2018北京101中学初一(上)期末数学
2018-2019初一数学上学期期末海淀试卷
初一年级第一学期期末学业水平调研2019.1数 学 学校 班级 姓名 成绩一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中. 题号1 2 3 4 5 6 7 8 9 10答案 1.如图,用圆规比较两条线段AB 和A ′B ′的长短,其中正确的是A .A ′B ′>ABB .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定. 2.-5的绝对值是A . 5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯B .35510⨯C .45.510⨯D .4610⨯4.下列计算正确的是A .325a b ab +=B .()325a a a −−=C .232a a a −=D .()()3212a a a−−−=−5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是A .AC +BC =6B .AC =BC =3 C .BC =3D .AB =2AC8.若2x =时42+x mx n −的值为6,则当2x =−时42+x mx n −的值为A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是A B C D10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b+ B .a b −C .ab D .a b −二、填空题(本大题共16分,每小题2分) 11.比较大小:-3 -2.1(填“>”,“<”或“=”).12.右图中A ,B 两点之间的距离是 厘米(精确到厘米),点B 在点A 的南偏西 °(精确到度). 北西南东BA 图1 图2从正面看13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是: .14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为 (用含a ,b 的式子表示). 15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有 (请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比 点B表示的数小,则点B 表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变.(1)a =;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x =. 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.计算:(1)()2533−÷−; (2)118(11)24−⨯+−. E1FDCBA O ba初一年级(数学)第4页(共8页)20.解方程:(1)5812x x +=−; (2)12323x x +−=. 21.22a b −=−已知,求代数式223(24)2(32)ab a b ab a b −+−−+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ;(2)在射线OD 上取一点F ,使得OF=OC ;(3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据: .图2四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断..理..点M是否为线段CD的中点,并说明由.图1 图224.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S= ;图1 【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.x初一年级(数学)第5页(共8页)初一年级(数学)第6页(共8页)五、解答题(本大题共19分,25~26每题6分,27题7分)25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇.(1)当2k =,4b −=时,方程◇的解为 ;(2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k =,b =;(3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.26.如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD= ;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.备用图初一年级(数学)第7页(共8页)27.数学是一门充满思维乐趣的学科,现有33⨯的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1)对于数阵A,2∗3的值为;若2∗3=2∗x,则x的值为;(2)若一个33⨯的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:()**=*;a b c a c则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.。
2018-2019初一上期末海淀数学试卷(含答案)
初一年级第一学期期末学业水平调研2019.1数 学学校 班级 姓名 成绩一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.如图,用圆规比较两条线段AB 和A ′B ′的长短,其中正确的是A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A . 5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥 ——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯ B .35510⨯ C .45.510⨯ D .4610⨯ 4.下列计算正确的是A .325a b ab +=B .()325a a a--=C .232a a a-=D .()()3212a a a ---=-5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是 A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是 A .AC +BC =6 B .AC =BC =3 C .BC =3 D .AB =2AC8.若2x =时42+x mx n -的值为6,则当2x =-时42+x mx n -的值为 A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥, 得到一个几何体,如图2.从正面看 图2的几何体,得到的平面图形是A B C D 10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b +B .a b -C .abD .a b-二、填空题(本大题共16分,每小题2分)11.比较大小:-3 -2.1(填“>”,“<”或“=”). 12.右图中A ,B 两点之间的距离是 厘米(精确到厘米),点B 在点A 的南偏西 °(精确到度).西南东B图1图2从正面看13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是: .14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为 (用含a ,b 的式子表示).15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有 (请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比 点B表示的数小,则点B 表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变. (1)a = ;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x = . 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.计算:(1)()2533-÷-; (2)118(11)24-⨯+-.20.解方程:(1)5812x x +=-; (2)12323x x+-=.21.22a b -=-已知,求代数式223(24)2(32)ab a b ab a b -+--+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ; (2)在射线OD 上取一点F ,使得OF=OC ;(3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据: .四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C 在线段AB 上,点M 为AB 的中点,AC =8,CB =2. (1)求CM 的长;(2)如图2,点D 在线段AB 上,若AC =BD ,判断..点M 是否为线段CD 的中点,并说明..理由.图1 图224.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试 探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S ,则每一行三 个数的和均为S ,而这9个数的和恰好为1到9这9个正整数之和,由此可得S = ;图1【第二步】再设中间数为x ,利用包含中间数x 的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x .