2012年北京市西城初三数学二模试题
2012年北京市中考数学二模分类汇编
FEB AO 2012年北京市中考数学二模分类汇编——圆(一)与圆有关的填空选择题1.(西城3)若⊙1O 与⊙2O 内切,它们的半径分别为3和8,则以下关于这两圆的圆心距12O O 的结论正确的是AA.12O O =5B.12O O =11C.12O O >11D. 5<12O O <112.(延庆) 如图,⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,1OD =,则BAC ∠的度数是BA .55° B.60° C.65° D .70° 3.(通州7)如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =60o,则sin∠BDC 的值为( )A .12B .3C .2D .24.(丰台11)如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D , 如果1OD =,那么BAC ∠=________︒.60°5.(西城6)如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 长为10,3cos 5BOD ∠=, 则AB 的长是 A . 20 B. 16 C. 12 D. 86.(顺义6)如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持互相垂直.在测直径时,把O 点靠在圆周上,读得刻度OE=4个单位,OF=3个单位,则圆的直径为A .7个单位B .6个单位C .5个单位D .4个单位7.(怀柔5=5m ,横截面的圆心O 到污水面的距离OC =3m ,则污水面宽AB 等于AA .8mB .10mC .12mD .16m8.(密云7)如图,AB 是半⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于D ,若:4:3AC B C =,10AB =cm ,则OD 的长为A .2 cmB .4 cmC .6 cmD .8 cmDO CBA-2 -9.(延庆)已知扇形的圆心角为60°,半径为6,则扇形的弧长为DA .6πB .4πC .3πD .2π10.(平谷11)如图,在⊙O 中,直径AB =6,∠CAB =40°,则阴影部分的面积是 .11.(东城区10) 一个扇形圆心角为120°,半径为1,则这个扇形的弧长为 .23π12.(石景山11)已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .13.(延庆)如图,点A 、B 、C在直径为O ⊙上,45BAC ∠=°,则图中阴影部分的面积等于____________.(结果中保留π)3π342- 14.(西城8)如图,在矩形ABCD 中,3=AB ,BC=1. 现将矩形ABCD 绕点C 顺时针旋转90°得到矩形A B CD ''',则AD 边扫过的面积(阴影部分)为A . 21π B. 31π C.41π D. 51π15.(东城12) 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON ,使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= .2π-16.(密云12)如图,在边长为1的等边△ABC 中,若将两条含120︒圆心角的 AOB 、BOC 及边AC 所围成的阴影部分的面积记为S ,则S 与△ABC 面积比是 ______ .17.(通州8)如图所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,则阴影部分面积为( )A .132π平方厘米B .312π平方厘米C .25π平方厘米D .无法计算18.(昌平10)圆锥的母线长为3,底面半径为2,则它的侧面积为 . 19.(房山7)已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于(D ).A .15πB .14πC .13πD .12π20.(西城11)如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .CA-3 -(二)与圆有关的计算问题1.怀柔20. 如图,点D 在O ⊙直径AB 的延长线上,点C 在O ⊙上,且AC =CD ,∠ACD =120°. (1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积. 20.(1)证明:连结O C .………………1分∵ CDAC =,120A C D ︒∠=, ∴ 30A D ︒∠=∠=.……………2分 ∵ OCOA =,∴ 230A ︒∠=∠=. ∴ 290O C D A C D ︒∠=∠-∠=. ∴ C D 是O ⊙的切线. ………………………………3分(2)解:∵∠A=30o , ∴ 1260A ︒∠=∠=. ∴ 2602360O B CS π⨯==扇形23π. ……………………4分 在Rt△OCD 中, tan 60CD OC =⋅︒=∴Rt 11222OCD S OC CD ∆=⨯=⨯⨯=∴ 图中阴影部分的面积为-3223π. ……………5分2.(石景山21)已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MP 的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论;(2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:21.(1)联结CO , …………………………1分 ∵DM ⊥AB ∴∠D+∠A=90°∵PC PD =∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA ∴∠OCA+∠PCD=90°∴PC ⊥OC ∴直线PC 是⊙O 的切线 ……………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q∴Rt △CQA 中∴22tanD QAC tan ==∠∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x∴22=AQ∴242==AQ AN ∴163CD ==……………… 5分 3.(门头沟20) 如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径.点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D .(1)求证:CD 为⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长.20.(1)证明:连接OC, ∵O A=OC,∴∠OCA=∠OAC .∵CD⊥PA,∴∠CDA=90°,∴∠CAD+∠DCA=90°, ∵AC 平分∠PAE,∴∠DAC=∠CAO . ………………………1分 ∴∠DC O =∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°.∴CD 为⊙O 的切线. …………………………2分(2)解:过O作O F⊥AB,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°,∴四边形OCDF 为矩形,∴OC=FD ,OF=CD.-4 -∵DC+DA=6,设AD=x ,则OF=CD=6-x , ……………………3分 ∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt△AOF 中,由勾股定理得222AF +OF =OA . 即22(5)(6)25x x -+-=,化简得:211180x x -+=解得2x =或9x =(舍).∴AD=2, AF=5-2=3.∵OF⊥AB, AB=2AF=6.4.(通州20)已知:如图直线PA 交⊙O 于A ,E 两点,PA 的垂线DC 切⊙O 于点C ,过A 点作⊙O 的直径AB .(1)求证:AC 平分∠DAB .(2)若DC =4,DA =2,求⊙O 的直径. 20. 答案:(1)连结OC ∵DC 切⊙O 于C ∴OC ⊥DC又∵PA ⊥DC ∴ OC∥PA ∴∠PAC =∠OCA又 OC =OA ∴ ∠OCA =∠OAC ∴∠PAC =∠OAC ∴AC 平分∠DAB (2)作OF ⊥AE 于F ,设⊙O 的半径为R ……………..(3分)又∵PA ⊥DC OC ⊥DC ∴四边形OCDF 为矩形∴OF =CD =4 且 DF =OC =R 又 DA =2,∴ AF=DF-AD=R -2……………………………..(4分)在Rt △OAF 中,OF 2+AF 2=OA 2∴ 42+(R -2)2=R 2解得:R =5∴⊙O 的直径:2R =10 5.(海淀20)如图,AC 、BC 是⊙O 的弦, BC //AO , AO 的延长线与过点C 的射线交于点D , 且∠D =90︒-2∠A .(1)求证:直线CD 是⊙O 的切线; (2)若BC=4,1tan 2D =,求CD 和AD 的长. 20.(1)证明:连结OC .∴ ∠DOC =2∠A . ∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°.∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. (2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4, ∴ CE =12BC =2. ∵ BC //AO ,∴ ∠OCE =∠DOC . ∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒, ∴ ∠COE =∠D .∵tan D =12,∴tan COE ∠=12.∵∠OEC =90︒, CE =2,∴4tan CEOE COE==∠.在Rt △OEC 中, 由勾股定理可得OC == 在Rt △ODC 中, 由1tan 2OC D CD ==,得CD =, …………4分 由勾股定理可得 10.OD =∴10.AD OA OD OC OD =+=+=…………………5分 6.(密云)19.已知:如图,AB 为⊙O 的直径,PA 、PC 是⊙O 的切线,A 、C 为切点,∠BAC =30. (1)求∠P 的大小; (2)若AB =6,求PA 的长.- 5 -19.(1)解:∵PA是⊙O的切线,AB为⊙O的直径,∴PA AB⊥.∴90BAP∠=-----------------1分∵∠BAC=30,∴9060PAC BAC∠=-∠=.又∵PA、PC切⊙O于点A、C,∴PA PC=--------------2分∴△PAC是等边三角形.∴60P∠=. ------------------------3分( 2 ) 如图,连结BC.∵AB是直径,∠ACB=90. --------4分在R t△ACB中,AB=6,∠BAC=30,∴cos6cos3033AC AB BAC=⋅∠==又∵△PAC是等边三角形,∴PA AC== --------------------------5分7.(西城区21)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=33,求CD的长.21.(1)证明:连结AO,AC.(如图5)∵BC是⊙O的直径,∴90BAC CAD∠=∠=︒.﹍﹍﹍﹍﹍1分∵E是CD的中点,∴AEDECE==.∴EACECA∠=∠.∵OA=OC,∴OCAOAC∠=∠.∵CD是⊙O的切线,∴CD⊥OC.∴90ECA OCA∠+∠=︒. ∴90EAC OAC∠+∠=︒.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线.(2) 解:由(1)知OA⊥AP.在Rt△OAP中,∵90OAP∠=︒,OC=CP=OA,即OP=2OA,∴ sin P21==OPOA.∴30P∠=︒. ∴60AOP∠=︒.∵OC=OA,∴60ACO∠=︒.在Rt△BAC中,∵90BAC∠=︒,AB=33,60ACO∠=︒,∴3tanABACACO===∠.又∵在Rt△ACD中,90CAD∠=︒,9030ACD ACO∠=︒-∠=︒,∴3cos cos30ACCDACD===∠︒﹍﹍﹍﹍5分8.(顺义)已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C.(1)判断直线PC与⊙O位置关系,并证明你的结论;(2)若BC=2,11sin23APC∠=,求PC的长及点C到PA的距离.OCBAP- 6 -D85674321O C B AP20.解:(1)直线PC 与⊙O 相切.证明:连结OC ,∵BC ∥OP ,∴∠1 =∠2,∠3=∠4. ∵OB=OC , ∴∠1=∠3.∴∠2=∠4. 又∵OC=OA ,OP=OP ,∴△POC ≌△POA .∴∠PCO =∠PAO .∵PA 切⊙O 于点A ,∴∠PAO =90°. ∴∠PCO =90°.∴PC 与⊙O 相切.…………… 2分 (2)解:∵△POC ≌△POA ,∴∠5=∠6=12APC ∠.∴11sin 5sin 23APC ∠=∠=. ∵∠PCO =90°,∴∠2+∠5=90°.∴1cos 2sin 53∠=∠=.∵∠3=∠1 =∠2,∴1cos 33∠=.连结AC ,∵AB 是⊙O 的直径,∴∠ACB =90°.∴261cos 33BC AB ===∠.∴OA=OB=OC=3,AC ==Rt △POC 中,9sin 5OCOP ==∠.∴PC == 4分过点C 作CD ⊥PA 于D ,∵∠ACB =∠PAO =90°,∴∠3+∠7 =90°,∠7+∠8 =90°. ∴∠3=∠8.∴1cos 8cos 33∠=∠=. 在Rt △CAD中,1cos 83AD AC =∠== 9.(延庆19)已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D , (1) 求证:∠AOD =2∠C (2) 若AD =8,tan C =34,求⊙O 的半径。
北京市中考数学二模试题汇编 人教新课标版
目录丰台区2012年初三统一练习 石景山2012年初三统一练习 顺义区2012年初三统一练习 大兴区2012年初三统一练习 通州区2012年初三统一练习 门头沟2012年初三统一练习 房山区2012年初三统一练习 延庆县2012年初三统一练习 密云县2012年初三统一练习 海淀区2012年初三统一练习丰台区2012年初三统一练习(二)数 学 试 卷学校 姓名 准考证号 考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2-的绝对值是A .12-B .12 C .2 D .2-2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .62.510⨯ B .50.2510-⨯ C . 62.510-⨯ D .72510-⨯ 3.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 ED AA.12B.13C.14D.194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是A.14B.12C.34D.15.若230x y++-=则y x的值为A.-8 B.-6 C.6 D.86.下列运算正确的是A.222()a b a b+=+ B.235a b ab+=C.632a a a÷= D.325a a a⋅=7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x米/分.根据题意,下面列出的方程正确的是A.30428002800=-xxB.30280042800=-xxC.30528002800=-xxD.30280052800=-xx8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是A.北 B.京 C.精 D.神二、填空题(本题共16分,每小题4分)91x-x的取值范围是.10.分解因式:=+-babba25102.11.如图, ⊙O的半径为2,点A为⊙O上一点,OD⊥弦BC于点D,如果1OD=,那么BAC∠=________︒.DOCBA12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+,…,利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= .三、解答题(本题共30分,每小题5分)13.计算: ()︒⎪⎭⎫ ⎝⎛+45sin 4-211-3-272-03 .14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值.15.解分式方程:21124x x x -=--.16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1 4月份总用电量/千瓦时电费/元 小刚 200 小丽30021DOCBA(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,交AB 于点M ,交CB 的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ;(2)如果OD =1,tan∠OCA =52,求AC 的长.21.某课外小组为了解本校八年级700名学生每学期参加社会实践活动的时间,随机对该年级50名学生进行了调查,根据收集的数据绘制了如下的频数分布表和频数分布直方图(各组数据包括最小值,不包括最大值). (1)补全下面的频数分布表和频数分布直方图:(2)可以估计这所学校八年级的学生中,每学期参加社会实践活动的时间不少于8小时的学生大约有多少人?分组/时 频数 频率 6~8 2 0.04 8~10 0.12 10~12 12~14 18 14~16 10 0.20 合 计501.00OD CBAMFEBCDA22.小杰遇到这样一个问题:如图1,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连结EF ,△AEF的三条高线交于点H ,如果AC =4,EF =3,求AH 的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH 平移至△GCF 的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答: (1)图2中AH 的长等于 .(2)如果AC =a ,EF =b ,那么AH 的长等于 .BA D CEFHG HFECDA B图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .12345–1–2–3–412345–1–2xy O(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论;(2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图225.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1) 抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当θ= °时,线段CE 的长度最大,最大值为 .AEFPD CE BAD F P北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案题号 1 2 3 4 5 6 7 8 答案 CCBCADAA题号 91011 12答案x ≥12)5(-a b 60°21n+;5151 13.解:原式=3-1+4-422⨯……4分 =6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分. =224a a -+. ……2分2230a a --=, ∴223a a -=.…3分∴原式=224347a a -+=+=.….….5分 15.21124x x x -=-- 解:2(2)(4)1x x x +--=.……1分 22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分 检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分16.证明:∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 ,OA=OB ,∠AOC =∠BOD ,CO=DO .∴△COA ≌△DOB .……….4分∴∠C =∠D . …………….5分 17.解: (1)反比例函数ky x=的图象经过点A (-1,1) , ∴-11-1k =⨯=.…………1分 (2)P 1(0,2)、 P 2(0,-2)、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分4月份总用电量/千瓦时电费/元 小刚 200 98 小丽300150.5(2)当0230x ≤≤时,0.49y x =;……3分 当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分) 19.解:联结BD . ∵在菱形ABCD 中,∴AD ∥BC ,AC ⊥BD .……1分 又∵EF ⊥AC , ∴BD ∥EF .∴四边形EFBD 为平行四边形.……2分 ∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分20.(1)证明:∵OA =OB , ∴∠B =∠4. ∵CD =AC , ∴∠1=∠2.∵∠3=∠2,∴∠3=∠1. ∵AC 是⊙O 的切线, ∴OA ⊥AC .……1分∴∠OAC =90°.∴∠1+∠4=90°. ∴∠3+∠B =90°. ∴OC ⊥OB .……2分(2)在Rt △OAC 中 ,∠OAC =90°, ∵tan∠OCA =52, ∴52OA AC =.……3分 ∴设AC =2x ,则AO =5x .由勾股定理得,OC =3x .∵AC =CD , ∴AC =CD =2x . ∵OD =1, ∴OC =2x +1.∴2x +1=3x .……4分∴x =1. ∴AC =21⨯=2.……5分21.解: (1)……3分(注:错一空扣1分,最多扣3分)…4分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于8小时的学生大约有672人.22.解:(1)7;……3分(2)22a b -.……5分 分组/时 频数 频率 6~8 2 0.04 8~10 6 0.1210~12 14 0.28 12~14 18 0.36 14~16 10 0.20合 计 50 1.0023.解:(1)由题意得△>0. ∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去. 综上所述,1=k .……4分(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°.过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况432ABCD O1即可)∴∠NQP =45°,NQ PM S ⋅=21.∵PQ ,∴NQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分 ∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分∴二次函数的解析式为:2232y x x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’,设对称轴x =3与x 轴交于点D ,∴OD =3. ∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’, 在Rt △OC ’D 中,根据勾股定理C ’D =1. ∴C ’(3,1).……6分 (3) 120°,4.……8分石景山区2012年初三第二次统一练习数 学 试 卷7654321NMCD BPFEACA B yxB'C'DA'O考 生 须 知 1.本试卷共10页.第10页为草稿纸,全卷共五道大题,25道小题. 2.本试卷满分120分,考试时间120分钟.3.在试卷密封线内准确填写区(县)名称、毕业学校、姓名和准考证号. 4.考试结束后,将试卷和答题纸一并交回.题号 一 二 三 四五 总分 分数第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在题后的括号内.1.2的算术平方根是( ) A .21B .2C .2-D .2±2.2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为( ) A .6105.2-⨯ B .5105.2-⨯ C .5105.2⨯- D .6105.2-⨯-3.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120︒ 的菱形,剪口与折痕所成的角α 的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 4年星级饭店客房出租率(%)的情况如下表:年份 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 出租率62625265626160524956A .61、62B .62、62C .61.5、62D .60.5、625.如图,有6张形状、大小、质地均相同的卡片,正面分别印有北京精神——“爱国、创新、包容、厚德”的字样.背面完全相同,现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片恰好是“创新”的概率是( ) A .31 B .32 C .61 D .41 6.若一个多边形的内角和是900°,则这个多边形的边数是( )第3题图爱国创新包容厚德爱国创新A .5B .6C .7D .87.将二次函数2x y =的图象如何平移可得到342++=x x y 的图象( ) A .向右平移2个单位,向上平移一个单位 B .向右平移2个单位,向下平移一个单位 C .向左平移2个单位,向下平移一个单位 D .向左平移2个单位,向上平移一个单位8.已知正方形纸片的边长为18,若将它按下图所示方法折成一个正方体纸盒,则纸盒的边(棱)长是( ) A .6B .23C .29D .32第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分) 9.分式3-x x有意义的条件为 . 10.分解因式:=-339ab b a ______ ________. 11.已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .12.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .三、解答题(本题共30分,每小题5分)第8题图 第11题图111210987654321第12题图13.()22145cos 314.38-⎪⎭⎫⎝⎛+︒---π.解:14.解分式方程123482---=-xxx .解:15.已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD =AB ,∠1=∠2=∠3. 求证:BC=DE . 证明:16.已知:0162=-+x x ,求代数式()()()()3312122+-+--+x x x x x 的值.解:17.已知一次函数y kx b =+的图象与直线3y x =-平行且经过点()3,2-,与x 轴、y轴分别交于 A 、 B 两点. (1)求此一次函数的解析式;(2)点C 是坐标轴上一点,若△ABC 是底角为︒30的等腰三角形,求点C 的坐标. 解:18.列方程(组)解应用题:如图是一块长、宽分别为60 m 、50 m 的矩形草坪,草坪中有宽度均为x m 的一横两纵的甬道.(1)用含x 的代数式表示草坪的总面积S ;yx O 321FEABC D(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽. 解:四、解答题(本题共20分,每小题5分)19.如图,梯形纸片ABCD 中,AD //BC ,∠B =30º.折叠纸片使BC 经过点A ,点B 落在点B’处,EF 是折痕,且BE =EF =4,AF ∥CD . (1)求∠BAF 的度数; (2)当梯形的上底AD 多长时,线段DF 恰为该梯形的高? 解:20.以下是根据全国 2011年国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分. 请根据以上信息,解答下列问题:(产量相关数据精确到1万吨)(1)请补全扇形统计图;(2)通过计算说明全国的粮食产量与上一年相比,增长最多的是 年; (3)2011年早稻的产量为 万吨;(4)2008-2011这三年间,比上一年增长的粮食产量的平均数为多少万吨,若按此平均数增长,请你估计2012年的粮食产量为多少万吨.(结果保留到整数位) 解:21.已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MPA BDEC B 'F 6%22%%早稻夏粮秋粮2011年各类粮食占全体 粮食的百分比分组统计图的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:22.阅读下面材料:小阳遇到这样一个问题:如图(1),O 为等边△ABC 内部一点,且3:2:1::=OC OB OA ,求AOB ∠的度数.小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△CO A 绕点A 逆时针旋转60°,使点C 与点B 重合,得到△O AB ',连结O O '. 则△O AO '是等边三角形,故OA O O =',至此,通过旋转将线段OA 、OB 、OC 转移到同一个三角形B O O '中. (1)请你回答:︒=∠AOB . (2)参考小阳思考问题的方法,解决下列问题: 已知:如图(3),四边形ABCD 中,AB=AD ,∠DAB =60°,∠DCB =30°,AC =5,CD =4.求四边形ABCD 的面积. 解:五、解答题(本题满分22分,第23题7分,第24题7分,第25题8分) 23.已知:直线122y x =+分别与 x 轴、y 轴交于点A 、点B ,点P (a ,b )在直线AB 上,点P 关于y 轴的对称点P ′ 在反比例函数xky =图象上.(1) 当a =1时,求反比例函数xky =的解析式;DCBAM CODPB图⑴ 图⑵ 图⑶(C )OCBAOCB A(2) 设直线AB 与线段P'O 的交点为C .当P'C =2CO 时,求b 的值;(3) 过点A 作AD //y 轴交反比例函数图象于点D ,若AD =2b,求△P ’DO 的面积.解:24.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.A B C D E AE B C D图1 图2y x O 备用图解:25.已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=2x交于点B、C(B在右、C在左).(1)求抛物线的解析式;∠=∠,(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得BFE CFE 若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.解:yOx备用图草稿纸石景山区2012初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)题 号 12345678答 案B A D D A C C B二、填空题(本题共4道小题,每小题4分,共16分) 9.3≠x ; 10.()()b a b a ab 33-+; 11.225-225π; 12.10;6. 三、解答题(本题共6道小题,每小题5分,共30分)13.解:()22145cos 3--14.38-⎪⎭⎫⎝⎛+︒-π=4223122+⨯-- ……………………………4分 =322+…………………………………………………5分 14. 123482---=-xxx解:()()123228---=-+x x x x ……………………………1分 ()()()42382--+-=x x x ……………………………3分46822+---=x x x ……………………………4分∴10-=x经检验:10-=x 是原方程的根.………………………5分15.证明:∵∠1=∠2=∠3∴DAE BAC ∠=∠…………………………… 1分 又∵AFE DFC ∠=∠∴E C ∠=∠ …………………………… 2分 在△ABC 和△ADE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AD AB EC DAE BAC …………………………… 3分 ∴△ABC ≌△ADE ……………………………………………………… 4分∴BC=DE . ……………………………………………………… 5分 16.解:原式222922144x x x x x -++-++= …………………………………2分1062++=x x ………………………………… 3分当0162=-+x x 时,162=+x x ………………………………… 4分 原式11=. …………………………………5分17.解:(1)∵一次函数y kx b =+的图象与直线3y x =-平行且经过点()3,2-∴⎩⎨⎧-=+-=323b k k 解得⎩⎨⎧=-=33b k∴一次函数解析式为33+-=x y …………………………………1分(2)令0=y ,则1=x ;令0=x 则3=y∴()()3,0,0,1B A∵1=OA ,3=OB …………………………2分 ∴2=AB ∴︒=∠30ABO若AC AB =,可求得点C 的坐标为()0,31C 或()3,02-C ………………………4分 若CA CB =如图︒=︒-︒=∠3030603OAC ,3330tan 3=︒=OA OC ∴⎪⎪⎭⎫ ⎝⎛33,03C …………………………………………5分 ∴()0,31C ,()3,02-C ,⎪⎪⎭⎫ ⎝⎛33,03C 18.解:(1)S = 6050⨯-(60 x + 2×50 x -2×x 2 )=3000 + 2x 2-160x .………2分(2)由题意得:-2x 2+160x =60501000104⨯⨯, ………………3分 解得 x = 2 或 x = 78. …………………………………4分 又0<x <50,所以x = 2,答:甬道的宽是2米. ……………………………………5分 19. 解:(1)∵BE =EF ∴∠EFB =∠B ,由题意,△EF B '≌△BEF∴∠EFB ’ =∠EFB =∠B=30° ∴△BFA 中,︒=︒-︒-︒-︒=∠90303030180BAF ……………………………………2分 (2)联结DF ,∵AD //BC ,AF ∥CD∴四边形AFCD 是平行四边形 ……………………………………3分 ∴∠C =∠A FB =60°∴CD =AF =3230cos =︒EF ……………………………………4分 若BC DF ⊥,则360cos =︒=CD FC此时3=AD . ……………………………………5分 20.(1)72%;(2)2011;(3)3427; ……………………每空1分,共3分(4)(57121-52871)÷3≈=1417 ………………………………………4分57121+1417=58538. ………………………………………5分21.(1)联结CO , … …………………………………1分∵DM ⊥AB∴∠D+∠A=90° ∵PC PD = ∴∠D=∠PCD ∵OC=OA∴∠A=∠OCA∴∠OCA+∠PCD=90° ∴PC ⊥OC∴直线PC 是⊙O 的切线 …………………………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q ∴Rt △CQA 中 ∴22tanD QAC tan ==∠ ∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x …………………………………4分 ∴22=AQ∴242==AQ AN …………………………………5分22. 解:(1)150° ………………………1分(2) 如图,将△ADC 绕点A 顺时针旋转60°,使点D 与点B 重合,………2分 得到△O AB ',连结O C '. 则△O AC '是等边三角形,可知4,5'===='DC BO CA O C ,ADC ABO ∠=∠'……………………3分在四边形ABCD 中,︒=∠-∠-︒=∠+∠270360DCB DAB ABC ADC ,)(360''ABO ABC BC O ∠+∠-︒=∠∴︒=︒-︒=90270360. ……………………4分34522=-=∴BC 6432543215432''-=⨯⨯-⨯=-=∴∆∆BCO ACO ABCD S S S 四边形.………………5分23.(1)∵点P 在直线AB 上, 1=a 时,2121+⨯=b =25………………………1分 ∴)25,1(P ,∴)25,1(-'P ,代入x k y = 得25-=k , ∴x y 25-= …………………………2分 (2)联结'PP∵点P 和点P '关于y 轴对称 ∴'PP ∥x 轴P 'Pxy ODC BA O 'DCBA∴OCA C PP ∽△△'∴'PP ∶=OA C P '∶CO …………3分 ∵CO C P 2'= ∴'PP =OA 2∵221+=x y 与x 轴交于点A 、点B ∴)0,4(-A ,)2,0(B 可得4=OA∴8'=PP ∴a =4∴42421=+⨯=b ………………………5分 (3)当点P 在第一象限时:∵点P 和点P '关于y 轴对称且),(b a P∴),('b a P -∵y AD ∥∴)24-(b D , ∵D P 、点点'在xk y =上 ∴b a b⨯-=⨯-24 ∴2=a∴32221=+⨯=b ∵),23,4(-D )3,2('-P∴29'=DO P S △ …………6分当点P 在第二象限时:)24-(bD -,∴b a b⨯-=-⨯-24∴2-=a∴12)2(21=+-⨯=b∵),21,4(--D )1,2('P∴23'=DO P S △ …………7分24.解:(1)DC DB 2= (2) DC DB 2=证明:过点C 作CF ∥BE 交AD 的延长线于点F , 在 AD 上取点G 使得CF CG =A∴76∠=∠=∠F∵︒=∠=∠=∠602BAC CED BED ∴︒=∠=∠606F ,︒=∠30CED ∴41205∠=︒=∠∵︒=∠+∠=∠=∠+∠6021713 ∴23∠=∠ ∵AC AB = ∴△ABE ≌△CAG ∴AG BE AE CG ==, ∵︒=∠-∠=∠306CED GCE ∴EG CG =∴BE AG CG CF 2121===由△DBE ∽△DCF 得2==FCBEDC BD∴DC DB 2=(3) 结论:DC DB 2=.25.解:(1)点A (0,2m -7)代入y =-x 2+2x +m -2,得m =5∴抛物线的解析式为y =-x 2+2x +3 ………………………2分(2)由⎩⎨⎧=++-=x y x x y 2322得⎪⎩⎪⎨⎧==323y x ,⎪⎩⎪⎨⎧=-=323y x∴B (32,3),C (32,3--)B (32,3)关于抛物线对称轴1=x 的对称点为)32,32('-B可得直线C B '的解析式为32632-+=x y , 由⎩⎨⎧=-+=132632y x y ,可得⎩⎨⎧==61y x∴)6,1(F ………………………5分(3)当)2,2(t t M --在抛物线上时,可得03242=-+t t ,4131±-=t , 当)2,(t t P --在抛物线上时,可得32=t ,3±=t ,舍去负值,所以t 的取值范围是34131≤≤+-t .………………8分87654321E D AGF图(2)F E B AO 顺义区2012届初三第二次统一练习考生须知1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.9的平方根是A .3B .-3C .3±D .132.据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为A .59.110⨯B .49.110⨯C .49110⨯D . 39.110⨯ 3.如图,下列选项中不是..正六棱柱三视图的是( )A B C D4.把2416a b b -分解因式,结果正确的是A .2(24)b a - B . (22)(22)b a a +-C .24(2)b a -D .4(2)(2)b a a +-5.北京是严重缺水的城市,市政府号召居民节约用水,为了解居民用水情况,小敏在某小区随机抽查了10户家庭的5月份用水量,结果如下(单位:立方米):5,6,6,2,5,6,7,10,7,6,则关于这10户家庭的5月份用水量,下列说法错误的是 A.众数是6 B.极差是8C.平均数是6D.方差是46.如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持互相垂直.在测直径时,把O 点靠在圆周上,读得刻度OE=4个单位, OF=3个单位,则圆的直径为A .7个单位B .6个单位C .5个单位D .4个单位7.从1,-2, 3,-4四个数中,随机抽取两个数相乘,积是正数的概率是A .14 B .13 C .12D .238.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去右上方的小三角形.将纸片展开,得到的图形是DCBA二、填空题(本题共16分,每小题4分)9.若分式261xx--的值为0,则x的值等于.10.如图,□ABCD中,E是边BC上一点,AE交BD于F,若2BE=,3EC=,则BFDF的值为.11.将方程2410x x--=化为2()x m n-=的形式,其中m,n是常数,则m n+=.12.如图,△ABC中,AB=AC=2 ,若P为BC的中点,则2AP BP PC+的值为;若BC边上有100个不同的点1P,2P,…,100P,记i i i im AP BP PC=+(1i=,2,…,100),则12m m++…100m+的值为.三、解答题(本题共30分,每小题5分)13.计算:101()322sin45(32)4---+︒-.14.解不等式2(2)x+≤4(1)6x-+,并把它的解集在数轴上表示出来.15.已知:如图,E,F在BC上,且AE∥DF,AB∥CD ,AB=CD.FEDCBAP i P CBAFBA求证:BF = CE .16.解分式方程:32322x x x -=+-.17.已知2x -3=0,求代数式5(2)(2)(4)1x x x x ---++的值.18.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y (万吨)随着时间x (年)逐年成直线上升,y 与x 之间的关系如图所示.(1)求y 与x 之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?四、解答题(本题共20分,每小题5分) 19.如图,在矩形ABCD 中,E 是边CB 延长线上的点,且EB=AB ,DE 与AB 相交于点F ,AD=2,CD=1,求AE 及DF 的长.20.已知:如图,P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,BC ∥OP 交⊙O 于点C .