•张家界)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.【解答】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),答:买羊人数为21人,羊价为150元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【考点】二元一次方程组的应用.【专题】优选方案问题.【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.【点评】本题主要考查学生的分类讨论思想和对于实际问题中方程组解的取舍情况.弄清题意,合适的等量关系,列出方程组仍是解决问题的关键.本题还需注意可供选择的将有三种情况:甲乙组合,甲丙组合,乙丙组合.。
2020-2021年北师大版七年级上册数学第5章《一元一次方程》测试卷 (含答案)
2020-2021年北师大版七年级上册数学第5章一元一次方程单元测试题一.选择题(共10小题,满分30分,每小题3分)1.下列方程是一元一次方程的是()A.x﹣4y=0B.C.x2﹣3=x D.y=02.在方程:①y+1=1;②y=;③y﹣1=y﹣1;④5y=2﹣y中,解为y=的方程()A.1个B.2个C.3个D.4个3.根据等式的性质,下列选项中等式不一定成立的是()A.若a=b,则a+2=b+2B.若ax=bx,则a=bC.若=,则x=y D.若3a=3b,则a=b4.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x5.关于x的方程3﹣=0与方程2x﹣5=1的解相同,则常数a是()A.2B.﹣2C.3D.﹣36.下列方程变形中属于移项的是()A.由2x=﹣1得x=﹣B.由=2得x=4C.由5x+b=0得5x=﹣b D.由4﹣3x=0得﹣3x+4=07.解方程2(x+3)﹣5(1﹣x)=3(x﹣1),去括号正确的是()A.2x+6﹣5+5x=3x﹣3B.2x+3﹣5+x=3x﹣3C.2x+6﹣5﹣5x=3x﹣3D.2x+3﹣5+x=3x﹣18.我国古代问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若假设井深为x尺,则下列符合题意的方程是()A.B.3(x+4)=4(x+1)C.D.3x+4=4x+19.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22B.70C.182D.20610.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二.填空题(共6小题,满分24分,每小题4分)11.若(m﹣1)x|m+2|+3=0是关于x的一元一次方程,则m=.12.若a=b,则a﹣c=.13.若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.14.A、B两人分别从甲乙两地同时相向而行,甲的速度是每小时80千米,乙的速度是甲的,经过小时两人相距10千米,甲乙两地相距千米.15.小马虎在做作业时,不小心把方程的一常数污染了,看不清楚了,被污染的方程是:x+1=x+■,怎么办?小马虎想了想,便翻看了书后的答案,此方程的解是x=12,则这个常数=.16.规定运算:=ad﹣bc,例如=2×5﹣3×4=﹣2,若=6x﹣5,则x 的值是.三.解答题(共6小题,满分46分)17.(6分)解方程:3x+3=8﹣12x.18.(6分)解方程:﹣=119.(6分)列式计算.(1)一个数的25%是750的,这个数是多少?(2)甲、乙两数的和是35,其中甲数是乙数的,乙数是多少?20.(8分)我们定义一种新运算:a*b=2a+ab(等号右边为通常意义的运算):(1)若,求x的值;(2)若(﹣3)*(2*x)=x+24,求x的值.21.(9分)为庆祝元旦,甲、乙两校准备联合文艺汇演,甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格70元60元50元如果两所学校分别单独购买服装,一共应付5920元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有8名同学抽调去参加迎元旦书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?22.(11分)如图,已知数轴上点A表示的数为6,点B是数轴上在A点左侧的一点,且A、B两点间的距离为10,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左运动.(1)数轴上点B表示的数是;(2)运动1秒时,点P表示的数是;(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?相遇时对应的有理数是多少?②当点P运动多少秒时,点P与点Q的距离为8个单位长度.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、含有两个未知数,是二元一次方程,不合题意;B、不是整式方程,是分式方程,不合题意;C、是关于x的一元二次方程,不合题意;D、是关于y的一元一次方程,符合题意;故选:D.2.解:①将y=代入得:左边=y+1=,右边=1,左边≠右边,不合题意;②将y=代入方程得:左边≠右边,不合题意;③将y=代入方程得:左边=右边,符合题意;④将y=代入方程左边得:5×=,右边=2﹣=,左边=右边,符合题意,则解为y=的方程有2个.故选:B.3.解:∵若a=b,则a+2=b+2,∴选项A不符合题意;∵若ax=bx,则x=0时,a可以不等于b,∴选项B符合题意;∵若=,则x=y,∴选项C不符合题意;∵若3a=3b,则a=b,∴选项D不符合题意.故选:B.4.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.5.解:方程2x﹣5=1,移项得:2x=1+5,合并得:2x=6,解得:x=3,把x=3代入得:3﹣=0,去分母得:6﹣3a+3=0,解得:a=3.故选:C.6.解:A、由2x=﹣1得:x=﹣,不符合题意;B、由=2得:x=4,不符合题意;C、由5x+b=0得5x=﹣b,符合题意;D、由4﹣3x=0得﹣3x+4=0,不符合题意.故选:C.7.解:去括号得:2x+6﹣5+5x=3x﹣3,故选:A.8.解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:B.9.解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.10.解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=90;当100≤x<350时,0.9x=90,解得:x=100;∵0.9y=270,∴y=300.∴0.8(x+y)=312或320.所以至少需要付312元.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:∵(m﹣1)x|m+2|+3=0是关于x的一元一次方程,∴m﹣1≠0且|m+2|=1,解得:m=﹣1或﹣3,故答案为:﹣1或﹣3.12.解:若a=b,则a﹣c=b﹣c,故答案为:b﹣c.13.解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.14.解:设甲乙两地相距x千米,依题意得:x﹣80×﹣80××=10或80×+80××﹣x=10,解得:x=360或x=340.故答案为:360或340.15.解:设“■”表示的数为m,根据题意,将x=12代入方程可得:8+1=6+m,解得:m=3,故答案为:3.16.解:根据题中的新定义化简得:3x﹣3+2x=6x﹣5,移项合并得:﹣x=﹣2,解得:x=2,故答案为:2三.解答题(共6小题,满分46分)17.解:移项合并得:15x=5,解得:x=.18.解:去分母得:2x﹣3(x﹣1)=6,去括号得:2x﹣3x+3=6,移项合并得:﹣x=3,解得:x=﹣3.19.解:(1)首先假设这个数为x,根据题意,得25%x=750×.解得x=600答:这个是数是600;(2)设乙数是y.则甲数是(35﹣y),根据题意,得35﹣y=y解得y=.答:乙数是.20.解:(1)3*x=2×3+3x=6+3x*x=2×+x=1+x,∴6+3x=1+x,∴x=﹣2;(2)∵2*x=2×2+2x=4+2x,∴﹣3*(2*x)=2(﹣3)+(﹣3)(4+2x)=﹣6﹣12﹣6x=﹣18﹣6x,∴﹣18﹣6x=x+24,∴x=﹣621.解:(1)∵甲、乙两校共92人,∴甲、乙两校联合起来购买服装需50×92=4600(元),∴5920﹣4600=1320(元)答:甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省1320元.(2)设甲校人数为x人(依题意46<x<90),则乙校人数为(92﹣x)人,依题可得:60x+70(92﹣x)=5920,解得:x=52,∴92﹣x=40.答:甲校有52人,乙校有40人.(3)依题可得:抽调后甲校人数为:52﹣8=44(人),∴方案一:各自购买服装需44×70+40×70=5880(元);方案二:联合购买服装需(44+40)×60=5040(元);方案三:联合购买91套服装需91×50=4550(元);综上所述:因为5880>5040>4550.∴应该甲,乙两校联合起来选择按50元一次购买91套服装最省钱.答:甲,乙两校联合起来选择按50元一次购买91套服装最省钱.22.解:(1)∵点A表示的数为6,AB=10,且点B在点A的左侧,∴点B表示的数为6﹣10=﹣4.故答案为:﹣4.(2)6﹣3×1=3.故答案为:3.(3)设运动的时间为t秒,则此时点P表示的数为6﹣3t,点Q表示的数为2t﹣4.①依题意,得:6﹣3t=2t﹣4,解得:t=2,∴2t﹣4=0.答:当点P运动2秒时,点P与点Q相遇,相遇时对应的有理数是0.②点P,Q相遇前,6﹣3t﹣(2t﹣4)=8,解得:t=;当P,Q相遇后,2t﹣4﹣(6﹣3t)=8,解得:t=.答:当点P运动秒或秒时,点P与点Q的距离为8个单位长度.。
重难点解析北师大版七年级数学上册第五章一元一次方程单元测评试题(含详细解析)
七年级数学上册第五章一元一次方程单元测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、解分式方程12x -﹣3=42x -时,去分母可得( ) A .1﹣3(x ﹣2)=4 B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=4 2、已知a 为正整数,且关于x 的一元一次方程ax ﹣14=x +7的解为整数,则满足条件的所有a 的值之和为( )A .36B .10C .8D .43、若关于x 的方程3x +2k -4=0的解是x =-2,则k 的值是( )A .5B .2C .﹣2D .﹣5 4、解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-5、甲数是2019,甲数比乙数的14还多1,设乙数为x ,则可列方程为( )A .()412019x -=B .412019x -=C .1120194x += D .1(1)20194x +=6、下列变形正确的是( )A .由5x =2,得 52x =B .由5-(x +1)=0 ,得5-x =-1C .由3x =7x ,得3=7D .由115x --=,得15x -+= 7、一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为( )A .6场B .7场C .8场D .9场8、已知1x =-是方程14ax bx +=-的解,则()3525a b b -+--的值是( )A .5B .5-C .10-D .109、已知等式324a b =-,则下列等式中不成立的是( )A .324a b -=-B .3125a b -=-C .324ac bc =-D .3(1)(24)(1)a c b c +=-+10、下列方程中,解是3x =的方程是( )A .684x x =+B .()527x x -=-C .()3323x x -=-D .()211020.1x x -=+ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若()2120m n +++=,则关于x 的方程23x m x n --=的解为x =______.2、如图,点AB 、在数轴上,它们所对应的数分别是2(4)x -和2x +,且满足AO BO =,则x 的值为________.3、定义新运算:对于任意有理数a 、b 都有a ⊗b=a (a ﹣b )+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(﹣3)+1=-6+1=-5.则4⊗x=13,则x=_____.4、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低 a 元后,再打八折,现售价为 b 元,那么该电脑的原售价为 ________元.5、为迎接一年一度的“春节”的到来,綦江区某水果店推出了A 、B 、C 三类礼包,已知这三类礼包均由苹果、芒果、草莓三种水果搭配而成,每袋礼包的成本均为苹果、芒果、草莓三种水果成本之和.每袋A 类礼包有5斤苹果、2斤芒果、8斤草莓;每袋C 类礼包有7斤苹果、1斤芒果、4斤草莓.已知每袋A 的成本是该袋中苹果成本的3倍,利润率为30%,每袋B 的成本是其售价的56,利润是每袋A 利润的49;每袋C 礼包利润率为25%.若该店12月12日当天销售A 、B 、C 三种礼包袋数之比为2:1:5,则当天该水果店销售总利润率为_______.三、解答题(5小题,每小题10分,共计50分)1、已知某数的34与23的差是85的倒数,求这个数.2、如图,160AOB ∠=︒,OC 为其内部一条射线.(1)若OE 平分AOC ∠,OF 平分BOC ∠.求EOF ∠的度数;(2)若100AOC ∠=,射线OM 从OA 起绕着O 点顺时针旋转,旋转的速度是20︒每秒钟,设旋转的时间为t ,试求当AOM ∠+MOC ∠+MOB ∠200=时t 的值.3、某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底?