请你根据上述探究,列方程求出中间数x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分) 25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇. (1)当2k =,4b -=时,方程◇的解为 ; (2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k = ,b = ;(3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.图226.如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD= ;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.备用图27.数学是一门充满思维乐趣的学科,现有33⨯的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1)对于数阵A,2∗3的值为;若2∗3=2∗x,则x的值为;(2)若一个33⨯的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:()a b c a c**=*;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.七年级第一学期期末调研2019.1数学参考答案11. < 12. 2, 58 (答56,57,59,60均算正确) 13. 答案不唯一,如:32x14. 42b a -15. C O D ∠ ,EOF ∠(写对1个得1分,全对得2分) 16. (2700)590x x -+=17. -2或18(写对1个得1分,全对得2分)18. (1) -2; (2) 2(每空1分)三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.(每小题4分)解:(1)原式=59(3)-÷- …………………………………………………………………2分 =53+=8………………………………………………………………………………4分(2)原式=15(8)(8)1(8)24-⨯+-⨯--⨯=4810--+ ………………………………………………………………………3分=2-…………………………………………………………………………………4分 (若是先做括号,则括号内加减法正确得3分,最后一步也正确,得4分)20. (每小题4分)解:(1)5812x x +=-5218x x +=- ……………………………………………………………………2分77x =- ……………………………………………………………………3分 1x =- ……………………………………………………………………4分(2)12323x x+-= 解:3(1)2(23)x x +=- ……………………………………………………………………1分3346x x +=- ……………………………………………………………………2分 91x = ……………………………………………………………………………3分19x = ……………………………………………………………………………4分21.(本小题4分)解:原式22612364ab a b ab a b =-+-++ …………………………………………2分84a b =-+ ……………………………………………………………………3分 ∵22a b -=-,∴原式844(2)4(2)8a b a b =-+=--=-⨯-=.……………………………………4分22.(本小题4分) (1)-(3)如图所示:正确画出OD ,OE ……………………1分 正确画出点F …………………………2分 正确画出点P …………………………3分(4) 两点之间,线段最短 . …………………………4分四.解答题(本大题共11分,23题6分,24题5分) 23.(本小题6分) (1)解:方法一: ∵8AC =,2CB =,∴10AB AC CB =+=,…………………………………………………………………1分 ∵点M 为线段AB 的中点,∴152BM AB ==. .………….………………………………………………………2分 ∴523CM BM CB =-=-=..…………….…………………………………………3分或者∴853CM AC AM =-=-=.…………….……………………………………………3分(2)解:点M 是线段CD 的中点,理由如下: 方法一:∵8BD AC ==,…………………………………………………………………………4分 ∴由(1)可知,853DM DB MB =-=-=. ……………………………………………5分 ∴3DM MC ==,∴由图可知,点M 是线段CD 的中点. ……………………………………………6分 方法二:∵AC BD =,∴AC DC BD DC -=-,∴AD CB =. ………………………………………………………………………………4分 ∵点M 为线段AB 的中点,B∴AM MB =,………………………………………………………………………………5分 ∴AM AD MB CB -=-,∴DM MC =∴由图可知,点M 是线段CD 的中点. …………………………………………………6分24.(本小题5分)解:(1)15S =. ………………………………………………………………………………2分(2)由计算知:123...945++++=, ………………………………………………3分依题意可列方程:415345x ⨯-=, ……………………………………………4分解得:5x =. ……………………………………………………………………5分(注:过程中体现出45,得第3分.)25.(本小题6分)解:(1)2x =. ……………………………………………………………………………1分(2)答案不唯一,如:1k =,3b =.(只需满足3b k =即可) …………………2分(3)方法一:依题意:40k b +=, …………………………………………………………3分∵0k ≠, ∴4b k=-. ………………………………………………………………………4分 解关于y 的方程:32b y k +=, ∴324y +=-. …………………………………………………………………5分解得:2y =-. …………………………………………………………………6分方法二:依题意:40k b +=, …………………………………………………………3分∴4b k =-.解关于y 的方程:(32)(4)0k y k +--=,……………………………………4分360ky k +=,∵0k ≠,∴360y +=. …………………………………………………………5分解得:2y =-. …………………………………………………………6分26.(本小题6分)解:(1)50BOD ∠=︒ ………………………………………………………1分(2)①补全图形如下:……………………………………………………2分 45AON α∠=+︒….…………………………………………………………………3分 ②情形一:点D 在BOC ∠内.此时,45AON α︒∠=+,90COD ︒∠=,依题意可得:4590180α︒︒++=︒,解得:45α︒=. ……………………………………………………………………………4分 情形二:点D 在BOC ∠外.在0°α<≤45°的条件下,补全图形如下: 此时,45AON ︒∠=,…………………………………………………………………5分90+2COD α︒∠=,依题意可得:45902180α︒︒++=︒B AB A解得:22.5α︒=.………………………………………………………………………6分 综上,α的取值为45︒或22.5︒.27.(本小题7分)解:(1)2;………………………………………………………………………… 1分1,2,3 …………………………………………………………………………2分 (注:只答1,2不扣分)(2)①是; …………………………………………………………………………3分②∵122*=,∴21(12)1*=**∵()a b c a c **=*∴(12)111**=*∵a a =a∴111*=∴211*=. …………………5分(3) 不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的,,a b c 有: ()()a c a b c b a c b c *=**=**=*,这说明数阵每一列的数均相同.∵111*=,222*=,333*=,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴12=2*,21=1*,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵. ……………………………………7分 方法二:由条件二可知,a b *只能取1,2或3,由此可以考虑a b *取值的不同情形. 例如考虑12*:情形一:121*=.若满足交换律,则211*=,再次计算12*可知:12(21)2222*=**=*=,矛盾;情形二:122*=由(2)可知, 211*=,1221*≠*,不满足交换律,矛盾;*=情形三:123*=,若满足交换律,即213*可知:再次计算22*=**=*=**=*=,22(21)232(12)2123*=矛盾.与222综上,不存在满足交换律的“有趣的”数阵. ……………………………………7分。
2018年北京市101中学初一上期末数学试卷(附答案)
初一第一学期期末考试
数学参考答案
1 2 3 4 5 6 7 8 9 10
BCADDBBCB C
1. 根据相反数的意义知:− 1 的相反数是 1 .
5
5
2. 77800 = 7.78 × 104.
3. 4. 由数轴上点的位置,得 a < 0 < b,|a| = |b|,
A、ab < 0,故 A 不符合题意; B、a − b < 0,故 B 不符合题意; C、|a| = |b|,故 C 不符合题意; D、a + b = 0,故 D 符合题意. 5. 由图形可知小刚位置大致在长春宫,因为长春宫在在小明的北偏西约 20◦ 方向上.