(1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若BC=2,11sin23APC ∠=,求PC 的长及点C 到PA 的距离.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课FEDC B AOCBAP外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级学生人数为204人,请你根据图表中提供的信息,解答下列问题:图书种类 频数 频率科普常识 840 b名人传记 8160.34 中外名著 a0.25 其他1440.06(1)求该校八年级学生的人数占全校学生总人数的百分比; (2)求表中a ,b 的值;(3)求该校学生平均每人读多少本课外书?22.阅读下列材料:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决.请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴PyB D作垂线,垂足分别为C 、D .设OC=x ,四边形OCPD 的面积为S . (1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式; (2)若已知A (a ,0),B (0,b ),且当x=34时,S 有最大值98,求直线AB 的解析式; (3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点N 的坐标. 24.已知:如图,D 为线段AB 上一点(不与点A 、B 重合),CD ⊥AB ,且CD=AB ,AE ⊥AB ,BF ⊥AB ,且AE=BD ,BF=AD .(1)如图1,当点D 恰是AB 的中点时,请你猜想并证明∠ACE 与∠BCF 的数量关系; (2)如图2,当点D 不是AB 的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;(3)若∠ACB=α,直接写出∠ECF 的度数(用含α的式子表示).图1 图225.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为P .(1)求二次函数的解析式;(2)设D 为线段OC 上的一点,若DPC BAC ∠=∠,求点D 的FED CBAFE D C B A坐标;(3)在(2)的条件下,若点M 在抛物线212y x bx c =++上,点N 在y 轴上,要使以M 、N 、B 、D 为顶点的四边形是平行四边形,这样的点M 、N 是否存在,若存在,求出所有满足条件的点M 的坐标;若不存在,说明理由.顺义区2012届初三第二次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.3; 10.25; 11.7; 12.4,400. 三、解答题(本题共30分,每小题5分)13.解:101()322sin 45(32)4---+︒--2432212=-+⨯- …………………………………………………… 4分 322=- …………………………………………………………………… 5分 14.解:去括号,得 24x +≤446x -+.…………………………………………… 1分移项,得 24x x -≤464-+-.…………………………………………… 2分 合并,得 2x -≤-2 . ………………………………………… 3分 系数化为1,得 x ≥1 . ……………………………………………… 4分 不等式的解集在数轴上表示如下:……………………………………… 5分15.证明:∵ AE ∥DF ,∴∠1=∠2. ………………………… 1分 ∵ AB ∥CD , ∴ ∠B =∠C .………………………… 2分在△ABE 和 △DCF 中, 12,,,B C AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABE ≌△DCF .…………………………………………………… 4分 ∴ BE =CF . ∴BE -EF =CF -EF .即BF =CE .……………………………………………………………… 5分16.解:去分母,得 3(2)2(2)3(2)(2)x x x x x --+=+-.…………………… 1分去括号,得 223624312x x x x ---=-. ………………………… 2分 整理,得 88x -=-.…………………………………………………… 3分解得 1x =. ……………………………………………………………… 4分 经检验,1x =是原方程的解.……………………………………………… 5分 ∴ 原方程的解是1x =.17.解:5(2)(2)(4)1x x x x ---++22510(28)1x x x x =--+-+ ……………………………………………… 2分22510281x x x x =---++24129x x =-+ ………………………………………………………………… 3分(23)(23)x x =+- …………………………………………………………… 4分当2x -3=0时,原式(23)(23)0x x =+-=.………………………………… 5分18.解:(1)设y 与x 之间的关系式为y=kx+b .……………………………………… 1分21F EDC B A由题意,得20084,2010 6.k b k b +=⎧⎨+=⎩ 解得1,2004.k b =⎧⎨=-⎩ …………………… 3分∴y 与x 之间的关系式为y =x -2004(2008≤x ≤2012). …………… 4分(2)当x =2012时,y =2012-2004=8.∴该市2012年因“限塑令”而减少的塑料消耗量约为8万吨.……… 5分19.解:∵四边形ABCD 是矩形,且AD=2,CD=1,∴BC=AD=2,AB=CD=1,∠ABC =∠C= 90°,AB ∥DC .∴EB=AB=1. ………………………………………………………………… 1分 在Rt △ABE 中,222AE AB BE =+=.………………………………… 2分在Rt △DCE 中,22221310DE DC CE =+=+=.………………… 3分∵AB ∥DC ,∴12EF EB DF BC ==. …………………………………………………………… 4分 设EF x =,则2DF x =.∵EF DF DE +=, ∴210x x +=. ∴10x =. ∴22103DF x ==5分 20.解:(1)直线PC 与⊙O 相切.证明:连结OC ,∵BC ∥OP ,∴∠1 =∠2,∠3=∠4. ∵OB=OC , ∴∠1=∠3.∴∠2=∠4.又∵OC=OA ,OP=OP ,∴△POC ≌△POA . ……………………………………………… 1分 ∴∠PCO =∠PAO . ∵PA 切⊙O 于点A , ∴∠PAO =90°. ∴∠PCO =90°.∴PC 与⊙O 相切. ……………………………………………… 2分(2)解:∵△POC ≌△POA ,∴∠5=∠6=12APC ∠. ∴11sin 5sin 23APC ∠=∠=.∵∠PCO =90°,∴∠2+∠5=90°. ∴1cos 2sin 53∠=∠=. 4321O C B AP图3MPCBAD85674321O CBAP∵∠3=∠1 =∠2, ∴1cos 33∠=. 连结AC ,∵AB 是⊙O 的直径, ∴∠ACB =90°.∴261cos 33BC AB ===∠.………………………………………… 3分∴OA=OB=OC=3,2242AC AB BC =-=.∴在Rt △POC 中,9sin 5OCOP ==∠.∴2262PC OP OC =-=.…………………………………… 4分 过点C 作CD ⊥PA 于D , ∵∠ACB =∠PAO =90°,∴∠3+∠7 =90°,∠7+∠8 =90°. ∴∠3=∠8.∴1cos 8cos 33∠=∠=.在Rt △CAD 中,14cos 842233AD AC =∠=⨯=. ∴22163CD AC AD =-=.……………………………………… 5分 21.解:(1)∵1-28%-38%=34%.∴该校八年级学生的人数占全校学生总人数的百分比为34%.……… 1分(2)∵1440.062400÷=,∴24000.25600a =⨯=, ……………………………………………… 2分84024000.35b =÷=. ……………………………………………… 3分(3)∵八年级学生人数为204人,占全校学生总人数的百分比为34%,∴全校学生总人数为20434%600÷=. ……………………………… 4分 ∴该校学生平均每人读课外书:24006004÷=.答:该校学生平均每人读4本课外书. ………………………………… 5分22.解:图2中∠APB 的度数为 135° .……………… 1分 (1)如图3,以PA 、PB 、PC 的长度为三边长的一个三角形是 △APM .(含画图)………… 2分 (2)以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于60°、65°、55° .……………… 5分23.解:(1)设直线AB 的解析式为y kx b =+,由A (4,0),B (0,6),得40,6.k b b +=⎧⎨=⎩ 解得3,26.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为362y x =-+.……………………………… 1分 ∵OC=x ,∴3(,6)2P x x -+. ∴3(6)2S x x =-+. 即2362S x x =-+(0< x <4). …………………………………… 2分 (2)设直线AB 的解析式为y mx n =+,∵OC=x ,∴(,)P x mx n +.∴2S mx nx =+.∵当x=34时,S 有最大值98,∴3,24939.1648n m m n ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得2,3.m n =-⎧⎨=⎩∴直线AB 的解析式为23y x =-+.………………………………… 3分∴A (32,0),B (0,3). 即32a =,3b =.……………………………………………………… 5分(3)设点M 的坐标为(M x ,M y ),由点M 在(2)中的直线AB 上, ∴23M M y x =-+.∵点M 到x 轴、y 轴的距离相等, ∴M M x y =或M M x y =-.当M M x y =时,M 点的坐标为(1,1). 过M 点的反比例函数的解析式为1y x=. ∵点N 在1y x=的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为32,23⎛⎫⎪⎝⎭.……………………………………………… 6分 当M M x y =-时,M 点的坐标为(3,-3),BD C FEA 过M 点的反比例函数的解析式为9y x=-. ∵点N 在9y x=-的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为3,62⎛⎫-⎪⎝⎭.……………………………………………… 7分 综上,点N 的坐标为32,23⎛⎫⎪⎝⎭或3,62⎛⎫- ⎪⎝⎭.24.解:(1)猜想:∠ACE=∠BCF .证明:∵D 是AB 中点,∴AD=BD ,又∵AE=BD ,BF=AD , ∴AE=BF . ∵CD ⊥AB ,AD=BD , ∴CA=CB .∴∠1 =∠2. ∵AE ⊥AB ,BF ⊥AB , ∴∠3 =∠4=90°.∴∠1+∠3 =∠2+∠4.即∠CAE=∠CBF . ∴△CAE ≌△CBF .∴∠ACE=∠BCF .……………………………………………… 2分(2)∠ACE=∠BCF 仍然成立.证明:连结BE 、AF .∵CD ⊥AB ,AE ⊥AB , ∴∠CDB=∠BAE=90°. 又∵BD = AE ,CD = AB ,△CDB ≌△BAE .……………… 3分∴CB=BE ,∠BCD=∠EBA .在Rt △CDB 中,∵∠CDB =90°,∴∠BCD+∠CBD =90°. ∴∠EBA+∠CBD =90°.即∠CBE =90°.∴△BCE 是等腰直角三角形.∴∠BCE=45°. ……………………………………………… 4分 同理可证:△ACF 是等腰直角三角形.∴∠ACF=45°. ……………………………………………… 5分 ∴∠ACF=∠BCE .∴∠ACF -∠ECF =∠BCE -∠ECF .即∠ACE=∠BCF .……………………………………………… 6分(3)∠ECF 的度数为90°-α.……………………………………………… 7分4321F E DCB A。
2012西城二模
北京市西城区2012年初三二模试卷语文 2012.6一、选择。
下面各题均有四个选项,其中只有一个..符合题意,选出答案后在答题纸上用铅笔把对应题目的选项字母涂黑涂满。
(共12分。
每小题2分)1.下列词语中加点字的读音完全正确的一项是()A.怠.慢(dài)颈.椎(jǐnɡ)毛遂.自荐(suí)B.字帖.(tiē)应和.(hè)贻.笑大方(yí)C.诚挚.(zhì)怪癖.(pǐ)杞.人忧天(qǐ)D.广袤.(mào)翘.首(qiào)谆.谆教诲(zhūn)2.下列词语中加点字字义相同的一项是()A.奇观.叹为观.止 B.惜别.别.具匠心C.单薄.厚此薄.彼 D.称.职称.心如意3.下列句子中加点词语运用有误的一项是()A.你们的刊物走过了六十年的辉煌历程,取得了巨大成就,在全国期刊中独树一帜。
祝你们的刊物百尺竿头....,越办越精彩。
....,更进一步B.有些人平时不读书,等到真正要用知识的时候才后悔,只好慨叹“书到用时方恨少.......”,但他们不读书的情况并没有因为这种慨叹而改变。
C.我们班同学分别多年了,大家都很想见见面,聊聊天。
为了让各地的同学能不期而遇....,共叙友情,我们相约组织了这次同学联谊会。
D.西方的印象派绘画与中国的写意画有异曲同工....之妙,二者都不是纯客观地描绘自然,而是重在表现画家对世界强烈、独特的个人感受。
4.下列句子的标点符号使用有误的一项是()A.我站在海南的沙滩上,举目四望,不禁想起郭沫若那句“波青海面阔,沙白磊石圆”。
远方烟波浩渺,水天一色;近处奇石磊磊,被海水冲刷得光滑无棱。
B.英国诗人马维尔在《花园》一诗中写道:“对自然那甜蜜的宁静而言,人类是太鲁莽了。
”这似有陶渊明《归去来兮辞》那种“今是而昨非”的感慨。
C.一片大地能昂起几座山?一座山能涌出多少树?一棵树里能秘藏多少鸟?一声鸟鸣能唱出多少天机?——大自然有许多奥秘等待我们探索。
2012北京西城区初三数学二模试卷及答案(WORD版)
北京市西城区2012年初三一模试卷数学答案及评分标准2012. 5三、解答题(本题共30分,每小题5分)13.解:原式=32133321++⨯- …………………………………………………………4分 =323+.…………………………………………………………………… 5分14.解:由①得2->x .……………………………………………………………………1分由②得x ≤37. ……………………………………………………………………3分∴ 原不等式组的解集是-2< x ≤37.………………………………………………4分∴ 它的非负整数解为0,1,2.………………………………………………… 5分 15.(1)证明:如图1.∵ ∠ABC=90º,D 为AB 延长线上一点,∴ ∠ABE=∠CBD=90º . …………………………………………………1分 在△ABE 和△CBD 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD BE CBD ABE CB AB∴ △ABE ≌△CBD. …………………… 2分 (2)解:∵ AB=CB ,∠ABC=90º,∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30º,∴ ∠BAE =15°. ……………………………………………………………4分①② ⎪⎩⎪⎨⎧-+<-215)1(3x x x ,≥2x -4,∵ △ABE ≌△CBD ,∴ ∠BCD =∠BAE =15°. ……………………………………………………5分16. 解:原式=()()()()2a ab a b a b b a a b ++-⋅- =()22b b a +. ..….….….….….……………………3分 ∵ 2a +b =0,∴ a b 2-=. ……………………………………………………………………… 4分∴ 原式=22224)2()(a a a a =--.∵ a 不为0,∴ 原式=41. ..….….….….……………………………………………………… 5分17. 解:(1)∵ 反比例函数 的图象经过点),2(m A , ∴ 2m k =,且m >0.∵ AB ⊥x 轴于点B ,△AOB 的面积为1,∴1212m ⋅⋅=. 解得 1=m . ……………………………………………………………… 1分∴ 点A 的坐标为)1,2(. ………………………………………………… 2分 ∴ 22k m ==. …………………………………………………………… 3分 (2)点C 的坐标为(0,3)或(0,-1). ……………………………………………… 5分 18.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品.依题意得 105.112001200+=x x . ……………………………………………………2分解得40=x . …………………………………………………………………… 3分 经检验,40=x 是原方程的解,并且符合题意. …………………………… 4分∴ 605.1=x .答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ……………5分 四、解答题(本题共20分,每小题5分)19.解:(1)2,50;…………………………………2分 (2)5040%20⨯=,C 组的户数为20. … 3分补图见图2. …………………………4分 (3)∵ 500(28%8%)180⨯+=,∴ 根据以上信息估计,全社区捐款不少 于300元的户数是180.……………………………… 5分)0(>=k xk y捐款户数分组统计图120.解:(1)∵ 梯形ABCD 中,AD ∥BC ,90A ∠=︒,60C ∠=︒,∴ 90ABC ∠=︒,180120ADC C ∠=︒-∠=︒. 在Rt △ABD 中,∵90A ∠=︒,15ABD ∠=︒, ∴ 75ADB ∠=︒.∴ 45BDC ADC ADB ∠=∠-∠=︒.…… 2分 (2)作BE CD ⊥于点E ,DF BC ⊥于点F .(如图3)在Rt △BCE 中,∵ BC=2,60C ∠=︒, ∴sin BE BC C =⋅cos 1CE BC C =⋅=. ∵ 45BDC ∠=︒, ∴DE BE =∴1CD DE CE =+.…………………………………………… 3分 ∵ BC DF CD BE ⋅=⋅, ∴(31)333CD BE DF BC ⋅+⋅+==. …………………………… 4分 ∵ AD ∥BC ,90A ∠=︒,DF BC ⊥,∴ 33AB DF +==…………………………………………………… 5分 21.解:(1)作OF BD ⊥于点F ,连结OD .(如图4) ∵ ∠BAD=60°,∴ ∠BOD=2∠BAD =120°.……………1分 又∵OB =OD ,∴ 30OBD ∠=︒.……………………… 2分∵ AC 为⊙O 的直径,AC=4, ∴ OB= OD= 2.在Rt △BOF 中,∵∠OFB =90°, OB=2,︒=∠30OBF , ∴ 130sin 2sin =︒=∠⋅=OBF OB OF ,即点O 到BD 的距离等于1. ………………………………………… 3分(2)∵ OB= OD ,OF BD ⊥于点F ,∴ BF=DF .由DE=2BE ,设BE=2x ,则DE=4x ,BD=6x ,EF=x ,BF=3x . ∵ cos30BF OB =⋅︒=∴ x =. 在Rt △OEF 中,90OFE ∠=︒,图3FB图4AC∵ tan OFOED EF∠=∴ 60OED ∠=︒,1cos 2OED ∠=. …………………………………… 4分 ∴ 30BOE OED OBD ∠=∠-∠=︒. ∴ 90DOC DOB BOE ∠=∠-∠=︒. ∴ 45C ∠=︒.∴ CD ==. ………………………………………………… 5分 22.解:(1)135°;………………………………………………………………………… 2分(2)120°;………………………………………………………………………… 3分. ……………………………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)∵ 关于x 的一元二次方程2 10x px q +++=的一个实数根为 2,∴ 22 210p q +++=.…………………………………………………… 1分 整理,得 25q p =--. …………………………………………………… 2分 (2)∵ 222244(25)820(4)4p q p p p p p ∆=-=++=++=++, 无论p 取任何实数,都有2(4)p +≥0,∴ 无论p 取任何实数,都有 2(4)40p ++>.∴ 0∆>. ………………………………………………………………… 3分∴ 抛物线2y x px q =++与x 轴有两个交点.………………………… 4分(3)∵ 抛物线21y x px q =++与抛物线221y x px q =+++的对称轴相同,都为直线2px =-抛物线221y x px q =+++可由抛物线21y x =沿y 轴方向向上平移一个单位得到,(如图5所示,省略了x 轴、y 轴) ∴ EF ∥MN ,EF =MN =1.∴ 四边形FEMN 是平行四边形. ………………由题意得 22FEMN pS EF =⨯-=四边形.解得4p =±.………………………………………724.证明:(1)如图6.∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴ BF=DF ,DH=BH .…………………1分21∴ ∠1=∠2.又∵ ∠EDA =∠A ,∠EDA =∠1, ∴ ∠A =∠2.∴ BF ∥AC .……………………………………………………………… 2分 (2)取FD 的中点N ,连结HM 、HN . ∵ H 是BD 的中点,N 是FD 的中点,∴ HN ∥BF . 由(1)得BF ∥AC , ∴ HN ∥AC ,即HN ∥EM . ∵ 在Rt △ACH 中,∠AHC =90°, AC 边的中点为M , ∴ 12HM AC AM ==.∴ ∠A =∠3. ∴ ∠EDA =∠3. ∴ NE ∥HM .∴ 四边形ENHM 是平行四边形.……………………………………… 3分 ∴ HN=EM .∵ 在Rt △DFH 中,∠DHF =90°,DF 的中点为N , ∴ 12HN DF =,即2DF HN =.∴ 2DF EM =. ………………………………………………………… 4分 (3)当AB =BC 时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE . (只猜想结论不给分) 证明:连结CD .(如图8)∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,∴ BC=CD ,∠ABC =∠5. ∵ AB =BC ,∴ 1802ABC A ∠=︒-∠, AB =CD .① ∵ ∠EDA =∠A ,∴ 61802A ∠=︒-∠,AE =DE .② ∴ ∠ABC =∠6=∠5. ∵ ∠BDE 是△ADE 的外角, ∴ 6BDE A ∠=∠+∠.∵ 45BDE ∠=∠+∠, ∴ ∠A =∠4.③由①,②,③得 △ABE ≌△DCE .………………………………………5分 ∴ BE = CE . ……………………………………………………………… 6分 由(1)中BF=DF 得 ∠CFE=∠BFC . 由(1)中所得BF ∥AC 可得 ∠BFC=∠ECF . ∴ ∠CFE=∠ECF . ∴ EF=CE .∴ BE=EF . ……………………………………………………………… 7分 ∴ BE =EF =CE .(阅卷说明:在第3问中,若仅证出BE =EF 或BE =CE 只得2分)25.解:(1)∵ 2244(2)y ax ax a c a x c =-++=-+,∴ 抛物线的对称轴为直线2x =.∵ 抛物线244y ax ax a c =-++与x 轴交于点A 、点B ,点A 的坐标为(1,0),∴ 点B 的坐标为(3,0),OB =3.…………… 1分 可得该抛物线的解析式为(1)(3)y a x x =--. ∵ OB =OC ,抛物线与y 轴的正半轴交于点C , ∴ OC =3,点C 的坐标为(0,3).将点C 的坐标代入该解析式,解得a =1.……2分∴ 此抛物线的解析式为243y x x =-+.(如图9)(2)作△ABC 的外接圆☉E ,设抛物线的对称轴与x 轴的交点为点F ,设☉E 与抛物线的对称轴位于x 轴上方的部分的交点为点1P ,点1P 关于x 轴的对称点为点2P ,点1P 、点2P 均为所求点.(如图10)可知圆心E 必在AB 边的垂直平分线即抛物线的对称轴直线2x =上.∵ 1APB ∠、ACB ∠都是弧AB 所对的圆周角, ∴ ACB B AP ∠=∠1,且射线FE 上的其它点P 都不满足ACB APB ∠=∠. 由(1)可知 ∠OBC=45°,AB=2,OF=2.可得圆心E 也在BC 边的垂直平分线即直线y x =上.∴ 点E 的坐标为(2,2)E .………………………………………………… 4分∴ 由勾股定理得 EA ∴ 1EP EA =∴ 点1P 的坐标为1(2,2P +.…………………………………………… 5分 由对称性得点2P 的坐标为2(2,2P -.……………………………… 6分∴符合题意的点P 的坐标为1(2,2P 、2(2,2P -. (3)∵ 点B 、D 的坐标分别为(3,0)B 、(2,1)D -,可得直线BD 的解析式为3y x =-,直线BD 与x 轴所夹的锐角为45°. ∵ 点A 关于∠AQB 的平分线的对称点为A ',(如图11) 若设AA '与∠AQB 的平分线的交点为M ,则有 QA QA '=,AM A M '=,AA QM '⊥,Q ,B ,A '三点在一条直线上. ∵ QA QB -=∴ .2''=-=-=QB QA QB QA BA 作A N '⊥x 轴于点N .∵ 点Q 在线段BD 上, Q ,B ,A '三点在一条直线上, ∴ sin 451A N BA ''=⋅︒=,cos 451BN BA '=⋅︒=. ∴ 点A '的坐标为(4,1)A '. ∵ 点Q 在线段BD 上,∴ 设点Q 的坐标为(,3)Q x x -,其中23x <<. ∵ QA QA '=,∴ 由勾股定理得 2222(1)(3)(4)(31)x x x x -+-=-+--.解得114x =. 经检验,114x =在23x <<的范围内.∴ 点Q 的坐标为111(,)44Q -. …………………………………………… 7分此时1115()2(1)2244QAA A AB QAB A Q S S S AB y y '''∆∆∆=+=⋅⋅+=⨯⨯+=.… 8分图11。
2012年北京西城区中考二模数学试卷
2012年北京西城中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1.8 的倒数是A.8B.8C.18D.182.在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为 A.3810 B.48010 C.5810 D.60.810 3.若⊙1O 与⊙2O 内切,它们的半径分别为3和8,则以下关于这两圆的圆心距12O O 的结论正确的是A.12O O =5B.12O O =11C.12O O >11D. 5<12O O <114.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E ,若35AD DB ,AE =6,则EC 的长为A . 8B. 10C. 12D. 165.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是20.61S 甲,20.52S 乙,20.53S 丙,20.42S 丁,则射击成绩波动最小的是A. 甲B. 乙C. 丙D. 丁6. 如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 长为10,3cos 5BOD , 则AB 的长是 A . 20B. 16C. 12D. 87.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为A . 4 B. 6 C. 8 D. 108.如图,在矩形ABCD 中,3 AB ,BC=1. 现将矩形ABCD绕点C 顺时针旋转90°得到矩形A B CD ,则AD 边扫过的面积(阴影部分)为 A . 21πB.31π C.41π D. 51π二、填空题(本题共16分,每小题4分)9. 将代数式2610x x 化为2()x m n 的形式(其中m ,n 为常数),结果为 .10.若菱形ABCD 的周长为8,∠BAD =60°,则BD =.11.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .12.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…都在y 轴上,对应的纵坐标分别为1,2,3,….直线1l ,2l ,3l ,…分别经过点1A ,2A ,3A ,…,且都平行于x轴.以点O 为圆心,半径为2的圆与直线1l 在第一象限交于点1B ,以点O 为圆心,半径为3的圆与直线2l 在第一象限交于点2B ,…,依此规律得到一系列点n B (n 为正整数),则点1B 的坐标为 ,点n B 的坐标为 .三、解答题(本题共30分,每小题5分)13.计算:101()(π3)6cos45514.已知2240x x ,求代数式22(2)(6)3x x x x 的值.15.如图,点F ,G 分别在△ADE 的AD ,DE 边上,C ,B 依次为GF 延长线上两点,AB=AD ∠BAF =∠CAE ,∠B=∠D . (1)求证:BC=DE ;(2)若∠B=35°,∠AFB =78°,直接写出∠DGB 的度数.16.已知关于x的一元二次方程(m +1)x2 + 2mx + m 3 = 0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最小奇数时,求方程的根.17.如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=2AD=4,求BD的长.18.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:(图中信息不完整)请根据以上信息回答下面问题:(1) 同学们一共随机调查了人;(2) 如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”方式的概率是;(3) 如果该社区有5 000人,估计该社区支持“警示戒烟”方式的市民约有人.四、解答题(本题共20分,每小题5分)19.如图,某天然气公司的主输气管道途经A 小区,继续沿 A 小区的北偏东60 方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M 小区位于北偏东30 方向,测绘员从A 处出发,沿主输气管道步行2000米到达C 处,此时测得M 小区位于北偏西60 方向.现要在主输气管道AC 上选择一个支管道连接点N ,使从N 处到M 小区铺设的管道最短. (1)问:MN 与AC 满足什么位置关系时,从N 到M 小区铺设的管道最短? (2)求∠AMC 的度数和AN 的长.20.如图,在平面直角坐标系xOy 中,直线483y x 与x 轴,y 轴分别交于点A ,点B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处. (1)求AB 的长和点C 的坐标; (2)求直线CD 的解析式.21.如图,BC 是⊙O 的直径,A 是⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线于点D ,取CD 的中点E ,AE 的延长线与BC 的延长线交于点P .(1)求证:AP 是⊙O 的切线;(2)若OC =CP ,AB =33,求CD 的长.22.阅读下列材料小华在学习中发现如下结论:如图1,点A ,A 1,A 2在直线l 上,当直线l ∥BC 时,BC A BC A ABC S S S 21 .请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC ,画出一个..等腰△DBC ,使其面积与△ABC 面积相等;(2)如图3,已知△ABC ,画出两个..Rt △DBC ,使其面积与△ABC 面积相等(要求:所画的两个三角形不全等...);(3)如图4,已知等腰△ABC 中,AB=AC ,画出一个..四边形ABDE ,使其面积与△ABC 面积相等,且一组对边DE=AB ,另一组对边BD ≠AE ,对角∠E =∠B .图2 图3 图4五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.在平面直角坐标系xOy 中,A 为第一象限内的双曲线1k y x(10k )上一点,点A 的横坐标为1,过点A 作平行于 y 轴的直线,与x 轴交于点B ,与双曲线2ky x(20k )交于点C . x 轴上一点(,0)D m 位于直线AC 右侧,AD 的中点为E .(1)当m=4时,求△ACD 的面积(用含1k ,2k 的代数 式表示);(2)若点E 恰好在双曲线1k y x(10k )上,求m 的值;(3)设线段EB 的延长线与y 轴的负半轴交于点F ,当 点D 的坐标为(2,0)D 时,若△BDF 的面积为1, 且CF ∥AD ,求1k 的值,并直接写出线段CF 的长.24.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB -BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒43个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t = 5秒时,点P走过的路径长为;当t = 秒时,点P与点E重合;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.25.在平面直角坐标系xOy 中,抛物线21124y x 的顶点为M ,直线2y x ,点 0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x 和直线2y x 于点A ,点B .⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c (a ,b ,c 为整数且0a ),对一切实数x 恒有x ≤y ≤2124x ,求a ,b ,c 的值.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.三、解答题(本题共305分)13.解:原式=5162分=4…………………………………………………………………… 5分14.解:原式=22(44)(6)3x x x x x=32324463x x x x x=2243x x .………………………..….….….….….…………………… 3分∵ 2240x x ,∴224x x . ………………………………………………………………… 4分∴ 原式=22(2)35x x . ….……………………………………………………5分15.(1)证明:如图1.∵ ∠BAF =∠CAE ,∴ BAF CAF CAE CAF . ∴ BAC DAE . ………………… 1分 在△ABC 和△ADE 中,,,,B D AB AD BAC DAE∴ △A B C ≌△A D E . ……………………………………………………… 3分 ∴ B C =D E . ………………………………………………………………… 4分 (2)∠D G B 的度数为67 .……………………………………………………………… 5分图1E16.解:(1)∵关于x 的一元二次方程(m +1)x 2 + 2mx + m 3 = 0 有两个不相等的实数根,∴ 10m 且0 .∵ 2(2)4(1)(3)4(23)m m m m ,∴ 230m . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分解得 m >23. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∴ m 的取值范围是 m >23且m 1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分(2)在m >23且m1的范围内,最小奇数m 为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 此时,方程化为210x x . ∵ 224141(1)5b ac ,∴x ∴ 方程的根为1x ,2x .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 17.(1)证明:如图2.∵ 四边形ABCD 是平行四边形, ∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点,∴ CD DF AB AE 21,21 .∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2)解:过点D 作DG ⊥AB 于点G .∵ AB =2AD =4,∴ AD =2. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt △AGD 中,∵90,60,AGD A AD =2,∴ .360sin ,160cos AD DG AD AG ∴ 3BG AB AG .在Rt △DGB中,∵90,3,DGB DG BG∴.329322 BG DG DB ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分18.解:(1)300; ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2)52;﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 (3)1750 .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分四、解答题(本题共20分,每小题5分)19.解:(1)当MN ⊥AC 时,从N 到M 小区铺设的管道最短.(如图3)﹍﹍﹍﹍﹍﹍ 1分(2) ∵ MAC =60 30 =30 , ACM =30 +30 =60 ,﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分图2FEDCBA∴ AMC=180 30 60 =90 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分在Rt△AMC中,∵ AMC=90 , MAC=30 ,AC=2000,∴cos2000AM AC MAC米). ﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt△AMN中,∵ ANM=90 ,cos30=AMAN,∴AN=AM cos30 =1000323=1500(米).………………………………………… 5分答:∠AMC等于90 ,AN的长为1500米.20.解:(1)根据题意得(6,0)A,(0,8)B.(如图4)在Rt△OAB中, AOB=90 ,OA=6,OB=8,∴10AB .﹍﹍﹍﹍﹍﹍﹍1分∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴16OC OA AC OA AB.∵点C在x轴的正半轴上,∴点C的坐标为(16,0)C.﹍﹍﹍﹍﹍2分(2)设点D的坐标为(0,)D y.(y<0)由题意可知CD=BD,22CD BD.由勾股定理得22216(8)y y.解得12y .∴点D的坐标为(0,12)D .﹍﹍﹍﹍﹍3分可设直线CD的解析式为12y kx.(k 0)∵点(16,0)C在直线12y kx上,∴16120k . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得34k .∴直线CD的解析式为3124y x.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分21.(1)证明:连结AO,AC.(如图5)∵BC是⊙O的直径,∴90BAC CAD.﹍﹍﹍﹍﹍1分∵E是CD的中点,∴AEDECE.∴EACECA.∵OA=OC,∴OCAOAC.∵CD是⊙O的切线,东lN∴ CD ⊥OC . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ 90ECA OCA .∴ 90EAC OAC . ∴ OA ⊥AP .∵ A 是⊙O 上一点,∴ AP 是⊙O 的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 (2) 解:由(1)知OA ⊥AP .在Rt △OAP 中,∵90OAP ,OC=CP=OA ,即OP =2OA , ∴ sin P 21OP OA . ∴ 30P . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分∴ 60AOP . ∵ OC=OA , ∴ 60ACO .在Rt △BAC 中,∵90BAC,AB =33,60ACO , ∴ 3tan AB AC ACO.又∵ 在Rt △ACD 中,90CAD,9030ACD ACO , ∴ 3cos cos30AC CD ACD﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分22.解:(1) 如图所示,答案不唯一. 画出△D 1BC ,△D 2BC ,△D 3BC ,△D 4BC ,△D 5BC 中的一个即可.(将BC 的平行线l 画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍ 2分(2) 如图所示,答案不唯一. (在直线D 1D 2上取其他符合要求的点,或将BC 的平行线画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍4分(3) 如图所示(答案不唯一).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分如上图所示的四边形ABDE 的画法说明:(1)在线段BC 上任取一点D (D 不为BC 的中点),连结AD ;(2)画出线段AD 的垂直平分线MN ;(3)画出点C 关于直线MN 的对称点E ,连结DE ,AE . 则四边形ABDE 即为所求.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)由题意得A ,C 两点的坐标分别为1(1,)A k ,2(1,)C k .(如图6)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分∵ 10k ,20k ,∴ 点A 在第一象限,点C 在第四象限,12AC k k .当m=4时,1213()ACD S AC BD k k .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 作EG ⊥x 轴于点G .(如图7)∵ EG ∥AB ,AD 的中点为E , ∴ △DEG ∽△DAB ,12EG DG DE AB DB DA ,G 为BD的中点.∵ A ,B ,D 三点的坐标分别为1(1,)A k ,(1,0)B ,(,0)D m ,∴ 122k AB EG ,122BD m BG ,12m OG OB BG . ∴ 点E 的坐标为11(,)22k m E . ∵ 点E 恰好在双曲线1ky x上,∴ 11122k m k .①﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分∵ 10k ,∴ 方程①可化为114m ,解得3m .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分(3)当点D 的坐标为(2,0)D 时,由(2)可知点E 的坐标为13(,)22kE .(如图8)∵ 1BDF S ,∴ 11122BDF S BD OF OF .∴ 2OF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分设直线BE 的解析式为y ax b (a ≠0).∵ 点B ,点E 的坐标分别为(1,0)B ,13(,)22k E , ∴ 10,3.22a b k a b 解得 1a k ,1b k. ∴ 直线BE 的解析式为11y k x k .∵ 线段EB 的延长线与y 轴的负半轴交于点F ,10k ,∴ 点F 的坐标为1(0,)F k,1OF k . ∴ 12k .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分线段CF7分24.解:(1) 当t =5秒时,点P 走过的路径长为 19 ;当t = 3 秒时,点P 与点E 重合.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 如图9,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF =∠MEN ,都等于△PEF 绕点E 旋转的旋转角,记为α.设AP =3t (0< t <2),则CP =63t ,43CE t . ∵ EF ∥AC ,∠C =90°,∴ ∠BEF =90°,∠CPE =∠PEF =α. ∵ EN ⊥AB , ∴ ∠B=∠MEN=α.∴ CPE B .﹍﹍﹍﹍﹍﹍﹍3分 ∵ tan CE CPE CP,3tan 4AC B BC, ∴ 43CP CE .∴ 446333t t .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得5443t.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分(3) t 的值为65(秒)或307(秒).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分25.解:(1)21(2)4A n n ,,()B n n ,. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) d =AB =A B y y =2124n n .∴ d =2112()48n =2112()48n .﹍﹍3分∴ 当14n 时,d 取得最小值18. ﹍﹍ 4分 当d 取最小值时,线段OB 与线段PM 的位置A关系和数量关系是OB ⊥PM 且OB =PM . (如图10)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x ,∴ 对一切实数x ,x ≤2ax bx c ≤2124x 都成立. (0a ) ①当0x 时,①式化为 0≤c ≤14. ∴ 整数c 的值为0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分 此时,对一切实数x ,x ≤2ax bx ≤2124x 都成立.(0a )即 222,12.4x ax bx ax bx x对一切实数x 均成立.由②得 21ax b x ≥0 (0a ) 对一切实数x 均成立.∴ 210,10.a b 由⑤得整数b 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分 此时由③式得,2ax x ≤2124x 对一切实数x 均成立. (0a )即21(2)4a x x ≥0对一切实数x 均成立. (0a )当a =2时,此不等式化为14x ≥0,不满足对一切实数x 均成立.当a ≠2时,∵ 21(2)4a x x ≥0对一切实数x 均成立,(0a )∴ 2220,1(1)4(2)0.4a a∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分∴ 整数a ,b ,c 的值分别为1a ,1b ,0c .④② ⑥。