(2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?4、在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:如图,点A表示的数为1-,点B表示的数为2. 表示数1的点C到点A的距离是2,到点B的距离是1. 那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为4-,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?5、如图一,已知数轴上,点A表示的数为6-,点B表示的数为8,动点P从A出发,以3个单位每秒t>的速度沿射线AB的方向向右运动,运动时间为t秒()0(1)线段AB=__________.(2)当点P运动到AB的延长线时BP=_________.(用含t的代数式表示)t=秒时,点M是AP的中点,点N是BP的中点,求此时MN的长度.(3)如图二,当3(4)当点P从A出发时,另一个动点Q同时从B点出发,以1个单位每秒的速度沿射线向右运动,①点P表示的数为:_________(用含t的代数式表示),点Q表示的数为:__________(用含t的代数式表示).②存在这样的t值,使B、P、Q三点有一点恰好是以另外两点为端点的线段的中点,请直接写出t 值.______________.-参考答案-一、单选题1、B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【考点】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.2、A【解析】【分析】根据题意可知1a ≠,解原方程可得211x a =-,再由“方程解为整数”,即可求出a 的值,最后再由a 为正整数即可求出满足条件的所有a 的值的和.【详解】解:147ax x -=+,移项得:714ax x -+= ,合并同类项得:(1)21a x -=,若a =1,则原方程可整理得:-14=7(无意义,舍去),若a ≠1,则211x a =-, ∵解为整数,∴x =1或-1或3或-3或7或-7或21或-21,则a -1=21或-21或7或-7或3或-3或1或-1,解得:a =22或-20或8或-6或4或-2或2或0,又∵a 为正整数,∴a =22或8或4或2,∴满足条件的所有a 的值的和=22+8+4+2=36,故选:A .【考点】本题考查一元一次方程的解,正确掌握一元一次方程的解法是解答本题的关键.3、A【解析】【分析】根据一元一次方程的解的定义计算即可.【详解】解:∵关于x的方程3x+2k-4=0的解是x=-2,∴-6+2k-4=0,解得,k=5,故选:A.【考点】本题考查的是一元一次方程的解,解题的关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.4、D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.【考点】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.5、C 【解析】【分析】根据甲数比乙数的14还多1,列方程即可.【详解】解:设乙数为x,根据甲数比乙数的14还多1,可知甲数是114x+,则1120194x+=故选:C.【考点】本题考查列一元一次方程,是重要考点,掌握相关知识是解题关键.6、D【解析】【分析】根据等式的基本性质,逐项判断即可.【详解】解:∵5x=2,∴25x=,∴选项A不符合题意;∵5﹣(x+1)=0,∴5﹣x﹣1=0,∴5﹣x=1,∴选项B 不符合题意;∵在等式的左右两边要同时除以一个不为零的数,所得等式仍然成立,而3x =7x 中的x 是否为零不能确定,∴3=7不成立,∴选项C 不符合题意; ∵115x --=, ∴(1)5x --=,∴15x -+=,∴选项D 符合题意.故选:D .【考点】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7、A【解析】【分析】设该队前9场比赛共平了x 场,则胜了(9-x )场.根据共得21分列方程求解.【详解】解:设该队前9场比赛共平了x 场,则胜了(9-x )场.根据题意得:3(9-x )+x =21,解得:x =3.9-x =6.答:该队前9场比赛共胜了6场.故选:A.【考点】本题考查了一元一次方程的应用,解题的关键是根据题意找到等量关系并正确的列出方程.8、B【解析】【分析】先将1x=-代入已知方程中得出等式,最后再化简后面的整式即可计算出结果.【详解】1x=-是方程14ax bx+=-的解,∴14a b-+=--,∴整理得5a b-=.()()352535210331031035105,a b ba b ba ba b∴-+--=-+-+=-++=--+=-⨯+=-故选:B.【考点】本题主要考查整式的运算,属于基础题,难度一般,熟练掌握整式的运算法则是解题的关键.9、C【解析】【分析】由324a b =-,再利用等式的基本性质逐一分析各选项,即可得到答案.【详解】解:324a b =-,324,a b ∴-=- 故A 不符合题意;324a b =-,3125,a b ∴-=- 故B 不符合题意;324a b =-,324,ac bc c ∴=- 故C 符合题意;324a b =-,∴ 3(1)(24)(1)a c b c +=-+,故D 不符合题意;故选:.C【考点】本题考查的是等式的基本性质,掌握等式的基本性质是解题的关键.10、D【解析】【分析】使方程左右两边相等的未知数的值是方程的解.把x =3代入以上各个方程进行检验,可得到正确答案.【详解】解:对于A ,x =3代入方程,左边=18,右边=20,左边≠右边,故此选项不符合题意;对于B ,x =3代入方程,左边=5,右边=4,左边≠右边,故此选项不符合题意;对于C ,x =3代入方程,左边=0,右边=3,左边≠右边,故此选项不符合题意;对于D ,x =3代入方程,左边=50,右边=50,左边=右边,故此选项符合题意;故选:D .【考点】本题考查了一元一次方程的解,解题的关键是根据方程的解的定义.使方程左右两边的值相等的未知数的值是该方程的解.二、填空题1、1【解析】【分析】根据非负数的性质求出m 、n 的值,代入后解方程即可.【详解】 解:∵()2120m n +++=,∴1020m n +=+=,解得,12m n =-=-,, 代入23x m x n --=得,1223x x ++=, 解方程得,1x =故答案为:1.【考点】本题考查了非负数的性质和解方程,解题关键是熟练运用非负数的性质求出m 、n 的值,代入后准确地解方程.2、2【解析】【分析】由AO BO =且 AB 、在原点的两侧,可知()24x -和2x +互为相反数,据此可列出方程,再求解. 【详解】 解: 点AB 、在数轴原点两侧,它们所对应的数分别是()24x -和2x +,且满足AO BO =, ∴ ()24x -和2x +互为相反数;∴ ()()2204x x ++-=解得:2x =故答案为:2.【考点】本题考查数轴及方程的应用,解题关键是要读懂题目的意思,找出等量关键,利用相反数的和为0这一等量关系,列出方程,再求解.3、1【解析】【详解】解:根据题意得:4(4﹣x )+1=13,去括号得:16﹣4x +1=13,移项合并得:4x =4,解得:x =1.故答案为1.4、(54b +a )【解析】【分析】用一元一次方程求解,用现售价为b 元作为相等关系,列方程解出即可.【详解】解:设电脑的原售价为x 元,则0.8(x-a)=b,解得x=54b+a.故该电脑的原售价为(54b+a)元.故答案为:(54b+a).【考点】考查了列代数式,当题中数量关系较为复杂时,利用一元一次方程作为模型解题不失为一种好的方法,思路清晰简单,避免了思维混乱而出现的错误.5、26%【解析】【分析】根据利润率和成本、销售之间的关系式利润率=销售额-成本成本×100%可设苹果、芒果、草莓三种水果成本x、y、z,可用x表示A的成本为5x×3=15x,利润15x×30%=4.5x,售价为19.5x.B的利润为4.5x×49=2x,售价为12x,成本为10x.同理可求出C的成本12x,售价为15x.再根据三种礼包销售量求出总的销售额,最后求出总利润率.【详解】解:设苹果、芒果、草莓三种水果的成本分别为x、y、z,则5x+2y+8z=3×5x.∵每袋A的成本是15x,利润率为30%,∴每袋A的利润为4.5x,售价为15x(1+30%)=19.5x,∵每袋B的成本是其售价的56,利润是每袋A利润的49,∴B的利润为4.5x×49=2x,售价为12x,成本为10x.∵每袋C礼包利润率为25%,成本为7x+y+4z=12x,∴C的售价为15x.∵A、B、C三种礼包袋数之比为2:1:5,∴2 4.5125(1512)100%26% 215110512x x x xx x x⨯+⨯+⨯-⨯=⨯+⨯+⨯;故答案为:26%.【考点】此题考查的是用未知数表示各个参数,掌握售价、成本、利润之间的关系即可解出此题.三、解答题1、这个数是31 18【解析】【分析】设这个数是x,根据题意得:325438x-=,解方程即可.【详解】解:设这个为x.根据题意得:325438x-=,∴3118x=.所以,这个数为31 18【考点】本题考查了倒数,解一元一次方程,根据题意列出方程是解题的关键.2、∴当t=1时,点P表示的数为23-4×1=1(2)当运动时间为t 秒时,点P 表示的数为23-4t ,点Q 表示的数为3t -1,依题意,得:|23-4t -(3t -1)|=3,即24-7t =3或7t -24=3,解得:t =3或t =277. 答:当t 为3或277时,点P 与点Q 相距3个单位长度. 【考点】 本题考查了数轴和一元一次方程的应用.用到的知识点是数轴上两点之间的距离,关键是根据题意找出等量关系,列出等式.9.(1)80EOF ∠=;(2)3t s =或7t s =,【解析】【分析】(1)根据角平分线定义和角的和差计算即可;(2)分四种情况讨论:①当OM 在∠AOC 内部时,②当OM 在∠BOC 内部时,③当OM 在∠AOB 外部,靠近射线OB 时,④当OM 在∠AOB 外部,靠近射线OA 时.分别列方程求解即可.【详解】(1)∵OE 平分∠AOC ,OF 平分∠BOC , ∴∠1=12∠AOC ,∠2=12∠BOC ,∴∠EOF =∠1+∠2=12∠AOC +12∠BOC =12(∠AOC +∠BOC )=12∠AOB .∵∠AOB =160°,∴∠EOF =80°.(2)分四种情况讨论:①当OM在∠AOC内部时,如图1.∵∠AOC=100°,∠AOB=160°,∴∠MOB=∠AOB-∠AOM=160°-20t.∵∠AOM+∠MOC+∠MOB=∠AOC+∠MOB=200°,∴100°+160°-20t=200°,∴t=3.②当OM在∠BOC内部时,如图2.∵∠AOC=100°,∠AOB=160°,∴∠BOC=∠AOB-∠AOC=160°-100°=60°.∵∠AOM+∠MOC+∠MOB=∠AOM+∠COB=200°,∴2060200t+=,∴t=7.③当OM 在∠AOB 外部,靠近射线OB 时,如图3,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵∠AOM =20t ,∴∠MOB =∠AOM -∠AOB =20160t ︒-︒,∠MOC =20100t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴202010020160200t t t ︒+︒-︒+︒-︒=︒,解得:t =233. ∵∠AOB =160°,∴OM 转到OB 时,所用时间t =160°÷20°=8. ∵233<8, ∴此时OM 在∠BOC 内部,不合题意,舍去.④当OM 在∠AOB 外部,靠近射线OA 时,如图4,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵36020AOM t ∠=︒-︒,∴∠MOC =∠AOM +∠AOC =36020100t ︒-︒+︒=46020t ︒-︒,∠MOB =∠AOM +∠AOB =36020160t ︒-︒+︒=52020t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴()()()360204602052020200t t t ︒-︒+︒-︒+︒-︒=︒,解得:t =19.当t =19时,20t =380°>360°,则OM 转到了∠AOC 的内部,不合题意,舍去.综上所述:t =3s 或t =7s .【考点】本题考查了角的和差和一元一次方程的应用.用含t 的式子表示出对应的角是解答本题的关键.3、(1)80个(2)15张(3)6张;9张【解析】【分析】(1)列方程求解即可得到结果;(2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x 个瓶底.根据题意,得9001200(20)x x =-.解得80x =.2060x -=.答:一张这样的铝片可做80个瓶底.(2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多. 根据题意,得26080(15)a a ⨯⋅=-.解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多.【考点】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.4、(1)①是,② 0, -16;(2)点C 运动2秒、3秒、4秒时,C ,A ,B 中恰有一个点为其余两点的和谐点.【解析】【分析】(1)①根据定义,可知点C 是【A ,B 】的和谐点;②根据定义,讨论点C 在线段AB 上和在点A 左侧的情况;(2)分C 是【A ,B 】的和谐点、C 是【B ,A 】的和谐点、A 是【B ,C 】的和谐点、B 是【A ,C 】的和谐点四种情况讨论,列出对应方程解答.【详解】(1)①是;② 0,-16(2)设运动时间为t 秒,则,6BC t AC t ==-,依题意,得C 是【A ,B 】的和谐点 62t t -= , 2t =;C 是【B ,A 】的和谐点 2(6)t t =- ,4t =;A 是【B ,C 】的和谐点 62(6)t =-, 3t =;B 是【A ,C 】的和谐点 62t =, 3t =;答:点C 运动2秒、3秒、4秒时,C ,A ,B 中恰有一个点为其余两点的和谐点.