A
B
C
7. 下列式子的变形中,正确的是 ( ) A. 由 6 + x = 10 得 x = 10 + 6 C. 由 8x = 4 − 3x 得 8x − 3x = 4
D
B. 由 3x + 5 = 4x 得 3x − 4x = −5 D. 由 2 (x − 1) = 3 得 2x − 1 = 3
8. 小明从家里骑车到学校,每小时骑 15 km,可早到 10 分钟,每小时骑 12 km,就会迟到 5 分钟.问他家到学
6. 7. 根据等式的基本性质和移项法则,可知 A,C 没变符号,故不正确;B 正确;D 答案中在去括号时漏
乘,故不正确.
8. 设他家到学校的路程是 x km,
∵ 10 分钟 = 10 小时,5 分钟 = 5 小时,
60
60
∴ x + 10 = x − 5 . 15 60 12 60
9. ∵ 小明乘车的路程是:22 − 5 = 17,
的长为
.
北京一零一中学2018年新初一分班考试试题-数学真题-含参考答案.doc
2018北京一零一中初一分班考试数学2018.8温馨提示1.本试卷共12页,满分150分,考试时间为90分钟2.选择题和填空题用黑色签字笔填写在答题纸上,在试卷上作答无效3.考试结束,请将本试卷、答题纸分别交回内。
本大题共10小题,共40分1.如果529÷a>529×a,那么a是A.真分数B.假分数C.1D.自然数2.在圆中作一个最大的正方形,圆面积与正方形的面积之比是A.2:πB.π:2C.4:3D.4:13.某班统计数学考试成绩,平均分是84.2分,后来发现小明的成绩是97分,而错误地统计为79分,重新计算后,平均成绩是84.6分,则这个班的学生人数是A.42B.43C.44D.454.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(γ,α),其中:γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转的角度。
如图,雷达探测器显示在点A,B,C处有目标出现,其中目标A的位置表示为(5,30°),目标B的位置表示为B(4,150°),用这种方法表示目标C的位置,正确的是A.(-3,300°)B.(3,60°)C.(3,300°)D.(-3,60°)5.已知一条直线l和直线外的A、B两点,以A、B两点和直线上某一点做为三角形的三个顶点,就能画出一个等腰三角形,如图中的等腰三角形ABC,除此之外还能画出符合条件的等腰三角形个数是A. 1B. 2C. 3D. 46.在小红去培训班的路上,看到在一条公路上,每隔100千米有一个仓库,共有五个仓库,A号仓库存有10吨货物,B号仓库存有20吨货物,E号仓库存有40吨货物,其余两个仓库是空的,现在想把所有的货物集中存放在任意一个仓库里,如果每吨货物运输1千米需要1元运费,那么放在哪个仓库才能使运费最少?A. 仓库EB.仓库DC.仓库CD.仓库B7.近年来由于空气质量的变化,以及人们对自身健康的关注程度不断提高,空气净化器成为很多家庭的新电器,某品牌的空气净化器厂家为进一步了解市场,制定生产计划,根据2017下半年销售情况绘制了如下统计图,其中同比增长率=(当月销售量去年同月销售量−1)×100%下面有四个推断①2017下半年各月销售量均比2016同月销售量增多;②第四季度销售量占下半年销售量的七成以上;③下半年月均销售量约为16万台;④下半年月销售量的中位数不超过10万台;其中合理的是A.①②B. ①④C. ②③D. ③④8.这群顽皮的小猴一共有()只A. 10B. 9C. 8D. 79. 观察下面图形找规律按照上面的画法,如果要得到100个直角三角形,需要画()个正方形正方形的个数 1 2 3 4 5 ···10.某游泳池长25米,小林和小明两个人分别在游泳池的A,B两边,同时朝着另一边游泳,他们游泳的时间为t (秒),其中0≤t≤180,到A边距离为y(米),图中的实线和虚线分别表示小林和小明在游泳过程中y与t的对应关系,下面有四个推断:①小明游泳的平均速度小于小林游泳的平均速度;②小明游泳的距离大于小林游泳的距离;③小明游75米时小林游了90米游泳; ⑤ 小明与小林共相遇5次;其中正确的是 A.①②B.①③C.③④D.②④二、填空题:请把你认为正确的选项填入答题纸相应的表格内,本大题共8小题,每题4分,共32分。
_北京市第101中学2018-2019学年七年级上学期期中考试数学试题
第1页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………北京市第101中学2018-2019学年七年级上学期期中考试数学试题考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 一个数的倒数是-,这个数是( )A .-3B .3C .-D . 2. 如果a 与-1互为相反数,则|a+2|等于( )A .2B .-2C .3D .-3 3. 设x 是有理数,那么下列各式中一定表示正数的是( ) A .2008xB .x+2008C .|2008x|D .|x|+20084. 下列说法正确的是( )A .0是绝对值最小的有理数B .相反数不小于本身的数是负数C .数轴上原点两侧的数互为相反数D .两个数比较,绝对值大的反而小 5. 下面运算正确的是( )A .B .C .D .6. 若代数式的值为6,则的值为( )A .22B .10C .7D .无法确定7. 若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为( )A .0B .2C .0或2D .-28. 某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1答案第2页,总8页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )A .甲B .甲与丁C .丙D .丙与丁9. 近年来,跑马拉松成为不少人喜爱的运动。
海淀区2018-2019学年七年级第一学期数学期末考试
初一年级第一学期期末学业水平调研2019.1数学学校 班级 姓名 成绩一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.如图,用圆规比较两条线段AB 和A ′B ′的长短,其中正确的是A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A . 5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥 ——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯B .35510⨯C .45.510⨯D .4610⨯ 4.下列计算正确的是A .325a b ab +=B .()325a a a--=C .232a a a-=D .()()3212a a a ---=-5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是 A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是 A .AC +BC =6 B .AC =BC =3 C .BC =3 D .AB =2AC8.若2x =时42+x mx n -的值为6,则当2x =-时42+x mx n -的值为 A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥, 得到一个几何体,如图2.从正面看 图2的几何体,得到的平面图形是A B C D10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b +B .a b -C .abD .a b- 二、填空题(本大题共16分,每小题2分)11.比较大小:-3-2.1(填“>”,“<”或“=”).12.右图中A ,B 两点之间的距离是厘米(精确到厘米),点B 在点A的南偏西°(精确到度).西南东B图1图2从正面看13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:.14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a ,b 的式子表示).15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有(请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比点B表示的数小,则点B 表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变. (1)a =;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x =. 