2012西城二模数学(文)试题
北京市西城区2012年高三二模试卷数 学(文科) 2012.5第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知复数z 满足(1i)1z -⋅=,则z =( ) (A )1i 22+ (B )1i 22- (C )1i 22-+ (D )1i 22--2.给定函数:①3y x =;②21y x =-;③sin y x =;④2log y x =,其中奇函数是( ) (A )① ② (B )③ ④ (C )① ③ (D )② ④3.执行如图所示的程序框图,若输入如下四个函数: ①2x y =; ②2xy =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) (A )① (B )② (C )③ (D )④4.设m ,n 是不同的直线,α,β是不同的平面,且,m n α⊂. 则“α∥β”是“m ∥β且n ∥β”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件5.已知双曲线221x ky -=的一个焦点是(5,0),则其渐近线的方程为( )(A )14y x =± (B )4y x =± (C )12y x =±(D )2y x =±6.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-L ,其中x 为12,,,n x x x L 的平均数)(A )12x x >,12s s > (B )12x x <,12s s < (C )12x x >,12s s < (D )12x x <,12s s >7.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S .则S 最小时,电梯所停的楼层是( ) (A )7层 (B )8层(C )9层(D )10层8.已知集合1220{,,,}A a a a =L ,其中0(1,2,,20)k a k >=L ,集合{(,)|,B a b a A =∈,}b A a b A ∈-∈,则集合B 中的元素至多有( )(A )210个 (B )200个 (C )190个 (D )180个第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在△ABC 中,3BC =,2AC =,π3A =,则B =_____.10.设变量x ,y 满足11,11,x y x y -≤+≤⎧⎨-≤-≤⎩ 则2x y +的最小值是_____.11.已知向量(,1)x =-a ,(3,)y =b ,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,3}, 那么⊥a b 的概率是_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)f x x -<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体 的体积是_____;若该几何体的所有顶点在同一球面 上,则球的表面积是_____.14.已知曲线C 的方程是22||||()()8x y x y x y-+-=,给出下列三个结论: ① 曲线C 与两坐标轴有公共点;② 曲线C 既是中心对称图形,又是轴对称图形; ③ 若点P ,Q 在曲线C 上,则||PQ 的最大值是62. 其中,所有正确结论的序号是_____.ADCBE三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在等差数列{}n a 中,2723a a +=-,3829a a +=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n n a b +是首项为1,公比为c 的等比数列,求{}n b 的前n 项和n S .16.(本小题满分13分)已知函数()sin()3cos()f x x x ωϕωϕ=+++的部分图象如图所示,其中0ω>,ππ(,)22ϕ∈-.(Ⅰ)求ω与ϕ的值; (Ⅱ)若554)4(=αf ,求αααα2sin sin 22sin sin 2+-的值.17.(本小题满分13分)如图,四棱锥ABCD E -中,EA EB =,AB ∥CD ,BC AB ⊥,CD AB 2=. (Ⅰ)求证:ED AB ⊥;(Ⅱ)线段EA 上是否存在点F ,使DF // 平面BCE ?若存在,求出EFEA;若不存在,说明理由.18.(本小题满分13分)已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为36,且经过点31(,)22.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(0,2)P 的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最 大值.20.(本小题满分14分)若正整数*12(,1,2,,)n k N a a a a k n =+++∈=N L L ,则称12n a a a ⨯⨯⨯L 为N 的一个“分解积”.(Ⅰ)当N 分别等于6,7,8时,写出N 的一个分解积,使其值最大;(Ⅱ)当正整数(2)N N ≥的分解积最大时,证明:*()N k a k ∈中2的个数不超过2;(Ⅲ)对任意给定的正整数(2)N N ≥,求出(1,2,,)k a k n =L ,使得N 的分解积最 大.。
北京市中考数学二模试题汇编 人教新课标版
北京2012年数学中考二模试题汇编目录丰台区2012年初三统一练习石景山2012年初三统一练习顺义区2012年初三统一练习大兴区2012年初三统一练习通州区2012年初三统一练习门头沟2012年初三统一练习房山区2012年初三统一练习延庆县2012年初三统一练习密云县2012年初三统一练习海淀区2012年初三统一练习丰台区2012年初三统一练习(二)数学试卷学校姓名准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2-的绝对值是A.12- B.12C.2 D.2-2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .62.510⨯B .50.2510-⨯C . 62.510-⨯D .72510-⨯ 3.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 A .12 B .13 C .14 D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14 B .12C .34D .1 5.若20x +=则 y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+ B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行 的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x xC .30528002800=-x xD .30280052800=-xx8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神二、填空题(本题共16分,每小题4分)9x 的取值范围是 .DOCBA EDCBA10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒.12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+, 2(4)14f =+,…,利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= .三、解答题(本题共30分,每小题5分)13.计算: ()︒⎪⎭⎫ ⎝⎛+45sin 4-211-3-272-03 .14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值.15.解分式方程:21124x x x -=--.16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:21DOCBA(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,交AB 于点M ,交CB 的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ;MFEBCDA(2)可以估计这所学校八年级的学生中,每学期参加社会实践活动的时间不少于8小时的学生大约有多少人?22.小杰遇到这样一个问题:如图1,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连结EF ,△AEF的三条高线交于点H ,如果AC =4,EF =3,求AH 的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH 平移至△GCF 的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答: (1)图2中AH 的长等于 .(2)如果AC =a ,EF =b ,那么AH 的长等于 .BA D CEFHG HFECDA B图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点P 个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论;(2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图225.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1) 抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当θ= °时,线段CE 的长度最大,最大值为 .AEFPD E BAD F P北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案13.解:原式=3-1+4-422⨯……4分 =6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分. =224a a -+. ……2分2230a a --=, ∴223a a -=.…3分∴原式=224347a a -+=+=.….….5分 15.21124x x x -=-- 解:2(2)(4)1x x x +--=.……1分 22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分 检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分16.证明:∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 ,OA=OB ,∠AOC =∠BOD ,CO=DO .∴△COA ≌△DOB .……….4分∴∠C =∠D . …………….5分 17.解: (1)反比例函数ky x=的图象经过点A (-1,1) , ∴-11-1k =⨯=.…………1分(2)P 1(0)、 P 2(0,)、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分(2)当0230x ≤≤时,0.49y x =;……3分 当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分)19.解:联结BD . ∵在菱形ABCD 中,∴AD ∥BC ,AC ⊥BD .……1分 又∵EF ⊥AC , ∴BD ∥EF .∴四边形EFBD 为平行四边形.……2分 ∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于23.解:(1)由题意得△>0. ∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去. 综上所述,1=k .……4分(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°.过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21.∵PQ ,∴NQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分 ∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分∴二次函数的解析式为:22y x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’,设对称轴x =3与x 轴交于点D ,∴OD =3. ∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’, 在Rt △OC ’D 中,根据勾股定理C ’D =1. ∴C ’(3, 1).……6分 (3) 120°,4.……8分石景山区2012年初三第二次统一练习数 学 试 卷7654321NMCD BPFEA第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在题后的括号内.1.2的算术平方根是( ) A .21B .2C .2-D .2±2.2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为( ) A .6105.2-⨯ B .5105.2-⨯ C .5105.2⨯- D .6105.2-⨯-3.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120︒ 的菱形,剪口与折痕所成的角α 的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 4年星级饭店客房出租率(%A .61、62B .62、62C .61.5、62D .60.5、625.如图,有6张形状、大小、质地均相同的卡片,正面分别印有北京精神——“爱国、创新、包容、厚德”的字样.背面完全相同,现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片恰好是“创新”的概率是( ) A .31 B .32 C .61 D .41 6.若一个多边形的内角和是900°,则这个多边形的边数是( )第3题图A .5B .6C .7D .87.将二次函数2x y =的图象如何平移可得到342++=x x y 的图象( )A .向右平移2个单位,向上平移一个单位B .向右平移2个单位,向下平移一个单位C .向左平移2个单位,向下平移一个单位D .向左平移2个单位,向上平移一个单位8.已知正方形纸片的边长为18,若将它按下图所示方法折成一个正方体纸盒,则纸盒的边(棱)长是( ) A .6B .23C .29D .32第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分) 9.分式3-x x有意义的条件为 . 10.分解因式:=-339ab b a ______ ________. 11.已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .12.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .三、解答题(本题共30分,每小题5分)第8题图 111210987654321第12题图13.()22145cos 314.38-⎪⎭⎫⎝⎛+︒---π.解:14.解分式方程123482---=-xxx .解:15.已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD =AB ,∠1=∠2=∠3. 求证:BC=DE . 证明:16.已知:0162=-+x x ,求代数式()()()()3312122+-+--+x x x x x 的值.解:17.已知一次函数y kx b =+的图象与直线y =平行且经过点()3,2-,与x 轴、y轴分别交于 A 、 B 两点. (1)求此一次函数的解析式;(2)点C 是坐标轴上一点,若△ABC 是底角为︒30的等腰三角形,求点C 的坐标. 解:18.列方程(组)解应用题:如图是一块长、宽分别为60 m 、50 m 的矩形草坪,草坪中有宽度均为x m 的一横两纵的甬道.(1)用含x 的代数式表示草坪的总面积S ;(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽. 解:四、解答题(本题共20分,每小题5分)19.如图,梯形纸片ABCD 中,AD //BC ,∠B =30º.折叠纸片使BC 经过点A ,点B 落在点B’处,EF 是折痕,且BE =EF =4,AF ∥CD . (1)求∠BAF 的度数; (2)当梯形的上底AD 多长时,线段DF 恰为该梯形的高? 解:20.以下是根据全国 2011年国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分. 请根据以上信息,解答下列问题:(产量相关数据精确到1万吨)(1)请补全扇形统计图;(2)通过计算说明全国的粮食产量与上一年相比,增长最多的是 年; (3)2011年早稻的产量为 万吨;(4)2008-2011这三年间,比上一年增长的粮食产量的平均数为多少万吨,若按此平均数增长,请你估计2012年的粮食产量为多少万吨.(结果保留到整数位) 解:21.已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MPA BD E C B 'F 6%22%%早稻夏粮秋粮2011年各类粮食占全体 粮食的百分比分组统计图的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:22.阅读下面材料:小阳遇到这样一个问题:如图(1),O 为等边△ABC 内部一点,且3:2:1::=OC OB OA ,求AOB ∠的度数.小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△CO A 绕点A 逆时针旋转60°,使点C 与点B 重合,得到△O AB ',连结O O '. 则△O AO '是等边三角形,故OA O O =',至此,通过旋转将线段OA 、OB 、OC 转移到同一个三角形B O O '中. (1)请你回答:︒=∠AOB . (2)参考小阳思考问题的方法,解决下列问题: 已知:如图(3),四边形ABCD 中,AB=AD ,∠DAB =60°,∠DCB =30°,AC =5,CD =4.求四边形ABCD 的面积. 解:五、解答题(本题满分22分,第23题7分,第24题7分,第25题8分) 23.已知:直线122y x =+分别与 x 轴、y 轴交于点A 、点B ,点P (a ,b )在直线AB 上,点P 关于y 轴的对称点P ′ 在反比例函数xky =图象上.(1) 当a =1时,求反比例函数xky =的解析式;DCBA图⑴ 图⑵ 图⑶OCBA(2) 设直线AB 与线段P'O 的交点为C .当P'C =2CO 时,求b 的值;(3) 过点A 作AD //y 轴交反比例函数图象于点D ,若AD =2b,求△P ’DO 的面积.解:24.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.A B C D E AE B C D图1 图2备用图解:25.已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=2x交于点B、C(B在右、C在左).(1)求抛物线的解析式;∠=∠,(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得BFE CFE 若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.解:备用图草稿纸石景山区2012初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)9.3≠x ; 10.()()b a b a ab 33-+; 11.225-225π; 12.10;6. 三、解答题(本题共6道小题,每小题5分,共30分)13.解:()22145cos 3--14.38-⎪⎭⎫⎝⎛+︒-π=4223122+⨯-- ……………………………4分 =322+…………………………………………………5分 14. 123482---=-xxx解:()()123228---=-+x x x x ……………………………1分 ()()()42382--+-=x x x ……………………………3分46822+---=x x x ……………………………4分∴10-=x经检验:10-=x 是原方程的根.………………………5分15.证明:∵∠1=∠2=∠3∴DAE BAC ∠=∠…………………………… 1分 又∵AFE DFC ∠=∠∴E C ∠=∠ …………………………… 2分 在△ABC 和△ADE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AD AB EC DAE BAC (3)分 ∴△ABC ≌△ADE ……………………………………………………… 4分∴BC=DE . ……………………………………………………… 5分16.解:原式222922144x x x x x -++-++= …………………………………2分1062++=x x ………………………………… 3分当0162=-+x x 时,162=+x x ………………………………… 4分 原式11=. …………………………………5分17.解:(1)∵一次函数y kx b =+的图象与直线y =平行且经过点()3,2-∴⎩⎨⎧-=+-=323b k k 解得⎩⎨⎧=-=33b k∴一次函数解析式为33+-=x y …………………………………1分(2)令0=y ,则1=x ;令0=x 则3=y∴()()3,0,0,1B A∵1=OA ,3=OB …………………………2分 ∴2=AB ∴︒=∠30ABO若AC AB =,可求得点C 的坐标为()0,31C 或()3,02-C ………………………4分 若CA CB =如图︒=︒-︒=∠3030603OAC ,3330tan 3=︒=OA OC ∴⎪⎪⎭⎫ ⎝⎛33,03C …………………………………………5分 ∴()0,31C ,()3,02-C ,⎪⎪⎭⎫ ⎝⎛33,03C 18.解:(1)S = 6050⨯-(60 x + 2×50 x -2×x 2 )=3000 + 2x 2-160x .………2分(2)由题意得:-2x 2+160x =60501000104⨯⨯, ………………3分解得 x = 2 或 x = 78. …………………………………4分 又0<x <50,所以x = 2,答:甬道的宽是2米. ……………………………………5分 19. 解:(1)∵BE =EF ∴∠EFB =∠B ,由题意,△EF B '≌△BEF∴∠EFB ’ =∠EFB =∠B=30° ∴△BFA 中,︒=︒-︒-︒-︒=∠90303030180BAF ……………………………………2分 (2)联结DF ,∵AD //BC ,AF ∥CD∴四边形AFCD 是平行四边形 ……………………………………3分 ∴∠C =∠A FB =60°∴CD =AF =3230cos =︒EF ……………………………………4分 若BC DF ⊥,则360cos =︒=CD FC此时3=AD . ……………………………………5分 20.(1)72%;(2)2011;(3)3427; ……………………每空1分,共3分(4)(57121-52871)÷3≈=1417 ………………………………………4分57121+1417=58538. ………………………………………5分21.(1)联结CO , … …………………………………1分∵DM ⊥AB∴∠D+∠A=90° ∵PC PD = ∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA∴∠OCA+∠PCD=90° ∴PC ⊥OC∴直线PC 是⊙O 的切线 …………………………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q ∴Rt △CQA 中 ∴22tanD QAC tan ==∠ ∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x …………………………………4分 ∴22=AQ∴242==AQ AN …………………………………5分22. 解:(1)150° ………………………1分(2) 如图,将△ADC 绕点A 顺时针旋转60°,使点D 与点B 重合,………2分 得到△O AB ',连结O C '. 则△O AC '是等边三角形,可知4,5'===='DC BO CA O C ,ADC ABO ∠=∠'……………………3分在四边形ABCD 中,︒=∠-∠-︒=∠+∠270360DCB DAB ABC ADC ,)(360''ABO ABC BC O ∠+∠-︒=∠∴︒=︒-︒=90270360. ……………………4分34522=-=∴BC 6432543215432''-=⨯⨯-⨯=-=∴∆∆BCO ACO ABCD S S S 四边形.………………5分23.(1)∵点P 在直线AB 上, 1=a 时,2121+⨯=b =25………………………1分 ∴)25,1(P ,∴)25,1(-'P ,代入x k y = 得25-=k ,∴x y 25-= …………………………2分 (2)联结'PP∵点P 和点P '关于y 轴对称 ∴'PP ∥x 轴 ∴OCA C PP ∽△△'O 'DCBA∴'PP ∶=OA C P '∶CO …………3分 ∵CO C P 2'= ∴'PP =OA 2∵221+=x y 与x 轴交于点A 、点B ∴)0,4(-A ,)2,0(B 可得4=OA∴8'=PP ∴a =4∴42421=+⨯=b ………………………5分 (3)当点P 在第一象限时:∵点P 和点P '关于y 轴对称且),(b a P∴),('b a P -∵y AD ∥∴)24-(b D , ∵D P 、点点'在xk y =上 ∴b a b⨯-=⨯-24 ∴2=a∴32221=+⨯=b ∵),23,4(-D )3,2('-P∴29'=DO P S △ …………6分当点P 在第二象限时:)24-(bD -,∴b a b⨯-=-⨯-24∴2-=a∴12)2(21=+-⨯=b∵),21,4(--D )1,2('P∴23'=DO P S △ …………7分24.解:(1)DC DB 2= (2) DC DB 2=证明:过点C 作CF ∥BE 交AD 的延长线于点F , 在 AD 上取点G 使得CF CG = ∴76∠=∠=∠F7654321AEBCG D∵︒=∠=∠=∠602BAC CED BED ∴︒=∠=∠606F ,︒=∠30CED ∴41205∠=︒=∠∵︒=∠+∠=∠=∠+∠6021713 ∴23∠=∠ ∵AC AB = ∴△ABE ≌△CAG ∴AG BE AE CG ==, ∵︒=∠-∠=∠306CED GCE ∴EG CG =∴BE AG CG CF 2121=== 由△DBE ∽△DCF 得2==FCBEDC BD∴DC DB 2=(3) 结论:DC DB 2=.25.解:(1)点A (0,2m -7)代入y =-x 2+2x +m -2,得m =5∴抛物线的解析式为y =-x 2+2x +3 ………………………2分(2)由⎩⎨⎧=++-=x y x x y 2322得⎪⎩⎪⎨⎧==323y x ,⎪⎩⎪⎨⎧=-=323y x∴B (32,3),C (32,3--)B (32,3)关于抛物线对称轴1=x 的对称点为)32,32('-B可得直线C B '的解析式为32632-+=x y , 由⎩⎨⎧=-+=132632y x y ,可得⎩⎨⎧==61y x∴)6,1(F ………………………5分(3)当)2,2(t t M --在抛物线上时,可得03242=-+t t ,4131±-=t , 当)2,(t t P --在抛物线上时,可得32=t ,3±=t ,舍去负值,所以t 的取值范围是34131≤≤+-t .………………8分顺义区2012届初三第二次统一练习F图(2)F E B AO 数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.9的平方根是A .3B .-3C .3±D .132.据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为A .59.110⨯B .49.110⨯C .49110⨯D . 39.110⨯ 3.如图,下列选项中不是..正六棱柱三视图的是( )A B C D4.把2416a b b -分解因式,结果正确的是A .2(24)b a - B . (22)(22)b a a +-C .24(2)b a -D .4(2)(2)b a a +-5.北京是严重缺水的城市,市政府号召居民节约用水,为了解居民用水情况,小敏在某小区随机抽查了10户家庭的5月份用水量,结果如下(单位:立方米):5,6,6,2,5,6,7,10,7,6,则关于这10户家庭的5月份用水量,下列说法错误的是 A.众数是6 B.极差是8C.平均数是6D.方差是46.如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持互相垂直.在测直径时,把O 点靠在圆周上,读得刻度OE=4个单位, OF=3个单位,则圆的直径为A .7个单位B .6个单位C .5个单位D .4个单位7.从1,-2, 3,-4四个数中,随机抽取两个数相乘,积是正数的概率是A .14 B .13 C .12D .238.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去右上方的小三角形.将纸片展开,得到的图形是DC BA二、填空题(本题共16分,每小题4分) 9.若分式261x x --的值为0,则x 的值等于 . 10.如图,□ABCD 中,E 是边BC 上一点,AE 交BD 于F ,若2BE =,3EC =,则BFDF的值为 . 11.将方程2410x x --=化为2()x m n -=的形式,其中m ,n 是常数,则m n += . 12.如图,△ABC 中,AB =AC=2 ,若P 为BC的中点,则2AP BP PC +的值为 ; 若BC 边上有100个不同的点1P ,2P ,…,100P , 记i i i i m AP BP PC =+(1i =,2,…,100), 则12m m ++…100m +的值为 .三、解答题(本题共30分,每小题5分)13.计算:101()2sin 45(34---+︒-.14.解不等式2(2)x +≤4(1)6x -+,并把它的解集在数轴上表示出来. 15.已知:如图,E ,F 在BC 上,且AE ∥DF ,AB ∥CD ,AB =CD .求证:BF = CE .F EDCBAP iPCBAFEDCBA16.解分式方程:32322x x x -=+-.17.已知2x -3=0,求代数式5(2)(2)(4)1x x x x ---++的值.18.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y (万吨)随着时间x (年)逐年成直线上升,y 与x 之间的关系如图所示.(1)求y 与x 之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?四、解答题(本题共20分,每小题5分) 19.如图,在矩形ABCD 中,E 是边CB 延长线上的点,且EB=AB ,DE 与AB 相交于点F ,AD=2,CD=1,求AE 及DF 的长.20.已知:如图,P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,BC ∥OP 交⊙O 于点C .(1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若BC=2,11sin23APC ∠=,求PC 的长及点C 到PA 的距离.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级FEDC B AOCBAP学生人数为204人,请你根据图表中提供的信息,解答下列问题:(1)求该校八年级学生的人数占全校学生总人数的百分比; (2)求表中a ,b 的值;(3)求该校学生平均每人读多少本课外书?22.阅读下列材料:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决.请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC=x ,四边形OCPD 的面积为S .PyxB A DCO(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式; (2)若已知A (a ,0),B (0,b ),且当x=34时,S 有最大值98,求直线AB 的解析式; (3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点N 的坐标. 24.已知:如图,D 为线段AB 上一点(不与点A 、B 重合),CD ⊥AB ,且CD=AB ,AE ⊥AB ,BF ⊥AB ,且AE=BD ,BF=AD .(1)如图1,当点D 恰是AB 的中点时,请你猜想并证明∠ACE 与∠BCF 的数量关系; (2)如图2,当点D 不是AB 的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;(3)若∠ACB=α,直接写出∠ECF 的度数(用含α的式子表示).图1 图225.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为P .(1)求二次函数的解析式;(2)设D 为线段OC 上的一点,若DPC BAC ∠=∠,求点D 的坐标;FED CBAFE D C B A(3)在(2)的条件下,若点M 在抛物线212y x bx c =++上,点N 在y 轴上,要使以M 、N 、B 、D 为顶点的四边形是平行四边形,这样的点M 、N 是否存在,若存在,求出所有满足条件的点M 的坐标;若不存在,说明理由.顺义区2012届初三第二次统一练习 数学学科参考答案及评分细则9.3; 10.25; 11.7; 12.4,400.三、解答题(本题共30分,每小题5分)13.解:101()2sin 45(34---+︒--4212=-⨯- …………………………………………………… 4分3=-…………………………………………………………………… 5分14.解:去括号,得 24x +≤446x -+.…………………………………………… 1分移项,得 24x x -≤464-+-.…………………………………………… 2分 合并,得 2x -≤-2 . ………………………………………… 3分 系数化为1,得 x ≥1 . ……………………………………………… 4分 不等式的解集在数轴上表示如下:……………………………………… 5分15.证明:∵AE ∥DF ,∴∠1=∠2. ………………………… 1分∵ AB ∥CD , ∴ ∠B =∠C .………………………… 2分 在△ABE 和 △DCF 中, 12,,,B C AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABE ≌△DCF .…………………………………………………… 4分∴ BE =CF .∴BE -EF =CF -EF .即BF =CE .……………………………………………………………… 5分16.解:去分母,得 3(2)2(2)3(2)(2)x x x x x --+=+-.…………………… 1分去括号,得 223624312x x x x ---=-. ………………………… 2分 整理,得 88x -=-.…………………………………………………… 3分解得 1x =. ……………………………………………………………… 4分经检验,1x =是原方程的解.……………………………………………… 5分 ∴ 原方程的解是1x =.17.解:5(2)(2)(4)1x x x x ---++ 22510(28)1x x x x =--+-+ ……………………………………………… 2分 22510281x x x x =---++24129x x =-+ ………………………………………………………………… 3分 (23)(23)x x =+- …………………………………………………………… 4分 当2x -3=0时,原式(23)(23)0x x =+-=.………………………………… 5分18.解:(1)设y 与x 之间的关系式为y=kx+b .……………………………………… 1分由题意,得20084,2010 6.k b k b +=⎧⎨+=⎩ 解得1,2004.k b =⎧⎨=-⎩…………………… 3分 21F EDC BA∴y 与x 之间的关系式为y =x -2004(2008≤x ≤2012). …………… 4分(2)当x =2012时,y =2012-2004=8.∴该市2012年因“限塑令”而减少的塑料消耗量约为8万吨.……… 5分19.解:∵四边形ABCD 是矩形,且AD=2,CD=1,∴BC=AD=2,AB=CD=1,∠ABC =∠C= 90°,AB ∥DC .∴EB=AB=1. ………………………………………………………………… 1分 在Rt △ABE中,AE =2分 在Rt △DCE 中,DE == 3分∵AB ∥DC , ∴12EF EB DF BC ==. …………………………………………………………… 4分设EF x =,则2DF x =. ∵EFDF DE +=,∴2x x +=.∴3x =. ∴2DF x == 5分 20.解:(1)直线PC 与⊙O 相切.证明:连结OC , ∵BC ∥OP ,∴∠1 =∠2,∠3=∠4. ∵OB=OC ,∴∠1=∠3.∴∠2=∠4.又∵OC=OA ,OP=OP ,∴△POC ≌△POA . ……………………………………………… 1分∴∠PCO =∠PAO .∵PA 切⊙O 于点A ,∴∠PAO =90°.∴∠PCO =90°. ∴PC 与⊙O 相切. ……………………………………………… 2分(2)解:∵△POC ≌△POA ,∴∠5=∠6=12APC ∠. ∴11sin 5sin 23APC ∠=∠=. ∵∠PCO =90°,∴∠2+∠5=90°. ∴1cos 2sin 53∠=∠=. ∵∠3=∠1 =∠2,∴1cos 33∠=. 4321O C B A P图3M P C B A D 85674321O C B A P 连结AC ,∵AB 是⊙O 的直径,∴∠ACB =90°. ∴261cos 33BC AB ===∠.