【考点】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解和谐点的定义,找出合适的等量关系列出方程,再求解.5、 (1)14(2)314-t (3)72(4)①36t -;8t + ②285秒或7秒或14秒 【解析】【分析】(1)由数轴上两点间的距离的定义求解即可,数轴上两点间的距离等于数轴上两点所对应的数的差的绝对值;(2)结合“路程=速度×时间”以及两点间的距离公式,用BP =点P 运动路程-AB 可求解;(3)当3t =秒时,根据路程=速度×时间,得到339=⨯=AP ,所以9=-BP AB ,再 由点M 是AP 的中点,点N 是BP 的中点,利用中点的定义得到12PM AP =,12PN BP =,最后由MN PM PN =+即可得到结论.(4)①设运动时间为t ,当点P 从A 点出发时,以3个单位每秒的速度沿射线AB 的方向向右运动,另一个动点Q 同时从B 点出发,以1个单位每秒的速度沿射线向右运动,结合“路程=速度×时间”,再利用数轴上两点间距离公式,则点P 所表示的数是点P 的运动路程加上点A 所表示的数,点Q 所表示的数是点Q 的运动路程加上点B 所表示的数即可.②结合①的结论和点B 所表示的数,分三种情况讨论即可.(1)解:∵在数轴上,点A 表示的数为-6,点B 表示的数为8,∴()8614=--=AB .故答案为:14(2)∵在数轴上,点A 表示的数为6-,点B 表示的数为8,动点P 从A 点出发时,以3个单位每秒的速度沿射线AB 的方向向右运动,运动时间为t 秒,∴3AP t =,∴314=-=-BP AP AB t .故答案为:314-t(3)∵点A 表示的数为6-,点B 表示的数为8,动点P 从A 点出发时,以3个单位每秒的速度沿射线AB 的方向向右运动,当3t =秒时,3339==⨯=AP t ,∴1495=-=-=BP AB AP ,又∵点M 是AP 的中点,点N 是BP 的中点, ∴1922==PM AP ,1522==PN BP ,∴95722=+=+=MN PM PN . ∴此时MN 的长度为7.(4)①设运动时间为t ,当点P 从A 点出发时,以3个单位每秒的速度沿射线AB 的方向向右运动,另一个动点Q 同时从B 点出发,以1个单位每秒的速度沿射线向右运动,∴3AP t =,BQ t =,∴点P 所表示的数为:36t -,点Q 所表示的数为:8t +,故答案为:36t -;8t +②结合①的结论和点B 所表示的数,可知:点B 表示的数为8,点P 所表示的数为:36t -,点Q 所表示的数为:8t +,分以下三种情况:若点B 为中点,则BP BQ =,∴()83688t t --=+-, 解得:72t =;若点P 为中点,则BP PQ =,∴()368836--=+--t t t , 解得:285t =; 若点Q 为中点,则BQ PQ =,∴()88368+-=--+t t t ,解得:14t =.综上所述,当t为285秒或7秒或14秒时,B、P、Q三点中有一点恰好是以另外两点为端点的线段的中点.【考点】本题考查了数轴上的动点问题,数轴上两点之间的距离,一元一次方程的应用,中点的定义,注意分情况讨论.解题的关键是学会用含有t的式子表示动点点P和点Q表示的数.。
北师大版七年级数学上册《第五章一元一次方程》测试题-附含答案
北师大版七年级数学上册《第五章一元一次方程》测试题-附含答案一、单选题1.下列方程中是一元一次方程的是()A.B.C.D.2.下列运用等式的基本性质变形错误的是()A.若则B.若则C.若则D.若则3.一项工程甲单独做要40天完成乙单独做需要50天完成甲先单独做4天然后两人合作x天完成这项工程则可列的方程是()A.B.C.D.4.一艘船从甲码头到乙码头顺流而行用了从乙码头返回甲码头逆流而行用了.已知水流的速度是设船在静水中的平均速度为根据题意列方程().A.B.C.D.5.如果方程与方程的解相同则k的值为().A.-8 B.-4 C.4 D.86.某种衬衫因换季打折出售如果按原价的六折出售那么每件赔本40元按原价的九折出售那么每件盈利20元则这种衬衫的原价是()A.160元B.180元C.200元D.220元7.一列长150米的火车以每秒15米的速度通过长600米的桥洞从列车进入桥洞口算起这列火车完全通过桥洞所需时间是()A.40秒B.60秒C.50秒D.34秒8.小华在做解方程作业时不小心将方程中的一个常数污染了看不清楚被污染的方程是y﹣=y﹣■怎么办呢?小明想了想便翻看了书后的答案此方程的解是:y=﹣6 小华很快补好了这个常数并迅速完成了作业.这个常数是()A.﹣4B.3C.﹣4D.4二、填空题9.当x= 时代数式与的值相等。
10.某工厂生产一种零件计划在20天内完成若每天多生产4个则15天完成且还多生产10个.设原计划每天生产x个根据题意可列方程为.11.甲、乙两人登一座山甲每分钟登高10米并且先出发30分钟乙每分钟登高15米两人同时登上山顶则这座山高米.12.某挍七年级330名师生外出参加社会实践活动租用50座与40座的两种客车.如果50座的客车租用了2辆那么至少需要租用辆40座的客车.13.A、B两地之间相距120千米其中一部分是上坡路其余全是下坡路小华骑电动车从A地到B地再沿原路返回去时用了5.5小时返回时用了4.5小时已知下坡路段小华的骑车速度是每小时30千米那么上坡路段小华的骑车速度为.三、解答题14.解方程(1)(2)15.若方程的解比方程的解大1 求m的值.16.整理一批图书如果由一个人单独做要用30h 现先安排一部分人用1h整理随后又增加6人和他们一起又做了2h 恰好完成整理工作.假设每个人的工作效率相同那么先安排整理的人员是多少?17.某学校实行学案式教学需印制若干份数学学案印刷厂有甲、乙两种收费方式甲种方式:收制版费元每印一份收印刷费元乙种方式:没有制版费每印一份收印刷费元若数学学案需印刷份.(1)填空:按甲种收费方式应收费元按乙种收费方式应收费元(2)若该校一年级需印份选用哪种印刷方式合算?(3)印刷多少份时甲、乙两种收费方式一样多?18.蔬菜公司采购了若干吨的某种蔬菜计划加工之后销售若单独进行粗加工需要20天才能完成若单独进行精加工需要30天才能完成已知每天单独粗加工比单独精加工多生产10吨.(1)求公司采购了多少吨这种蔬菜?(2)据统计这种蔬菜经粗加工销售每吨利润2000元经精加工后销售每吨利润涨至2500元.受季节条件限制公司必须在24天内全部加工完毕由于两种加工方式不能同时进行公司为尽可能多获利安排将部分蔬菜进行精加工后其余蔬菜进行粗加工并恰好24天完成加工的这批蔬菜若全部售出求公司共获得多少元的利润?参考答案:1.A2.C3.D4.C5.A6.C7.C8.D9.-110.20x=15(x+4)-1011.90012.613.2014.(1)解:(2)解:15.解:解方程得:则方程的解为:将代入得:解得:16.解:设先安排x人进行整理根据题意可得:解得:x=6答:先安排6人进行整理17.(1)(2)把代入甲种收费方式应收费元把代入乙种收费方式应收费元因为故答案为:甲种印刷方式合算答:若该校一年级需印份选用甲种印刷方式合算.(3)根据题意可得:解得: .答:印刷份时两种收费方式一样多.18.(1)设这家公司采购这种蔬菜共x吨根据题意得:解得:x=600答:该公司采购了600吨这种蔬菜.(2)设精加工y吨则粗加工(600-y)吨根据题意得:解得:y=240600-y=600-240=360(吨)∴240×2500+360×2000=1320000(元)答:该公司共获得1320000元的利润。
第五章一元一次方程 单元测试题(含答案)初中数学北师大版七年级上册
第五章一元一次方程 单元测试卷一、选择题1.在方程3x -y =2,x +1=0,12x =12,x 2-2x -3=0中,一元一次方程的个数为( )A.1B.2C.3D.42.一元一次方程的解是( )A .B .C .D .3.关于x 的方程的解是,则m 的值是( )A .B .0C .2D .84.下列运用等式性质进行的变形中,正确的是( ) A. 若 ,则 B. 若,则C. 若,则D. 若,则6.方程去分母得( )A .B .C .D .7.某品牌电脑降价以后,每台售价为元,则该品牌电脑每台原价为( )A .元B .元C .元D .元8.如果关于x 的方程 和方程 的解相同,那么a 的值为( )A .6B .4C .3D .29.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A .B .C .D .10.如图,将长与宽比为的长方形分割成一个阴影长方形和由196个面积相等的小正方形构成的边框,(边框的宽度即为小正方形的边长),则阴影长方形的长与宽的比为( )10x -==1x -0x =1x =2x =240x m +-=2x =-8-247236x x ---=-22(24)(7)x x --=--122(24)7x x --=--12(24)(7)x x --=--122(24)(7)x x --=--213x +=213a x--=42(94)35x x +-=42(35)94x x +-=24(94)35x x +-=24(35)94x x +-=3:2ABCDA .B .C .D . .15.已知整式 是关于x 的二次二项式,则关于y 的一元一次方程 的解为 .三、解答题16.解方程:(1).(2).17.解下列一元一次方程 (1)2(x+3)=-x; (2)18.小明解方程2x -15+1=x +a 2时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x =4,试求a 的值,并正确地求出方程的解.四、解答题19.某届足球比赛即将举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元.其中小组赛球票每张550元,淘汰赛球票每张700元,则小李预定了小组赛和淘汰赛的球票各多少张?3:229:1929:1729:2132(24)7(3)2m x x n x --++-(3)160m n y ny -++=20.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形铁片和长方形铁片才能合理地将铁片配套?23.如图①,在数轴上有一条线段AB,点A,B表示的数分别是2和﹣7.(1)线段AB= ;(2)若M是线段AB的中点,则点M在数轴上对应的数为 ;(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B';处,若AB′=B′C,求点C在数轴上对应的数是多少?参考答案一、选择题1—5 BCDBC6—10 DCBDB二、填空题11.7212.3x-2x=10 13.2 14.2031 15.y=-2三、解答题16.解:(1)去括号得:,移项,合并同类项得:,未知数系数化为1得:.(2)去分母,得:,去括号,得:,移项,合并同类项,得:,系数化成1,得:.17.解:(1)去括号,得:2x+6=-x移项,得:2x+x=-6合并同类项,得:3x=-6系数化成1,得:x=-2(2)去分母,得:2(x-1)-12(x+1)=1去括号,得:2x-2-12x-12=1移项,合并同类项,得: -10x=15系数化成1,得:18..四、解答题19、解:设小李预定了小组赛球票x张,则预定了淘汰赛球票(10-x)张,根据题意,得550x+700(10-x)=5 800.解得x=8.则10-x=10-8=2(张).答:小李预定了小组赛球票8张、淘汰赛球票2张.20.解:设安排x人生产长方形铁片,则(42-x)人生产圆形铁片,依题意得120(42-x)=2x80x,解得x=18,所以42-18=24(人)则安排24人生产圆形铁片,18人生产长方形铁片21.解:设笔袋的单价为x元,则水笔的单价为(x-22)元,所以x=6(x-22)+2, 解得x=26,则x-22=26-22=4(元),答:笔袋的单价为26元,则水笔的单价为4元.(2)甲书店:50x26+4(a- 20) = 4a +1220(元),乙书店:50x 26 + 4a x 0.5 = 2a+1300(元),所以到甲书店购买所花的费用是(4a+1220)元,到乙书店购买所花的费用是(2a+1300)元(3) 甲书店:4a+1220≤1400,解得a ≤45,此时购买的笔袋和水笔的总数量为 50+a ≤50+45= 95<100,不满足题意,乙书店:2a+1300≤1400,解得a ≤50,此时购买的笔袋和水笔的总数量为50+a ≤50+50=100,满足题意,所以王老师到乙书店能完成本次采购任务.五、解答题22、解:(1)3x-(6+x)=-16, 解得 x=-5,2x+4=x+10, 解得 x=6.∵(-5)+6=1,∴方程3x-(6+x)=-16与方程2x+4=x+10互为“美好方程”.(2)x2+m=0, 解得 x=-2m ,3x=x+4,解得 x=2.∵关于x 的方程一+m=0与方程3x=x+4互为“美好方程”,.∴.-2m+2=1,解得 m=12.23(1)9(2)-2.5(3)解:设 AB'=x ,∵AB′=,则 B'C =5x .∴由题意BC =B′C =5x ,∴ AC =B'C ﹣AB'=4x ,∴ AB =AC+BC =AC+B'C =9x ,即9x =9,∴x=1,∴由题意AC=4,又∵点A表示的数为2,2﹣4=﹣2,∴点C在数轴上对应的数为﹣2.。
北师大版七年级上册数学 第5章 一元一次方程 单元检测题