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.计算:(1)()2533-÷-;(2)118(11)24-⨯+-.20.解方程:(1)5812x x +=-;(2)12323x x+-=.21.22a b -=-已知,求代数式223(24)2(32)ab a b ab a b -+--+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ; (2)在射线OD 上取一点F ,使得OF=OC ;(3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据:.四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断..点M是否为线段CD的中点,并说明..理由.图1 图224.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为,则每一行三个数的和均为,而这9个数的和恰好为1到9这9个正整数之和,由此可得=;图1【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数.请你根据上述探究,列方程求出中间数x的值.五、解答题(本大题共19分,25~26每题6分,27题7分) 25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇. (1)当2k =,4b -=时,方程◇的解为;(2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k =,b =;(3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.图226.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,∠BOD 与∠AOC 互余. (1)若∠AOC :∠BOD =4:5,则∠BOD =;(2)若∠AOC =α(0°<α≤45°),ON 平分∠COD .①当点D 在∠BOC 内,补全图形,直接写出∠AON 的值(用含α的式子表示); ②若∠AON 与∠COD 互补,求出α的值.备用图个位置所对应的数都是1,2或3.定义a b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以32=3.(1)对于数阵A,23的值为;若23=2x,则x的值为;(2)若一个33⨯的数阵对任意的a,b,c均满足以下条件:条件一:a a=a;条件二:()a b c a c**=*;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足12=2,试计算21的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a b=b a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.。
【七年级数学】2018年初一上期数学期末考试卷(有答案)
2018年初一上期数学期末考试卷(有答案)
北京市西城区(北区)2018— 2018学年度第一学期期末试卷
七年级数学 20181
(试卷满分100分,考试时间100分钟)
一、选择题(本题共30分,每小题3分)
下面各题均有四个选项,其中只有一个是符合题意的.
1.的绝对值等于().
A B c D
2.根据北京市安交通管理局网站的数据显示,截止到2018年2月16日,北京市机动车保有量比十年前增加了辆,将用科学记数法表示应为().
A. B. c. D.
3.下列关于多项式的说法中,正确的是().
A它是三次三项式 B它是四次两项式
c它的最高次项是 D它的常数项是1
4.已知关于x的方程的解是,则的值为().
A B c 1 D
5.下列说法中,正确的是().
A.任何数都不等于它的相反数
B.互为相反数的两个数的立方相等
c.如果a大于b,那么a的倒数一定大于b的倒数
D.a与b两数和的平方一定是非负数
6.将一副直角三角尺按如图所示的不同方式摆放,则图中锐角与相等的是().
7.下列关于几何画图的语句正确的是
A.延长射线AB到点c,使Bc=2AB
B.点P在线段AB上,点Q在直线AB的反向延长线上。
(人教版)北京市2018-2019学年七年级上期末数学考试题(有答案)
2018—2019学年第一学期初一期末试卷数 学一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.绝对值是2的数是A .2-B .2C .2或2-D .21 2.据中新网报道,“神威·太湖之光”获吉尼斯世界纪录认证,成为世界上“运算速度最快的计算机”,它共有40960块处理器.其中40960用科学记数法表示应为 A .5104096.0⨯ B .410096.4⨯C .3100960.4⨯D .31096.40⨯3. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是A .1m <-B .3n >C .m n <-D .m n >- 4.若3x =是关于x 的方程21x a -=的解,则a 的值为A .5B .4C .5-D .4-5.下列判断正确的是A .近似数0.35与0.350的精确度相同B .a 的相反数为a -C .m 的倒数为1mD .m m =6.点C 在射线AB 上,若AB=3,BC =2,则AC 为A .5B .1C .1或5D .不能确定7.同一平面内,两条直线的位置关系可能是A .相交或平行B .相交或垂直C .平行或垂直D .平行、相交或垂直 8.如图,点C 为线段AB 的中点,延长线段AB 到D ,使得AB BD 31=.若8=AD ,则CD 的长为 A .2B .3C .5D .79.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是A .用两个钉子就可以把木条固定在墙上B .如果把A ,B 两地间弯曲的河道改直,那么就能缩短原来河道的长度C .植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线D .测量运动员的跳远成绩时,皮尺与起跳线保持垂直 10.按下图方式摆放餐桌和椅子:…1张餐桌坐6人,2张餐桌坐8人,…,n 张餐桌可坐的人数为 A .5+nB .62+nC .n 2D .42+n二、填空题(本大题共6个小题,每小题3分,共18分)11.请结合实例解释3a 的意义,你的举例: . 12.如图是某几何体的表面展开图,则这个几何体是 . 13.如图,OC 为AOB ∠内部的一条射线, 若︒=∠100AOB ,84261'︒=∠, 则2∠= ︒.14.解方程m m 253=-时,移项将其变形为523=-m m 的依据是 . 15.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为25.0+,1-,5.0+,75.0-.小红快速准确地算出了4筐白菜的总质量为 千克.16.规定:用{}m 表示大于m 的最小整数,例如235=⎭⎬⎫⎩⎨⎧,{}54=,{}15.1-=-等;用[m ]表示不大于m 的最大整数,例如327=⎥⎦⎤⎢⎣⎡,[]22=,[]42.3-=-,(1){}4.2= ;[]8-= ;(2)如果整数..x 满足关系式:{}[]1823=+x x ,则=x __________. 三、计算题(本大题共3个小题,17、18题各4分, 19题5分,共13分) 17.75513434--+. 18.()()5428110-⨯+-÷--.21OBC A19. 32323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.四、解方程(本大题共2个小题,20题4分,21题5分,共9分) 20. ()34523x x -+= 21.2531162x x -+-=. 