………………………………………… 3分 ∴OA=OB=OC=3,AC ==.∴在Rt △POC 中,9sin 5OC OP ==∠.∴PC ==.…………………………………… 4分 过点C 作CD ⊥PA 于D ,∵∠ACB =∠PAO =90°,∴∠3+∠7 =90°,∠7+∠8 =90°.∴∠3=∠8. ∴1cos 8cos 33∠=∠=. 在Rt △CAD中,1cos 83AD AC =∠==∴163CD ==.……………………………………… 5分 21.解:(1)∵1-28%-38%=34%.∴该校八年级学生的人数占全校学生总人数的百分比为34%.……… 1分(2)∵1440.062400÷=,∴24000.25600a =⨯=, ……………………………………………… 2分 84024000.35b =÷=. ……………………………………………… 3分(3)∵八年级学生人数为204人,占全校学生总人数的百分比为34%,∴全校学生总人数为20434%600÷=. ……………………………… 4分 ∴该校学生平均每人读课外书:24006004÷=.答:该校学生平均每人读4本课外书. ………………………………… 5分22.解:图2中∠APB 的度数为 135° .……………… 1分(1)如图3,以PA 、PB 、PC 的长度为三边长的一个三角形是 △APM .(含画图)………… 2分(2)以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于60°、65°、55° .……………… 5分 23.解:(1)设直线AB 的解析式为y kx b =+,由A (4,0),B (0,6),得40,6.k b b +=⎧⎨=⎩ 解得3,26.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为362y x =-+.……………………………… 1分 ∵OC=x ,∴3(,6)2P x x -+. ∴3(6)2S x x =-+. 即2362S x x =-+(0< x <4). …………………………………… 2分 (2)设直线AB 的解析式为y mx n =+,∵OC=x ,∴(,)P x mx n +.∴2S mx nx =+.∵当x=34时,S 有最大值98, ∴3,24939.1648n m m n ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得2,3.m n =-⎧⎨=⎩∴直线AB 的解析式为23y x =-+.………………………………… 3分∴A (32,0),B (0,3). 即32a =,3b =.……………………………………………………… 5分 (3)设点M 的坐标为(M x ,M y ), 由点M 在(2)中的直线AB 上,∴23M M y x =-+.∵点M 到x 轴、y 轴的距离相等,∴M M x y =或M M x y =-.当M M x y =时,M 点的坐标为(1,1).过M 点的反比例函数的解析式为1y x =. ∵点N 在1y x=的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为32,23⎛⎫⎪⎝⎭.……………………………………………… 6分 当M M x y =-时,M 点的坐标为(3,-3),B DC F E A 过M 点的反比例函数的解析式为9y x =-. ∵点N 在9y x=-的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为3,62⎛⎫- ⎪⎝⎭.……………………………………………… 7分 综上,点N 的坐标为32,23⎛⎫⎪⎝⎭或3,62⎛⎫- ⎪⎝⎭. 24.解:(1)猜想:∠ACE=∠BCF .证明:∵D 是AB 中点,∴AD=BD ,又∵AE=BD ,BF=AD ,∴AE=BF .∵CD ⊥AB ,AD=BD ,∴CA=CB .∴∠1 =∠2. ∵AE ⊥AB ,BF ⊥AB ,∴∠3 =∠4=90°.∴∠1+∠3 =∠2+∠4.即∠CAE=∠CBF .∴△CAE ≌△CBF .∴∠ACE=∠BCF .……………………………………………… 2分(2)∠ACE=∠BCF 仍然成立.证明:连结BE 、AF .∵CD ⊥AB ,AE ⊥AB ,∴∠CDB=∠BAE=90°.又∵BD = AE ,CD = AB ,△CDB ≌△BAE .……………… 3分 ∴CB=BE ,∠BCD=∠EBA .在Rt △CDB 中,∵∠CDB =90°, ∴∠BCD+∠CBD =90°.∴∠EBA+∠CBD =90°. 即∠CBE =90°.∴△BCE 是等腰直角三角形.∴∠BCE=45°. ……………………………………………… 4分 同理可证:△ACF 是等腰直角三角形.∴∠ACF=45°. ……………………………………………… 5分 ∴∠ACF=∠BCE .∴∠ACF -∠ECF =∠BCE -∠ECF .即∠ACE=∠BCF .……………………………………………… 6分(3)∠ECF 的度数为90°-α.……………………………………………… 7分4321F E D C B A25.解:(1)将点A (-3,6),B (-1,0)代入212y x bx c =++中,得 936,210.2b c b c ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解得 1,3.2b c =-⎧⎪⎨=-⎪⎩ ∴二次函数的解析式为21322y x x =--.…………………………… 2分 (2)令0y =,得213022x x --=,解得 11x =-,23x =. ∴点C 的坐标为(3,0). ∵22131(1)2222y x x x =--=--, ∴顶点P 的坐标为(1,-2).…………………………………………… 3分 过点A 作AE ⊥x 轴,过点P 作PF ⊥x 轴,垂足分别为E ,F .易得 45ACB PCD ∠=∠=︒.AC ==,PC ==.又DPC BAC ∠=∠,∴△ACB ∽△PCD .…………………… 4分 ∴BC AC CD PC=. ∵3(1)4BC =--=, ∴43BC PC CD AC ==. ∴45333OD OC CD =-=-=. ∴点D 的坐标为5(,0)3.……………………………………………… 5分 (3)当BD 为一边时,由于83BD =, ∴点M 的坐标为885(,)318-或811(,)318-. ………………………… 7分 当BD 为对角线时,点M 的坐标为235(,)318-. …………………… 8分大兴区2011~2012学年度第二学期模拟试卷(二)初三数学参考答案及评分标准第Ⅰ卷 (机读卷 共32分)一、选择题(共8道小题,每小题4分,共32分)第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分)三、解答题(本题共30分,每小题5分)13.解:原式=412222441-⨯+--……………………4分 =2421-………………………………5分 14.解:方程的两边同乘)4(+x x ,得x x 54=+……………………2分解得:1=x ……………………3分检验:把1=x 代入)4(+x x 05≠= ……………………4分∴原方程的解为:1=x . ……………………5分15.证明:(1)BE CF =,∴BE EF +CF EF =+,BF CE =即.……………………………1分∠ABC=90°,DC ⊥BC∴∠ABC=∠DCE=90°………………3分在ABF △和DCE △中,⎪⎩⎪⎨⎧=∠=∠=CE BF DCE ABC DC ABABF DCE ∴△≌△.…………………………5分16.解:原式=2244(441)3x x x x x ---++………………………………………………2分=22444413x x x x x --+-+ (3)分=31x - (4)分 当13x =-时,原式=312x -=-.………………5分 17.解:(1)∵ 点A (1,)n -在一次函数2y x =-的图象上,∴ 2(1)2n =-⨯-=.∴ 点A 的坐标为12-(,).………………1分 ∵ 点A 在反比例函数k y x=的图象上, ∴ 2k =-. ∴反比例函数的解析式为2y x =-. ………………3分 (2)点P 的坐标为(2,0)(0,4)-或.………………5分18.解:设第一批购进水果x 千克,则第二批购进水果2.5x 千克,…………………………1分依据题意得:,12005.2550=-xx ……………………………………3分 解得x=20,经检验x=20是原方程的解,且符合题意……………………………4分答:第一批购进水果20千克;…………………………5分四、解答题(本题共20分,每小题5分)19.解:过A 作BC AD ⊥交BC 于D ,则︒=∠30BAD ,︒=∠45CAD∵BC AD ⊥∴︒=∠90ADB ,︒=∠90ADC∵︒=∠30BAD ,︒=∠90ADB ,6001060=⨯=AB ∴3006002121=⨯==AB BD ………………………………………………………2分 DAB AB AD ∠=cos ︒⨯=30cos 6003300=……………………………………3分∵︒=∠90ADC ,︒=∠45CAD ,3300=AD∴3300==AD CD …………………………………………………………………4分∵BD CD BC += ∴3003300+=BC …………………………………………………………………5分 答:甲乙两人之间的距离是)3003300(+米20.解:(1)50.9;…………………………….…………………………………………….2分(2)①……………………………………………………………………………….5分21. 解:(1)连接OD .∵OA=OD∴∠OAD =∠ODA .∵AD 平分∠BAC∴∠OAD =∠CAD ,∴∠ODA =∠CAD .∴OD ∥AC .………………………………………………1分∵DE ⊥AC ,∴∠DEA =∠FDO=90°∴EF ⊥OD .∴EF 是⊙O 的切线. ……………………………………2分(2)设BF 为x .∵OD ∥AE ,∴△ODF ∽△AEF . ……………………………………3分∴OD OF AE AF =,即2234x x +=+. 解得 x =2∴BF 的长为2. ……………………………………5分 22.(1)分割正确,且画出的相应图形正确……………………………………………………2分(2)证明:在辅助图中,连接OI 、NI .∵ON 是所作半圆的直径,∴∠OIN =90°.∵MI ⊥ON ,∴∠OMI =∠IMN =90°且∠OIM =∠INM .∴△OIM ∽△INM .∴OM IM =IM NM .即IM 2=OM ·NM .…………………………………………………3分 ∵OM=AB ,MN=BC∴IM 2 = AB ·BC∵AF=IM∴AF 2=AB ·BC=AB ·AD .∵四边形ABCD 是矩形,BE ⊥AF ,∴DC ∥AB ,∠ADF =∠BEA =90°.∴∠DFA =∠EAB .∴△DFA ∽△EAB .∴AD BE =AF AB .即AF ·BE =AB ·AD=AF 2.∴AF =BE .………………………………………………………………………4分∵AF=BH∴BH =BE .由操作方法知BE ∥GH ,BE =GH .∴四边形EBHG 是平行四边形.∵∠GEB =90°,∴四边形EBHG 是正方形.……………………………………………………5分 图⑤ 图⑥ 图⑦图⑧ 图⑨ 图① 图② 图③ 图④。
2012北京西城高考二模数学理(含解析)
北京市西城区2012年高三二模试卷 数 学(理科)2012.5 第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =U ,则c 的取值范 围是( ).A .(0,1]B .[1,)+∞C .(0,2]D .[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数: ①()e x f x =; ②()e x f x =-; ③1()f x x x -=+; ④1()f x x x -=- . 则输出函数的序号为( ).A .①B .②C .③D .④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( ).A .35B .45C .925D .16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b ”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件 5.右图是1,2两组各7名同学体重(单位:kg )数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ).(注:标准差s =其中x 为12,,,n x x x L 的平均数)A .12x x >,12s s >B .12x x >,12s s <C .12x x <,12s s <D .12x x <,12s s >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是( ).A .13B .12C .23D .347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ).A .42B .41C .40D .398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R L ,使1122n k n k n k k n a a a a λλλ++-+-=+++L 成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论: ①若{}n a 是等比数列,则{}n a 为1阶递归数列; ②若{}n a 是等差数列,则{}n a 为2阶递归数列;③若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列. 其中,正确结论的个数是( ). A .0 B .1 C .2 D .3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在ABC △中,BC =AC π3A =,则B =_____.10.已知复数z 满足(1i)1z -⋅=,则z =_____.11.如图,ABC △是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若 PA PE =,60ABC ∠=o ,1PD =,9PB =,则PA =_____;EC =_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)||f x x -<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是_____;若该几何体的所有顶点在同一球面上,则球的表面积是_____.14.曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,给出下列三个结论: ① 曲线C 关于y 轴对称;② 若点(,)P x y 在曲线C 上,则||2y ≤; ③ 若点P 在曲线C 上,则1||4PF ≤≤. 其中,所有正确结论的序号是____________.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数22π()cos ()sin 6f x x x =--.(Ⅰ)求π()12f 的值;(Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB BC⊥,22AB CD BC==,EA EB⊥.(Ⅰ)求证:AB DE⊥;(Ⅱ)求直线EC与平面ABE所成角的正弦值;(Ⅲ)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出EFEA;若不存在,说明理由.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是35,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (Ⅰ)若2AF FB =uu u r uu r,求直线AB 的斜率;(Ⅱ)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程;(Ⅱ)求()f x 的单调区间;(Ⅲ)若()f x 在[0,)+∞上存在最大值和最小值,求a 的取值范围.若12(0n n i A a a a a ==L 或1,1,2,,)i n =L ,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a -L 记为1()n R A ;将排列112n n n a a a a --L 记为2()n R A ;依此类推,直至()n n n R A A =.对于排列n A 和()i n R A (1,2,,1)i n =-L ,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())i n n t A R A .例如3110A =,则 13()011R A =,133(,())1t A R A =-.若(,())1(1,2,,1)i n n t A R A i n =-=-L ,则称n A 为最佳排列.(Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.北京市西城区2012年高三二模试卷数学(理科)参考答案及评分标准2012.5一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C ; 7.C ; 8.D . 二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.1i22+; 11.3,4; 12.0,()1,2 13.13,3π; 14.① ② ③.注:11、12、13第一问2分,第二问3分;14题少填不给分. 三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)(Ⅰ)解:22ππππ()cos ()sin cos 1212126f =--==. ………………5分(Ⅱ)解:1π1()[1cos(2)](1cos2)232f x x x =+--- ………………7分1π13[cos(2)cos 2]2cos 2)2322x x x x =-+=+ ………………8分π)3x =+. ………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分所以当 ππ232x +=,即 π12x =时,()f x ……………11分所以 π[0,]2x ∀∈,()f x c ≤等价于c ≤.故当 π[0,]2x ∀∈,()f x c ≤时,c 的取值范围是)+∞. ……………13分16.(本小题满分14分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为EB EA =,所以EO AB ⊥. ……………1分 因为四边形ABCD 为直角梯形,22AB CD BC ==,AB BC ⊥, 所以四边形OBCD 为正方形,所以AB OD ⊥. …2分 所以AB ⊥平面EOD . ………………3分所以AB ED ⊥. ………………4分 (Ⅱ)解:因为平面ABE ⊥平面ABCD ,且 EO AB ⊥,所以EO ⊥平面ABCD ,所以EO OD ⊥. 由,,OB OD OE 两两垂直,建立如图所示的空间直角 坐标系O xyz -. …………5分因为三角形EAB 为等腰直角三角形,所以OA OB OD OE ===,设1OB =,所以 (0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 (1,1,1)EC =-u u u r,平面ABE 的一个法向量为(0,1,0)OD =u u u r . ……………7分 设直线EC 与平面ABE 所成的角为θ,所以||sin |cos ,|||||EC OD EC OD EC OD θ⋅=〈〉==uu u r uuu ruu u r uuu r uu u r uuu r ,即直线EC 与平面ABE . …………9分 (Ⅲ)解:存在点F ,且13EF EA =时,有EC ∥平面FBD . ………10分 证明如下:由111(,0,)333EF EA ==--u u u r u u r ,12(,0,)33F -,所以42(,0,)33FB =-uu r .设平面FBD 的法向量为n (,,)a b c =,则有0,0.BD FB ⎧⋅=⎪⎨⋅=⎪⎩uuu r uurn n 所以 0,420.33a b a z -+=⎧⎪⎨-=⎪⎩取1a =,得(1,1,2)=n . ………………12分 因为 EC ⋅uu u rn (1,1,1)(1,1,2)0=-⋅=,且EC ⊄平面FBD ,所以EC ∥平面FBD . 即点F 满足13EF EA =时,有EC ∥平面FBD . ………………14分 17.(本小题满分13分)(Ⅰ)解:设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.………………1分35310C 1(15)C 12P X =-==; 2155310C C 5(0)C 12P X ===; 1255310C C 5(15)C 12P X ===; 35310C 1(30)C 12P X ===. ………………5分乙得分的分布列如下:分 155115(15)01530121212122EX =⨯-+⨯+⨯+⨯=. ………………7分 (Ⅱ)解:由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则223332381()C ()()()555125P A =+=, ………………10分511()12122P B =+=. ………………11分故甲乙两人至少有一人入选的概率4411031()11252125P P A B =-⋅=-⨯=. ……13分 18.(本小题满分13分)(Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. ………………1分将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. …………3分 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① ………………4分 因为2AF FB =uu u r uu r ,所以122y y =-. ② ………………5分 联立①和②,消去12,yy ,得m = ………6分所以直线AB 的斜率是± ………………7分(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S △. ……………… 9分 因为12122||||2ABC S OF y y =⨯⋅⋅-△………………10分, ………………12分所以0m =时,四边形OACB 的面积最小,最小值是4. ………………13分 19.(本小题满分14分) (Ⅰ)解:当1a =时,22()1x f x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分由 (0)2f '=,得曲线()y f x =在原点处的切线方程是20x y -=.…………3分(Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………4分① 当0a =时,22()1xf x x '=+. 所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………5分 当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x=,()f x 与()f x '的情况如下:故()f x 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-. ………7分③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a-∞;单调减区间是1(,)a a --,(,)a -+∞.………………9分 (Ⅲ)解:由(Ⅱ)得, 0a =时不合题意. ………………10分 当0a >时,由(Ⅱ)得,()f x 在1(0,)a单调递增,在1(,)a +∞单调递减,所以()f x 在(0,)+∞上存在最大值21()0f a a=>.设0x 为()f x 的零点,易知2012ax a-=,且01x a <.从而0x x >时,()0f x >;0x x <时,()0f x <.若()f x 在[0,)+∞上存在最小值,必有(0)0f ≤,解得11a -≤≤.所以0a >时,若()f x 在[0,)+∞上存在最大值和最小值,a 的取值范围是(0,1]. ………………12分 当0a <时,由(Ⅱ)得,()f x 在(0,)a -单调递减,在(,)a -+∞单调递增,所以()f x在(0,)+∞上存在最小值()1f a -=-.若()f x 在[0,)+∞上存在最大值,必有(0)0f ≥,解得1a ≥,或1a ≤-.所以0a <时,若()f x 在[0,)+∞上存在最大值和最小值,a 的取值范围是(,1]-∞-. 综上,a 的取值范围是(,1](0,1]-∞-U . ………………14分 20.(本小题满分13分)(Ⅰ)解:最佳排列3A 为110,101,100,011,010,001. ………………3分 (Ⅱ)证明:设512345A a a a a a =,则1551234()R A a a a a a =,因为 155(,())1t A R A =-,所以15||a a -,21||a a -,32||a a -,43||a a -,54||a a -之中有2个0,3个1. 按512345a a a a a a →→→→→的顺序研究数码变化,由上述分析可知有2次数码不发生改变,有3次数码发生了改变. 但是5a 经过奇数次数码改变不能回到自身, 所以不存在5A ,使得155(,())1t A R A =-,从而不存在最佳排列5A . ………………7分 (Ⅲ)解:由211221(0k k i A a a a a ++==L 或1,1,2,,21)i k =+L ,得12121122()k k k R A a a a a ++=L , 2212211221()k k k k R A a a a a a ++-=L ,……2121342112()k k k R A a a a a a -++=L , 22123211()k k k R A a a a a ++=L .因为2121(,())1(1,2,,2)i k k t A R A i k ++=-=L ,所以21k A +与每个21()i k R A +有k 个对应位置数码相同,有1k +个对应位置数码不 同,因此有12121221212||||||||1k k k k k a a a a a a a a k +-+-+-++-+-=+L , 122212222121||||||||1k k k k k k a a a a a a a a k +-+--+-++-+-=+L ,……,132421212||||||||1k k a a a a a a a a k +-+-++-+-=+L , 1223221211||||||||1k k k a a a a a a a a k ++-+-++-+-=+L .以上各式求和得, (1)2S k k =+⨯. ………………10分 另一方面,S 还可以这样求和:设12221,,...,,k k a a a a +中有x 个0,y 个1,则2S xy =. ………………11分 所以21,22(1).x y k xy k k +=+⎧⎨=+⎩解得,1,x k y k =⎧⎨=+⎩或1,.x k y k =+⎧⎨=⎩ 所以排列21k A +中1的个数是k 或1k +. ………………13分北京市西城区高三二模试卷 数学(理科)选填解析一、 选择题 1.【答案】D【解析】解:当{}{}2|log 102A x x x =<=<<,A B B =Q U ,A B ∴⊆,即2c ≥.故选D .2.【答案】D【解析】解:由题可知输出的函数为存在零点的函数, 因为()e 0x f x =>,所以该函数不存在零点; 因为()e 0x f x =-<,所以该函数不存在零点;因为1()f x x x -=+为对勾函数且()2f x ≤-或()2f x ≥,所以该函数不存在零点; 因为当1x =时,1()0f x x x -=-=,所以该函数存在零点. 故选D .3.【答案】B【解析】解:由参数方程的知识可知椭圆方程为221259y x +=,故离心率45c e a ===. 故选B .4.【答案】A【解析】解:当⊥a b 时,()()2,1,440x x x ⋅=⋅-=-+=a b ,即2x =±,所以2x =是2x =±的充分不必要条件. 故选A .5.【答案】C【解析】解:可知()1153565758617072617x =⨯++++++=,()2154565860617273627x =⨯++++++=;1s ==2s =故选C .6.【答案】C【解析】解:由题可知()110f k =+≥,()010f =≥,故1k ≥-,所以概率()()112123p --==--.故选C .7.【答案】C【解析】解:由题可知,设在第()212n n ≤≤层下,S 达到最小值, 而()()23110S n n n =-+-++⨯+⨯⎡⎤⎣⎦L ()()111122n n +++-+-⨯⎡⎤⎣⎦L ()()()()1213122n n n n -⨯-=+-⨯-235315722n n =-+,可知函数的对称轴为536n =,由于n 为整数, 故当9n =时,min 40S =. 故选C .8.【答案】D【解析】解:① 正确.若数列{}n a 为等比数列, 且为1阶递归数列,只需存在1λ∈R , 使得111111n n n n a a a q a q λλ-+=+⇔=, 即1q λ=,满足题意;② 正确.若数列{}n a 为等差数列, 且为2阶递归数列,只需存在12,λλ∈R ,使得()[]()21121112111n n n a a a a n d a nd a n d λλλλ++=+⇔++=+++-⎡⎤⎣⎦, 即121λλ=+且()1221n n λλλ+=+-, 当122,1λλ==-时,满足题意;③ 正确.若数列{}n a 的通项公式为2n a n =, 且为3阶递归数列,只需存在123,,λλλ∈R ,使得()()()2222312213123321n n n n a a a a n n n n λλλλλλ+++=++⇔+=++++, 即1231212142649λλλλλλλ++=⎧⎪+=⎨⎪+=⎩, 当1233,3,1λλλ==-=时,满足题意. 故选D .二、 填空题 9.【答案】π4【解析】解:由正弦定理可知sin sin sin sin 3BC AC B A B =⇒=, 所以π4B =. 故答案为π4.10.【答案】1i 22+ 【解析】解:由题可知111i 1i 1i 1i 1i 2z ++==⋅=--+. 故答案为1i22+.11.【答案】3,4【解析】解:由切割线定理可知219PA PD PB =⋅=⨯,所以3PA =; 因为60PAC ABC ∠=∠=o ,且PA PE =,故3AE AP EP ===,则2D E PE PD =-=,6BE PB PE =-=,由相交弦定理可知312AE EC BE ED EC ⋅=⋅⇒=,所以4EC =. 故答案为3,4.12.【答案】0,()1,2【解析】解:由题可知002bb -=⇒=;当0x ≥,则不等式为()221132012x x x x x -+<⇒-+<⇒<<, 当0x <,则不等式为()221120x x x x -+<-⇒-+<, 因为180∆=-<,故方程无解. 故答案为0,()1,2.13.【答案】13,3π【解析】解:由题可知 ,,PA AB AD 两两垂直,所以1133V PA AB AD =⋅⋅⋅=;可知三棱锥P ABCD-的外接球的直径为PC =所以表面积2224π4π4π3π2PC S r ⎛⎫==⋅=⨯= ⎪⎝⎭⎝⎭. 故答案为13,3π.14.【答案】① ② ③【解析】解:设曲线C 上的动点为(),P x y ,则14y +=,整理的216481x y y =+-+,① 正确.显然()1,P x y -也满足曲线方程, 则曲线C 关于y 轴对称;② 正确.当1y ≥-时,2224xy =-≤,故12y -≤≤;当1y <-时,22212xy =-≥-,故21y -≤<-;综上,2y ≤;PDCBA③ 正确.由题可知41PF y =-+, 因为22y -≤≤,所以013y ≤+≤, 故14PF ≤≤. 故答案为① ② ③.。
2012西城二模答案
北京市西城区2012年初三二模试卷数学答案及评分标准2012. 6三、解答题(本题共30分,每小题5分) 13.解:原式=5162-+⨯-4分=4+…………………………………………………………………… 5分14.解:原式=22(44)(6)3x x x x x -+---=32324463x x x x x -+-+-=2243x x +-.………………………..….….….….….…………………… 3分∵ 2240x x +-=,∴ 224x x +=. ………………………………………………………………… 4分∴ 原式=22(2)35x x +-=. ….……………………………………………………5分15.(1)证明:如图1.∵ ∠BAF =∠CAE ,∴ BAF C AF C AE C AF ∠-∠=∠-∠.∴ BAC D AE ∠=∠. ………………… 1分 在△ABC 和△ADE 中,,,,B D AB AD BAC D AE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △ABC ≌△ADE. ……………………………………………………… 3分 ∴ BC=DE. ………………………………………………………………… 4分 (2)∠DGB 的度数为67︒.……………………………………………………………… 5分 16.解:(1)∵关于x 的一元二次方程(m +1)x 2 + 2mx + m - 3 = 0 有两个不相等的实数根,∴ 10m +≠且0∆>.∵ 2(2)4(1)(3)4(23)m m m m ∆=-+-=+,∴ 230m +>. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分图1解得 m >23-. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∴ m 的取值范围是 m >23-且m ≠ -1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分(2)在m >23-且m ≠ -1的范围内,最小奇数m 为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分此时,方程化为210x x +-=. ∵ 224141(1)5b ac ∆=-=-⨯⨯-=, ∴212x ==⨯.∴ 方程的根为12x =,22x =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分17. (1)证明:如图2.∵ 四边形ABCD 是平行四边形,∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点, ∴ CD DF AB AE 21,21==.∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 (2)解:过点D 作DG ⊥AB 于点G . ∵ AB =2AD =4,∴ AD =2. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 在Rt △AGD 中,∵90,60,AG D A ∠=︒∠=︒ AD =2, ∴ .360sin ,160cos =︒⋅==︒⋅=AD DG AD AG ∴ 3BG AB AG =-=.在Rt △DGB中,∵90,3,DGB DG BG ∠=︒==∴.329322=+=+=BGDGDB ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分18.解:(1)300; ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2)52;﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分(3)1750 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 四、解答题(本题共20分,每小题5分)19.解:(1)当MN ⊥AC 时,从N 到M 小区铺设的管道最短.(如图3)﹍﹍﹍﹍﹍﹍ 1分 (2) ∵ ∠MAC =60︒-30︒=30︒,∠ACM =30︒+30︒=60︒,﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ ∠AMC =180︒-30︒-60︒=90︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分图2G FED CBA在Rt △AMC 中,∵∠AMC =90︒,∠MAC =30︒,AC =2000, ∴cos 20002A M A C M A C =⋅∠=⨯=米). ﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt △AMN 中,∵ ∠ANM =90︒,cos30︒=AMAN ,∴ AN =AM ⋅cos30︒=10003⨯23=1500(米).………………………………………… 5分答:∠AMC 等于90︒,AN 的长为1500米. 20.解:(1)根据题意得(6,0)A ,(0,8)B .(如图4)在Rt △OAB 中,∠AOB =90︒,OA =6,OB =8, ∴ 10AB =.﹍﹍﹍﹍﹍﹍﹍ 1分∵ △DAB 沿直线AD 折叠后的对应三角形为△DAC , ∴ AC=AB=10.∴ 16OC OA AC OA AB =+=+=. ∵ 点C 在x 轴的正半轴上,∴ 点C 的坐标为(16,0)C .﹍﹍﹍﹍﹍ 2分 (2)设点D 的坐标为(0,)D y .(y <0) 由题意可知CD=BD ,22CD BD =. 由勾股定理得22216(8)y y +=-. 解得12y =-.∴ 点D 的坐标为(0,12)D -.﹍﹍﹍﹍﹍3分 可设直线CD 的解析式为 12y kx =-.(k ≠ 0)∵ 点(16,0)C 在直线12y kx =-上,∴ 16120k -=. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 解得34k =.∴ 直线CD 的解析式为3124y x =-.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分21.(1)证明:连结AO ,AC .(如图5) ∵ BC 是⊙O 的直径,∴ 90BAC C AD ∠=∠=︒.﹍﹍﹍﹍﹍1分 ∵ E 是CD 的中点, ∴AEDE CE ==.∴ EAC ECA ∠=∠. ∵ OA =OC ,东l∴ OCA OAC ∠=∠. ∵ CD 是⊙O 的切线,∴ CD ⊥OC . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴90EC A O C A ∠+∠=︒.∴90EAC O AC ∠+∠=︒.∴ OA ⊥AP .∵ A 是⊙O 上一点,∴ AP 是⊙O 的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 (2) 解:由(1)知OA ⊥AP .在Rt △OAP 中,∵90O AP ∠=︒,OC=CP=OA ,即OP =2OA ,∴ sin P 21==OPOA .∴ 30P ∠=︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 ∴ 60AO P ∠=︒. ∵ OC=OA , ∴ 60AC O ∠=︒.在Rt △BAC 中,∵90BAC ∠=︒,AB=33,60AC O ∠=︒,∴ 3tan tan 60A B A C A C O===∠︒.又∵ 在Rt △ACD 中,90C AD ∠=︒,9030AC D AC O ∠=︒-∠=︒, ∴ 3cos cos 30AC C D AC D===∠︒. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分22.解:(1) 如图所示,答案不唯一. 画出△D 1BC ,△D 2BC ,△D 3BC ,△D 4BC ,△D 5BC中的一个即可.(将BC 的平行线l 画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍ 2分(2) 如图所示,答案不唯一. (在直线D 1D 2上取其他符合要求的点,或将BC 的平行线画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍﹍﹍4分N(3) 如图所示(答案不唯一).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分如上图所示的四边形ABDE 的画法说明:(1)在线段BC 上任取一点D (D 不为BC 的中点),连结AD ;(2)画出线段AD 的垂直平分线MN ;(3)画出点C 关于直线MN 的对称点E ,连结DE ,AE . 则四边形ABDE 即为所求.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)由题意得A ,C 两点的坐标分别为1(1,)A k ,2(1,)C k .(如图6)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分 ∵ 10k >,20k <,∴ 点A 在第一象限,点C 在第四象限,12AC k k =-. 当m=4时,1213()AC D S AC BD k k ∆=⋅=-.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∵ EG ∥AB ,AD 的中点为E , ∴ △DEG ∽△DAB ,12EG D G D EABD BD A===,G 为BD 的中点.∵ A ,B ,D 三点的坐标分别为1(1,)A k ,(1,0)B ,(,0)D m , ∴ 122k AB EG ==,122BDm BG -==,12m O G O B BG +=+=.∴ 点E 的坐标为11(,)22k m E +. ∵ 点E 恰好在双曲线1ky x=上,∴11122k m k +⋅=.①﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 ∵ 10k >, ∴ 方程①可化为114m +=,解得3m =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分(3)当点D 的坐标为(2,0)D 时,由(2)可知点E 的坐标为13(,)22k E .(如图8) ∵ 1BDF S ∆=, ∴ 11122BD F S BD O F O F ∆=⋅==.∴ 2O F =. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分 设直线BE 的解析式为y ax b =+(a ≠0). ∵ 点B ,点E 的坐标分别为(1,0)B ,13(,)22k E ,∴ 10,3.22a b k a b +=⎧⎪⎨+=⎪⎩解得 1a k =,1b k =-.∴ 直线BE 的解析式为11y k x k =-.∵ 线段EB 的延长线与y 轴的负半轴交于点F ,10k >, ∴ 点F 的坐标为1(0,)F k -,1OF k =.∴ 12k =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分 线段CF﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分24.解:(1) 当t =5秒时,点P 走过的路径长为 19 ;当t = 3 秒时,点P 与点E 重合.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 如图9,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF =∠MEN ,都等于△PEF 绕点E 旋转的旋转角,记为α. 设AP =3t (0< t <2),则CP =63t -,4C E t =.∵ EF ∥AC ,∠C =90°,∴ ∠BEF =90°,∠CPE =∠PEF =α. ∵ EN ⊥AB , ∴ ∠B=∠MEN=α.∴ C PE B ∠=∠.﹍﹍﹍﹍﹍﹍﹍3分 ∵ tan C E C PE C P∠=,3tan 4AC B BC==,A∴ 43C P C E =. ∴ 446333t t -=⨯.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得5443t =.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分(3) t 的值为65(秒)或307(秒).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分 25.解:(1)21(2)4A n n +,,()B n n ,. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) d =AB =A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.﹍﹍3分∴ 当14n =时,d 取得最小值18. ﹍﹍ 4分当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB =PM . (如图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x +,∴ 对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.∴ 整数c 的值为0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠)即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴ ()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠)即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠)④⑤② ③当a =2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a ≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴ 2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分∴ 整数a ,b ,c 的值分别为1a =,1b =,0c =.⑥ ⑦。