北师大版七年级上册数学第5章一元一次方程单元检测题一.选择题1.方程去分母得A. B.C. D.2.一元一次方程2(x﹣1)=5x﹣8的解为()A.x=﹣2B.x=2C.x=﹣3D.x=33.已知等式3a=2b+5,则下列关于等式的变形不正确的是()A.3a﹣5=2b B.a b C.3ac=2bc+5D.3a+1=2b+64.在方程,,,中,一元一次方程的个数为() A.1个B.2个C.3个D.4个5.东东在做作业时,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A.4B.3C.2D.16.乐乐在解关于x的一元一次方程315362x mx x+---=①的的去分母环节时,错误地得到了方程()()23135x mx x+--=-②,因而求得的解是52x=.现请你帮忙,求得原方程实际的解是()A.1B.2C.32D.127.若方程3(2x-1)=2-3x的解与关于x的方程6-2k=2(x+3)的解相同,则k的值为()A. B.- C. D.-8.如图,轩轩将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?为解决这个问题,轩轩设正方形的边长为xcm,则依题意可得方程为()A.4x=5(x﹣4)B.4(x﹣4)=5x C.4x=5(x+4)D.4(x+4)=5x9.《孙子算经》中有这样一个问题:“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,绳子比木材的长短1尺,问木材的长为多少尺?”若设木材的长为x 尺,则x=()A.2.5B.6.5C.7D.1110.某商场元旦促销,将某种书包每个x 元,第一次降价打“八折”,第二次降价每个又减18元,经两次降价后售价为102元,则所列方程是A.B.C.D.二.填空题11.若3x+1的值比的值少1,则x 的值为12.方程﹣3x=的解是.13.若1x =是关于x 的方程1222a x a x -=-+的解,则a =______.14.为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是________.15.列方程:“的2倍与5的差等于的3倍”为:.16.某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_______棵.三.解答题17.解下列方程:(1)(2)3x﹣6=﹣15﹣6x(3)﹣=x+118.一个两位数,十位上的数字与个位上数字和是8,将十位上数字与个位上数字对调,得到新数比原数的2倍多l0.求原来的两位数.19.乐乐解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a 的值,并正确求出方程的解.20.某车间有22名工人生产螺栓和螺母,每人每天甲均生产螺栓1200或螺母2000个,一个螺栓要配两个螺母,为了使每天生产的螺栓和螺母刚好配套,应安排多少人生产螺栓,多少人生产螺母?21.某制衣厂接受一批服装的订货任务,按计划天数进行生产.如果平均每天生产20套服装,就比订货任务少生产100套;如果平均每天生产23套服装,就可超过订货任务20套.这批服装的订货任务有多少套?计划多少天完成?22.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,那么经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?(3)当|PA+PB|=2|QB﹣QC|=24时,请直接写出点Q的速度v的值23.某超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?。
北师大版七年级数学上册《第五章 一元一次方程》测试题-带参考答案
北师大版七年级数学上册《第五章 一元一次方程》测试题-带参考答案一、选择题1.下列方程属于一元一次方程的是( )A .3x=4B .3x-2y=1C .1-x 2=0D .3x =4 2.已知关于x 的方程mx +2=x 的解是x =4,则m 的值为( )A .12B .2C .32D .23 3.已知ax =ay ,下列等式变形不一定成立的是( )A .1−ax =1−ayB .x b =y bC .πax =πayD .ax m 2+1=ay m 2+1 4.下列解方程中,移项正确的是( )A .由5+x=18,得x=18+5B .由5x+ 13=3x ,得5x-3x= 13C .由12x+3= −32x-4,得12x+ 32x=-4-3D .由3x-4=6x ,得3x+6x=4. 5.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有 x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .2000x =1200(22−x)B .2×1200x =2000(22−x)C .2×2000x =1200(22−x)D .1200x =2000(22−x) 6.对于等式x 3−12=23y +1,下列变形正确的是( )A .x −1=2y +1B .2x −3=4y +1C .2x −3=4y +6D .x −3=2y +6 7.解方程2x−13−3x−44=1时,去分母正确的是( )A .4(2x-1)-9x-12=1B .8x-4-3(3x-4)=12C .4(2x-1)-9x+12=1D .8x-4+3(3x-4)=12 8.某商店的老板销售一种商品,他以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,且使商店老板愿出售,应降价( )A .80元B .100元C .120元D .160元二、填空题9.若 (m −1)x |m|+3=0 是关于x 的一元一次方程,则m 的值是 .10.关于 x 的一元一次方程 2ax −x =4b −1 的解是 x =−2 ,则 a +b 的值是 .11.若关于x 的方程3x ﹣7=2x+a 的解与方程4x+3=﹣5的解互为倒数,则a 的值为 .12.某人在解方程2x−13=x−a3−1去分母时,方程右边的-1忘记乘6,求得方程的解为x=-5,则a的值为13.在全国足球甲级A组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.三、解答题14.解方程(1)3(x−7)+5(x−4)=15(2)5y+16=9y+18−1−y315.已知,下列关于x的方程4x−2m=x−5的解与7x=m+2x的解的比为5:3,求m的值.16.某工厂工人急需在计划时间内加工一批零件用于机械制造,如果每天加工500个,就比规定任务少80个;如果每天加工550个,则超额20个.求规定加工的零件数和计划加工的天数分别是多少?17.七年级1班共有学生45人,其中男生人数比女生人数少3人.某节课上,老师组织同学们做圆柱形笔筒,每名学生每节课能做筒身30个或筒底90个.(1)七年级1班有男生、女生各多少人?(2)原计划女生负责做筒身,男生做筒底,要求每个筒身匹配2个筒底,那么每节课做出的筒身和筒底配套吗?如果不配套,男生要支援女生几人,才能使筒身和筒底配套?18.为抗击新冠肺炎疫情,某药店对消毒液和口罩开展优惠活动.已知消毒液每瓶定价比口罩每包定价多5元,按照定价售出4包口置和3瓶消毒液共需要43元.(1)求一包口罩和一瓶消毒液定价各多少元?(2)优惠方案有以下两种:方案一:以定价购买时,买一瓶消毒液送一包口罩;方案二:消毒液和口罩都按定价的九折付款.现某客户要到该药店购买消毒液20瓶,口罩x包(x>20).①若客户购买150包口罩时,请通过计算说明哪种方案购买较为省钱?②求当客户购买多少包口罩时,两种方案的购买总费用一样.参考答案1.A2.A3.B4.C5.B6.C7.B8.C9.-110.3411.−15212.213.714.(1)解:3x−21+5x−20=158x=56x=7(2)解:4(5y+1)=3(9y+1)−8(1−y)20y+4=27y+3−8−8y−15y=−9y=3515.解:解方程4x−2m=x−5得x=2m−53解方程7x=m+2x得x=m5由题意知:2m−53:m5=5:3m=516.解:设计划加工的天数为x天由题意得:500x+80=550x﹣20解得:x=2所以规定加工的零件数为500x+80=500×2+80=1080(个)答:规定加工零件数为1080个,计划加工天数为2天.17.(1)解:设女生有x人,则男生有(x﹣3)人由题意可得:x+(x﹣3)=45解得x=24∴x﹣3=21答:七年级1班有男生21人,女生24人.(2)解:女生可以做筒身:24×30=720(个),男生可以做筒底:21×90=1890(个)∵720×2<1890∴原计划每节课做出的筒身和筒底不配套;设男生要支援女生a人,才能使筒身和筒底配套,根据题意得:(24+a)×30×2=(21﹣a)×90解得a=3答:男生要支援女生3人,才能使筒身和筒底配套.18.(1)解:设一包口罩定价x元,则一瓶消毒液定价(x+5)元由题意得:4x+3(x+5)=43解得x=4则x+5=4+5=9答:一包口罩定价4元,一瓶消毒液定价9元.(2)解:①方案一:20×9+(150−20)×4=180+520=700(元)方案二:(20×9+150×4)×90%=780×90%=702(元)因为700<702所以方案一购买较为省钱;②由题意得:20×9+(x−20)×4=(20×9+4x)×90%解得x=155答:当客户购买155包口罩时,两种方案的购买总费用一样.。
第五章 一元一次方程数学七年级上册-单元测试卷-北师大版(含答案)
第五章一元一次方程数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、已知关于的方程的解是正整数,则符合条件的所有整数的和是()A.-1B.1C.4D.92、服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多A.60元B.80元C.120元D.180元3、在解方程时,去分母正确的是()A. B. C.D.4、下列四组变形中,属于移项变形的是()A.由5 x+10=0,得5 x=﹣10B.由,得x=12C.由3 y=﹣4,得D.由2 x﹣(3﹣x)=6,得2 x﹣3+ x=65、某商场以八折的优惠价出售以后一件商品,少收入15元,则购买这件商品的价格为()A.35元B.60元C.75元D.150元6、若是关于的方程的解,则的值为()A.-1B.0C.1D.7、某品牌商品,按标价九折出售,仍可获得20%的利润,若该商品标价为28元,则商品的进价为()A.21元B.19.8元C.22.4元D.25.2元8、若关于x的一元一次方程2x+3a=1的解为x=2,则关于m的一元一次不等式3-m>a的解集为()A.m<2B.m<4C.m>2D.m>49、如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A. B.m﹣n C. D.10、下列各方程中,是一元一次方程的为()A. B. C. D.11、下列方程是一元一次方程的是()A.4x+2y=3B.y+5=0C.x 2=2x﹣1D. +y=212、下列说法中,正确的是()A.若ca=cb,则a=bB.若,则a=bC.若a 2=b 2,则a=b D.由,得到13、已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=()A.10°B.60°C.45°D.80°14、下列方程的解法中,错误的个数是()①方程2x-1=x+1移项,得3x=0②方程=1去分母,得x-1=3=x=4③方程1-去分母,得4-x-2=2(x-1)④方程去分母,得2x-2+10-5x=1A.1B.2C.3D.415、小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是=1- ,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是( )A.2B.3C.4D.5二、填空题(共10题,共计30分)16、若一个角比它的补角大36°,则这个角为________°.17、在关于x的方程2ax﹣1=0(a≠0)中,把a叫做________.18、由11x﹣9y﹣6=0,用x表示y,得y=________.19、若关于x的方程的解是,则k的值为________.20、若x=1是方程a(x﹣2)=a+2x的解,则a=________.21、甲种笔记本每本5元,乙种笔记本每本6元,用55元钱买了两种笔记本共10本,甲乙两种笔记本各买了多少本?设甲种笔记本买了x本,则可列方程: ________.22、若x=﹣2是方程3(x﹣a)=7的解,则a=________.23、现对某商品八折促销,为了使销售总金额不变,销售量要比按原价销售时增加的百分数是________.24、以x=1为解的一元一次方程可以是________ (只需填写满足条件的一个方程即可).25、关于x的方程的解是自然数,则整数的值为________ 、________、________.三、解答题(共5题,共计25分)26、解方程:27、已知是方程的解,求a的值.28、当x取什么数时, 与互为相反数。29、列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?30、已知等式2a﹣3=2b+1,你能比较a和b的大小吗?参考答案一、单选题(共15题,共计45分)1、B3、A4、5、B6、A7、A8、B9、A10、A11、B12、B13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
北师大版七年级数学上册《第五章 一元一次方程》测试卷-带参考答案
北师大版七年级数学上册《第五章一元一次方程》测试卷-带参考答案一、选择题1.下列各式是一元一次方程的是()A.2x=5+3y B.y2=y+4 C.3x+2=1﹣x D.x+1x=2 2.已知x=2是关于x的一元一次方程mx−2=m+3的解,则m的值是()A.2 B.3 C.4 D.53.根据等式的基本性质,下列式子变形错误的是()A.如果a=b,那么a−c=b−c B.如果a=b,那么a3=b3C.如果ac2=bc2,那么a=b D.如果a−b+c=0,那么a=b−c 4.一元一次方程x+3x=8的解是()A.x=-1 B.x=0 C.x=1 D.x=25.对于方程:5x−13−2=1+2x2,去分母后得到的方程是()A.2(5x-1)-12=3(1+ 2x) B.5x-1-6=3(1+2x)C.2(5x-1)-6=3(1+2x) D.5x-1-2=1+2x6.植树节期间,七(8)班安排了10人挖土,6人提水.为了尽快完成植树任务,又有16位同学加入,使得挖土的总人数恰好是提水总人数的三倍.假设新加入的同学中去挖土的有x人,根据题意可列出方程为()A.10+x=3(6+16-x) B.3(10+ x)=6+16-xC.3(10+16-x) =6+x D.10+16-x=3(6+x)7.小明在解方程3x-(x- 2a)=4去括号时,忘记将括号中的第二项变号,求得方程的解为x=-2,那么方程正确的解为()A.x=2 B.x=4 C.x=6 D.x=88.某个体商贩同时售出两件上衣,每件售价为135元,按成本核算,其中一件盈利25%,另一件亏本25%,那么这次经营活动中该商贩()A.不赔不赚B.赔18元C.赚18元D.赚9元二、填空题9.已知5a+2b=3b+10,利用等式的性质可求得10a-2b的值是10.关于x的一元一次方程2x a+2+m=4的解为x=1,则a m的值为.11.某养鸡场卖出25%的鸡后还剩21000只,这个养鸡场原来共养鸡多少只?如果设养鸡场原来共养鸡x只,可列出方程.12.关于x的方程3x+5=0与3x+3k=1的解相同,则k的值为.13.小明的语文和英语的平均成绩是88分,数学成绩比语文、英语、数学三科的平均成绩还高6分,小明的数学成绩是分。