五、解答题(本大题共6个小题,每小题5分,共30分)22.2017年京津冀旅游年卡包含了京津冀众多名胜文化、自然景区等,与2016年卡相比新增了29家景区,年卡分为四类,其中三类年卡及相应费用如下表所示:北京某公园年卡代售点在某日上午卖出上述三种年卡共30张,其中畅游版年卡5张,30张年卡费用总计2750元.(1)该日上午共卖出优惠版和乐享版的年卡 张; (2)卖出的30张年卡中,乐享版年卡有多少张?23.如图,平面上有三个点A ,O ,B . (1)根据下列语句顺次画图.①画射线OA ,OB ;②画AOB ∠的角平分线OC , 并在OC 上任取一点P (点P 不与点O 重合);③过点P 画OA PM ⊥,垂足为M ; ④画出点P 到射线OB 距离最短的线段PN ;(2)请回答:通过测量图中的线段,猜想相等的线段有 (写出一对即可). 24.若单项式122mxy --与45m x y -是同类项,求12322-+--m m m m 的值.25.先化简再求值: ()ab b b a ab +-⎪⎭⎫⎝⎛+-3212,其中52-=+b a .A26.已知:∠AOC =146︒,OD 为∠AOC 的平分线,射线OB ⊥OA 于O ,部分图形如图所示.请补全图形,并求∠BOD 的度数.27.观察下列两个等式:1312312+⨯=-,1325325+⨯=-,给出定义如下:我们称使等式1+=-ab b a 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,31),(5,32),都是“共生有理数对”. (1)数对(2-,1),(3,21)中是“共生有理数对”的是 ; (2)若(a ,3)是“共生有理数对”,求a 的值;(3)若(m ,n )是“共生有理数对”,则(n -,m -) “共生有理数对”(填“是”或“不是”);(4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).2018-2019学年第一学期初一期末数学试卷答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可。
2018-2019海淀区初一上期末数学试卷
初一年级第一学期期末学业水平调研2019.1数 学学校 班级 姓名 成绩一、 选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.题号 12345678910答案1.如图,用圆规比较两条线段AB 和A ′B ′的长短,其中正确的是 A .A ′B ′>AB B .A ′B ′=ABC .A ′B ′<ABD .没有刻度尺,无法确定.2.-5的绝对值是A . 5B .-5C .-15D .5±3.2018年10月23日,世界上最长的跨海大桥 ——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为A .35.510⨯ B .35510⨯ C .45.510⨯ D .4610⨯ 4.下列计算正确的是A .325a b ab +=B .()325a a a−−=C .232a a a−=D .()()3212a a a −−−=−5.若x =-1是关于x 的方程2x +3=a 的解,则a 的值为A .-5B .5C .-1D .16.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′, ∠2的大小是 A .27°40′B .57°40′C .58°20′D .62°20′7.已知AB =6,下面四个选项中能确定...点C 是线段AB 中点的是 A .AC +BC =6 B .AC =BC =3 C .BC =3 D .AB =2AC8.若2x =时42+x mx n −的值为6,则当2x =−时42+x mx n −的值为 A .-6B .0C .6D .269.从图1的正方体上截去一个三棱锥, 得到一个几何体,如图2.从正面看 图2的几何体,得到的平面图形是A B C D 10.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是A .a b +B .a b −C .abD .a b−二、填空题(本大题共16分,每小题2分)11.比较大小:-3 -2.1(填“>”,“<”或“=”). 12.右图中A ,B 两点之间的距离是 厘米(精确到厘米),点B 在点A 的南偏西 °(精确到度).北西南东BA图1图2从正面看13.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是: .14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为 (用含a ,b 的式子表示).15.如图,点O 在直线AB 上,射线OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1相等的角有 (请写出所有答案).16.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.17.已知点O 为数轴的原点,点 A ,B 在数轴上,若AO =10,AB =8,且点A 表示的数比 点B表示的数小,则点B 表示的数是______________________________.18.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠....上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变. (1)a = ;(2)若输入一个整数x ,某些..滚珠相撞,输出y 值恰好为-1,则x = . 三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.计算:(1)()2533−÷−; (2)118(11)24−⨯+−.E1FDC BA O ba20.解方程:(1)5812x x +=−; (2)12323x x+−=.21.22a b −=−已知,求代数式223(24)2(32)ab a b ab a b −+−−+的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB ,得到射线OD ,画∠AOD 的角平分线OE ; (2)在射线OD 上取一点F ,使得OF=OC ;(3)在射线OE 上作一点P ,使得CP +FP 最小;(4)写出你完成(3)的作图依据: .四、解答题(本大题共11分,23题6分,24题5分)23.如图1,已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断..理..点M是否为线段CD的中点,并说明由.图1 图224.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S= ;图1 【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.x五、解答题(本大题共19分,25~26每题6分,27题7分) 25.已知0k ≠,将关于x 的方程0kx b +=记作方程◇. (1)当2k =,4b −=时,方程◇的解为 ; (2)若方程◇的解为3x =-,写出一组满足条件的k ,b 值:k = ,b = ;(3)若方程◇的解为4x =,求关于y 的方程()320k y b +=-的解.图226.如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD= ;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.备用图27.数学是一门充满思维乐趣的学科,现有33⨯的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1)对于数阵A,2∗3的值为;若2∗3=2∗x,则x的值为;(2)若一个33⨯的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:()**=*;a b c a c则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:_______(填“是”或“否”);②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.。
2017~2018学年北京海淀区初一上学期期末数学试卷(解析)
2018/12/11 词“十九大”在1.3万个网站中产生数据174000条.将174000用科学记数法表示应为( ).