北京市2012年中考数学二模试题分类 代数综合(教师版)
2012年市中考数学二模分类汇编——代数综合题整数根、系数是整数问题1.(昌平23.)已知m 为整数,方程221x mx +-=0的两个根都大于-1且小于32,当方程的两个根均为有理数时,求m 的值.23.解: 设221y x mx =+-. ………………………………1分 ∵2210x mx +-=的两根都在1-和32之间,∴ 当1x =-时,0y >,即:210m --> .…………2分当32x =时,0y >,即:931022m +->. ……………3分∴1213m -<<.…………………4分∵m 为整数,∴210m =--,,. …………………………5分 ① 当2m =-时,方程222104812x x --=∆=+=,, ∴ 此时方程的根为无理数,不合题意.② 当1m =-时,方程212121012x x x x --==-=,,,符合题意.③ 当0m =时,方程2210x -=,x =综合①②③可知,1m =-.…………………… 6分2.(房山)23.)已知:关于x 的方程mx2-3(m -1)x +2m -3=0. ⑴当m 取何整数值时,关于x 的方程mx2-3(m -1)x +2m -3=0的根都是整数;⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k x ky 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k的解集.解:⑴ ⑵① ②23.解:⑴当m=0时,x=1----------------------------1分当m ≠0,可解得x1=1,x2=m mm 3232-=------------------2分 ∴31±±=,m 时,x 均有整数根--------------------------------------3分综上可得310±±=,,m 时,x 均有整数根⑵①抛物线向左平移一个单位后得到3-------------4分 过点(-1,3)代入解得m=3∴抛物线解析式为y= 3x2-6x +②k=-1×3=-3-----------------------6∴x>1或-1<x<0-----------------------73.(平谷23)已知抛物线22y x mx m =-+-. (1)求证此抛物线与x 轴有两个不同的交点;(2)若m 是整数,抛物线22y x mx m =-+-与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B .若M 为坐标轴上一点,且MA MB =,求点M 的坐标. 23.解:(1)证明:令0y =,则220x mx m -+-=.因为248m m ∆=-+2(2)40m =-+>, 1分 所以此抛物线与x 轴有两个不同的交点. 2分(2)因为关于x 的方程220x mx m -+-=的根为2(2)4m m x ±-+=,由m 为整数,当2(2)4m -+为完全平方数时,此抛物线与x 轴才有可能交于整数点.设22(2)4m n -+=(其中n 为整数), 3分所以 [(2)][(2)]4n m n m +---=. 因为 (2)n m +-与(2)n m --的奇偶性相同,所以2222n m n m +-=⎧⎨-+=⎩,;或222 2.n m n m +-=-⎧⎨-+=-⎩,解得 2m =.经检验,当2m =时,关于x 的方程220x mx m -+-=有整数根. 所以 2m =...................................5分 (3) 当2m =时,此二次函数解析式为222(1)1y x x x =-=--,则顶点A 的坐标为(11-,).抛物线与x 轴的交点为(0)O ,0、(20)B ,. 设抛物线的对称轴与x 轴交于1M ,则1(10)M ,.在直角三角形1AM O中,由勾股定理,得2AO =,由抛物线的对称性可得,2AB AO ==.又2222+=, 即 222OA AB OB +=.所以 △ABO 为等腰直角三角形.且11M A M B =.所以1(1)M ,0为所求的点. 6分若满足条件的点2M 在y 轴上时,设2M 坐标为(0)y ,.过A 作AN y ⊥轴于N ,连结2AM 、2BM .则22M A M B =.由勾股定理,有22222M A M N AN =+;22222M B M O OB =+.即 2222(1)12y y ++=+. 解得 1y =. 所以2(0)M ,1为所求的点.7分综上所述满足条件的M 点的坐标为(10,)或(01,).4.(门头沟23) 已知抛物线y =ax2+x +2. (1)当a =-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x2+x +2的值为正整数,求x 的值;(3)若a 是负数时,当a =a1时,抛物线y =ax2+x +2与x 轴的正半轴相交于点M(m ,0);当a =a2时,抛物线y =ax2+x +2与x点N(n ,0). 若点M 在点N 的左边,试比较a1与a223. 当a=-1时,y=-x2+x+2,∴a=-1,b=1,c=2.∴抛物线的顶点坐标为(21,49),对称轴为直线x=21(2)∵代数式-x2+x+2的值为正整数,∴函数y=-x2+x+2的值为正整数.又因为函数的最大值为49,∴y 的正整数值只能为1或2.当y=1时,-x2+x+2=1,解得2511+=x ,2512-=x (3)分当y=2时,-x2+x+2=2,解得x3=0,x4=1.……………4分∴x 的值为2511+=x ,2512-=x ,0或1.(3) 当a <0时,即a1<0,a2<0.经过点M 的抛物线y=a1x2+x+2的对称轴为121a x -=,经过点N 的抛物线y=a2x2+x+2的对称轴为221a x -=.…………5分∵点M 在点N 的左边,且抛物线经过点(0,2)∴直线121a x -=在直线221a x -=的左侧……………6分∴121a -<221a -.∴a1<a2.…………………………………7分 5.(怀柔23)已知抛物线22(21)1y x m x m =+-+- (m 为常数) . (1)若抛物线22(21)1y x m x m =+-+-与x 轴交于两个不同的整数点,求m 的整数值;(2)在(1)问条件下,若抛物线顶点在第三象限,试确定抛物线的解析式;(3)若点M(x1,y1)与点N(x1+k ,y2)在(2)中抛物线上 (点M 、N 不重合), 且y1=y2. 求代数式21116+6+5-+1x x k k ⋅的值.23.解:(1)由题意可知,△=()222-1-4(-1)m m =5-4m >0,.…………………1分又抛物线与x 轴交于两个不同的整数点, ∴5-4m 为平方数,设k2 =5-4m ,则满足要求的m 值为1,-1,-5,-11,-19…… ∴满足题意的m 整数值的代数式为2-++1n n (n 为正整数). …………………………3分 (2)∵抛物线顶点在第三象限, ∴只有m=1符合题意,抛物线的解析式为2=+y x x .…………………4分(3)∵点M ()11,x y 与N ()12,x k y +在抛物线2=+y x x 上, ∴2111=+y x x ,2211=(+)++y x k x k ∵,21y y = ∴()221111+=+++.x x x k x k整理,得()12++1=0k x k∵点M 、N 不重合,∴k ≠0.∴2x1 =-k -1.……………………………………6分∴21116+6+5-+1x x kk ⋅=()2+116-3(k+1)+5-4+1k k k ⋅=6.………7分6.在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.25.解:(1)21(2)4A n n +,,()B n n ,.﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2) d =AB=A B y y -=2124n n -+. ∴d =2112()48n -+=2112()48n -+.﹍﹍3分 ∴ 当14n =时,d 取得最小值18. ﹍﹍ 4分当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图10) ﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x +,∴ 对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.∴ 整数c 的值为0.﹍﹍﹍﹍﹍ 6分此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠)即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩对一切实数x 均成立. 由②得()21ax b x+-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩由⑤得整数b此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠)即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠)当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩④② ⑥∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分 ∴ 整数a ,b ,c 的值分别为1a =,1b =,0c =. 利用数形结合研究交点、方程的根1.(东城23.) 已知关于x 的方程2(1)(4)30m x m x -+-+=. (1) 若方程有两个不相等的实数根,求m 的取值X 围;(2)若正整数m 满足822m ->,设二次函数2(1)(4)3y m x m x =-+-+的图象与x 轴交于A B 、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx =+与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).23.解:(1)2(4)12(1)m m ∆=--- 2(2)m =+.……2分由题意得,2(2)m +>0且10m -≠ .∴ 符合题意的m 的取值X 围是 21m m ≠-≠且的 一切实数. ……3分 (2)∵ 正整数m 满足822m ->, ∴ m 可取的值为1和2 .又∵ 二次函数2(1)(4)3y m x m x =-+-+, ∴ m =2.……4分∴ 二次函数为2-23y x x =++. ∴ A 点、B 点的坐标分别为(-1,0)、(3,0). 依题意翻折后的图象如图所示.由图象可知符合题意的直线3y kx =+经过点A 、B . 可求出此时k 的值分别为3或-1.……7分注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案.2.(海淀23)已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点.(1)求m 的取值X 围;(2)若m>1, 且点A 在点B 的左侧,OA : OB=1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧的部分沿直线 l 翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线y =公共点P(x0, y0)且 y0≤7时, 求b 的取值X 围23.解:(1)∵抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点, ∴210,(2)4(1)0.m m m由①得1m , 由②得0m,∴m 的取值X 围是0m且1m. …………2分(2)∵点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点, ∴令0y =,即2(1)(2)10m x m x -+--=. 解得11x =-,211x m =-.∵1m >,∴10 1.1m >>--∵点A 在点B 左侧,∴点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分∴OA=1,OB=11m -.①②………………………1分∵OA : OB=1 : 3,∴131m =-. ∴43m.∴抛物线的解析式为212133y x x =--. ………………………………………4分 (3)∵点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1).依题意翻折后的图象如图所示.令7y =,即2121733x x --=.解得16x =, 24x =-. ∴ 新图象经过点D (6,7).当直线13y x b=+经过D 点时,可得5b =. 当直线13y x b=+经过C 点时,可得1b =-.当直线1(1)3y x b b =+<-与函数2121(0)33y x x x =-->的图象仅有一个公共点P(x0, y0)时,得20001121333x b x x +=--.整理得 2003330.x x b ---=由2(3)4(33)12210b b ,得74b =-. 结合图象可知,符合题意的b 的取值X 围为15b -<≤或74b.……………7分通州22.已知关于x 的方程2(31)220mx m x m --+-= (1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数2(31)22y mx m x m =--+-的图象经过坐标原点(0,0),求抛物线的解析式.(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线y x b =+ 与(2)中的函数图象只有两个交点时,求b 的取值X 围. 22..解:(1)分两种情况讨论. 当0m =时,方程为x 20-=2=∴x ,方程有实数根,………………………………………….(1分)②当0m ≠,则一元二次方程的根的判别式()()2222314229618821m m m m m m m m m ∆=----=-+-+=++⎡⎤⎣⎦=()21m +≥0不论m 为何实数,∆≥0成立,∴方程恒有实数根 ………………………………………….(2分)综合①、②可知m 取任何实数, 方程()231220mx m x m --+-=恒有实数根………………….(3分)(2) 二次函数2(31)22y mx m x m =--+-的图象与经过(0,0)∴022=-m∴1=m ………………………………………….(4分)∴二次函数解析式为:x x y 22-=………………………….(5分) (3)在(2)条件下,直线y x b =+与二次函数图象只有两个交点,结合图象可知212y x xy x b ⎧=-⎨=+⎩当1y y =时,得230x x b --= 由940b ∆=+=得94b =-………………………….(6分)综上所述可知:当49->b 时,直线y x b =+与(2)中的图象有两个交点. ………….(7分)23.(延庆) 已知:关于x 的一元二次方程01-m x 2m 2-mx 2=++)((1)若此方程有实根,求m 的取值X 围;(3)解:如图所示:①当直线l 经过原点O 时与半圆P 有两个交点,即b=0………5分②当直线l 与半圆P 相切于D 点时有一个交点,如图由题意可得Rt △EDP 、Rt △ECO 是等腰直角三角形,∵DP=2 ∴EP=22………….6分 ∴OC=2-22 即b=2-22∴当0≤b <2-22时,直线l 与半圆P 只有两个交点。
2012年北京各区县初三数学二模(共六套)
海淀区九年级第二学期期末练习数 学 2012. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. -5的倒数是A .15B .15- C .5- D .52. 2012年4月22日是第43个世界地球日,中国国土资源报社联合腾讯网发起“世界地球 日”微话题,共有18 891 511人次参与了这次活动,将18 891 511用科学记数法表示(保 留三个有效数字)约为 A. 18.9⨯106 B. 0.189⨯108 C. 1.89⨯107 D. 18.8⨯1063. 把2x 2 − 4x + 2分解因式,结果正确的是A .2(x − 1)2B .2x (x − 2)C .2(x 2 − 2x + 1)D .(2x −2)24. 右图是由七个相同的小正方体堆砌而成的几何体, 则这个几何体的俯视图是A BCD 5.从1, -2, 3这三个数中,随机抽取两个数相乘,积为正数的概率是A .0B .13C .23D .16. 如图,在△ABC 中,∠C =90°,BC =3,D ,E 分别在 AB 、AC 上,将△ADE 沿DE 翻折后,点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为 A. 21B. 3C. 2D. 1A'ED ABCC. 中位数是51.5D. 众数是588.如图,在梯形ABCD 中,AD //BC ,∠ABC =60°,AB = DC =2, AD =1, R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合, 点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列 图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9. 若二次根式23-x 有意义,则 x 的取值范围是 .10.若一个多边形的内角和等于540︒,则这个多边形的边数是 .11. 如图,在平面直角坐标系xOy 中,已知点A 、B 、C 在双 曲线xy 6=上,BD ⊥x 轴于D , CE ⊥ y 轴于E ,点F 在x 轴上, 且AO =AF , 则图中阴影部分的面积之和为 .12.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,则挪动的珠子数为 颗; 当挪动n 颗 珠子时(n 为大于1的整数), 所得分数为 (用含n 的代数式表示).FE R P B C D A班级三、解答题(本题共30分,每小题5分) 1311|5|()3tan604---+︒.14.解方程:6123x x x +=-+.15. 如图,AC //EG , BC //EF , 直线GE 分别交BC 、BA 于P 、D ,且AC=GE , BC=FE . 求证:∠A =∠G .16.已知2220a a --=,求代数式221111121a a a a a --÷--++的值.17. 如图,一次函数的图象与x 轴、y 轴分别交于点A (-2, 0)、B (0, 2). (1)求一次函数的解析式;(2)若点C 在x 轴上,且OC =23, 请直接写出∠ABC 的度数.18. 如图,在四边形ABCD 中,∠ADB =∠CBD =90︒,BE//CD 交AD 于E , 且EA=EB .若AB=54,DB =4, 求四边形ABCD 的面积.GF E D CA P EDCA四、解答题(本题共20分,第19题、第20题各5分,第21题6分,第22题4分) 19. 某街道办事处需印制主题为“做文明有礼的北京人,垃圾减量垃圾分类从我做起”的宣传单. 街道办事处附近的甲、乙两家图文社印制此种宣传单的收费标准如下: 甲图文社收费s (元)与印制数t (张)的函数关系如下表:乙图文社的收费方式为:印制2 000张以内(含2 000张),按每张0.13元收费;超过 2 000张,均按每张0.09元收费.(1)根据表中给出的对应规律,写出甲图文社收费s (元)与印制数t (张)的函数关系式; (2)由于马上要用宣传单,街道办事处同时在甲、乙两家图文社共印制了1 500张宣传单,印制费共179元,问街道办事处在甲、乙两家图文社各印制了多少张宣传单?(3)若在下周的宣传活动中,街道办事处还需要加印5 000张宣传单,在甲、乙两家图文社中选择 图文社更省钱.20.如图,AC 、BC 是⊙O 的弦, BC //AO , AO 的延长线与过点C 的射线交于点D , 且∠D =90︒-2∠A .(1)求证:直线CD 是⊙O 的切线; (2)若BC=4,1tan 2D =,求CD 和AD 的长.21. 李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了 为期半个月的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D : 较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C 类女生有 名,D 类男生有 名,将上面条形统计图补充完整; (3)为了共同进步,李老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位 男同学和一位女同学的概率.类别50%25%15%D C B A22.阅读下面材料:小明遇到这样一个问题:我们定义: 如果一个图形绕着某定点旋转一定的角度α (0︒ <α <360︒) 后所得的图形与原图形重合,则称此图形是旋转对称图形. 如等边三角形就是一个旋转角为120︒的旋转对称图形. 如图1,点O 是等边三角形△ABC 的中心, D 、E 、F 分别为AB 、BC 、 CA 的中点, 请你将△ABC 分割并拼补成一个与△ABC 面积相等的新的旋转对称图形.图1小明利用旋转解决了这个问题,图2中阴影部分所示的图形即是与△ABC 面积相等的新的旋转对称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题:如图3,在等边△ABC 中, E 1、E 2、E 3分别为AB 、 BC 、CA 的中点,P 1、P 2, M 1、M 2, N 1、N 2分别为 AB 、BC 、CA 的三等分点. (1)在图3中画出一个和△ABC 面积相等的新的旋转 对称图形,并用阴影表示(保留画图痕迹); (2)若△ABC 的面积为a ,则图3中△FGH 的面积为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点. (1)求m 的取值范围;(2)若m >1, 且点A 在点B 的左侧,OA : OB =1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧的部分沿直线 l 翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线13y x b =+与新图象只有一个公共点P (x 0, y 0)且 y 0≤7时, 求b 的取值范围.E 3 E 1 E 2P 1 P 2 N 1N 22 1 B A图3 GFH24. 如图, 在平面直角坐标系xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C .(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式; (3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐 标.备用图25. 在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中 点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE的值, 并证明你的结论; (2)如图2,且若AB =BC , 点M 、A 不重合, BN =NE ,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图1 图2 图3A N DA C E D NM B F E C B F N M E C B海淀区九年级第二学期期末练习数学试卷答案及评分参考 2012. 6说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共32分,每小题4分)1. B2. C3. A4. C5. B6. D7. D8. C 二、填空题(本题共16分,每小题4分)9.23x ≥10. 5 11. 12 12.8; 21n n +- (每空各 2分) 三、解答题(本题共30分,每小题5分) 13115()3tan604---+︒=54-+ …………………………………………………4分=1. …………………………………………………5分14.解:去分母,得 ()()()()63223x x x x x ++-=-+. ………………………………2分2261826x x x x x ++-=+-. ……………………………………………………3分 整理,得 324x =-. 解得 8x =-. ………………………………………………………………4分 经检验,8x =-是原方程的解. 所以原方程的解是8x =-. ……………………………………………………5分15.证明:∵ AC //EG ,∴ C CPG ∠=∠. …………1分 ∵ BC //EF ,∴ CPG FEG ∠=∠.∴ C FEG ∠=∠. …………………………………………2分在△ABC 和△GFE 中,,,,AC GE C FEG BC FE =⎧⎪∠=∠⎨=⎪⎩ ∴ △ABC ≌△GFE . …………………………………………………4分∴A G ∠=∠. …………………………………………………5分16. 解:原式=()()()21111111a a a a a +-⋅-+-- ……………………………………………2分 =()21111a a a +--- …………………………………………………3分 =22.(1)a -- …………………………………………………4分由2220a a --=,得 2(1)3a -=.∴ 原式=23-. …………………………………………………5分 GFEDC AP17.解:(1)依题意设一次函数解析式为2y kx =+. …………………………………1分∵ 点A (2,0-)在一次函数图象上, ∴022k =-+. ∴ k =1. ……………………………………………………2分 ∴ 一次函数的解析式为2y x =+. …………………………………3分 (2)ABC ∠的度数为15︒或105︒. (每解各1分) ……………………5分18.解: ∵∠ADB =∠CBD =90︒,∴ DE ∥CB . ∵ BE ∥CD , ∴ 四边形BEDC 是平行四边形. ………1分 ∴ BC=DE .在Rt △ABD 中,由勾股定理得8AD =. ………2分设DE x =,则8EA x =-. ∴8EB EA x ==-.在Rt △BDE 中,由勾股定理得 222DE BD EB +=.∴ 22248x x +=-(). ……………………………………………………3分 ∴ 3x =.∴ 3BC DE ==. ……………………………………………………4分 ∴1116622.22ABD BDC ABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形 ………… 5分 四、解答题(本题共20分,第19题、第20题各5分,第21题6分, 第22题4分)19.解:(1)甲图文社收费s (元)与印制数t (张)的函数关系式为0.11s t =. ……1分(2)设在甲、乙两家图文社各印制了x 张、y 张宣传单, 依题意得 {1500,0.110.13179.x y x y +=+= ………………………………………… 2分解得800,700.x y =⎧⎨=⎩……………………………………………… 3分答:在甲、乙两家图文社各印制了800张、700张宣传单. ………………4分(3) 乙 . ……………………………………………………… 5分20.(1)证明:连结OC .∴ ∠DOC =2∠A . …………1分 ∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°.∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. ………………………………………………2分 (2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4,∴ CE =12BC =2.∵ BC //AO , ∴ ∠OCE =∠DOC .D EC BA∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒,∴ ∠COE =∠D . ……………………………………………………3分 ∵tan D =12, ∴tan COE ∠=12. ∵∠OEC =90︒, CE =2,∴4tan CEOE COE==∠.在Rt △OEC 中, 由勾股定理可得OC ==在Rt △ODC 中, 由1tan 2OC D CD ==,得CD =, ……………………4分由勾股定理可得 10.OD =∴10.AD OA OD OC OD =+=+= …………………………………5分 21.解:(1)(64)50%20+÷=. 所以李老师一共调查了20名学生. …………………1分 (2)C 类女生有 3 名,D 类男生有 1 名;补充条形统计图略.说明:其中每空1分,条形统计图1分. ……………………………………4分 (3)解法一:由题意画树形图如下:………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分 解法二:由题意列表如下:………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分 22.解:(1)画图如下:(答案不唯一) …………………………………2分图3从D 类中选取从A 类中选取女女男男女女男女男(2)图3中△FGH 的面积为7a. …………………………………4分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵ 抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点,∴210,(2)4(1)0.m m m ì- ïïíïD =-+->ïî由①得1m ¹, 由②得0m ¹,∴ m 的取值范围是0m ¹且1m ¹. ……………………………………………2分 (2)∵ 点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点,∴ 令0y =,即 2(1)(2)10m x m x -+--=. 解得 11x =-,211x m =-. ∵1m >, ∴10 1.1m >>-- ∵ 点A 在点B 左侧,∴ 点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分 ∴ OA=1,OB =11m -. ∵ OA : OB =1 : 3,∴131m =-. ∴ 43m =.∴ 抛物线的解析式为212133y x x =--. ………………………………………4分 (3)∵ 点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1)-.依题意翻折后的图象如图所示.令7y =,即2121733x x --=. 解得16x =, 24x =-.∴ 新图象经过点D (6,7). 当直线13y x b =+经过D 点时,可得5b =.① ② …………………………………………1分当直线13y x b =+经过C 点时,可得1b =-.当直线1(1)3y x b b =+<-与函数2121(33y x x x =-->的图象仅有一个公共点P (x 0, y 0)时,得20001121333x b x x +=--.整理得 2003330.x x b ---=由2(3)4(33)12210b b D =----=+=,得74b =-结合图象可知,符合题意的b 的取值范围为15b -<≤或4b <-. ……………7分 24.解:(1)∵22222221212112()()4422y x x x mx m m x m m m m m m =-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =.∵ 抛物线x x my 222-=与x 轴负半轴交于点A , ∴ A (m , 0), 且m <0. …………………………………………………2分过点D 作DF ⊥x 轴于F . 由 D 为BO 中点,DF //BC , 可得CF =FO =1.2CO ∴ DF =1.2BC由抛物线的对称性得 AC = OC . ∴ AF : AO =3 : 4. ∵ DF //EO ,∴ △AFD ∽△AOE . ∴.FD AFOE AO= 由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m-=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO于M ,则M 即为所求. 由A (-6,0),C ' (0, 3),可得直线AC '的解析式为321+=x y .由13,2y x y x⎧=+⎪⎨⎪=-⎩ 解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t - (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G ,过P 1作P 1H ⊥ BC 于H , 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分 如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分 (ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G , 则x H = x B =-3,x G =3P x =t . 由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5. ∴35(5,)3P -. ……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P-. 25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CE BM证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC , ∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°. ∴ EG//CD , ∠EGN =∠A , ∠CDF =90°. ………………………………1分 ∵ E 为CF 的中点,EG//CD ,∴ GF =DG =11.22DF CD =∴ 1.2GE CD =∵ N 为MD (AD )的中点, ∴ AN =ND =11.22AD CD = ∴ GE =AN , NG=ND+DG=ND+AN=AD=AB . ……………………………2分 ∴ △NGE ≌△BAN . ∴ ∠1=∠2. ∵ ∠2+∠3=90°, ∴ ∠1+∠3=90°. ∴ ∠BNE =90°. ∴ BN ⊥NE . ……………………………………………………………3分 ∵ ∠CDF =90°, CD =DF , 可得 ∠F =∠FCD =45°,CFCD= .于是12CFCE CE CE BM BA CD CD ==== ……………………………………4分 (2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .∵ 四边形ABCD 是矩形,∴ AB ∥CG .∴ ∠MBN =∠DGN ,∠BMN =∠GDN . ∵ N 为MD 的中点,∴ MN =DN .∴ △BMN ≌△GDN .∴ MB =DG ,BN =GN . ∵ BN =NE ,∴ BN =NE =GN . ∴ ∠BEG =90°. ……………………………………………5分 ∵ EH ⊥CE , ∴ ∠CEH =90°. ∴ ∠BEG =∠CEH . ∴ ∠BEC =∠GEH . 由(1)得∠DCF =45°. ∴ ∠CHE =∠HCE =45°.HGA BC DEM N F 321GFEA (M )CD NB∴ EC=EH , ∠EHG =135°.∵∠ECB =∠DCB +∠HCE =135°, ∴ ∠ECB =∠EHG . ∴ △ECB ≌△EHG . ∴ EB =EG ,CB =HG . ∵ BN =NG ,∴ BN ⊥NE. ……………………………………………6分∵ BM =DG= HG -HD= BC -HD =CD -,∴CE BM. ……………………………………………7分(3)BN ⊥NE ;CEBM.………………………………………………8分丰台区2012年初三统一练习(二)数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2-的绝对值是A .12-B .12C .2D .2-2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .62.510⨯ B .50.2510-⨯ C . 62.510-⨯ D .72510-⨯ 3.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 A .12 B .13 C .14 D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14B .12C .34D .1 5.若20x +=则 y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=EDCBA7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行 的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x xC .30528002800=-x xD .30280052800=-xx8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神二、填空题(本题共16分,每小题4分)9有意义,则x 的取值范围是 . 10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒. 12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+,…, 利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= .三、解答题(本题共30分,每小题5分) 13.计算:()︒⎪⎭⎫⎝⎛+45sin 4-211-3-272-03.14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值.DOCBA15.解分式方程:21124x x x -=--.16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,交AB 于点M ,交CB的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ;B21DOCBAMFEBCDA(2)如果OD=1,tan∠OCA=2,求AC的长.22.小杰遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答:(1)图2中AH的长等于.(2)如果AC=a,EF=b,那么AH的长等于.B A DCEFHGHFEDAB图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点PP 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图2AEFPB D CCE AD F P25.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1) 抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当θ= °时,线段CE 的长度最大,最大值为 .