2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元达标测试题(附答案)
2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列一元一次方程的是()A.x2﹣x﹣3=0B.x+1=0C.D.x+y=12.下列运用等式的性质变形错误的是()A.若a=b,则a+1=b+1B.若﹣3x=﹣3y,则x=yC.若n﹣2=m﹣2,则m﹣n=0D.若x=y,则3.下列方程中,解是x=2的是()A.3x+1=2x﹣1B.3x﹣1=2x+1C.3x+2x﹣2=0D.3x+2x+2=0 4.关于x的方程2x﹣kx+1=5x﹣2的解为x=﹣1,则k的值为()A.10B.﹣4C.﹣6D.﹣85.若方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为()A.6B.8C.﹣6D.46.如果代数式与的值互为相反数,则x应为()A.﹣B.C.﹣2D.27.甲乙二人在400米的环形跑道上练习同向竞走.乙每分钟走80米,甲每分钟走100米,现在甲在乙前100米,多少分钟后两人相遇?()A.5分钟B.20分钟C.15分钟D.10分钟8.超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.8二.填空题(共8小题,满分32分)9.若关于x的方程(m﹣1)x|m|+4=0是一元一次方程,则这个方程的解是.10.关于x的方程2ax=(a+1)x+6的解是x=1,则关于x的方程3ax=2(a+1)x+6的解是.11.某商品标价100元,现在打6折出售仍可获利25%,则这件商品的进价是元.12.如果a,b,c满足b+2c=3a,且a,b,c均为正整数,那么a,b,c称为一组“三雅数”,当a=5,b=7时,则c=.13.用一根长为10米的铁丝围成一个长方形,使该长方形的长比宽多1.4米,则这个长方形的长为米.14.有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之和等于这个两位数的,则这个两位数是.15.某市城区为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为立方米.16.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船6h,已知船在静水中的速度是16km/h,水流速度是4km/h,若A、C两地距离为4km,则A、B两地间的距离是km.三.解答题(共7小题,满分56分)17.解下列方程:(1)10(x﹣1)=5;(2)﹣=2﹣;(3)2(y+2)﹣3(4y﹣1)=9(1﹣y);(4).18.当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2?19.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x=8和x+1=0为“美好方程”.(1)若关于x的方程3x+m=0与方程4x﹣2=x+10是“美好方程“,求m的值;(2)若“美好方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的一元一次方程x+3=2x+k和x+1=0是“美好方程”,求关于y的一元一次方程(y+1)+3=2y+k+2的解.20.为积极响应“文明城区”创建工作,某校六年级学生组建了一支“垃圾分类”志愿者服务队.报名时男生人数是女生人数的,活动时又有3名男生加入,同时有3名女生有事离开,此时男生人数是女生人数的,那么原来报名时志愿者服务队中男生、女生各有多少人?21.为提高市民的环保意识,倡导“节能减排,绿色出行“,某市计划在城区投放一批共享单车,这批单车分为A,B两种不同款型,其中A型车单价为400元,B型车单价为360元.(1)某年年初,共享单车试点投放在某市中心城区,投放A,B两种款型的单车共100辆,总价值为38400元.问:本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项活动在整个城区全面铺开,按照试点投放中A,B两种车型的数量比进行投放,且投资总价值达到384万元.该城区有10万人口,请问平均每100人享有A型车与B型车各多少辆?22.甲、乙两家超市以相同的价格出售相同的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出200元之后,超出部分按8折优惠;在乙超市累计购买商品超出100元之后,超出部分按9折优惠.设顾客预计购买x元(x>200)的商品.(1)请用含x的代数式分别表示顾客在甲、乙两家超市购物应付的费用;(2)小明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;(3)小明购买多少元的商品时,到两家超市购物所付的费用一样?23.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C 在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q 从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒.①当P运动到C点时,点Q所表示的数是多少?②当t为何值时,P、Q之间的距离为6?③若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB.在运动过程中,是否存在某一时刻使得PC+QB=5?若存在,请求出此时点P表示的数;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:A.x2﹣x﹣3=0是一元二次方程,不是一元一次方程,故此选项不符合题意;B.x+1=0是一元一次方程,故此选项符合题意;C.根据分式方程的定义,这个方程是分式方程,故此选项不符合题意;D.x+y=1是二元一次方程,不是一元一次方程,故此选项不符合题意.故选:B.2.解:A.若a=b,则a+1=b+1,所以A选项不符合题意;B.若﹣3x=﹣3y,则x=y,所以B选项不符合题意;C.若n﹣2=m﹣2,则n=m,所以m﹣n=0,所以C选项不符合题意;D.若x=y,当a≠0时,=,所以D选项符合题意;故选:D.3.解:A、把x=2代入方程,左边=3×2+1=7,右边=2×2﹣1=3,左边≠右边,解不是x=2;B、把x=2代入方程,左边=3×2﹣1=5,右边=2×2+1=5,左边=右边,解是x=2;C、把x=2代入方程,左边=3×2+2×2﹣2=8,右边=0,左边≠右边,解不是x=2;D、把x=2代入方程,左边=3×2+2×2+2=12,右边=0,左边≠右边,解不是x=2.故选:B.4.解:依题意,得2×(﹣1)﹣(﹣1)k+1=5×(﹣1)﹣2,即﹣1+k=﹣7,解得,k=﹣6.故选:C.5.解:解第一个方程得:x=,解第二个方程得:x=8,∴=8,解得:a=﹣6.故选:C.6.解:∵代数式与的值互为相反数,∴+=0,解得x=.故选:B.7.解:设x分钟后两人相遇,根据题意得100x﹣80x=300,解得x=15.答:15分钟后两人相遇.故选:C.8.解:设该商品每件的进价为x元,依题意,得:125×0.8﹣x=15.故选:A.二.填空题(共8小题,满分32分)9.解:由题意得:|m|=1,且m﹣1≠0,解得:m=﹣1,则方程为﹣2x+4=0,解得:x=2,故答案为:x=2.10.解:将x=1代入2ax=(a+1)x+6得:2a=a+1+6,∴a=7,代入到3ax=2(a+1)x+6得:21x=2(7+1)x+6,解得x=.故答案为:x=.11.解:设这件商品的进价为x元,根据题意得:100×60%﹣x=25%x,解得x=48.答:这件商品的进价为48元.故答案为:48.12.解:把a=5,b=7代入b+2c=3a中得:7+2c=3×5,7+2c=15,2c=15﹣7,2c=8,c=4,故答案为:4.13.解:设这个长方形的长为x米,则宽是(x﹣1.4)米,根据题意得2(x+x﹣1.4)=10,解得x=3.2,答:这个长方形的长为3.2米.故答案为:3.2.14.解:设十位上的数字是x,则个位上的数字是x+3,这个两位数是10x+(x+3),根据题意得:x+(x+3)=[10x+(x+3)],解得x=3,∴10x+(x+3)=10×3+(3+3)=36,答:这个两位数是36.故答案为:36.15.解:设这户居民5月的用水量为x立方米.列方程为:7×1+(x﹣7)×2=17,解得x=12.故答案为:12.16.解:①C地在A地上游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=42.5,②C地在A地下游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=47.5,故答案为:42.5或47.5.三.解答题(共7小题,满分56分)17.解:(1)去括号,得10x﹣10=5,移项,得10x=15,系数化为1,得x=1.5;(2)去分母,得4(7x﹣1)﹣6(5x+1)=24﹣3(3x+2),去括号,得28x﹣4﹣30x﹣6=24﹣9x﹣6,移项,得28x﹣30x+9x=24﹣6+6+4,合并同类项,得7x=28,系数化为1,得x=4;(3)去括号,得2y+4﹣12y+3=9﹣9y,移项,得2y﹣12y+9y=9﹣3﹣4,合并同类项,得﹣y=2,系数化为1,得y=﹣2;(4)方程整理得:﹣=,去分母,得(8﹣90x)﹣6(13﹣30x)=4(50x+10),去括号,得8﹣90x﹣78+180x=200x+40,移项,得﹣90x+180x﹣200x=40+78﹣8,合并同类项,得﹣110x=110,系数化为1,得x=﹣1.18.解:解方程5m+3x=1+x得:x=,解2x+m=3m得:x=m,根据题意得:﹣2=m,解得:m=﹣.19.解:(1)∵3x+m=0,∴x=﹣.∵4x﹣2=x+10.∴x=4.∵关于x的方程3x+m=0与方程4x﹣2=x+10是“美好方程“,∴﹣+4=1.∴m=9.(2)∵“美好方程”的两个解的和为1,∴另一个方程的解为:1﹣n.∵两个解的差为8,∴1﹣n﹣n=8或n﹣(1﹣n)=8.∴n=﹣或n=.(3)∵x+1=0.∴x=﹣2022.∵关于x的一元一次方程x+3=2x+k和x+1=0是“美好方程”,∴关于x的一元一次方程x+3=2x+k的解为1﹣(﹣2022)=2023.关于y的一元一次方程(y+1)+3=2y+k+2可化为:(y+1)+3=2(y+1)+k.∴y+1=x=2023.∴y=2022.20.解:设原来报名时志愿者服务队中有女生x人,则有男生x人,根据题意得x+3=(x﹣3),解得x=63,所以×63=42(人),答:原来报名时志愿者服务队中有男生42人、女生63人.21.解:(1)设本次试点投放的A型车x辆、B型车(100﹣x)辆,依题意得:400x+360(100﹣x)=38400,解得:x=60,则100﹣60=40(辆),答:本次试点投放的A型车60辆,B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,则设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,依题意得:3a×400+2a×360=3840000,解得:a=2000,则全面铺开时投放的A型车6000辆、B型车4000辆,6000×=6(辆),4000×=4(辆),答:平均每100人享有A型车6辆,B型车4辆.22.解:(1)设顾客在甲超市购物所付的费用为y甲,顾客在乙超市购物所付的费用为y乙,根据题意得:y甲=200+0.8(x﹣200)=0.8x+40;y乙=100+0.9(x﹣100)=0.9x+10.(2)他应该去乙超市,理由如下:当x=500时,y甲=0.8x+40=440,y乙=0.9x+10=460,∵460>440,∴他去甲超市划算;(3)令y甲=y乙,即0.8x+40=0.9x+10,解得:x=300.答:小明购买300元的商品时,到两家超市购物所付的费用一样.23.解:(1)因为﹣3+18=15,所以点B表示的数是15,设点C表示的数是x,根据题意得15﹣x=2(x+3),解得x=3,所以点C表示的数是3,故答案为:15,3.(2)点P表示的数是﹣3+4t,点Q表示的数是15﹣2t,①当点P运动到点C时,则﹣3+4t=3,解得t=,当t=时,15﹣2t=15﹣2×=12,所以点Q表示的数是12.②当P、Q两点之间的距离为6时,则4t+2t+6=18或4t+2t﹣6=18,解得t=2或t=4,所以当t=2或t=4时P、Q之间的距离为6.③存在,因为点A、C表示的数分别为﹣3和3,所以点A、C之间的距离是6,当点P在点C的左侧,由PC+QB=5得6﹣4t+2t=5,解得t=,此时﹣3+4t=﹣3+4×=﹣1,所以点P表示的数是﹣1;当点P在点C的右侧,由PC+QB=5得4t﹣6+2t=5,解得t=,此时﹣3+4t=﹣3+4×=,所以点P表示的数是,综上所述,点P表示的数是﹣1或.。
北师大七年级上《第五章一元一次方程》期末总复习试卷(含答案)