A. 5 17.4 × 10
B. 5 1.74 × 10
C. 4 17.4 × 10
D. 6 0.174 × 10
答案 B
解 析
174000用科学记数法表示为1.74
=
2 (−3)
=
9
14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,经测量,北京
西站在天安门的南偏西77∘方向,北京南站在天安门的南偏西18∘方向.则∠BAC =
∘.
答 案 59
解 析 ∵北京西站在天安门的南偏西77∘方向,北京南站在天安门的南偏西18∘方向, ∴ . ∠BAC = 77∘ − 18∘ = 59∘
目录
选择题(共30分,每小题3分) 填空题(共16分,每小题2分) 解答题(共54分)
学生版
教师版
答案版
选择题(共30分,每小题3分)
1. −5的相反数是( ).
A. 1
5
B.
1 −
5
答案 D 解 析 −5的相反数为5.
C. −5
编辑
D. 5
2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键
学生版
教师版
从正面看
答案版
从上面看
编辑
A. 6
B. 5
C. 4
D. 3
答案 B
解 析 由题中所给出的主视图知物体共两列,且右侧一列高一层,左侧一列最高两层; 由俯视图可知右侧一行,左侧两行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两 层,或可能两行都是两层.所以图中的小正方体最少4块,最多5块.
2018-2019海淀区初一上期末数学试卷
初一年级第一学期期末学业水平调研2019.1数学学校班级姓名成绩一、选择题(本大题共30 分,每小题3 分)第1~10 题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.题号12345678910答案1.如图,用圆规比较两条线段AB 和A′B′的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定.2.-5 的绝对值是1A.5 B.-5 C.-D.±553.2018 年10 月23 日,世界上最长的跨海大桥——港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000 米.其中55000 用科学记数法可表示为A.5.5⨯103B.55⨯103C.5.5⨯104D.6 ⨯1044.下列计算正确的是A.3a + 2b = 5ab B.3a -(-2a)= 5aC.3a2 - 2a =a D.(3 -a)-(2 -a)=1- 2a5.若x=-1 是关于x 的方程2x+3=a 的解,则a 的值为A.-5 B.5 C.-1 D.1A6. 如图,将一个三角板 60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2 的大小是A .27°40′ B .57°40′ C .58°20′ D .62°20′7. 已知 AB =6,下面四个选项中能.确.定.点 C 是线段 AB 中点的是 A .AC +BC =6B .AC =BC =3C.B C =3 D .AB =2AC8. 若 x = 2 时 x4+mx 2 - n 的值为 6,则当 x = -2 时 x 4 +mx 2 - n 的值为A .-6B .0C .6D .269. 从图 1 的正方体上截去一个三棱锥,得到一个几何体,如图 2.从正面看图 2 的几何体,得到的平面图形是从正面看图 1图 2A B C D10. 数轴上点 A ,M ,B 分别表示数 a , a +b , b ,那么下列运算结果一定是正数的是A . a + bB . a - bC . abD . a - b二、填空题(本大题共 16 分,每小题 2 分) A M B北11.比较大小:-3-2.1(填“>”,“<”或“=”).12. 右图中 A ,B 两点之间的距离是厘米(精确 西东到厘米),点 B 在点 A 的南偏西°(精确到度).B南EFC D 113. 下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:.14. 如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩b余白色长方形的周长为 (用含 a ,b 的 a式子表示).ba15. 如图,点 O 在直线 AB 上,射线 OD 平分∠COA ,∠DOF =∠AOE =90°,图中与∠1 相等的角有 (请写出所有答案).AO B16. 传统文化与创意营销的结合使已有近 600 年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的 2 倍少 700 件,二者销量之和为 5900 件,用 x 表示珐琅书签的销量, 则可列出一元一次方程.17. 已知点 O 为数轴的原点,点 A ,B 在数轴上,若 AO =10,AB =8,且点 A 表示的数比 点 B表示的数小,则点 B 表示的数是 .18. 如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入 x 的值,当滚珠发生撞击,就输出相.撞.滚.珠.上代数式所表示数的和.y .已知当三个滚珠同时相撞时,不论输入 x 的值为多大,输出 y 的值总不变. (1)a =;(2)若输入一个整数 x ,某.些.滚珠相撞,输出 y 值恰好为-1,则 x = .三、解答题(本大题共 24 分,第 19,20 题每题 8 分,第 21~22 每题 4 分)19. 计算:(1)5 - 32÷(-3) ; (2)-8⨯( 1 +1-11) . 2420.解方程:(1)5x + 8 =1- 2x ;(2)x +1=2 - 3x.2 321.已知2a -b =-2 ,求代数式3(2ab2 - 4a +b) - 2(3ab2 - 2a) +b 的值.22.如图,点C 在∠AOB 的边OA 上,选择合适的画图工具按要求画图.(1)反向延长射线OB,得到射线OD,画∠AOD 的角平分线OE;(2)在射线OD 上取一点F,使得OF=OC;(3)在射线OE 上作一点P,使得CP+FP 最小;(4)写出你完成(3)的作图依据:.四、解答题(本大题共11 分,23 题6 分,24 题5 分)23.如图1,已知点C 在线段AB 上,点M 为AB 的中点,AC=8,CB=2.(1)求CM 的长;(2)如图2,点D 在线段AB 上,若AC=BD,判.断.点M 是否为线段CD 的中点,并说.明.理由.A M CB A D MC B图 1 图 224.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9 这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9 个数的和恰好为1 到9 这9 个正整数之和,由此可得S= ;图 1 【第二步】再设中间数为x,利用包含中间数x 的行、列、对角线上的数与9 个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x 的值.x五、解答题(本大题共19 分,25~26 每题6 分,27 题7 分)图2 25.已知k ≠ 0 ,将关于x 的方程kx +b = 0 记作方程◇.(1)当k =2 ,b= - 4 时,方程◇的解为;(2)若方程◇的解为x=-3 ,写出一组满足条件的k,b 值:k =,b= ;(3)若方程◇的解为x=4 ,求关于y 的方程k (3y + 2)-b = 0 的解.26.如图,已知点O 在直线AB 上,作射线OC,点D 在平面内,∠BOD 与∠AOC 互余.(1)若∠AOC:∠BOD=4:5,则∠BOD= ;(2)若∠AOC=α(0°<α≤45°),ON 平分∠COD.①当点D 在∠BOC 内,补全图形,直接写出∠AON 的值(用含α的式子表示);②若∠AON 与∠COD 互补,求出α 的值.备用图27.数学是一门充满思维乐趣的学科,现有3⨯ 3 的数阵A,数阵每个位置所对应的数都是1,2 或3.定义a∗b 为数阵中第a 行第b 列的数.例如,数阵A 第3 行第2 列所对应的数是3,所以3∗2=3.(1)对于数阵A,2∗3 的值为;若2∗3=2∗x,则x 的值为;(2)若一个3⨯ 3 的数阵对任意的a,b,c 均满足以下条件:条件一:a∗a=a;条件二:(a *b) *c =a *c ;则称此数阵是“有趣的”.①请判断数阵A 是否是“有趣的”.你的结论:(填“是”或“否”);②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1 的值;③是否存在“有趣的”数阵,对任意的a,b 满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.。