北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式=3-1+4-422⨯……4分 =6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分. =224a a -+. ……2分2230a a --= , ∴223a a -=. (3)分∴原式=224347a a -+=+=.….….5分 15.21124x x x -=-- 解:2(2)(4)1x x x +--=.……1分 22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分16.证明: ∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 , OA=OB ,∠AOC =∠BOD , CO=DO .∴△COA ≌△DOB .……….4分 ∴∠C =∠D . …………….5分17.解:(1) 反比例函数ky x= 的图象经过点A (-1,1) ,∴-11-1k =⨯=.…………1分 (2)P 1(0、 P 2(0,、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分(2)当0230x ≤≤时,0.49y x =;……3分 当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分) 19.解:联结BD . ∵在菱形ABCD 中,∴AD ∥BC ,AC ⊥BD .……1分 又∵EF ⊥AC , ∴BD ∥EF . ∴四边形EFBD 为平行四边形.……2分∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于23.解:(1)由题意得△>0. ∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去.综上所述,1=k .……4分(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°. 过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21. ∵PQNQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分 ∴二次函数的解析式为:22y x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’, 设对称轴x =3与x 轴交于点D ,∴OD =3.∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’,在Rt △OC ’D 中,根据勾股定理C ’D =1.7654321NMCD BPFEA∴C ’(3,1).……6分 (3) 120°,4.……8分2012年门头沟区初三年级第二次统一练习数 学 试 卷一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1. 4-的倒数是 A.4-B.4C. D. 2. 在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.将 0.000 0963用科学记数法表示为A. 51063.9⨯ B. 51063.9-⨯ C. 41063.9-⨯ D. 31063.9-⨯ 3. 下列交通标志中既是中心对称图形,又是轴对称图形的是4. 五边形的内角和是A.360°B.540°C.720°D.900° 5. 为了支援地震灾区同学,某校开展捐书活动, 九(1)班40名同学积极参与.现将捐书数量 绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是A. 0.1B. 0.2C. 0.3D. 0.46. 某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公41-41A. B. C. D.EDCB A顷产量的两组数据,两组数据的平均数相同,其方差分别为s 甲2=0.002、s 乙2=0.03,则下列说法正确的是 A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定7.关于x 的一元二次方程032=-+m x x 有两个不相等的实数根,则m 的取值范围是 A. B. C. D.8. 如图,已知MN 是圆柱底面直径,NP 是圆柱的高.在圆柱的侧面上, 过点M 、P 嵌有一圈路径最短的金属丝.现将圆柱侧面沿NP 剪开,所得的侧面展开图是A. B. C. D.二、填空题(本题共16分,每小题4分)9. 分解因式:22344xy y x x +-= . 10. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点, 若32=BD AD ,AE =3,则AC = . 11.一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元. 该商场为促销决定:买1支毛笔就赠送1本书法练习本. 某校书法兴趣小组打算购买这种毛笔10支,这种练习本x (10≥x )本, 则付款金额y (元)与练习本个数x (本)之间的函数关系式是 .12. 一组按规律排列的式子:22b a ,432b a -,843b a ,1654b a -,…,其中第6个式子是 ,第n 个式子是 (n 为正整数).三、解答题(本题共30分,每小题5分) 13.计算:4)3(45sin 80-+-+︒-π14.解不等式组:()⎪⎩⎪⎨⎧<-+≤+321234xx x x15.已知:3=x ,求2212-÷-x x x x 的值.PNM P /N /PN M P /N /P N M P /N /P N M M /P /N/PNM 121>m 121<m 121->m 121-<m16. 已知:如图,点E 、F 分别为□ABCD 的BC 、AD 边上的点,且∠1=∠2. 求证:AE =FC .17. 如图,已知反比例函数y =x6(x >0)的图象与一次函数y =kx +b 的图象交于点A (1,m ),B (n ,2)两点. (1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x 的取值范围.18. 列方程或方程组解应用题某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)19.已知:如图,四边形ABCD 中,BC =CD =DB ,∠ADB =90°,sin ∠ABD =54,S △BCD =39. 求四边形ABCD 的周长.20. 如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径. 点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足 为D .(1)求证:CD 为⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长.21.甲学校到丙学校要经过乙学校. 从甲学校到乙学校有A 1、A 2、A 3三条线路,从乙学校到丙学校有B 1、B 2二条线路.(1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果; (2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了B 1线路的概率是多21F EDCBA DC BA少?23. 已知抛物线y =ax 2+x +2.(1)当a =-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x 2+x +2的值为正整数,求x 的值;(3)若a 是负数时,当a =a 1时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点M (m ,0);当a =a 2时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点N (n ,0). 若点M 在点N 的左边,试比较a 1与a 2的大小.24. 有两张完全重合的矩形纸片,小亮将其中一张绕点A 顺时针旋转90°后得到矩形AMEF(如图1),连结BD 、MF ,此时他测得BD =8cm ,∠ADB =30°. (1)在图1中,请你判断直线FM 和BD 是否垂直?并证明你的结论;(2)小红同学用剪刀将△BCD 与△MEF 剪去,与小亮同学继续探究.他们将△ABD 绕点A 顺时针旋转得△AB 1D 1,AD 1交FM 于点K (如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,请直接写出旋转角β的度数;(3)若将△AFM 沿AB 方向平移得到△A 2F 2M 2(如图3),F 2M 2与AD 交于点P ,A 2M 2与BD 交于点N ,当NP ∥AB 时,求平移的距离是多少.25. 如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为 ,点A 、D 的坐标分别为(-4,0),(0,4). 动点P 从A 点出发,在AB 边上匀速运动. 动点Q 从点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外). (1)求出点C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时,S 有最大值?并求出这个最大值.C D MB FE图1D M B图3N 2P 2M 2 D MBFD 1图2B 1K31634+-=x y2012年门头沟数学二模评标一、选择题1.C2.B3.D4.B5.B6.A7.C8.A 二、填空题9.2)2(y x x - 10.215 11. 2005+=x y 12. 6476b a -,n n n n b a 2)1(11++- 三、解答题(本题共30分,每小题5分) 13.解:原式=412222++-……………………………………4分 =5223+ ………………………………………….5分 14. ()⎪⎩⎪⎨⎧<-+≤+)2(321)1(234 xx x x解:由(1)得,1-≥x …………………………………….2分由(2)得,x<3 ………………………………………4分 不等式组的解集是31<≤-x ………………………5分 15.解:2212-÷-x xx x =xx x x x )1(2)1)(1(-⋅-+ ………………………..3分 =12+x ……………………………………..4分 当x=3时,原式=12+x =132+=21…………………………5分16.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D. ………………………….2分 ∵∠1=∠2,……………………………………….3分△ABE ≌△CDF. ………………………………4分 AE=CF. ………………………………………5分17.解:(1)由题意得,m=6,n=3.∴A (1,6),B (3,2). …………………………2分由题意得,⎩⎨⎧=+=+236b k b k解得,⎩⎨⎧=-=82b k∴一次函数解析式为y=-2x+8. ……………………3分21FEDC B A(2)反比例函数的值大于一次函数的值的x 的取值范围是0<x<1或x>3. …..5分 18.解:设甲组每天修桌凳x 套,则乙组每天修桌凳为1.5x 套. …………………………..1分由题意得,205.1960960+=xx …………………………………………….3分 解得,x=16 ………………………………………………………………………4分经检验,x=16是原方程的解,且符合实际意义.1.5x=1.5⨯16=24 …………………………………………………………..5分 答:甲组每天修桌凳16套,乙组每天修桌凳为24套. 19.解:过C 作CE ⊥BD 于E. ∵∠ADB =90°,sin ∠ABD =54, ∴AD=4x,AB=5x. ………………………..1分 ∴DB=3x∵BC =CD =DB ,∴DE=x 23,∠CDB=60°. ………………………2分 ∴tan ∠CDB=DECE∴CE=x 233. ……………………………3分 ∵S △BCD =39, ∴3921=⋅⋅CE BD ∴ x=2. ………………………………………….4分 ∴AD=8,AB=10,CD=CB=6.∴四边形ABCD 的周长=AD+AB+CD+CB=30. ……………………………..5分 20.(1)证明:连接OC, ∵OA=OC,∴∠OCA=∠OAC. ∵CD ⊥PA , ∴∠CDA=90°,∴∠CAD+∠DCA=90°, ∵AC 平分∠PAE ,∴∠DAC=∠CAO. ………………………1分∴∠DCO=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°. ∴CD 为⊙O 的切线. …………………………2分 (2)解:过O 作OF ⊥AB ,垂足为F , ∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形, ∴OC=FD ,OF=CD.∵DC+DA=6,设AD=x ,则OF=CD=6-x , ……………………3分EDCBA∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x ,在Rt △AOF 中,由勾股定理得222AF +OF =OA . 即22(5)(6)25x x -+-=,化简得:211180x x -+=解得2x =或9x =(舍). ………………………4分 ∴AD=2, AF=5-2=3. ∵OF ⊥AB ,AB=2AF=6. ………………………..5分 21.(1)………………………………..2分结果:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2) ………….4分(2)小张恰好经过了B 1线路的概率是21………………………………………….6分22.(1)正确 ……………………………….2分(一个1分) (2)正确 ………………………………..4分 23. 当a=-1时,y=-x 2+x+2,∴a=-1,b=1,c=2. ∴抛物线的顶点坐标为(21,49),对称轴为直线x=21.……2分 (2)∵代数式-x 2+x+2的值为正整数,∴函数y=-x 2+x+2的值为正整数.又因为函数的最大值为49,∴y 的正整数值只能为1或2. 当y=1时,-x 2+x+2=1,解得2511+=x ,2512-=x …………3分 当y=2时,-x 2+x+2=2,解得x 3=0,x 4=1.……………4分∴x 的值为2511+=x ,2512-=x ,0或1. (3) 当a <0时,即a 1<0,a 2<0.B 2B 2B 1B 1B 2B 1A 3A 2A 1经过点M 的抛物线y=a 1x 2+x+2的对称轴为121a x -=, 经过点N 的抛物线y=a 2x 2+x+2的对称轴为221a x -=.…………5分∵点M 在点N 的左边,且抛物线经过点(0,2)∴直线121a x -=在直线221a x -=的左侧……………6分∴121a -<221a -. ∴a 1<a 2.…………………………………………………………7分24. 解:(1)垂直. …………………………1分证明:延长FM 交BD 于N.如图1,由题意得:△BAD ≌△MAF .∴∠ADB =∠AFM .又∵∠DMN =∠AMF , ∴∠ADB +∠DMN =∠AFM +∠AMF =90°.∴∠DNM =90°,∴BD ⊥MF . ······································································· 2分 (2)β的度数为60°或15°(答对一个得1分) ····················································· 4分 (3)如图2,由题意知四边形PNA 2A 为矩形,设A 2A =x ,则PN =x .在Rt △A 2M 2F 2中,∵M 2F 2=MF =BD =8,∠A 2F 2M 2=∠AFM =∠ADB =30°. ∴M 2A 2=4,A 2F 2=34. …………………………..5分 ∴AF 2=34-x .在Rt △P AF 2中,∵∠PF 2A =30°. ∴AP =AF 2tan ·30°=(34-x )·33=4-33x . ∴PD =AD -AP =34-4+33x . ……………..6分D M A BF图2NF 2P A 2M 2 C DMB FE图1N∵NP ∥AB ,∴ABPN =DA DP .∴4x=3433434x +-,解得x =6-32.即平移的距离是(6-32)cm . (7)分25. 解:(1)把y =4代入y =-43x +163,得x =1. ∴C 点的坐标为(1,4). ……………………………………….1分(2) 当y =0时,-43x +163=0,∴x =4.∴点B 坐标为(4,0).过点C 作CM ⊥AB 于M ,则CM =4,BM =3. ∴BC5.∴sin ∠ABC =CMBC=45.① 0<t <4时,过Q 作QN ⊥OB 于N ,则QN =BQ ·sin ∠ABC =45t.∴S =12OP ·QN =12(4-t )×45t =-25t 2+85t (0<t <4). ……………2分②当4<t ≤5时,连接QO ,QP ,过点Q 作QN ⊥OB 于N .同理可得QN =45t .∴S =12OP ·QN =12×(t -4)×45t .=25t 2-85t (4<t ≤5). …………………………….3分③当5<t ≤6时, 连接QO ,QP . S =12×OP ×OD =12(t -4)×4.=2t -8(5<t ≤6). ……………………………….4分S 随t 变化的函数关系式是⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-<<+-)65(82)54(5852)40(585222t t t t t t t t .(3)①当0<t <4时,∵-25<0当t =8522()5⨯-=2时,S 最大=28()54()5-⨯-=85. ……………………………5分 ②当4<t ≤5时, S =25t 2-85t ,对称轴为t =-85225-⨯=2,∵25>0 ∴在4<t ≤5时,S 随t 的增大而增大.∴当t =5时,S 最大=25×52-85×5=2. …………………………..6分③当5<t ≤6时,在S =2t -8中,∵2>0,∴S 随t 的增大而增大.∴当t =6时,S 最大=2×6-8=4. …………………………………………7分∴综合三种情况,当t =6时,S 取得最大值,最大值是4. ………………………8分顺义区2012届初三第二次统一练习数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.9的平方根是A .3B .-3C .3±D .132.据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为A .59.110⨯ B .49.110⨯ C .49110⨯ D . 39.110⨯ 3.如图,下列选项中不是..正六棱柱三视图的是( )A B C D4.把2416a bb -分解因式,结果正确的是A .2(24)b a - B . (22)(22)b a a +-。
2012北京西城二模数学文科 含答案
北京市西城区2012年高三二模试卷数 学(文科) 2012.5一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知复数z 满足(1i)1z -⋅=,则z =( ) (A )1i 22+ (B )1i 22- (C )1i 22-+ (D )1i 22-- 2.给定函数:①3y x =;②21y x =-;③sin y x =;④2log y x =,其中奇函数是( )(A )① ② (B )③ ④ (C )① ③ (D )② ④3.执行如图所示的程序框图,若输入如下四个函数: ①2x y =; ②2xy =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( )(A )① (B )② (C )③ (D )④4.设m ,n 是不同的直线,α,β是不同的平面,且,m n α⊂. 则“α∥β”是“m ∥β且n ∥β”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分又不必要条件5.已知双曲线221x ky -=的一个焦点是(5,0),则其渐近线的方程为( )(A )14y x =±(B )4y x =± (C )12y x =±(D )2y x =±6.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-L ,其中x 为12,,,n x x x L 的平均数) (A )12x x >,12s s > (B )12x x <,12s s < (C )12x x >,12s s <(D )12x x <,12s s >7.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S .则S 最小时,电梯所停的楼层是( ) (A )7层(B )8层(C )9层(D )10层8.已知集合1220{,,,}A a a a =L ,其中0(1,2,,20)k a k >=L ,集合{(,)|,B a b a A =∈,}b A a b A ∈-∈,则集合B 中的元素至多有( )(A )210个(B )200个(C )190个(D )180个二、填空题共6小题,每小题5分,共30分. 9.在△ABC 中,3BC =,2AC =,π3A =,则B =_____. 10.设变量x ,y 满足11,11,x y x y -≤+≤⎧⎨-≤-≤⎩ 则2x y +的最小值是_____.11.已知向量(,1)x =-a ,(3,)y =b ,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,3},那么⊥a b 的概率是_____. 12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)f x x -<的解集为_____. 13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是_____;若该几何体的所有顶点在同一球面上,则球的表面积是_____. 14.已知曲线C 的方程是22||||()()8x y x y x y-+-=,给出下列三个结论: ① 曲线C 与两坐标轴有公共点;② 曲线C 既是中心对称图形,又是轴对称图形; ③ 若点P ,Q 在曲线C 上,则||PQ 的最大值是62. 其中,所有正确结论的序号是_____.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在等差数列{}n a 中,2723a a +=-,3829a a +=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n n a b +是首项为1,公比为c 的等比数列,求{}n b 的前n 项和n S . 16.(本小题满分13分)已知函数()sin()3cos()f x x x ωϕωϕ=+++的部分图象如图所示,其中0ω>,ππ(,)22ϕ∈-. (Ⅰ)求ω与ϕ的值;(Ⅱ)若554)4(=αf ,求αααα2sin sin 22sin sin 2+-的值.17.(本小题满分13分)如图,四棱锥ABCD E -中,EA EB =,AB ∥CD ,BC AB ⊥,CD AB 2=. (Ⅰ)求证:ED AB ⊥;(Ⅱ)线段EA 上是否存在点F ,使DF // 平面BCE ?若存在,求出EFEA;若不存在,说明理由.18.(本小题满分13分)已知函数2221()1ax a f x x +-=+,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间. 19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为36,且经过点31(,)22.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(0,2)P 的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值. 20.(本小题满分14分)若正整数*12(,1,2,,)n k N a a a a k n =+++∈=N L L ,则称12n a a a ⨯⨯⨯L 为N 的一个“分解积”.(Ⅰ)当N 分别等于6,7,8时,写出N 的一个分解积,使其值最大;(Ⅱ)当正整数(2)N N ≥的分解积最大时,证明:*()N k a k ∈中2的个数不超过2;(Ⅲ)对任意给定的正整数(2)N N ≥,求出(1,2,,)k a k n =L ,使得N 的分解积最 大.北京市西城区2012年高三二模试卷数学(文科)参考答案及评分标准2012.5一、选择题:本大题共8小题,每小题5分,共40分.1.A ; 2.C ; 3.D ; 4.A ; 5.D ; 6.B ; 7.C ; 8.C .二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.2-; 11.16; 12.0,{|12}x x <<; 13.13,3π; 14.② ③.注:12、13题第一问2分,第二问3分;14题少选、错选均不给分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)(Ⅰ)解:设等差数列{}n a 的公差是d .依题意 3827()26a a a a d +-+==-,从而3d =-. ………………2分 所以 2712723a a a d +=+=-,解得 11a =-. ………………4分所以数列{}n a 的通项公式为 23+-=n a n . ………………6分 (Ⅱ)解:由数列{}n n a b +是首项为1,公比为c 的等比数列,得 1-=+n n n c b a ,即123-=++-n n c b n ,所以 123-+-=n n c n b . ………………8分 所以 21[147(32)](1)n n S n c c c -=++++-+++++L L21(31)(1)2n n n c c c --=+++++L . ………………10分 从而当1=c 时,2(31)322n n n n nS n -+=+=; ………………11分 当1≠c 时,(31)121n n n n c S c--=+-. ………………13分16.(本小题满分13分)(Ⅰ)解:π()2sin()3f x x ωϕ=++. ………………2分设()f x 的最小正周期为T .由图可得 πππ()2442T =--=,所以 πT =,2=ω. ………………4分 由 2)0(=f ,得 πsin()13ϕ+=,因为 ππ(,)22ϕ∈-,所以 π6ϕ=. ………………6分(Ⅱ)解:π()2sin(2)2cos 22f x x x =+=. ………………8分由 5542cos2)4(==ααf ,得 5522cos =α, ………………9分 所以 5312cos 2cos 2=-=αα. ………………11分 所以2sin sin 22sin (1cos )1cos 12sin sin 22sin (1cos )1cos 4αααααααααα---===+++. ………………13分17.(本小题满分13分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为 EA EB =,所以 AB EO ⊥. ……………2分因为 AB ∥CD ,CD AB 2=, 所以 BO ∥CD ,CD BO =.又因为 BC AB ⊥,所以四边形OBCD 为矩形,所以 DO AB ⊥. ………………4分 因为 O DO EO =I ,所以 ⊥AB 平面EOD . ………………5分所以 ED AB ⊥. ………………6分 (Ⅱ)解:点F 满足12EF EA =,即F 为EA 中点时,有DF // 平面BCE .……………7分 证明如下:取EB 中点G ,连接CG ,FG . ………………8分 因为F 为EA 中点,所以FG ∥AB ,AB FG 21=. 因为AB ∥CD ,AB CD 21=,所以FG ∥CD ,CD FG =. 所以四边形CDFG 是平行四边形,所以 DF ∥CG . ………………11分 因为 ⊄DF 平面BCE ,⊂CG 平面BCE , ………………12分所以 DF // 平面BCE . ………………13分 18.(本小题满分13分) (Ⅰ)解:当1a =时,22()1xf x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分 由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………4分 (Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………6分① 当0a =时,22()1xf x x '=+.所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………7分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x a =,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-.………10分 ③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a -∞;单调减区间是1(,)a a--,(,)a -+∞. ………………13分 综上,0a >时,()f x 在(,)a -∞-,1(,)a+∞单调递减;在1(,)a a-单调递增.0a =时,()f x 在(0,)+∞单调递增,在(,0)-∞单调递减;0a <时,()f x 在1(,)a-∞,(,)a -+∞单调递增;在1(,)a a-单调递减.19.(本小题满分14分)(Ⅰ)解: 由 222222213a b b e a a -==-=, 得 3b a =. ① ………………2分 由椭圆C 经过点31(,)22,得2291144a b +=. ② ………………3分 联立① ②,解得 1b =,3a =. …………4分所以椭圆C 的方程是 2213x y +=. …………5分 (Ⅱ)解:易知直线AB 的斜率存在,设其方程为2+=kx y .将直线AB 的方程与椭圆C 的方程联立,消去y 得 0912)31(22=+++kx x k . ………………7分令2214436(13)0k k ∆=-+>,得21k >.设11(,)A x y ,22(,)B x y ,则1221213k x x k +=-+,122913x x k =+. ……………9分 所以 1212122AOB POB POA S S S x x x x ∆∆∆=-=⨯⨯-=-. ………………10分 因为 22221212122222123636(1)()()4()1313(13)k k x x x x x x k k k --=+-=--=+++,设 21(0)k t t -=>, 则 212236363()16(34)4169242924t x x t t t t t-==≤=+++⨯+. ……………13分当且仅当169t t =,即43t =时等号成立,此时△AOB 面积取得最大值23.………………14分20.(本小题满分14分)(Ⅰ)解:633=+,分解积的最大值为339⨯=; ………………1分732234=++=+,分解积的最大值为3223412⨯⨯=⨯=; ………………2分 8332=++,分解积的最大值为33218⨯⨯=. ………………3分(Ⅱ)证明:由(Ⅰ)可知,(1,2,,)k a k n =L 中可以有2个2. ………………4分 当(1,2,,)k a k n =L 有3个或3个以上的2时, 因为22233++=+,且22233⨯⨯<⨯, 所以,此时分解积不是最大的.因此,*()N k a k ∈中至多有2个2. ………………7分(Ⅲ)解:① 当(1,2,,)k a k n =L 中有1时, 因为1(1)i i a a +=+,且11i i a a ⨯<+,所以,此时分解积不是最大,可以将1加到其他加数中,使得分解积变大. ………………8分 ② 由(Ⅱ)可知,(1,2,,)k a k n =L 中至多有2个2. ③ 当(1,2,,)k a k n =L 中有4时,若将4分解为13+,由 ① 可知分解积不会最大; 若将4分解为22+,则分解积相同;若有两个4,因为44332+=++,且44332⨯<⨯⨯,所以将44+改写为332++,使得分解积更大. 因此,(1,2,,)k a k n =L 中至多有1个4,而且可以写成22+. ………………10分 ④ 当(1,2,,)k a k n =L 中有大于4的数时,不妨设4i a >, 因为2(2)i i a a <-,所以将i a 分解为2(2)i a +-会使得分解积更大. ………………11分 综上所述,(1,2,,)k a k n =L 中只能出现2或3或4,且2不能超过2个,4不能超过1个. 于是,当*3()N m m =∈N 时,333m N =+++L 14243个使得分解积最大; …………12分当*31()N m m =+∈N 时,(1)(1)333223334m m N --=+++++=++++L L 1424314243个个使得分解积最大; ………………13分 当32()N m m =+∈N 时,3332m N =++++L 14243个使得分解积最大.………………14分。
2012年北京西城区中考二模数学试卷及答案
北京市西城区2012年初三二模试卷数 学 2011. 6下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为 A .45.878610⨯ B .55.878610⨯ C .358.78610⨯ D .50.5878610⨯ 3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是 A .内含 B .外切 C .相交 D .内切 4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是 A .四边形 B .五边形 C .六边形 D .八边形 5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是A .平均数B .众数C .中位数 D.方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y与时间x的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的 区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A B .25+ C . D .4 二、填空题(本题共16分,每小题4分) 9.分解因式 m 3 – 4m = . 10.函数21-=x y 中,自变量x 的取值范围是 . 11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++ 的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足CAD DBC ∠=∠, AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数my x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点. (1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数)四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.20.如图,在梯形ABCD 中,AB ∥DC ,5AD BC ==,10AB =,4CD =,连结并延长BD 到E ,使DE BD =,作EF AB ⊥,交BA 的延长线于点F .(1)求tan ABD ∠的值; (2)求AF 的长.21.已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点, AD 交BC 于点E ,连结AB . (1)求证:2AB AE AD =⋅; (2)过点D 作⊙O 的切线,与BC 的延长线交于点F , 若AE =2,ED =4,求EF 的长.22.如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB , E 为AC 的中点,F 为BC 上一点且BF ≠FC (F 不与B ,C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC 重新进行分割,画出分割线及拼接后的图形. (1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中 的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12bx x a +=-,12c x x a⋅=. 解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示); (3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE=90°,EF=6cm,DF=8cm.E,F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD—DE上以2cm/s的速度向点E运动.△DEF与点P同时出发,当点E到达点C时,△DEF 和点P同时停止运动.设运动的时间是t(单位:s),t>0.(1)当t=2时,PH= cm,DG = cm;(2)t为多少秒时△PDE为等腰三角形?请说明理由;(3)t为多少秒时点P与点G重合?写出计算过程;(4)求tan∠PBF的值(可用含t的代数式表示).25.如图1,在平面直角坐标系xOy 中,以y 轴正半轴上一点(0,)A m (m 为非零常数)为端点,作与y 轴正方向夹角为60°的射线l ,在l 上取点B ,使AB =4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E . (1)当m =4,k =1时,直接写出B ,C 两点的坐标;(2)若抛物线212y x m k =-++的顶点恰好为D 点,且DE=及此时cos ∠ODE 的值;(3)当k =1时,记线段AB ,OC 的中点分别为D 1,E 1;当k =3时,记线段AB ,OC 的中点分别为D 3,E 3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).北京市西城区2011年初三二模试卷数学答案及评分标准 2011.6二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分) 13.解:原式=112- ……………………………………………………………4分 =32. ……………………………………………………………………5分 14.证明: 如图1. 在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分解得2k <. ……………………………………………………………………2分(2)∵2k<,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分代入求根公式x =,得2x ==-±.…………5分 ∴ 1222x x =-+=-16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分 ∴ 原式=3-. ………………………………………………………………………5分17.解:(1)∵ 反比例数my x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x=-.………………………1分 点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)………………………………………………………………………………3分 (3)3.………………………………………………………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆. ()62402022800y x x x =+-=+.…………………………………………2分 (2)依题意得x -20< x .解得x >10.……………………………………………………………………3分 ∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分 答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元. 20.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3) ∵ AB ∥DC ,DM ⊥AB ,CN ⊥AB , ∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形.∵4CD =, ∴ MN =CD = 4.∵ 在梯形ABCD 中,AB ∥DC ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =, ∴ AM =BN =()11(104)322AB MN -=⨯-=. ∴ MB =BN +MN =7.……………………………………………………………2分 ∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴4DM =. ∴ 4tan 7DM ABD BM ∠==.……………………………………………………3分 (2)∵ EF AB ⊥, ∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN . ∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =, ∴12BM BD BF BE ==. ∴ BF =2BM =14. ……………………………………………………………4分 ∴ AF =BF -AB =14-10=4. …………………………………………………5分 21.(1)证明:如图4.∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分∴ AB AD AE AB=. ∴ 2AB AE AD =⋅.………………………………………………………3分 (2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴AB =.………………………………………………………4分 ∵ BD 为⊙O 的直径, ∴ ∠A =90︒.又∵ DF 是⊙O 的切线, ∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,tan AB ADB AD ∠===, ∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒. ∴∠DEF=∠AEB=60︒,903060EDF BDF ADB ∠=∠-∠=︒-︒=︒. ∴ ∠F =18060DEF EDF ︒-∠-∠=︒.∴ △DEF 是等边三角形.∴ EF = DE 5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分 23.解:(1)=,>,<.……………………………………………………………………3分 (2)2ca.……………………………………………………………………………4分 (3)答:当x =5m +时,代数式2y ax bx c =++的值是正数. 理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2ca,B (2,0) 两点. ∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2ca<0<2,即点A 在点B 左侧.………………………5分 设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数. ∴ 点M 在x 轴下方的抛物线上.(如图5) ∴ A M B x x x <<,即22cm a<<.∴5572c m a +<+<,即572N c x a+<<. 以下判断52ca+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B c c a c a a b a b x a a a a a+-+-+-=+-===>. ∴B x ac>+52. ∴ 52N B cx x a>+>.…………………………………………………………6分 ∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B N y y >,即0y >.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分 24.解:(1)52,265.………………………………………………………………………2分 (2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如图6)……………3分∵ BF=t ,PF=2t ,DF =8, ∴ 82PD DF PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD . 即()2228364t t -=+.解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE 边上,DP= DG . 由已知可得93tan 124AC B BC ===,63tan 84EF D DF ===. ∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=, 384D H D F F H t=-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG∵ 2DP DF t +=,∴ 28DP t =-.由DP=DG 得3322855t t -=-+. 解得 7213t =. …………………………………………………………………5分 检验:724613<<,此时点P 在DE 边上.∴ t 的值为7213时,点P 与点G 重合. (4)当0<t ≤4时,点P 在DF 边上运动(如图6),ta n 2PFPBF BF∠==. …………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则tan PS PBF BS∠=. 可得10(28)182PE DE DP t t =-=--=-. 此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS , ()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES . 524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS .∴ 728tan 1124PS tPBF BS t -∠==-.………………………………………………7分 综上所述, 2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨<≤⎪-⎩(以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B,………………………………………………………1分 C.………………………………………………………3分 (2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B点的坐标为,2)B k m +, C点的坐标为,2)C k .如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D的坐标为,)D k m +,点E的坐标为)E k .由勾股定理得DE . ∵DE=∴ m=4. ……………………………4分 ∵ D恰为抛物线212y x m k =-++的顶点, 它的顶点横坐标为, ∴=.解得k=1.此时抛物线的解析式2143y x x =-+. …………………………………5分 此时D ,E两点的坐标分别为D,E . ∴OD =OE = ∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分 (3)E 1,E 3点的坐标分别为1E ,E3. 设直线13E E 的解析式为y ax b =+(a ≠0).则1,3.a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 直线13E E的解析式为2my =-. ……………………………………7分 可得直线13E E 与y 轴正方向的夹角为60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D 1,D 3两点的坐标分别为11)D m +,33)D m +, 由勾股定理得13D D =4,13E E =4. ∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9)可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛-∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅= ∴1331134D D E E S D D AQ =⨯==四边形.…………………………8分。