北师大版七年级(上)数学期末总复习:一元一次方程培优练习题满分:100分时间:90分钟一.选择题(每小题3分,共30分)1.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=22.某书上有一道解方程的题:+1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.7B.5C.2D.﹣23.已知是关于x的方程2x+x﹣2a=0的根,则a的值为()A.﹣1B.﹣3C.1D.34.下列方程是一元一次方程的是()A.x2﹣2x+3=0B.2x﹣5y=4C.x=0D.=35.小彬种了一种树苗,开始时树苗高为40cm,栽种后树苗每周长高约5cm,大约几周后树苗长高到1m?如果设x周后树苗长高到1m,可列方程为()A.40+5x=1B.40﹣5x=1C.40﹣5x=100D.40+5x=100 6.电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.57.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.68.一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是()A.150元B.80元C.100元D.120元9.按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种10.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是()A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时二.填空题(每小题3分,共18分)11.关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= .12.已知3是关于x的方程2x﹣a=1的解,则a的值是.13.一商店在某一时间以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a的值为.14.小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x= .15.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为.16.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为.17.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为.18.在数轴上,点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,若a与b差的绝对值等于,且AO=2BO,则a+b的值为.三.解答题(共6小题,共46分)19.(8分)解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣120.(7分)元旦,某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动(划船须知如图).他们一共租了10条船,并且每条船都坐满了人,那么大船租了几只?21.(7分)(1)已知3m+7与﹣10互为相反数,求m的值.(2)若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.22.(8分)为弘扬中华优秀文化传统,某中学在元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.23.(7分)出租车司机小王某天下午营运的路线全是在东西走向的大道上,出发点A恰好在这条大道上,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)+5,﹣3,﹣8,﹣6,+10,﹣6,12,﹣10(1)将最后一名乘客送到目的地时,小王在出发点A地的东面还是西面?距下午出车地A点的距离是多少千米?(2)若汽车耗油量为a升/千米,这天下午汽车共耗油多少升?(用含a的代数式表示)(3)出租车油箱内原有10升油,请问:当a=0.3时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要,说明理由.24.(9分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= .(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C 之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(3)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案一.选择题1.解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.2.解:把x=﹣2代入+1=x得:+1=﹣2,解这个方程得:□=5.故选:B.3.解:把代入原方程,得:,解得:a=﹣1,故选:A.4.解:A、此方程为一元二次方程,不合题意;B、此方程为二元一次方程,不合题意;C、此方程为一元一次方程,符合题意;D、此方程不是整式方程,为分式方程,不合题意,故选:C.5.解:设x周后树苗长高到1m,由题意得:40+5x=100,故选:D.6.解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.7.解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选:C.8.解:设这件风衣的成本价为x元,x×(1+50%)×80%=180,1.2x=180解得x=150,故选:A.9.解:∵输出的结果为556,∴5x+1=556,解得x=111;而111<500,当5x+1等于111时最后输出的结果为556,即5x+1=111,解得x=22;当5x+1=22时最后输出的结果为556,即5x+1=22,解得x=4.2(不合题意舍去),所以开始输入的x值可能为22或111.故选:B.10.解:设轮船在静水中的速度是x千米/小时,根据题意得:3(x﹣3)=2(x+3),解得:x=15.答:轮船在静水中的速度是15千米/小时.故选:B.二.填空题(共8小题)11.解:∵关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,∴a2﹣4=0,且a+2≠0,解得:a=2,故答案为:212.解:由题意将x=3代入方程得:6﹣a=1,解得:a=5.故答案为:513.解:设第一件衣服的进价为x,依题意得:x(1+25%)=a,设第二件衣服的进价为y,依题意得:y(1﹣25%)=a,因为卖出这两件衣服商店共亏损8元,可得:,解得:a=60,故答案为:60.14.解:设()处的数字为a,根据题意,把x=2代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为x=.故答案为:.15.解:把x=2代入方程得:4+3m﹣1=0,解得:m=﹣1,故答案为:﹣116.解:根据小明的错误解法得:4x﹣2=3x+3a﹣3,把x=2代入得:6=3a+3,解得:a=1,正确方程为:=﹣3,去分母得:4x﹣2=3x+3﹣18,解得:x=﹣13,故答案为:x=﹣1317.解:设正方形边长为xcm,由题意得:4x=5(x﹣4),故答案为:4x=5(x﹣4).18.解:由题意可得:|a﹣b|=,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴﹣a=2b,﹣a+b=,解得:b=671,a=﹣1342,故a+b=﹣671.故答案为:﹣671.三.解答题(共7小题)19.解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣2x=﹣10,解得:x=5;(2)去分母得:3﹣3x=8x﹣2﹣6,移项合并得:﹣11x=﹣11,解得:x=1.20.解:设大船租了x只,则小船租了(10﹣x)只,依题意有:6x+4(10﹣x)=50,解得x=5,答:大船租了5只.21.解:(1)根据题意得3m+7﹣10=0,解得m=1;(2)根据题意得a=2或a=﹣2,c=﹣1,当a=2,b=﹣3,c=﹣1,a+b﹣c=2﹣3﹣(﹣1)=0;当a=﹣2,b=﹣3,c=﹣1,a+b﹣c=﹣2﹣3﹣(﹣1)=﹣4.22.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,解得:x=19,则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意得:19y+25(60﹣y)=1322,解得:y=,不合题意,即张老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31,符合题意,则签字笔的单价为2元或8元.故答案为:2或8.23.解:(1)(+5)+(﹣3)+(﹣8)+(﹣6)+(+10)+(﹣6)+12+(﹣10)=﹣6,∵规定向东为正,向西为负,答:小王在出发点A地的西面,距下午出车地A点的距离是6千米;(2)(5+|﹣3|+|﹣8|+|﹣6|+10+|﹣6|+12+|﹣10|)×a=60a(升),答:这天下午汽车共耗油60a升;(3)当a=0.3时,60a=60×0.3=18,18﹣10=8,答:小王途中还需要加油,至少需要加8升油.24.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(3)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=6t+18﹣6t﹣6=12不变,始终为12.。
北师大版数学七年级上 第5章 一元一次方程 单元测试卷 (含解析)
七年级(上)数学第5章一元一次方程单元测试卷一.选择题(共10小题)1.下列方程中是一元一次方程的是A.B.C.D.2.方程的解是A.B.C.D.3.要将等式进行一次变形,得到,下列做法正确的是A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以D.等式两边同时乘以4.下列解方程去分母正确的是A.由,得B.由,得C.由,得2D.由,得5.若单项式与的和仍是单项式,则方程的解为A.B.23C.D.296.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利,另一件亏损,在这次买卖中,该商贩A.不赔不赚B.赚9元C.赔18元D.赚18元7.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是□,小明想了想后翻看了书后的答案,此方程的解是,然后小明很快补好了这个常数,这个常数应是A.B.C.D.28.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.9.如图所示,两人沿着边长为的正方形,按的方向行走,甲从点以的速度、乙从点以的速度行走,当乙第一次追上甲时,将在正方形的边上.A.B.C.D.10.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设,则,解得,即.仿此方法,将化成分数是A.B.C.D.二.填空题(共8小题)11.若是关于的一元一次方程,则的值为.12.已知关于的方程的解是,则的值为.13.如果关于的方程和的解相同,那么.14.某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了天.15.一家服装店将某种服装按成本提高后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.16.一个两位数的十位数字与个位数字的和是9.如果把这个两位数加上63,那么恰好成为原两位数的个位数字与十位数字对调后组成的两位数,则原两位数是.17.有一列数,按一定规律排列成1、、16、、,其中某相邻三个数的和是,那么这三个数中最大的数是.18.如图,在数轴上,点,表示的数分别是,10.点以每秒2个单位长度从出发沿数轴向右运动,同时点以每秒3个单位长度从点出发沿数轴在,之间往返运动,设运动时间为秒.当点,之间的距离为6个单位长度时,的值为.三.解答题(共7小题)19.解方程:(1)(2)20.小明在解方程去分母时,方程右边的漏乘了12,因而求得方程的解为,请你帮助小明求出的值,并正确解出原方程的解.21.对于有理数,定义种新运算,规定☆.(1)求3☆的值;(2)若☆☆,求的值.22.一辆客车和辆卡车同时从地出发沿同一公路同方向行驶,客车的行驶速度是60千米小时,卡车的行驶速度是40千米小时,客车比卡车早2小时经过地,、两地间的路程是多少千米?23.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?24.学校要购入两种记录本,其中种记录本每本3元,种记录本每本2元,且购买种记录本的数量比种记录本的2倍还多20本,总花费为460元.(1)求购买种记录本的数量;(2)某商店搞促销活动,种记录本按8折销售,种记录本按9折销售,则学校此次可以节省多少钱?25.若有,两个数,满足关系式,则称.为“共生数对“,记作.例如:当2,3满足时,则是“共生数对“.若是“共生数对“,求的值:(2)若是“共生数对“,判断是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.参考答案一.选择题(共10小题)1.下列方程中是一元一次方程的是A.B.C.D.解:、该方程属于一元二次方程,故本选项不符合题意.、该方程属于分式方程,故本选项不符合题意.、该方程属于一元一次方程,故本选项符合题意.、该方程属于二元一次次方程,故本选项不符合题意.故选:.2.方程的解是A.B.C.D.解:移项得,,合并同类项得,,系数化为1,得.故选:.3.要将等式进行一次变形,得到,下列做法正确的是A.等式两边同时加B.等式两边同时乘以2 C.等式两边同时除以D.等式两边同时乘以解:将等式进行一次变形,等式两边同时乘以,得到.故选:.4.下列解方程去分母正确的是A.由,得B.由,得C.由,得2D.由,得解:、由,得,此选项错误;、由,得,此选项错误;、由,得,此选项错误;、由,得,此选项正确;故选:.5.若单项式与的和仍是单项式,则方程的解为A.B.23C.D.29解:单项式与的和仍是单项式,单项式与为同类项,即,,代入方程得:,去分母得:,去括号得:,移项合并得:,解得:,故选:.6.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利,另一件亏损,在这次买卖中,该商贩A.不赔不赚B.赚9元C.赔18元D.赚18元解:设盈利的衣服的进价为元,亏损的衣服的进价为元,依题意,得:,,解得:,.,该商贩赔18元.故选:.7.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是□,小明想了想后翻看了书后的答案,此方程的解是,然后小明很快补好了这个常数,这个常数应是A.B.C.D.2解:设□表示的数是,把代入方程得:,解得:,即这个常数是,故选:.8.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.解:依题意,得:,即.故选:.9.如图所示,两人沿着边长为的正方形,按的方向行走,甲从点以的速度、乙从点以的速度行走,当乙第一次追上甲时,将在正方形的边上.A.B.C.D.解:设乙行走后第一次追上甲,根据题意,可得:甲的行走路程为,乙的行走路程,当乙第一次追上甲时,,,此时乙所在位置为:,,乙在距离点处,即在上,故选:.10.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设,则,解得,即.仿此方法,将化成分数是A.B.C.D.解:设①,则②,②①得,解得,即,故选:.二.填空题(共8小题)11.若是关于的一元一次方程,则的值为1.解:根据题意可知:解得故答案为1.12.已知关于的方程的解是,则的值为.解:把代入方程得:,解得:,故答案为:.13.如果关于的方程和的解相同,那么.解:方程的解为,方程和的解相同,方程的解为,当时,,解得.故答案为:.14.某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了6天.解:设甲一共做了天,则乙做了天,根据题意得:,解得.则甲一共做了6天.故答案为:6.15.一家服装店将某种服装按成本提高后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为300元.解:设这种服装每件的成本价是元,由题意得:,解得:,故答案为:300元.16.一个两位数的十位数字与个位数字的和是9.如果把这个两位数加上63,那么恰好成为原两位数的个位数字与十位数字对调后组成的两位数,则原两位数是18.解:设这个两位数的十位数字为,则个位数字为,由题意列方程得,,解得,,这个两位数为18.故答案为:18.17.有一列数,按一定规律排列成1、、16、、,其中某相邻三个数的和是,那么这三个数中最大的数是256.解:有一列数,按一定规律排列成1、、16、、,这列数中每个数都是前面相邻数的倍,设这三个相邻的数中的中间数为,则第一个数为,第三个数为,,解得:,,,这三个数,256,,这三个数中最大的数是256,故答案为:256.18.如图,在数轴上,点,表示的数分别是,10.点以每秒2个单位长度从出发沿数轴向右运动,同时点以每秒3个单位长度从点出发沿数轴在,之间往返运动,设运动时间为秒.当点,之间的距离为6个单位长度时,的值为秒或秒或12秒.解:点,表示的数分别是,10,,,,①当点、没有相遇时,由题意得:,解得:;②当点、相遇后,点没有到达时,由题意得:,解得:;③当点到达返回时,由题意得:,解得:;综上所述,当点,之间的距离为6个单位长度时,的值为秒或秒或12秒;故答案为:秒或秒或12秒.三.解答题(共7小题)19.解方程:(1)(2)解:(1);(2)去分母,得去括号,得移项,得合并同类项,得系数化为1,得.20.小明在解方程去分母时,方程右边的漏乘了12,因而求得方程的解为,请你帮助小明求出的值,并正确解出原方程的解.解:根据题意得:,把代入得:,解得:,方程为,去分母得:,移项合并得:,解得:.21.对于有理数,定义种新运算,规定☆.(1)求3☆的值;(2)若☆☆,求的值.解:(1)根据题中的新定义得:原式;(2)已知等式利用题中的新定义化简得:,整理得:,解得:.22.一辆客车和辆卡车同时从地出发沿同一公路同方向行驶,客车的行驶速度是60千米小时,卡车的行驶速度是40千米小时,客车比卡车早2小时经过地,、两地间的路程是多少千米?解:解:设、两地间的路程为千米,根据题意得解得答:、两地间的路程是240千米.23.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?解:设分配人生产甲种零部件,根据题意,得,解得:,,答:分配10人生产甲种零部件,12人乙种零部件.24.学校要购入两种记录本,其中种记录本每本3元,种记录本每本2元,且购买种记录本的数量比种记录本的2倍还多20本,总花费为460元.(1)求购买种记录本的数量;(2)某商店搞促销活动,种记录本按8折销售,种记录本按9折销售,则学校此次可以节省多少钱?解:(1)设购买种记录本本,则购买种记录表本,依题意,得:,解得:,.答:购买种记录本120本,种记录本50本.(2)(元.答:学校此次可以节省82元钱.25.若有,两个数,满足关系式,则称.为“共生数对“,记作.例如:当2,3满足时,则是“共生数对“.若是“共生数对“,求的值:(2)若是“共生数对“,判断是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.解:(1)是“共生数对”,,解得:;(2)也是“共生数对”,理由:是“共生数对”,,,也是“共生数对”;(3)由,得,若时,;若时,,和是“共生数对”。
北师大版七年级上册数学第五章一元一次方程单元测试卷(Word版,含答案)
北师大版七年级上册数学第五章一元一次方程单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.已知a b =,根据等式的性质,可以推导出的是( )A .21a b +=+B .33a b -=-C .232a b -=D .a b c c = 2.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( )A .2m ≠-B .0m ≠C .2m ≠D .2m >-3.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .55191662x x x ++=B .21191653x x x ++= C .2191635x x x ++= D .25191652x x x ++= 4.若3x =是关于x 的方程5ax b -=的解,则622a b --的值为( )A .2B .8C .-3D .-85.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .60100100x x =-B .60100100x x =+C .10010060x x =+D .10010060x x =- 6.我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为( )A .25B .75C .81D .907.一件夹克衫先按成本价提高70%标价,再将标价打7折出售,结果获利38元.设这件夹克衫的成本价是x 元,那么依题意所列方程正确的是( )A .70%(1+70%)x =x +38B .70%(1+70%)x =x ﹣38C .70%(1+70%x )=x ﹣38D .70%(1+70%x )=x +388.若关于x 的一元一次方程1322022x x b +=+的解为3x =-,则关于y 的一元一次方程1(1)32(1)2022y y b ++=++的解为( ) A .1y = B .=2y - C .=3y - D .4y =-9.已知关于x 的方程38132ax x x --=-有负整数解,则所有满足条件的整数a 的值之和为( ) A .11- B .26- C .28- D .30-10.已知|2|(3)58---=a a x 是关于x 的一元一次方程,则=a ( )A .3或1B .1C .3D .011.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 12.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款( )A .288B .360C .288或316D .360或395。
北师大版七年级数学上册 第5章 一元一次方程 单元测试题(有答案)
北师大版七年级数学上册第5章一元一次方程单元测试题一.选择题(共10小题)1.下列所给条件,不能列出方程的是()A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的的差D.某数的3倍与7的和等于292.若x=1是ax+2x=3方程的解,则a的值是()A.﹣1B.1C.﹣3D.33.方程2x﹣4=﹣2x+4的解是()A.x=2B.x=﹣2C.x=1D.x=04.下列等式变形,正确的是()A.由6+x=7得x=7+6B.由3x+2=5x得3x﹣5x=2C.由2x=3得x=D.由﹣1=1得x﹣5=15.方程8﹣|x+3|=﹣2的解是()A.x=10B.x=7C.x=﹣13D.x=7或x=﹣136.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元7.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x辆,则可列方程为()A.4x+8=4.5x B.4x﹣8=4.5xC.4x=4.5x+8D.4(x+8)=4.5x8.如果关于x的方程3x+2a=12和方程3x﹣4=2(x﹣3)的解相同,那么与a互为倒数的数是()A.3B.9C.D.9.如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A点以65m/min 的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB10.将正整数1至2016按一定规律排列如表:平移表中带阴影的方框,方框中三个数的和可能是()A.2000B.2019C.2100D.2148二.填空题(共8小题)11.已知|2x﹣3|=1,则x的值为.12.下面是一个被墨水污染过的方程:2x﹣=3x+,答案显示此方程的解为x=﹣1,被墨水遮盖的是一个常数,则这个常数是.13.已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=.14.下列各式中,是一元一次方程的是(填序号)①3x+6=9;②2x﹣1;③x+1=5;④3x+4y=12;⑤5x2+x=3;⑥+y=2;⑦3x+y>0.15.《九章算术》是中国古代《算经十书》最重要的一部,它的出现标志中国古代数学形成了完整的体系,其中有一道阐述“盈不足数”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是说:现有一些人共同买一个物品,每人出8元,还盈余3元;第人出7元,则还差4元.问共有多少人?这个物品的价格是多少?设有x人,则根据题意可列方程.16.一艘船在水中航行,已知该船在静水中的速度为m(千米/小时),水流速度为n(千米/小时),如果该船从码头A出发,先顺流航行5小时,然后又调头逆流航行了5小时,那么最后船离A码头千米.17.有2020个数排成行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是.18.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为220元,按标价的五折销售,仍可获利10%,则这件商品的进价为元.三.解答题(共7小题)19.解方程:(1)2x+3=15(2)20.已知(m﹣2)x|m|﹣1+6=m是关于x的一元一次方程,求代数式(x﹣3)2018的值.21.如果关于x的方程3(x﹣1)﹣2(x+1)=﹣2和的解相同,求a的值.22.李明和爸爸比身高,两人站一起时,发现自己的身高只到爸爸身高的一半.他又去搬来28cm高的小板凳,发现这时到了爸爸身高的处.问李明和爸爸的身高分别为多少?23.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?24.小明用8个完全相同的小长方形拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的长方形;图案甲的中间留下了边长是1的正方形小洞.(1)设每个小方形的宽为x,由图乙可知每个小长方形的长可表示为.(2)求小长方形的长和宽.25.定义:若线段AB上有一点P,当PA=PB时,则称点P为线段AB的中点.已知数轴上A,B 两点对应数分别为a和b,(a+2)2+|b﹣4|=0,P为数轴上一动点,对应数为x.(1)a=,b=;(2)若点P为线段AB的中点,则P点对应的数x为.若B为线段AP的中点时则P点对应的数x为.(3)若点A、点B同时向左运动,它们的速度都为1个单位长度/秒,与此同时点P从﹣16处以2个单位长度/秒向右运动.①设运动的时间为t秒,直接用含t的式子填空AP=;BP=.②经过多长时间后,点A、点B、点P三点中其中一点是另外两点的中点?参考答案与试题解析一.选择题(共10小题)1.解:设某数为x,A、x2﹣x=6,是方程,故本选项错误;B、2(x+3)=14,是方程,故本选项错误;C、x﹣x,不是方程,故本选项正确;D、3x+7=29,是方程,故本选项错误.故选:C.2.解:根据题意,将x=1代入方程ax+2x=3,得:a+2=3,得:a=1.故选:B.3.解:2x﹣4=﹣2x+4移项得,2x+2x=4+4,合并同类项得,4x=8,系数化为1,得x=2.故选:A.4.解:A、由6+x=7得x=7﹣6,不符合题意;B、由3x+2=5x得3x﹣5x=﹣2,不符合题意;C、由2x=3得x=,符合题意;D、由﹣1=1得x﹣5=5,不符合题意;故选:C.5.解:8﹣|x+3|=﹣2,10=|x+3|,x+3=10或﹣10,∴x=7或﹣13,故选:D.6.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:135﹣x=25%x,135﹣y=﹣25%y,解得:x=108,y=180.∵135﹣108+(135﹣180)=﹣18,∴该商贩赔18元.故选:C.7.解:设这个车队有x辆车,由题意得,4x+8=4.5x.故选:A.8.解:解方程3x﹣4=2(x﹣3),3x﹣4=2x﹣63x﹣2x=﹣6+4x=﹣2,把x=﹣2代入3x+2a=12,可得:﹣6+2a=12,解得:a=9,所以与a互为倒数的数是,故选:C.9.解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.10.解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2000、3x=2100、3x=2148,解得:x=673,x=666(舍去),x=700,x=716.∵673=96×7+1,∴2019不合题意,舍去;∵700=100×7,∴2100不合题意,舍去;∵716=102×7+2,∴三个数之和为2148.故选:D.二.填空题(共8小题)11.解:|2x﹣3|=1,2x﹣3=±1,2x﹣3=1或2x﹣3=﹣1,x1=2,x2=1.故答案为:2或1.12.解:设被墨水遮盖的常数为t,则2x﹣=3x+t,把x=﹣1代入得2×(﹣1)﹣=3×(﹣1)+t,解得t=.故答案为.13.解:2x+4=x+1,2x﹣x=1﹣4,x=﹣3,把x=﹣3代入2x+a=x﹣1中得:﹣6+a=﹣3﹣1,解得:a=10,故答案为:10.14.解:①3x+6=9,是一元一次方程,符合题意;②2x﹣1,是整式,不是方程,不合题意;③x+1=5,是一元一次方程,符合题意;④3x+4y=12,是二元一次方程,不合题意;⑤5x2+x=3,是一元二次方程,不合题意;⑥+y=2,是分式方程,不合题意;⑦3x+y>0,是不等式,不合题意.