2012年北京中考二模数学试题分类汇编——代数综合题试题与答案
新世纪教育网精选资料 版权全部 @新世纪教育网2012 年北京市中考数学二模分类汇编——代数综合题整数根、系数是整数1.(昌平23.)已知 m 整数,方程 2x2mx 1 =0 的两个根都大于 -1 且小于3,当方程2的两个根均 有理数 ,求m 的 .23.解:y2 x 2 mx1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵ 2x2mx 1 0 的两根都在 1和3之 ,2∴ 当 x1 , y0 ,即: 2 m 1 0 .⋯⋯⋯⋯ 2 分当 x3 , y0 ,即: 9 3 m 1 0 .⋯⋯⋯⋯⋯ 3 分2212 2∴m 1.⋯⋯⋯⋯⋯⋯⋯4 分3∵ m 整数,∴ m2, 1,0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分① 当 m2 ,方程 2x 22x1 0,48 12 ,∴ 此 方程的根 无理数,不合 意.② 当 m1 ,方程 2x2x 10, x 11, x 21,切合 意.2③ 当 m0 ,方程 2x 2 10 , x2 ,不切合 意.2合①②③可知,m1.⋯⋯⋯⋯⋯⋯⋯⋯6 分2.(房山) 23.)已知:对于2x 的方程 mx - 3( m - 1) x +2m -3=0.⑴当 m 取何整数 ,对于 x 的方程 mx 2- 3( m -1) x + 2m - 3=0 的根都是整数;⑵若抛物ymx 23( m 1)xm 3 向左平移一个 位后, 反比率函数2yk(k 0) 上的一点( -1,3 ),x①求抛物 ymx 2 3(m 1) x 2m 3 的分析式;②利用函数 象求不等式k kx 0的解集 .xy 解:⑴43 ⑵①2- 4②23.解:⑴当 m=0 时, x=1---------------------------- 1 分当 m ≠ 0,可解得 x 1=1, x 2=2m323-----------------2 分m m∴ m 1, 3 时, x 均有整数根 --------------------------------------3分综上可得 m 0, 1, 3 时, x 均有整数根⑵①抛物线向左平移一个单位后获得 y= m( x + 1) 2- 3( m - 1)( x + 1) + 2m - 3 -------------4 分 过点( -1,3 )代入解得 m= 3y∴抛物线分析式为2----------5 分4y= 3x - 6x + 3②k=- 1× 3=- 3-----------------------6 分3 ∴x>1 或- 1<x<0----------------------- 7分21x-4-3-2 -1O1234- 1- 2 - 3 - 43.(平谷 23)已知抛物线 y x 2 mx m 2 .(1)求证此抛物线与 x 轴有两个不一样的交点;(2)若m 是整数, 抛物线 yx2mx m 2 与 x轴交于整数点, 求 m3 2的值;( )在( )的条件下,设抛物线极点为 A ,抛物线与 x 轴的两个交点中右边交点为B .若 M 为坐标轴上一点,且 MAMB ,求点 M 的坐标.23.解:( 1)证明:令 y0,则 x 2 mx m 2 0 .由于m 2 4m 8 ( m 2)2 4 0 , ·············1 分因此此抛物线与x 轴有两个不一样的交点.··············2 分( 2)由于对于 x 的方程 x 2 mxm 20 的根为 x m( m 2)24 ,由 m 为整数,当 (m 2)2 4 为完整平方数时,此抛物线与2x 轴才有可能交于整数点.设 (m2) 2 4 n 2 (此中 n 为整数), ··························3 分因此 [ n (m 2)][ n ( m 2)] 4 .由于n (m 2) 与 n (m 2) 的奇偶性同样,n m 2 ,n m 2,因此2 或2;解得 m 2 .,当 m 2 ,关于x的方程x2mx m 20 有整数根.所以m 2 ...................................5分(3)当m 2,此二次函数分析式y x2 2 x(x 1)21,点 A 的坐(1,1).抛物与 x 的交点O(0, 0)、 B(2,0).抛物的称与x 交于M1,M 1(10),.在直角三角形AM 1O 中,由勾股定理,得AO 2 ,由抛物的称性可得,AB AO2.又( 2)2( 2)222222,即OAAB O B.因此△ ABO 等腰直角三角形.且M 1A M1B .因此M1(1,0) 所求的点.····························6分若足条件的点M 2在y上, M 2坐(0,y).A 作 AN ⊥ y 于 N ,AM2、BM2.M2A M2B.由勾股定理,有M2A2M 2N2AN 2; M2B2M 2O2OB2.即( y 1)2 12y 222.解得y 1.因此 M 2 (0,1) 所求的点.·······················7 分上所述足条件的M 点的坐( 1,0)或(0,1).4.(沟 23)已知抛物y= ax2+ x+ 2.(1)当 a=-1 ,求此抛物的点坐和称;(2) 若代数式- x2+ x+2 的正整数,求x 的;(3) 若 a 是数,当 a= a1,抛物 y=ax2+ x+ 2 与 x 的正半订交于点M(m ,0);当a= a2,抛物 y= ax2+x+ 2 与 x 的正半订交于点N(n, 0). 若点 M 在点 N 的左,比 a1与 a2的大小 .y 4 3 2 123. 当 a=-1 , y=-x 2+x+2 ,∴ a=-1,b=1,c=2.-4-3-2-1O 1 2 3 4 x-1-2( 1 , 9),称直 x=1-3∴抛物的点坐. ⋯⋯2分2 42-4 (2) ∵代数式 -x2+x+2 的正整数,∴函数y=-x 2+x+2的正整数 .又因函数的最大9,∴ y 的正整数只好1或2. 4当 y=1 , -x2+x+2 =1,解得x115, x215⋯⋯⋯⋯3 分22当 y=2 , -x 2+x+2 =2,解得 x 3=0,x 4=1. ⋯⋯⋯⋯⋯4 分1515∴ x 的 x 1, x 2,0或 1.22(3)当 a < 0 ,即 a 1< 0, a 2< 0.点 M 的抛物 y=a 1x 2+x+2 的 称 x1 ,2a 1点 N 的抛物 y=a 2x 2+x+2 的 称 x1 . ⋯⋯⋯⋯5分2a 2∵点 M 在点 N 的左 ,且抛物 点 (0,2)1 在直 x1 ∴直 x的左 ⋯⋯⋯⋯⋯6 分2a 1 2a 21 1∴<. ∴ a 1< a 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分2a 12a 25.( 柔 23)已知抛物yx 2(2m 1)x m 2 1 (m 常数 ) .( 1)若抛物y x2(2m 1)x m 2 1 x交于两个不一样的整数点, 求 m 的整数 ;与 ( 2)在( 1) 条件下,若抛物 点在第三象限, 确立抛物 的分析式;( 3)若点 M(x 1,y 1)与点 N(x 1+k ,y 2)在( 2)中抛物 上 (点 M 、N 不重合 ), 且 y 1=y 2. 求代数式 x 1216+6 x 1 +5-k 的 .k+1223.解:( 1)由 意可知, △ = 2m-1-4( m 2 -1)=5 - 4m > 0, . ⋯⋯⋯⋯⋯⋯⋯ 1 分又抛物 与 x 交于两个不一样的整数点,∴ 5- 4m 平方数,k 2 =5 - 4m , 足要求的 m1,- 1,- 5,- 11,- 19⋯⋯ ∴ 足 意的 m 整数 的代数式 -n 2 +n+1 (n 正整数 ). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分( 2)∵抛物 点在第三象限,∴只有 m=1 切合 意,抛物 的分析式y=x 2 +x . ⋯⋯⋯⋯⋯⋯⋯4 分( 3)∵点 Mx 1,y 1 与 N x 1 k,y 2 在抛物 y=x 2 +x 上,∴ y 1 =x 12 +x 1 , y 2 =(x 1 +k)2 +x 1 +k ∵ y 1y 2 ,∴ x 12 2+x 1 = x 1 +k +x 1 +k.整理,得 k 2 x 1 +k +1 =0∵点 M 、 N 不重合,∴ k ≠ 0.∴ 2x 1 =- k - 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2∴ x 1216+6 x 1 +5-k =k +116-3(k+1)+5-k =6. ⋯⋯⋯ 7 分4k +1k +16 .在平面直角坐 系xOy中,抛物 21的 点 M ,直y 2x ,点 P n ,04x 上的一个 点, 点P 作 x 的垂 分 交抛物 y 1 2x21和直 y 2x 于点4A ,点 B.⑴直接写出 A , B 两点的坐 (用含n 的代数式表示);⑵ 段 AB 的 d ,求 d 对于 n 的函数关系式及 d 的最小 ,并直接写出此 段OB 与 段 PM 的地点关系和数目关系;(3) 已知二次函数 y ax 2bxc ( a , b , c 整数且 a0 ), 全部 数x 恒有x ≤y ≤2x21,求 a , b , c 的 .425.解: (1) A(n ,2n 21) , B( n ,n) .﹍﹍﹍﹍﹍﹍﹍﹍﹍2 分4(2) d =AB= y Ay B = 2n 2n 1 .y41∴ d = 2(n1 )2 1 = 2( n 1 )2 1.﹍﹍3 分4 8 4 8 A∴ 当 n 1, d 获得最小1.﹍﹍ 4分M B481 O P1x当 d 取最小 , 段 OB 与 段 PM 的地点10关系和数目关系是 OB ⊥PM 且 OB=PM. (如 10)﹍﹍﹍﹍﹍ 5 分(3) ∵ 全部 数 x 恒有x ≤ y ≤ 2x 2 1 ,4∴ 全部 数 x , x ≤ ax2bxc ≤ 2x 21都建立 . ( a0 )①4 当 x0 ,①式化0≤ c ≤1.4∴整 数 c的0.﹍﹍﹍﹍﹍6分此 , 全部 数 x , x ≤ ax2bx ≤ 2x21都建立 .( a0 )4x ax 2bx,②即bx 2 x21 . ③对一确实数x 均建立 .ax24由②得 ax 2b 1 x ≥ 0( a 0 ) 对一确实数 x 均建立 . a 0,④ ∴b20.⑤11由⑤得整数 b 的值为 1.﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7 分此时由③式得, ax2x ≤ 2x21对一确实数 x 均建立 . ( a 0 )4即 (2 a)x2x1≥ 0 对一确实数 x 均建立 . ( a0 )4当 a=2 时,此不等式化为x1≥ 0,不知足对一确实数x 均建立 .4当 a ≠2时,∵ (2 a) x2x1≥ 0 对一确实数 x 均建立, ( a0 )42 a 0,⑥ ∴( 1)24 (2 a)1 ⑦20.4∴ 由④,⑥,⑦得 0 < a ≤1.∴ 整数 a 的值为 1.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8 分∴ 整数 a , b , c 的值分别为 a 1 , b 1, c0 .利用数形联合研究交点、方程的根1.(东城 23.) 已知对于 x 的方程 (1m) x 2 (4 m) x3 0 .(1) 若方程有两个不相等的实数根,求m 的取值范围;( 2)若正整数 m 知足 8 2m 2,设二次函数 y (1 m) x 2(4 m) x 3 的图象与 x 轴交于 A 、B 两点,将此图象在 x 轴下方的部分沿x 轴翻折, 图象的其他部分保持不变, 获得一个新的图象.请你联合这个新的图象回答:当直线 y kx3 与此图象恰巧有三个公共点时,求出 k 的值(只要要求出两个知足题意的k 值即可).23.解:( 1)(4 m) 212(1m)(m 2分2 ).⋯⋯2由意得, (m2)2>0且1 m 0.∴符合意的m的取范是m2且 m 1的全部数.⋯⋯ 3分(2)∵ 正整数m足8 2m 2,∴ m 可取的 1 和 2 .又∵ 二次函数 y (1 m) x2(4 m) x 3 ,∴m =2.⋯⋯4分∴二次函数y - x22x 3.∴ A 点、 B 点的坐分( -1,0)、( 3,0).依意翻折后的象如所示.由象可知切合意的直y kx 3 点A、B.可求出此k 的分 3 或 -1.⋯⋯ 7 分注:若学生利用直与抛物相切求出k=2 也是切合意的答案.2.(海淀23)已知抛物y (m1)x2(m2) x 1 与x交于A、 B 两点.(1)求 m 的取范;(2)若 m>1, 且点 A 在点 B 的左, OA : OB=1 : 3, 确立抛物的分析式;(3)( 2)中抛物与y 的交点C,点 C 作直 l //x ,将抛物在y 左的部分沿直l 翻折 , 抛物的其他部分保持不,获得一个新象. 你合新象回答: 1b 与新象只有一个公共点P( x0, y0)且 y07 ,求 b 的取范 .当直yx3y87654321-4 -3 -2 -1 O 1 2 3 4 5 6 7 8 x23. 解:( 1)∵ 抛物y(m1)x 2( m2) x1 与x交于A、B两点,ì①?m - 1 ? 0,?⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∴ í2②??D = ( m - 2) + 4( m- 1) > 0.由①得 m 11 ,由②得 m 10 ,∴ m 的取范是m 10且 m 1 1 .⋯⋯⋯⋯ 2 分( 2)∵ 点 A、 B 是抛物y(m1)x2(m2) x 1 与x的交点,∴令 y 0 ,即 (m 1)x2( m 2) x 1 0 .解得x1 1 , x21.m 1∵ m1,∴10 1. m 1∵点 A在点 B左,∴点 A的坐(1,0) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分1,0) ,点B的坐 (m1∴ OA= 1,OB=1.m 1∵OA : OB=1 : 3,∴1 3 .m1∴m= 4 .3∴ 抛物的分析式y1x22x 1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分33( 3)∵ 点 C 是抛物y 1 x2 2 x 1 与y的交点,3 3∴点 C 的坐(0,- 1).依意翻折后的象如所示.令 y 7 ,即1x22x 1 7 .33解得 x1 6 , x24.∴新象点 D(6,7) .当直y1 D 点,可得 b 5 .x b3当直 y1x b C 点,可得 b1y.837D1 x 1 x2 2 x6当直y b(b1)与函数 y1(x0)533343的象有一个公共点P(x0, y0),得21121B2Axb 1 .-4 -3 -2 -1O 1 234567x0x0x0-1C l 333-2整理得 x023x03b30.-3-4 -5由D=(-3)2- 4(- 3b - 3) = 12b+ 21 = 07-6,得 b-7.4-8合象可知,切合意的 b 的取范1b 5或b < -7.⋯⋯⋯⋯⋯7 分4通州 22.已知对于x的方程mx2(3m 1)x2m 20( 1)求:无m取任何数,方程恒有数根.( 2)若对于x的二次函数y mx2(3m 1)x2m 2 的象坐原点(0,0),求抛物的分析式 .( 3)在直角坐系xoy 中,画出(2)中的函数象,合象回答:当直 y x b 与( 2)中的函数象只有两个交点,求 b 的取范.22. .解:( 1)分两种状况 .①当 m0 ,方程x20x 2 ,方程有数根,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(1 分)②当 m0 ,一元二次方程的根的判式3m 129m26m 18m28m m22m 1 4m 2m 2= m2≥ 0 不m何数,≥ 01建立,方程恒有数根⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(2 分)合①、②可知m 取任何数,方程 mx23m 1 x2m20 恒有数根⋯⋯⋯⋯⋯⋯⋯.(3 分)(2)二次函数y mx2(3m1)x2m 2的象与( 0,0)2m20m1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(4 分)二次函数分析式:y x22x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.(5 分)(3)在( 2)条件下,直y x b 与二次函数象只有两个交点,合象可知y x22x1当 y1y ,y x b得 x2 3x b 0由9 4b 0得 b 9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .(6 分) 49上所述可知:当b,4直 y x b 与(2)中的象有两个交点. ⋯⋯⋯⋯ .(7 分 )23. (延)已知 :对于 x 的一元二次方程mx2 - 2m 2 x m - 1 0()(1)若此方程有根 ,求 m 的取范 ;(2)在 (1)的条件下 ,且 m 取最小的整数 ,求此方程的两个根 ;(3) 在 (2)的前提下 ,二次函数y mx2(-2m2)x m - 1 与x有两个交点,接两点的段 ,并以条段直径在x 的上方作半P,直l的分析式y=x+b,若直l 与半 P 只有两个交点 ,求出 b 的取范 .23. ( 1)解:∵对于 x 的一元二次方程有根∴ m≠ 0,且△≥ 0⋯..1 分∴△ =( 2m+2)2-4m( m-1)=12m+4≥ 0解得 m≥-132D1∴当 m≥-,且 m≠ 0 此方程有根 ,⋯⋯ ..2 分C3E( 2)解:∵在 (1)的条件下 ,当 m 取最小的整数 ,AO P5∴ m=1⋯⋯⋯⋯ ..3 分∴原方程化: x2-4x=0x( x-4 ) =0x1=0,x2=4 ⋯⋯⋯⋯ .. ⋯⋯⋯⋯ ..4 分2( 3)解:如所示:①当直l 原点O与半P有两个交点,即b=0 ⋯⋯⋯ 5 分②当直 l 与半P相切于D点有一个交点,如由意可得Rt △ EDP、Rt △ ECO是等腰直角三角形,4∵DP=2∴EP= 2 2 ⋯⋯⋯⋯.6分∴OC= 2 2-2即 b= 2 2 - 2∴当 0≤ b<2 2 - 2 ,直l与半P只有两个交点。
北京市西城区2012届高三数学第二次模拟试题 文 (2012西城二模)北师大版
北京市西城区2012年高三二模试卷数 学(文科)第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知复数z 满足(1i)1z -⋅=,则z =( ) (A )1i22+ (B )1i 22- (C )1i 22-+ (D )1i 22--2.给定函数:①3y x =;②21y x =-;③sin y x =;④2log y x =,其中奇函数是( )(A )① ② (B )③ ④ (C )① ③ (D )② ④3.执行如图所示的程序框图,若输入如下四个函数: ①2x y =; ②2xy =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) (A )① (B )② (C )③ (D )④4.设m ,n 是不同的直线,α,β是不同的平面,且,m n α⊂. 则“α∥β”是“m ∥β且n ∥β”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件5.已知双曲线221x ky -=的一个焦点是(5,0),则其渐近线的方程为( )(A )14y x =±(B )4y x =± (C )12y x =±(D )2y x =±6.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x <,12s s < (C )12x x >,12s s < (D )12x x <,12s s >7.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S .则S 最小时,电梯所停的楼层是( ) (A )7层 (B )8层(C )9层(D )10层8.已知集合1220{,,,}A a a a =,其中0(1,2,,20)k a k >=,集合{(,)|,B a b a A =∈,}b A a b A ∈-∈,则集合B 中的元素至多有( )(A )210个 (B )200个(C )190个(D )180个第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在△ABC 中,3BC =,2AC =,π3A =,则B =_____.10.设变量x ,y 满足11,11,x y x y -≤+≤⎧⎨-≤-≤⎩ 则2x y +的最小值是_____.11.已知向量(,1)x =-a ,(3,)y =b ,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,3}, 那么⊥a b 的概率是_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)f x x -<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体 的体积是_____;若该几何体的所有顶点在同一球面 上,则球的表面积是_____.14.已知曲线C 的方程是22||||()()8x y x y x y-+-=,给出下列三个结论: ① 曲线C 与两坐标轴有公共点;② 曲线C 既是中心对称图形,又是轴对称图形; ③ 若点P ,Q 在曲线C 上,则||PQ 的最大值是62. 其中,所有正确结论的序号是_____.ADCBE三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在等差数列{}n a 中,2723a a +=-,3829a a +=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n n a b +是首项为1,公比为c 的等比数列,求{}n b 的前n 项和n S .16.(本小题满分13分)已知函数()sin()3cos()f x x x ωϕωϕ=+++的部分图象如图所示,其中0ω>,ππ(,)22ϕ∈-.(Ⅰ)求ω与ϕ的值; (Ⅱ)若554)4(=αf ,求αααα2sin sin 22sin sin 2+-的值.17.(本小题满分13分)如图,四棱锥ABCD E -中,EA EB =,AB ∥CD ,BC AB ⊥,CD AB 2=. (Ⅰ)求证:ED AB ⊥;(Ⅱ)线段EA 上是否存在点F ,使DF // 平面BCE ?若存在,求出EFEA;若不存在,说明理由.18.(本小题满分13分)已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为36,且经过点31(,)22.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(0,2)P 的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最 大值.20.(本小题满分14分)若正整数*12(,1,2,,)n k N a a a a k n =+++∈=N ,则称12n a a a ⨯⨯⨯为N 的一个“分解积”.(Ⅰ)当N 分别等于6,7,8时,写出N 的一个分解积,使其值最大;(Ⅱ)当正整数(2)N N ≥的分解积最大时,证明:*()N k a k ∈中2的个数不超过2;(Ⅲ)对任意给定的正整数(2)N N ≥,求出(1,2,,)k a k n =,使得N 的分解积最大.北京市西城区2012年高三二模试卷数学(文科)参考答案及评分标准2012.5一、选择题:本大题共8小题,每小题5分,共40分.1.A ; 2.C ; 3.D ; 4.A ; 5.D ; 6.B ; 7.C ; 8.C .二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.2-; 11.16; 12.0,{|12}x x <<; 13.13,3π; 14.② ③.注:12、13题第一问2分,第二问3分;14题少选、错选均不给分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)(Ⅰ)解:设等差数列{}n a 的公差是d .依题意 3827()26a a a a d +-+==-,从而3d =-. ………………2分 所以 2712723a a a d +=+=-,解得 11a =-. ………………4分所以数列{}n a 的通项公式为 23+-=n a n . ………………6分 (Ⅱ)解:由数列{}n n a b +是首项为1,公比为c 的等比数列,得 1-=+n n n c b a ,即123-=++-n n c b n ,所以 123-+-=n n c n b . ………………8分所以 21[147(32)](1)n n S n c c c -=++++-+++++21(31)(1)2n n n c c c --=+++++.………………10分 从而当1=c 时,2(31)322n n n n nS n -+=+=; ………………11分 当1≠c 时,(31)121n n n n c S c--=+-. ………………13分16.(本小题满分13分)(Ⅰ)解:π()2sin()3f x x ωϕ=++. ………………2分设()f x 的最小正周期为T .由图可得πππ()2442T =--=,所以 πT =,2=ω. ………………4分 由 2)0(=f ,得 πsin()13ϕ+=,因为 ππ(,)22ϕ∈-,所以 π6ϕ=. ………………6分(Ⅱ)解:π()2sin(2)2cos 22f x x x =+=. (8)分由 5542cos2)4(==ααf ,得 5522cos =α, ………………9分 所以 5312cos2cos 2=-=αα. ………………11分所以 2sin sin 22sin (1cos )1cos 12sin sin 22sin (1cos )1cos 4αααααααααα---===+++. (13)分17.(本小题满分13分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为 EA EB =,所以 AB EO ⊥. ……………2分因为 AB ∥CD ,CD AB 2=, 所以 BO ∥CD ,CD BO =.又因为 BC AB ⊥,所以四边形OBCD 为矩形,所以 DO AB ⊥. ………………4分 因为 O DO EO = ,所以 ⊥AB 平面EOD . ………………5分所以 ED AB ⊥. ………………6分 (Ⅱ)解:点F 满足12EF EA =,即F 为EA 中点时,有DF // 平面BCE .……………7分证明如下:取EB 中点G ,连接CG ,FG . ………………8分 因为F 为EA 中点,所以FG ∥AB ,AB FG 21=. 因为AB ∥CD ,AB CD 21=,所以FG ∥CD ,CD FG =.所以四边形CDFG 是平行四边形,所以 DF ∥CG . ………………11分 因为 ⊄DF 平面BCE ,⊂CG 平面BCE , ………………12分 所以 DF // 平面BCE . ………………13分 18.(本小题满分13分) (Ⅰ)解:当1a =时,22()1xf x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分 由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………4分 (Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. (6)分① 当0a =时,22()1xf x x '=+. 所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………7分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x a =,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-.………10分 ③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a -∞;单调减区间是1(,)a a--,(,)a -+∞.………………13分 综上,0a >时,()f x 在(,)a -∞-,1(,)a +∞单调递减;在1(,)a a-单调递增.0a =时,()f x 在(0,)+∞单调递增,在(,0)-∞单调递减;0a <时,()f x 在1(,)a-∞,(,)a -+∞单调递增;在1(,)a a-单调递减.19.(本小题满分14分)(Ⅰ)解: 由 222222213a b b e a a -==-=, 得 13b a =. ① ………………2分 由椭圆C 经过点31(,)22,得2291144a b+=. ② ………………3分 联立① ②,解得 1b =,3a =. …………4分所以椭圆C 的方程是 2213x y +=. …………5分 (Ⅱ)解:易知直线AB 的斜率存在,设其方程为2+=kx y .将直线AB 的方程与椭圆C 的方程联立,消去y 得 0912)31(22=+++kx x k . ………………7分令2214436(13)0k k ∆=-+>,得21k >.设11(,)A x y ,22(,)B x y ,则1221213k x x k +=-+,122913x x k =+. ……………9分 所以 1212122AOB POB POA S S S x x x x ∆∆∆=-=⨯⨯-=-. ………………10分 因为 22221212122222123636(1)()()4()1313(13)k k x x x x x x k k k --=+-=--=+++,设 21(0)k t t -=>, 则 21223636363()16(34)4169242924t x x t t t t t-==≤=+++⨯+. (13)分当且仅当169t t =,即43t =时等号成立,此时△AOB 面积取得最大值23. (14)分20.(本小题满分14分)(Ⅰ)解:633=+,分解积的最大值为339⨯=; ………………1分732234=++=+,分解积的最大值为3223412⨯⨯=⨯=; ………………2分 8332=++,分解积的最大值为33218⨯⨯=. ………………3分(Ⅱ)证明:由(Ⅰ)可知,(1,2,,)k a k n =中可以有2个2. (4)分当(1,2,,)k a k n =有3个或3个以上的2时,因为22233++=+,且22233⨯⨯<⨯, 所以,此时分解积不是最大的.因此,*()N k a k ∈中至多有2个2. ………………7分(Ⅲ)解:① 当(1,2,,)k a k n =中有1时,因为1(1)i i a a +=+,且11i i a a ⨯<+,所以,此时分解积不是最大,可以将1加到其他加数中,使得分解积变大. ………………8分 ② 由(Ⅱ)可知,(1,2,,)k a k n =中至多有2个2.③ 当(1,2,,)k a k n =中有4时,若将4分解为13+,由 ① 可知分解积不会最大; 若将4分解为22+,则分解积相同;若有两个4,因为44332+=++,且44332⨯<⨯⨯,所以将44+改写为332++,使得分解积更大. 因此,(1,2,,)k a k n =中至多有1个4,而且可以写成22+. ………………10分 ④ 当(1,2,,)k a k n =中有大于4的数时,不妨设4i a >,因为2(2)i i a a <-,所以将i a 分解为2(2)i a +-会使得分解积更大. ………………11分 综上所述,(1,2,,)k a k n =中只能出现2或3或4,且2不能超过2个,4不能超用心 爱心 专心 11 过1个.于是,当*3()N m m =∈N 时,333m N =+++个使得分解积最大; …………12分当*31()N m m =+∈N 时,(1)(1)333223334m m N --=+++++=++++个个使得分解积最大; ………………13分 当32()N m m =+∈N 时,3332m N =++++个使得分解积最大.………………14分。
2012北京西城北区初三毕业试题及答案
北京市西城区(北区)2012年初中毕业考试数 学 试 卷 2012.4考生须知1.本试卷共6页,四道大题,22道小题,满分100分。
考试时间60分钟。
2.在密封线内认真填写学校名称、班级、姓名。
3.试题答案一律书写在指定区域内,否则成绩无效。
一、选择题(本题共38分,第1~8题每小题4分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的,请将答案填写在指定的表格中. 1. -3的绝对值是A.3B. -3C.13 D.13-2.8的平方根是 A. 2B.2±C.22 D .22±3.下列运算正确的是A.32545m m m += B. m3·m4=m12C. m8÷m4=m2D. 236()m m =4.在下列图案中,既是轴对称图形又是中心对称图形的是A B C D 5.等腰△ABC 中,AB=AC ,若∠A=70°,则∠B 的度数是 A .40° B .55° C .65° D .60°6.函数13y x =-中,自变量x 的取值范围是A .3x ≠B .3x ≠-C .3x >D .3x >-7.如图,△ABC 中,DE ∥AB ,DE 与AC ,BC 的交点分别为D ,E ,若25CD AC =,则DEAB 等于A .23B .25C .32D . 358.如图,若直线y kx b =+经过(1,2)A -和(0,4)B -两点,直线y mx =经过A 点,则关于x 的不等式kx b mx +>的解集是A. 1x >B. 1x <C. 01x <<D. 12x <<9.如图, AB 和AC 分别是⊙O 的直径和弦,OD ⊥AC 于D 点,若OA=4,∠A=30°,则BD 等于 A .4 B .7 C .27 D .4310.若反比例函数k y x =的图象经过点A 1(,2)2-,则一次函数y kx k =-+与ky x =在同一坐标系中的大致图象是A B C D二、填空题(本题共16分,每小题4分) 请将答案填写在第1页指定的表格中.11.若正n 边形的每一个外角等于45°,则n 等于 .(n 为整数,n ≥3)12.计算:2(2)(1)(5)x x x -++-= . 13.如图,平面直角坐标系xOy 中,正方形ABCD 的顶点B ,D 的坐标分别为(0,1)B -,(0,3)D ,A 点在第二象限.则A 点 的坐标为 ,以B 点为顶点,经过A ,C 两点的抛物线的解析式为 .14.如图,平面直角坐标系xOy 中,M 点的坐标为(3,0), ⊙M 的半径为2,过M 点的直线与⊙M 的交点分别为A , B ,则△AOB 的面积的最大值为 ,此时A ,B 两点 所在直线与x 轴的夹角等于 °.三、解答题(本题共34分,第17、20题每小题5分,其余每小题6分)15.计算:2132()272tan 602--++-︒.16.用公式法解一元二次方程 2420x x -+=.17.化简22319()3693m m m m m m m m ----÷++++ ,并求2m =-时代数式的值.18.已知:如图,BE ∥CF ,BE 上的一点A 满足AE= CF ,AD ∥BC ,E ,D , F 三点在一条直线上,EF 与BC 交于G 点. (1)求证:△ADE ≌△CGF ;(2)连结AG ,写出AG 与DC 的位置关系和数量关系.19.某单位有部分职工参与了一项“你最喜欢的球类运动”的调查,每人必须从所给出的球类运动中选出一项,将调查结果绘制成了以下统计图(图中信息不完整),又知道喜欢网球和排球的人数之和等于喜欢其它三项球类的所有人数之和,而且喜欢网球的人数比喜欢排球人数的2倍少5人,根据以上信息解答下列问题: (1)直接写出喜欢排球和喜欢网球的各有多少人; (2)补全统计图;(3)在调查时,有小明、小王、小李和小陈共四人选择了喜欢羽毛球,现要从这四人中随机选出两人去参加一项羽毛球比赛,用列举法或画树形图求小明被选中的概率. 解:(1)喜欢排球的有 人 ; (2) 喜欢网球的有 人. (3)20.如图1,扇形AOB 中,∠AOB=120°,C 为半径OA 上一点,CD ∥OB ,交AB 于D 点.(1)当CD =6,AC=1时,直接写出半径OB 的长,以及CD 与OB 的大小关系; (2)在图1中画出以OA ,OB 为邻边的菱形AOBE ,并说明E 点的位置;(不要求写菱形AOBE 的画法)(3)若将图1中扇形的圆心角∠AOB 改为105°(如图2),C 仍为半径OA 上一点(C 点不与O ,A 两点重合),CD ∥OB ,交AB 于D 点,在图2中画图说明满足 CD ≤OB 时D 点运动的范围.解:(1)OB= ,CD OB . (3)答: (2)所画菱形AOBE 见图1, E 点的位置是 . .四、解答题(本题共12分,第21题7分,第22题5分)21.已知:k ,m 为实数,且k <1-,关于x 的方程22(2)()0x k m x k km ++++=有两个相等的实数根. 抛物线22(64)22y x m x k =-+++与直线y kx =的交点分别为A 点,B 点,与y 轴的交点为C ,顶点为D.(1)求m 的值; (2)求D 点的坐标;(3)若2ABD ABC S S ∆∆=,求k 的值.22.已知:如图,在Rt △ABC 中,∠C=90°,∠A≠∠B .(1)画出△ABC 关于直线AC 对称的△AGC : (不要求写画法) (2)在AG 边上找一点D ,使得BD 的中点E 满足CE=AD .请利用直尺和圆规作出图 形,并写出你的简要作图步骤;(只能利用直尺画直线不能测量线段长度) (3)在(1)、(2)和未添加辅助线及其他字母的条件下,直接写出图中与∠ABC 相等的角,要求该角以C 点为顶点.解:(2)画图简要步骤如下:(3)在(1)、(2)和未添加辅助线及其他字母的条件下,图中以C点为顶点,且与∠ABC 相等的角的是.北京市西城区(北区)2012年初三毕业试卷参考答案及评分标准数学2012.4一、选择题(本题共38分,第1~8题每小题4分,第9、10题每小题3分)题号 1 2 3 4 5 6 7 8 9 10答案 A D D C B A B A C D二、填空题(本题共16分,每小题4分)题号11 12 13 14答 案82281x x --(2,1)-6 2112y x =-90阅卷说明:第12题答案正确但未化简只得2分;13题、14题每空各2分。
北京市西城区2012届高三第二次模拟 理科数学试题(2012西城二模)
北京市西城区2012年高三二模试卷数 学(理科) 2012.5第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =,则c 的取值范围是( ) (A )(0,1] (B )[1,)+∞(C )(0,2](D )[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数: ①()e x f x =; ②()e x f x =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) (A )① (B )② (C )③ (D )④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( )(A )35 (B )45(C )925(D )16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件5.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是( ) (A )13(B )12(C )23(D )347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ) (A )42 (B )41 (C )40 (D )398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R ,使1122n k n k n k k n a a a a λλλ++-+-=+++成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论: ① 若{}n a 是等比数列,则{}n a 为1阶递归数列; ② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列. 其中,正确结论的个数是( ) (A )0 (B )1 (C )2 (D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在△ABC 中,3BC =,2AC =,π3A =,则B = _____.10.已知复数z 满足(1i)1z -⋅=,则z =_____.11.如图,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若PA PE =,60ABC ︒∠=,1PD =,9PB =,则PA =_____; EC =_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)||f x x -<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体 的体积是_____;若该几何体的所有顶点在同一球面 上,则球的表面积是_____.14.曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,给出下列三个结论:① 曲线C 关于y 轴对称;② 若点(,)P x y 在曲线C 上,则||2y ≤; ③ 若点P 在曲线C 上,则1||4PF ≤≤. 其中,所有正确结论的序号是____________.EADCB三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数22π()cos ()sin 6f x x x =--. (Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围.16.(本小题满分14分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB DE ⊥;(Ⅱ)求直线EC 与平面ABE 所成角的正弦值;(Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出EFEA;若不存在,说明理由.17.(本小题满分13分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.18.(本小题满分13分)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (Ⅰ)若2AF FB =,求直线AB 的斜率;(Ⅱ)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.19.(本小题满分14分)已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上存在最大值和最小值,求a 的取值范围.20.(本小题满分13分) 若12(0n n i A a a a a ==或1,1,2,,)i n =,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a -记为1()n R A ;将排列112n n n a a a a --记为2()n R A ;依此类推,直至()n n n R A A =.对于排列n A 和()i n R A (1,2,,1)i n =-,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())i n n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)i n n t A R A i n =-=-,则称n A 为最佳排列.(Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.北京市西城区2012年高三二模试卷数学(理科)参考答案及评分标准2012.5一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C ; 7.C ; 8.D .二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.1i22+; 11.3,4; 12.0,{|12}x x << 13.13,3π; 14.① ② ③.注:11、12、13第一问2分,第二问3分;14题少填不给分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分) (Ⅰ)解:22ππππ3()cos ()sin cos 12121262f =--==. ………………5分 (Ⅱ)解: 1π1()[1cos(2)](1cos 2)232f x x x =+--- ………………7分 1π133[cos(2)cos 2](sin 2cos 2)23222x x x x =-+=+ ………………8分 3πsin(2)23x =+. ………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分 所以当 ππ232x +=,即 π12x =时,()f x 取得最大值32. ………………11分 所以 π[0,]2x ∀∈,()f x c ≤ 等价于32c ≤. 故当 π[0,]2x ∀∈,()f x c ≤时,c 的取值范围是3[,)2+∞. ………………13分16.(本小题满分14分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为EA EB =,所以AB EO ⊥. ………………1分 因为四边形ABCD 为直角梯形,BC CD AB 22==,BC AB ⊥, 所以四边形OBCD 为正方形,所以OD AB ⊥. ……………2分 所以⊥AB 平面EOD . ………………3分 所以 ED AB ⊥. ………………4分 (Ⅱ)解:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥,所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. …………5分 因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,所以(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 )1,1,1(-=EC ,平面ABE 的一个法向量为(0,1,0)OD =. ………………7分 设直线EC 与平面ABE 所成的角为θ, 所以 ||3sin |cos ,|3||||EC OD EC OD EC OD θ⋅=〈〉==, 即直线EC 与平面ABE 所成角的正弦值为33. ………………9分 (Ⅲ)解:存在点F ,且13EF EA =时,有EC // 平面FBD . ………………10分 证明如下:由 )31,0,31(31--==EA EF ,)32,0,31(-F ,所以)32,0,34(-=FB .设平面FBD 的法向量为v ),,(c b a =,则有0,0.BD FB ⎧⋅=⎪⎨⋅=⎪⎩v v所以 0,420.33a b a z -+=⎧⎪⎨-=⎪⎩ 取1=a ,得)2,1,1(=v . ………………12分 因为 ⋅EC v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足13EF EA =时,有EC // 平面FBD . ………………14分17.(本小题满分13分)(Ⅰ)解:设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.………………1分35310C 1(15)C 12P X =-==; 2155310C C 5(0)C 12P X ===; 1255310C C 5(15)C 12P X ===; 35310C 1(30)C 12P X ===. ………………5分乙得分的分布列如下:X 15-0 15 30 P121 125 125 121 ………………6分155115(15)01530121212122EX =⨯-+⨯+⨯+⨯=. ………………7分 (Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则 223332381()C ()()()555125P A =+=, ………………10分 511()12122P B =+=. ………………11分 故甲乙两人至少有一人入选的概率4411031()11252125P P A B =-⋅=-⨯=. ……13分18.(本小题满分13分)(Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. ………………1分将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. …………3分 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① ………………4分 因为 2AF FB =,所以 122y y =-. ② ………………5分联立①和②,消去12,y y ,得24m =±. ………6分所以直线AB 的斜率是22±. ………………7分ABCO MxyF(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. ……………… 9分 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅- ………………10分221212()441y y y y m =+-=+, ………………12分所以 0m =时,四边形OACB 的面积最小,最小值是4. ………………13分19.(本小题满分14分) (Ⅰ)解:当1a =时,22()1xf x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分 由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………3分 (Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………4分① 当0a =时,22()1xf x x '=+.所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………5分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x a=,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-. ………7分 ③ 当0a <时,()f x 与()f x '的情况如下:x1(,)x -∞ 1x 12(,)x x 2x 2(,)x +∞ ()f x '-+-()f x↘1()f x ↗2()f x ↘x2(,)x -∞2x 21(,)x x 1x 1(,)x +∞()f x '+ 0-+所以()f x 的单调增区间是1(,)a -∞,(,)a -+∞;单调减区间是1(,)a a-………………9分(Ⅲ)解:由(Ⅱ)得, 0a =时不合题意. ………………10分当0a >时,由(Ⅱ)得,)(x f 在1(0,)a 单调递增,在1(,)a+∞单调递减,所以)(x f 在(0,)+∞上存在最大值21()0f a a=>.设0x 为)(x f 的零点,易知2012a x a-=,且01x a <.从而0x x >时,()0f x >;0x x <时,()0f x <.若)(x f 在[0,)+∞上存在最小值,必有(0)0f ≤,解得11a -≤≤.所以0a >时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(0,1]. ………………12分 当0a <时,由(Ⅱ)得,)(x f 在(0,)a -单调递减,在(,)a -+∞单调递增,所以)(x f 在(0,)+∞上存在最小值()1f a -=-.若)(x f 在[0,)+∞上存在最大值,必有(0)0f ≥,解得1a ≥,或1a ≤-. 所以0a <时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(,1]-∞-. 综上,a 的取值范围是(,1](0,1]-∞-. ………………14分20.(本小题满分13分)(Ⅰ)解:最佳排列3A 为110,101,100,011,010,001. ………………3分 (Ⅱ)证明:设512345A a a a a a =,则1551234()R A a a a a a =,因为 155(,())1t A R A =-,所以15||a a -,21||a a -,32||a a -,43||a a -,54||a a -之中有2个0,3个1.()f x↗2()f x↘1()f x↗按512345a a a a a a →→→→→的顺序研究数码变化,由上述分析可知有2次数码不发生改变,有3次数码发生了改变.但是5a 经过奇数次数码改变不能回到自身,所以不存在5A ,使得155(,())1t A R A =-,从而不存在最佳排列5A . ………………7分 (Ⅲ)解:由211221(0k k i A a a a a ++==或1,1,2,,21)i k =+,得 12121122()k k k R A a a a a ++=, 2212211221()k k k k R A a a a a a ++-=, (212134)2112()k k k R A a a a a a -++=, 22123211()k k k R A a a a a ++=. 因为 2121(,())1(1,2,,2)i k k t A R A i k ++=-=,所以 21k A +与每个21()i k R A +有k 个对应位置数码相同,有1k +个对应位置数码不 同,因此有12121221212||||||||1k k k k k a a a a a a a a k +-+-+-++-+-=+, 122212222121||||||||1k k k k k k a a a a a a a a k +-+--+-++-+-=+,……,132421212||||||||1k k a a a a a a a a k +-+-++-+-=+, 1223221211||||||||1k k k a a a a a a a a k ++-+-++-+-=+.以上各式求和得, (1)2S k k =+⨯. ………………10分另一方面,S 还可以这样求和:设12221,,...,,k k a a a a +中有x 个0,y 个1,则2S x y =. ………………11分 所以21,22(1).x y k xy k k +=+⎧⎨=+⎩ 解得,1,x k y k =⎧⎨=+⎩或1,.x k y k =+⎧⎨=⎩所以排列21k A +中1的个数是k 或1k +. ………………13分。
2012西城区中考数学二模
2012西城区中考数学二模一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)﹣8的倒数是()A.8 B.﹣8 C.D.2.(4分)在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为()A.8×103B.80×104C.8×105D.0.8×1063.(4分)若⊙O1与⊙O2内切,它们的半径分别为3和8,则以下关于这两圆的圆心距O1O2的结论正确的是()A.O1O2=5 B.O1O2=11 C.O1O2>11 D.5<O1O2<114.(4分)如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E,若,AE=6,则EC的长为()A.8 B.10 C.12 D.165.(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是S甲2=0.61,S乙2=0.52,S丙2=0.53,S丁2=0.42,则射击成绩波动最小的是()A.甲B.乙C.丙D.丁6.(4分)如图,AB为⊙O的弦,半径OC⊥AB于点D,若OB长为10,cos∠BOD=,则AB的长是()A.20 B.16 C.12 D.87.(4分)若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4 B.6 C.8 D.108.(4分)如图,在矩形ABCD中,AB=,BC=1.现将矩形ABCD绕点C顺时针旋转90°得到矩形A′B′CD′,则AD 边扫过的面积(阴影部分)为()A.πB.πC.πD.π二、填空题(本题共16分,每小题4分)9.(4分)将代数式x2﹣6x+10化为(x﹣m)2+n的形式(其中m,n为常数),结果为.10.(4分)如图,菱形ABCD周长为8cm.∠BAD=60°,则AC=cm.11.(4分)如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.12.(4分)如图,在平面直角坐标系xOy中,点A1,A2,A3,…都在y轴上,对应的纵坐标分别为1,2,3,….直线l1,l2,l3,…分别经过点A1,A2,A3,…,且都平行于x轴.以点O为圆心,半径为2的圆与直线l1在第一象限交于点B1,以点O为圆心,半径为3的圆与直线l2在第一象限交于点B2,…,依此规律得到一系列点B n(n为正整数),则点B1的坐标为,点B n的坐标为.三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)已知a2+2a﹣4=0,求代数式a(a﹣2)2﹣a2(a﹣6)﹣3的值.15.(5分)如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.16.(5分)已知关于x的一元二次方程(m+1)x2+2mx+m﹣3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最小奇数时,求方程的根.17.(5分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=2AD=4,求BD的长.18.(5分)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在我区某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了人;(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是;(4)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式大约有人.四、解答题(本题共20分,每小题5分)19.(5分)如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏东60°方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M小区位于北偏东30°方向,测绘员从A处出发,沿主输气管道步行2000米到达C 处,此时测得M小区位于北偏西60°方向.现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短.(1)问:MN与AC满足什么位置关系时,从N到M小区铺设的管道最短?(2)求∠AMC的度数和AN的长.20.(5分)如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.21.(5分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)说明:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.22.(5分)阅读下列材料小华在学习中发现如下结论:如图1,点A,A1,A2在直线l上,当直线l∥BC时,.请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC,画出一个等腰△DBC,使其面积与△ABC面积相等;(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:所画的两个三角形不全等);(3)如图4,已知等腰△ABC中,AB=AC,画出一个四边形ABDE,使其面积与△ABC面积相等,且一组对边DE=AB,另一组对边BD≠AE,对角∠E=∠B.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)在平面直角坐标系xOy中,A为第一象限内的双曲线(k1>0)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与x轴交于点B,与双曲线(k2<0)交于点C.x轴上一点D (m,0)位于直线AC右侧,AD的中点为E.(1)当m=4时,求△ACD的面积(用含k1,k2的代数式表示);(2)若点E恰好在双曲线(k1>0)上,求m的值;(3)设线段EB的延长线与y轴的负半轴交于点F,当点D的坐标为D(2,0)时,若△BDF的面积为1,且CF∥AD,求k1的值,并直接写出线段CF的长.24.(7分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC﹣CB﹣BA运动,点P在AC,CB,BA边上运动,速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB 方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t=5秒时,点P走过的路径长为;当t=秒时,点P与点E重合;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC﹣CB﹣BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.25.(8分)在平面直角坐标系xOy中,抛物线y1=2x2+的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+和直线y2=x于点A,点B.(1)直接写出A,B两点的坐标(用含n的代数式表示);(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+,求a,b,c的值.参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】﹣8的倒数是﹣.故选D.2.【解答】800 000=8×105.故选C.3.【解答】根据两圆内切,圆心距等于两圆的半径之差,得圆心距=8﹣3=5,故选A.4.【解答】∵DE∥BC,∴==,∵AE=6,∴EC=AE÷=6×=10,故选:B.5.【解答】因为甲、乙、丙、丁的方差分别是:,,,,所以s2丁<s2乙<s2丙<s2甲,由此射击成绩波动最小的是丁.故选D.6.【解答】∵cos∠BOD=,∴=,∵BO=10,∴DO=6,∵OC⊥AB,∴∠ODB=90°,在Rt△BOD中,BD===8,∴AB=2DB=16,故选:B.7.【解答】多边形的内角和是:3×360=1080°.设多边形的边数是n,则(n﹣2)•180=1080,解得:n=8.即这个多边形的边数是8.故选C.8.【解答】连接AC、AC′,根据勾股定理,得AC==2,故可得S扇形CAA'==π,S扇形CDD'==π,则阴影部分的面积=S扇形CAA'﹣S扇形CDD'=π.故选C.二、填空题(本题共16分,每小题4分)9.【解答】∵x2﹣6x+10=x2﹣6x+9+1,∴x2﹣6x+10=(x﹣3)2+1.故答案为:(x﹣3)2+1.10.【解答】∵菱形ABCD周长为8cm.∠BAD=60°∴△AOB为直角三角形,AB=2cm,∠OAB=30°,OA=OC,∴OA=cm,∴AC=2cm.故答案为:211.【解答】∵把一个半径为12cm的圆形硬纸片等分成三个扇形,∴扇形的弧长为:×2πr=8π,∵扇形的弧长等于圆锥的底面周长,∴2πr=8π,解得:r=4,故答案为:412.【解答】连OB1,OB2,OB3,如图,在Rt△OA1B1中,OA1=1,OB1=2,∴A1B1===,∴B1的坐标为(,1),故答案为:(,1);在Rt△OA2B2中,OA2=2,OB2=3,∴A2B2=,∴B2的坐标为(,2)在Rt△OA3B3中,OA3=3,OB3=4,∴A3B3=,∴B3的坐标为(,3);…按照此规律可得点B n的坐标是(,n),即(,n)故答案为:(,n).三、解答题(本题共30分,每小题5分)13.【解答】原式=5﹣1+6×﹣2=5﹣1+3﹣2=4.14.【解答】原式=a(a2﹣4a+4)﹣a2(a﹣6)﹣3=a3﹣4a2+4a﹣a3+6a2﹣3=2a2+4a﹣3,…(3分)∵a2+2a﹣4=0,∴a2+2a=4,…(4分)∴原式=2(a2+2a)﹣3=5.…(5分)15.【解答】(1)证明:∵∠BAF=∠CAE,∴∠BAF﹣∠CAF=∠CAE﹣∠CAF,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE;(2)解:∠DGB的度数为67°,理由为:∵∠B=∠D,∠AFB=∠GFD,∴△ABF∽△GDF,∴∠DGB=∠BAD,在△AFB中,∠B=35°,∠AFB=78°,∴∠DGB=∠BAD=180°﹣35°﹣78°=67°.16.【解答】(1)∵关于x的一元二次方程(m+1)x2+2mx+m﹣3=0 有两个不相等的实数根,∴m+1≠0且△>0.∵△=(2m)2﹣4(m+1)(m﹣3)=4(2m+3),∴2m+3>0.解得m>.∴m的取值范围是m>且m≠﹣1.(2)在m>且m≠﹣1的范围内,最小奇数m为1.此时,方程化为x2+x﹣1=0.∵△=b2﹣4ac=12﹣4×1×(﹣1)=5,∴.∴方程的根为,.17.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,DF=CD.∴AE=DF,∴四边形AEFD是平行四边形;(2)解:过点D作DG⊥AB于点G.∵AB=2AD=4,∴AD=2.在Rt△AGD中,∵∠AGD=90°,∠A=60°,AD=2,∴AG=AD•cos60°=1,DG=AD•sin60°=.∴BG=AB﹣AG=3.在Rt△DGB中,∵∠DGB=90°,DG=,BG=3,∴DB===2.18.【解答】(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.(4)支持“警示戒烟”这种方式的人有10000•35%=3500(人).故答案为:300,0.4,3500.四、解答题(本题共20分,每小题5分)19.【解答】(1)当MN⊥AC时,从N到M小区铺设的管道最短,(2)∵∠MAC=60°﹣30°=30°,∠ACM=30°+30°=60°,∴∠AMC=180°﹣30°﹣60°=90°,在Rt△AMC中,∵∠AMC=90°,∠MAC=30°,AC=2000,∴AM=AC•cos∠MAC=2000×=1000(米),在Rt△AMN中,∵∠ANM=90°,cos30°=,∴AN=AM⋅cos30°=1000×=1500(米).答:∠AMC等于90°,AN的长为1500米.20.【解答】(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.21.【解答】(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP=.∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴.又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD====4.22.【解答】(1)如图所示,答案不唯一.画出△D1BC,△D2BC,△D3BC,△D4BC,△D5BC中的一个即可.(将BC 的平行线l画在直线BC下方对称位置所画出的三角形亦可);(2)如图所示,答案不唯一.(在直线D1D2上取其他符合要求的点,或将BC的平行线画在直线BC下方对称位置所画出的三角形亦可)(3)如图所示(答案不唯一).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)由题意得A,C两点的坐标分别为A(1,k1),C(1,k2).(如图1)∵k1>0,k2<0,∴点A在第一象限,点C在第四象限,AC=k1﹣k2.当m=4时,.(2)作EG⊥x轴于点G.(如图2)∵EG∥AB,AD的中点为E,∴△DEG∽△DAB,,G为BD的中点.∵A,B,D三点的坐标分别为A(1,k1),B(1,0),D(m,0),∴,,.∴点E的坐标为.∵点E恰好在双曲线上,∴.①∵k1>0,∴方程①可化为,解得m=3.(3)当点D的坐标为D(2,0)时,由(2)可知点E的坐标为.(如图3)∵S=1,∴.∴OF=2.设直线BE的解析式为y=ax+b(a≠0).∵点B,点E的坐标分别为B(1,0),,∴解得a=k1,b=﹣k1.∴直线BE的解析式为y=k1x﹣k1.∵线段EB的延长线与y轴的负半轴交于点F,k1>0,∴点F的坐标为F(0,﹣k1),OF=k1.∴k1=2.∵A点坐标为(1,2),D点坐标为(2,0),∴设一次函数解析式为y=kx+b,将A(1,2),D(2,0)分别代入解析式得,,解得,故函数解析式为y=﹣2x+4,又∵AD∥FC,设FC的解析式为y=﹣2x+c,将F(0,﹣2)代入解析式得,c=﹣2,故函数解析式为y=﹣2x﹣2.当x=1时,k2=﹣4.C点坐标为(1,﹣4),故线段CF==.24.【解答】(1)在Rt△ABC中,∠C=90°,AC=6,BC=8.由勾股定理,得AB=10,∵点P在AC,CB,BA边上运动,速度分别为每秒3,4,5个单位,∴点P在AC边上运动的时间为:6÷3=2秒,点P在BC边上运动的时间为:8÷4=2秒,∴点P在AB边上运动的时间为:5﹣2﹣2=1秒,∴P点在AB边上运动的距离为:5×1=5,∴当t=5秒时,点P走过的路径长为19;由题意可知,当(t﹣2)×4=t时,点P与点E重合.解得:t=3,∴t=3秒时,点P与点E重合.故答案为:19,3;(2)如图,由点P的对应点M落在EF上,点F的对应点为点N,可知∠PEF=∠MEN,∵P在AC上,∴AP=3t (0<t≤2),∴CP=6﹣3t,.∵EF∥AC,∠C=90°,∴∠BEF=90°,∠CPE=∠PEF.∵EN⊥AB,∴∠B=∠MEN.∵∠PEF=∠FEN,∴∠CPE=∠B.∵,,∴.∴CP==t∴.解得:.(3)如图1,当P点在AC上时,(0<t≤2)∴AP=3t,PC=6﹣3t,EC=t,∴BE=8﹣t,∵EF∥AC,∴△FEB∽△ACB,∴,∴,∴EF=6﹣t.∵四边形PEQF是菱形,∴∠POE=90°,OE=EF=3﹣t,∵EF∥AC,∠C=90°,∴∠OEC=90°,∴四边形PCEO是矩形,∴OE=PC.∴3﹣t=6﹣3t,∴t=,如图2,当P在AB上时(4<t<6),∵四边形PFQE是菱形,∴PE=PF,∴∠PFE=∠PEF,∵EF∥AC,∠C=90°,∴∠FEB=∠FEP+∠PEB=90°,∴∠B+∠EFB=90°,∴∠B+∠FEP=90°,∴∠PEB=∠B,∴PE=PB.∵PB=5(t﹣4),∴BF=10(t﹣4),∵sin∠B==,∴,∴EF=6t﹣24∵CE=t,∴BE=8﹣t,∵△FEB∽△ACB,∴,∴,∴EF=6﹣t.∴6﹣t=6t﹣24解得t=∴t的值为(秒)或(秒).25.【解答】(1)当x=n时,y1=2n2+,y2=n;∴A(n,2n2+),B(n,n).(2)d=AB=|y A﹣y B|=|2n2﹣n+|.∴d=|2(n﹣)2+|=2(n﹣)2+.∴当n=时,d取得最小值.此时,B(,),而M(0,)、P(,0)∴四边形OMBP是正方形∴当d取最小值时,线段OB与线段PM的位置关系和数量关系是OB⊥PM且OB=PM.(如图)(3)∵对一切实数x恒有x≤y≤2x2+,∴对一切实数x,x≤ax2+bx+c≤2x2+都成立.(a≠0)①当x=0时,①式化为0≤c≤.∴整数c的值为0.此时,对一切实数x,x≤ax2+bx≤2x2+都成立.(a≠0)即对一切实数x均成立.由②得ax2+(b﹣1)x≥0 (a≠0)对一切实数x均成立.∴由⑤得整数b的值为1.此时由③式得,ax2+x≤2x2+对一切实数x均成立.(a≠0)即(2﹣a)x2﹣x+≥0对一切实数x均成立.(a≠0)当a=2时,此不等式化为﹣x+≥0,不满足对一切实数x均成立.当a≠2时,∵(2﹣a)x2﹣x+≥0对一切实数x均成立,(a≠0)∴∴由④,⑥,⑦得0<a≤1.∴整数a的值为1.∴整数a,b,c的值分别为a=1,b=1,c=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2012年初三二模试卷数学 2012. 6
考生须
知
1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120
分钟。
2.在试卷和答题卡上认真填写学校名称、班级和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,作图题用
2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.
的倒数是
A.8
B.
C.
D.
2.在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为
A.
B.
C.
D.
3.若⊙
与⊙
内切,它们的半径分别为3和8,则以下关于这两圆的圆心距
的结论正确的是
A.
=5 B.
=11 C.
>11 D. 5<
<11
4.如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E,若
,AE=6,则EC的长为[来源:]
A . 8 B. 10 C. 12 D. 16
5.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是
环,方差分别是
,
,
,
,则射击成绩波动最小的是
A. 甲
B. 乙
C. 丙
D. 丁
6.如图,AB为⊙O的弦,半径OC⊥AB于点D,若OB长为10,
,则AB的长是
A . 20 B. 16 C. 12 D. 8
7.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为
A . 4 B. 6 C. 8 D. 10
8.如图,在矩形ABCD中,
,BC=1. 现将矩形ABCD
绕点C顺时针旋转90°得到矩形
,则AD边扫过的
面积(阴影部分)为
A .
π B.
π C.
π D.
π
二、填空题(本题共16分,每小题4分)
9.将代数式
化为
的形式(其中m,n为常数),结果为.
10.若菱形ABCD的周长为8,∠BAD=60°,则BD= .
11.如图,把一个半径为12cm的圆形硬纸片等分成三个扇形
,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm.
12.如图,在平面直角坐标系xOy中,点
,
,
,…
都在y轴上,对应
的纵坐标分别为1,2,3,….直线
,
,
,…分别经过点
,
,
,…,且都平行于x
轴.以点O为圆心,半径为2的圆与直线
在第一象限
交于点
,以点O为圆心,半径为3的圆与直线
在第
一象限交于点
,…,依此规律得到一系列点
(n为
正整数),则点
的坐
标为,点
的坐标为.
三、解答题(本题共30分,每小题5分)
13.计算:
.
14.已知
,求代数式
的值.
15.如图,点F,G分别在△ADE的AD,DE边上,C,B依次
为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.
(1)求证:BC=DE;
(2)若∠B=35°,∠AFB=78°,直接写出∠DGB 的度数.
16.已知关于x的一元二次方程 (m +1)x2 + 2mx + m 3 = 0 有两个不相等的实数根.
(1)求m的取值范围;
(2)当m取满足条件的最小奇数时,求方程的根.
17. 如图,在平行四边形ABCD中,点E,F分别是
AB,CD的中点.
(1)求证:四边形AEFD是平行四边形;
(2)若∠A=60°,AB=2AD=4,求BD的长.
18. 吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:(图中信息不完整)
请根据以上信息回答下面问题:
(1) 同学们一共随机调查了人;
(2) 如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”方式的概率是;
(3) 如果该社区有5 000人,估计该社区支持“警示戒烟”方式的市民约
有人.
四、解答题(本题共20分,每小题5分)
19.如图,某天然气公司的主输气管道途经A小区,继续
沿 A小区的北偏东60方向往前铺设,测绘员在A处测得另一个需要安装天然气的M小区位于北偏东30方向,测绘员从A处出发,沿主输气管道
步行2000米到达C处,此时测得M小区位于北偏西60方向.现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短.
(1)问:MN与AC满足什么位置关系时,从N到M小区
铺设的管道最短?
(2)求∠AMC的度数和AN的长.
20.如图,在平面直角坐标系xOy中,直线
与
轴,
轴分别交于点A,点B,点D在
轴的负半轴
上,若将△DAB沿直线AD折叠,点B恰好落在
轴正
半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的解析式.
21.如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA 的延长线
于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.
(1)求证:AP是⊙O的切线;
(2)若OC=CP,AB=
,求CD的长.
22. 阅读下列材料
小华在学习中发现如下结论:
如图1,点A,A1,A2在直线l上,当直线l∥BC时,
.
请你参考小华的学习经验画图(保留画图痕迹):
(1)如图2,已知△ABC,画出一个等腰△DBC,使其面积与△ABC面积相等;
(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:所画的两个三角形不全等);
(3)如图4,已知等腰△ABC中,AB=AC,画出一个四边形ABDE,使其面积与△ABC面积相等,且一组对边DE=AB,另一组对边BD≠AE,对角∠E=∠B.
[来源:学。
科。
网]
图2 图
3 图4
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23. 在平面直角坐标系xOy中,A为第一象限内的双曲线
(
)上一点,点A
的横坐标为1,过点A作平行于 y轴的直线,与x轴交于点B,与双曲线
(
)
交于点C . x轴上一点
位于直线AC右侧,AD的中点为E.
(1)当m=4时,求△ACD的面积(用含
,
的代数
式表示);
(2)若点E恰好在双曲线
(
)上,求m的值;
(3)设线段EB的延长线与y轴的负半轴交于点F,当
点D的坐标为
时,若△BDF的面积为1,
且CF∥AD,求
的值,并直接写出线段CF的长.
24.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB
-BA运动,点P在AC,CB,BA边上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为每秒3,4,5 个单位.直线l
从与AC重合的位置开始,以每秒
个单位的速度沿CB方向平行移动,即移动过程中
保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的
时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.
(1)当t = 5秒时,点P走过的路径长为;当t = 秒时,点P与点E重合;
(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;
(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t 的值.
25.在平面直角坐标系xOy中,抛物线
的顶点为M,直线
,点
为
轴上的一个动点,过点P作
轴的垂线分别交抛物线
和直线
于点A,点B.
⑴直接写出A,B两点的坐标(用含
的代数式表示);
⑵设线段AB的长为
,求
关于
的函数关系式及
的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;
(3)已知二次函数
(
,
,
为整数且
),对一切实数
恒有
≤
≤
,求
,
,
的值.
北京市西城区2012年初三二模试卷
数学答案及评分标准 2012. 6
一、选择题(本题共32分,每小题4分)
题号 1 2 3 4 5 6 7 8 答案 D C A B D B C C
二、填空题(本题共16分,每小题4
分)
题号9 10 11 12
答案 2 4
三、解答题(本题共30分,每小题5分)
13.解:原式=
…………………………………………………………4分
=
.…………………………………………………………………… 5分14.解:原式=
=
=
.………………………..….….….….….…………………… 3分∵
,
∴
. ………………………………………………………………… 4分。