故答案为:①③.15.解:设有x人,由题意,得8x﹣3=7x+4.故答案是:8x﹣3=7x+4.16.解:由题意,得船离A码头为:5(m+n)﹣5(m﹣n)=10n.故答案是:10n.17.解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2,故答案为:2.18.解:设这件商品的进价为x元,根据题意得:10%x=220×50%﹣x,0.1x=110﹣x,1.1x=110,x=100,答:这件商品的进价为100元.故答案是:100.三.解答题(共7小题)19.解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:4x+4=12﹣3+6x,移项合并得:﹣2x=5,解得:x=﹣2.5.20.解:∵(m﹣2)x|m|﹣1+6=m是关于x的一元一次方程,∴|m|﹣1=1,且m﹣2≠0.解得m=﹣2,∴﹣4x+6=﹣2,解得x=2,∴(x﹣3)2018=(2﹣3)2018=1.21.解:解方程3(x﹣1)﹣2(x+1)=﹣2得:x=3,把x=3代入方程中,解得:=1,解得:a=﹣.22.解:设李明的身高为xcm,则爸爸的身高为2xcm,根据题意,得x+28=•2x,解得:x=84,则2x=168.答:李明的身高是84cm,爸爸的身高是168cm.23.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.24.解:(1)由题意知,每个小长方形的长为:.故答案是:.(2)依题意,得.解得x=3.答:每个小长方形的长为5,宽为3.25.解:(1)因为(a+2)2+|b﹣4|=0,所以a=﹣2,b=4.故答案为﹣2、4(2)若点P为线段AB的中点,则P点对应的数x为1.若B为线段AP的中点时,AB=BP=6,则P点对应的数x为10.故答案为1、10.(3)①AP=﹣3t+14或14﹣3t或|14﹣3t|,BP=20﹣3t或3t﹣20或|20﹣3t|.故答案为﹣3t+14或14﹣3t或|14﹣3t|、20﹣3t或3t﹣20或|20﹣3t|.②ts后,点A的位置为:﹣2﹣t,点B的位置为:4﹣t,点P的位置为:﹣16+2t当点A是PB的中点时,则﹣2﹣t﹣(﹣16+2t)=6 解得:t=当点P是AB的中点时,则﹣16+2t﹣(﹣2﹣t)=3 解得:t=当点B是PA的中点时,则﹣16+2t﹣(4﹣t)=6 解得:t=答:经过s、s、s后,点A、点B、点P三点中其中一点是另外两点的中点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(北师大版七年级数学)第五单元 一元一次方程 章末测试题(基础卷)一、选择题:(每题3分,共30分)1.下面的等式中,是一元一次方程的为( ) A .3x +2y =0 B .3+m =10 C .2+x1=x D .a 2=16 2.下列结论中,正确的是( )A .由5÷x =13,可得x =13÷5B .由5 x =3 x +7,可得5 x +3 x =7C .由9 x =-4,可得x =-49D .由5 x =8-2x ,可得5 x +2 x =8 3.下列方程中,解为x =2的方程是( )A .3x =x +3B .-x +3=0C .2x =6D .5x -2=8 4.解方程时,去分母得( )A .4(x +1)=x -3(5x -1)B .x +1=12x -(5x -1)C .3(x +1)=12x -4(5x -1)D .3(x +1)=x -4(5x -1) 5.若31(y +1)与3-2y 互为相反数,则y 等于( ) A .-2 B .2 C .78 D .-78 6.关于y 的方程3y +5=0与3y +3k =1的解完全相同,则k 的值为( ) A .-2 B .43C .2D .-347.父亲现年32岁,儿子现年5岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的方程是( ) A .32-x =5-x B .32-x =10(5-x) C .32-x =5×10 D .32+x =5×108.小华在某月的月历中圈出几个数,算出这三个数的和是36,那么这个数阵的形式可能是( )A .B .C .D .9.某商品的售价比原售价降低了15%,现售价是34元,那么原来的售价是( ) A .28元 B .32元 C .36元 D .40元10.用72cm 长的铁丝做一个长方形的教具,要使宽为15cm,那么长是( ) A .28.5cm B .42cm C .21cm D .33.5cm二、填空题:(每题3分,共27分)11.设某数为x ,若它的3倍比这个数本身大2,则可列出方程___________. 12.将方程3x -7=-5x +3变形为3x +5x =3+7,这个变形过程叫做______. 13.当y =______时,代数式与41y +5的值相等. 14.若与31互为倒数,则x =______.15.三个连续奇数的和是75,则这三个数分别是___________.16.一件商品的成本是200元,提高30%后标价,然后打九折销售,则这件商品的利润为______元. 17.若x =-3是关于x 的方程3x -a =2x +5的解,则a 的值为______.18.单项式-3a x +1b 4与9a 2x -1b 4是同类项,则x =______.19.一只轮船在A 、B 两码头间航行,从A 到B 顺流需4小时,已知A 、B 间的路程是80千米,水流速度是2千米/时,则从B 返回A 用______小时. 三、解答题:(共43分) 20.(每个3分,共9分)解方程:5x +2=7x -8 5(x +8)-5=6(2x -7)21.(3分)一个数的65与4的和等于最大的一位数,求这个数.22.(5分)把500元钱按照3年定期存教育储蓄,如果到期可以得到本息和共540.5元,那么这3年定期教育储蓄的年利率是多少?23.(5分)初一.2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生?共摘了多少个苹果?24.(5分)一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?25.(5分)某商店将某种品牌的DVD 按进价提高35%,然后打出“八折酬宾,外送50元出租车费”的广告,结果每台DVD 仍可获利166元,那么每台DVD 的进价是多少元?26.(11分)下图的数阵是由77个偶数排成:(1) 图中平行四边形框内的4个数有什么关系?(2) 在数阵图中任意作一类似(1)中的平行四边形框,设其中一个数为x ,那么其他3个数怎样表示? (3) 小红说4个数的和是415,你能求出这4个数吗?(4) 小明说4个数的和是420,存在这样的4个数吗?若存在,请求出这4个数.参考答案:一、选择题:1.B 2.D 3.D 4.C 5.B 6.C 7.B 8.B 9.D 10.C二、填空题:11.3x -x =2 12.移项 13.92 14.9 15.23 25 27 16.34 17.-8 18.2 19.5 三、解答题: 20.5 11 -52 21.解:设这个数为x,根据题意得:65x +4=9 解得x =6 22. 解:设这3年定期教育储蓄的年利率是x,根据题意得:500+500x ×3=540.5 解得x =2.7% 所以这3年定期教育储蓄的年利率是2.7%.23. 解:设第一小组有x 名学生,那么共摘了(3x +9)个苹果,根据题意得:3x +9=5(x -1)+4 解得x =5 则3x +9=24(个) 所以第一小组有5名学生,共摘了24个苹果. 24. 解:设通讯员出发前,学生走了x 小时,根据题意得:6(x +6015)=10×6015 解得x =61 61小时=10分钟 所以通讯员出发前,学生走了10分钟.25. 解:设每台DVD 的进价是x 元,根据题意得:(1+35%)x ×80%-50=166 解得x =200 所以每台DVD 的进价是200元.26.(1)横差2 竖差14 斜差10 (2)设x 表示最小的一个数,那么其他3个数分别表示为x +2 x +12 x +14 (3)不能 若设最小一个数为y ,那么其他3个数分别表示为y +2 y +12 y +14 所以y +y +2+y +12+y +14=415 解得4y =387 得不到y 的整数值,所以4个数的和不可能是415. (4)存在 若设最小一个数为z ,那么就有z +z +2+z +12+z +14=420 解得4z =392 即z =98 所以这4个数分别是98 100 110 112.(北师大版七年级数学)第五单元 一元一次方程 章末测试题(提高卷)一、 选择题:(每题3分,共30分)1.下列说法中,正确的是( ) A .方程是等式 B .等式是方程 C .含有字母的式子是方程 D .不含字母的方程是等式2.下列方程变形正确的是( )A.由3(x -1)-5(x -2)=0,得2x =-7B.由x +1=2x -3,得x -2x =―1―3C.由2x -31=1,得3x -2=1 D.由2x =3,得x =323.若代数式3a 4b 2x与0.2b 3x -1a 4能合成一项,则x 的值是( )A.21B.1C. 31D.04.如果3kx -2=6k +x 是关于x 的一元一次方程,则( ) A .k 是任意有理数 B .k 是不等于0的有理数 C .k 是不等于31的整数 D .k 是不等于31的数 5.若代数式的值是2,则x 的值是( )A .0.75B .1.75C .1.5D .3.56.某商品提价10%后,欲恢复原价,则应降价( ) A .10% B .9% C .11100% D .9100%7.某服装商店同时卖出两套服装,每套均卖168元,以成本计算,其中一套盈利20%,另一套亏本20%,则这次服装商店( )A .不赚不赔B .赚37.2元C .赚14元D .赔14元8.一个三位数,3个数位上的数字和是15,百位上的数字比十位上的数字小1,个位上的数字比十位上的数字大1,则这个三位数是( )A .345B .357C .456D .5679.已知关于x 的方程ax -4=14x +a 的解是x =2,则a 的值是( )A .24B .-24C .32D .-3210.某人在1999年12月存入人民币若干元,年利率为2.25%,税率为利息的20%,一年到期后将缴纳利息税72元,则他存入的人民币为( )A .3600元B .16000元C .360元D .1600元 二、填空题:(每题3分,共24分) 11.若与-41互为倒数,则x 等于______. 12.若方程2x -3=3x -2+k 的解是x =2,那么k 的值为______.13.月历上,若一个竖列上相邻的三个数的和是54,则这三个数分别为___________.14.若x =1是关于x 的方程mx +n =p 的解,则(m +n -p )2006=______.15.800元的七折价是______元,______元的八折价是720元. 16.如果方程与的解相同,则m 的值为______.17.已知方程是关于x 的一元一次方程,则m =______.18.甲乙两人开展学习竞赛,甲每天做5道数学题,乙每天做8道数学题,若甲早开始了3天,那么乙______天后和甲做的题目一样多. 三、解答题:(共46分) 19.解方程:(每个4分,共16分)-3(x +3)=24103(200+x)-102(300-x )=300×25920.(5分)据了解,个体服装销售要高出进价的20%方可盈利,一销售老板以高出进价的60%标价,如果一件服装标价240元,那么:(1)进价是多少元?(2)最低售价多少元时,销售老板方可盈利?21.(5分)某甲、乙、丙三个圆柱形容器,甲的内径是20厘米,高32厘米;乙的内径是30厘米,高32厘米;丙的内径是40厘米,甲、乙两容器中都注满了水.问:如果将甲、乙两容器中的水全部倒入丙容器而使水不溢出来,丙容器至少要多高?22.(5分)某剧团为“希望工程”募捐组织了一次义演,共卖出800张票,成人票1张9元,学生票1张6元,共筹得票款6180元,问成人票与学生票各售出多少张?23.(5分)敌我相距14千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,在距敌军0.6千米处向敌军开火,48分钟将敌军全部歼灭。
问敌军从逃跑到被我军歼灭共花多长时间?24.(10分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有40元钱,最多可买多少本?参考答案:一、选择题:1.A 2.B 3.B 4.D 5.D 6.C 7.D 8.C 9.C 10.B二、填空题:11.-5 12. -3 13.11 18 25 14.0 15.560 900 16.3 17.1 18.5 三、解答题:19. x =-11 x =-15 x =14.5 x =216 20.解:(1)设进价是x 元,根据题意得:(1+60%)x =240 解得x =125 所以进价是125元.(2)125×(1+20%)=150(元) 所以最低售价150元时,销售老板方可盈利. 21.解:设丙容器至少要x 厘米,根据题意得:π×(240)2×x =π×(220)2×32+π×(230)2×32 解得x =26 所以丙容器至少要26厘米.22.解:设成人票售出x 张,那么学生票售出(800-x )张,根据题意得:9x +(800-x )×6=6180 解得x =460 那么800-x =340(张) 所以成人票售出460张,学生票售出340张. 23.解:设敌军从逃跑到被我军歼灭共花x 小时,根据题意得:7×(x -1-6048)=14+4×(x -6048)-0.6 解得x =7.6 所以敌军从逃跑到被我军歼灭共花7.6小时.24.解:(1)若到甲商店买应付钱为:10×1+(20-10)×1×70%=10+10×0.7=17(元)若到乙商店买应付钱为:20×1×80%=20×0.8=16(元) 所以小明要买20本时,到乙商店较省钱. (2)设买x 本时给两个商店付相等的钱,根据题意得:10×1+(x -10)×1×70%=x ×1×80% 解得x =30 所以买30本时给两个商店付相等的钱.(3)设小明用40元钱到甲商店可买m 本,根据题意得:10×1+(m -10)×1×70%=40 解得m =52……0.6(元) 设小明用40元钱到乙商店可买n 本,根据题意得:n ×1×80%=40 解得m =50 所以小明用40元钱到甲商店购买合算.。