(完整word版)2018北师大版初一数学上册期末试卷和答案
初一数学期末试题一、你一定能选对!(每小题只有一个正确的选项,每小题3分,共30分) 1.5的相反数是( )A .51- B .51C .5-D .52.2008北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为( )A .0.91×105B .9.1×104C .91×103D .9.1×1033.已知某地一天中的最高温度为10°C ,最低温度为5-°C ,则这天最高温度与最低温度的温差为( ) A .15°C B .5°C C .10-°CD .5-°C4.如图,AB=CD ,那么AC 与BD 的大小关系是 ( )A .AC=BDB .AC <BD C .AC >BD D .不能确定5.下面合并同类项正确的是( ) A .3x +3y=6x yB .2 m 2n -m 2 n = m 2n C .ab ab 954=+ D .7x 2-5x 2=26.下列计算中正确的是( )A .()()11134=-⨯- B .()933=--C .931313=⎪⎭⎫ ⎝⎛-÷ D .9313=⎪⎭⎫ ⎝⎛-÷-7.在公式1()2S a b h =+,已知a =3,h =4,S =16,那么b =( ) A .-1 B .11 C .5 D .258.如图是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的( ).9.下列事件,你认为是必然事件的是( )A .今年大年初一的天气晴空万里.B .小明说昨晚突然停电,因光线不好,吃饭时不小心咬到自己的鼻子.C .元旦节这一天刚好是1月1日.D .一个袋子里装有白球1个、红球9个,每个球除颜色外都相同,任意摸出一个球是红色的.10.表示“m 的5倍与n 的平方的差”的代数式是( )A .22n )m 5(-B .2n m 5-C .2)n m 5(-D .22n m 5- 二、你能填得又快又准吗?(每小题3分,共30分)11.-4的绝对值是 .12.如果向东走10米记为+10米,那么向西走5米记为 .13.代数式2xy-的系数是 . 14.计算 (-3)-(-7) = . 15.计算 0.25︒= 分.ACBDA .B .C .D .16.如图,OC 平分∠AOB ,若∠BOC =22°,则∠AOB = .17.俯视图为圆的立体图形可能是 . 18.右图是2008年10月份的日历,如果用 d c b a 表示类似灰色矩形框中的4个数,试用等式写出c b a ,,之间的数字关系 .19.初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 (填“大”或“小” ).20.一个数的平方为16,这个数是 .三、请你来算一算、做一做,千万别出错哟! (共60分)21.计算:(每小题5分,共10分)(1)[]223)2()3(28⨯-+-⨯-(2))81()31(8332-+---22.解方程:(每小题5分,共10分) (1)5234x x -=-(2)311236x x -+-=23.(本小题6分)先化简,再求值:)543(22222xy y x xy y x +--,其中x =1,y =-1.24.(本小题8分)数学与生活!ACBO25.(本小题8分)问题解决!下表是某中学七年级(4)班的同学就“父母回家后,你会主动给他们倒一杯水吗?”情况调查结果,请你按照要求用扇形统计图表示该调查结果.(1)计算各类人数所占百分比及各个扇形圆心角的度数,并填入下表:(2)制作扇形统计图,标上相应的类及百分比,并写上统计图的名称.26.(本小题8分)实践操作!如图:(1)过点A画出直线l1的垂线,并注明垂足C.(2)过点A画直线l1的平行线l2.(3)在直线l1上任取一点D(D不与C重合),过点D画直线l2的垂线DB,并注明垂足B.(4)通过画图,试判断直线AC与BD的位置关系.27.(本小题10分)观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.(3)通过猜想,写出(2)中与第n个点阵相对应的等式____________________.…①1=1 ②1+2=()2221⨯+=3 ③1+2+3=()2331⨯+=6 ④___________________l12017-2018学年度上学期期末教学质量监控检测七年级数学试卷 参考答案一、你一定能选对!(每小题只有一个正确的选项,每题3分,共30分)1.C 2.B 3.A 4.A 5.B 6.D 7.C 8.D 9.C 10.B 二、你能填得又快又准吗?(每小题3分,共30分)11.4 12.-5米 13.12- 14.4 15.15 16.44° 17.球或圆柱 18.a + d = b + c (b =a +1,d =c +1,c =a +7,d =b +7 等答案不唯一) 19.小 20.±4三、请你来算一算、做一做,千万别出错哟!(共60分)21.计算:(每小题5分,共10分)22282(3)[(2)3]829(6)81836103626-⨯-+-⨯=-⨯+-=-+=-+=(1)23112()()383823112131()()3838338811122---+-=-+-=++--=-=() 22.解方程:(每小题5分,共10分)1 523453422221x x x x x x -=--=-+=-=-()解:移项,得合并同类项,得方程两边同除于,得 31122363(3)2(1)13922112x x x x x x x -+-=--+=---==()解:去分母,得去括号,得移项、合并同类项,得23.(本小题6分)解:原式22225432xy y x xy y x -+-=2286xy y x -= 当x =1,y =-1时,原式2261(1)81(1)6814=⨯⨯--⨯⨯-=--=-24.(本小题8分)解:设买1袋牛奶需x 元,则买一盒饼干需(x +7.9)元。
最新北京市第101中学2018-2019学年七年级上学期期中考试数学试题-
【解析】
【分析】
先移项,再合并同类项、化系数为1,求出未知数的值即可.
【详解】
原方程可化为:7x+2x=10-1,
合并同类项得,9x=9,
系数化为1得,x=1.
故1,-2, 三个数中,是方程7x+1=10-2x的解的是1.
【点睛】
本题考查的是一元一次方程的解法,比较简单.
15.>
【解析】
【分析】
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么-4万元表示.
12.用四舍五入法,对1.549取近似数(精确到十分位)是_____。
13.写出一个只含字母 ,且系数为-1,次数为6的单项式____________。
14.在1,-2, 这三个数中,是方程7x+1=10-2x的解的是____________。
【详解】
A、C不是同类项,不能合并;
B、正确;
D、原式= .
故选B.
【点睛】
本题考查的知识点为:
同类项的定义:所含字母相同,相同字母的指数相同.
合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.
7.C
【解析】
试题分析:∵a,b都在原点的左边,a在b的左边,∴a<0,b<0,a<b,∴a+b<0,ab>0, >1,∴A,B,D都对,故选C.
A.0B.2C.0或2D.-2
10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()
北京第一零一中学人教版七年级上学期 压轴题 期末复习数学试题
北京第一零一中学人教版七年级上学期 压轴题 期末复习数学试题一、压轴题1.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.2.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.3.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.4.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?5.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.6.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.7.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?8.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点.(1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围);(3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.9.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)10.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.11.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.12.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.13.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.14.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.15.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 2.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.3.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.4.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.5.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-.解得α125=. 综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.6.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.7.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.8.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,∴2t﹣10=8﹣t,t=6;综上,t的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.9.(1)25-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.10.(1)3456;45678S S=+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n项的钢管数.【详解】(1)3456;45678S S=+++=++++(2)方法不唯一,例如:12S=+1233S=+++123444S=+++++12345555S=+++++++(3)方法不唯一,例如:()()12 (2)S n n n n=++++++()()()()=.....12.....1112n n n nn n n n+++++++=+++()312n n=+【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.11.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,12.(1)AC=4cm, BC=8cm;(2)当45t=时,AP PQ=;(3)当2t=时,P与Q第一次相遇;(4)35191cm.224t PQ=当为,,时,【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.13.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解 综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.14.(1)10,(a+b);(2)①60个单位长度;②10-3t ,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A 、B 两点表示的数,即可得出结论;(2) ①点P 运动的时间与A 、B 相遇所用时间相等,根据路程=速度×时间即可求得;②由P 点用最短的时间首次碰到A 点,且与B 点未碰到,可知开始时点P 是和点A 相向而行的;③点P 与点A 的距离越来越小,而点P 与点B 的距离越来越大,不存在PA=PB 的时候.【详解】解:(1)∵A 、B 所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P 是AB 的中点,∴AP=60=30,∴点P 表示的数是-20+30=10;∵如图,点A 、B 对应的数值分别是a 和b , ∴AB=b-a ,∵P 是AB 的中点,∴AP=(b-a)∴点P 表示的数是a+(b-a) =(a+b).(2)①点A 和点B 相向而行,相遇的时间为=20(秒),此即整个过程中点P 运动的时间.所以,点P 的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P 点用最短的时间首次碰到A 点,且与B 点未碰到,可知开始时点P 是和点A 相向而行的.所以这个过程中0≤t≤7.5.P 点经过t 秒钟后,在数轴上对应的数值为10-3t . 故答案是:10-3t ,0≤t≤7.5.③不存在.由②可知,点P 是和点A 相向而行的,整个过程中,点P 与点A 的距离越来越小,而点P 与点B 的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t ,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.15.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度.
16. 有总长为 l 的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为 t,则所围成的园子的
面积为
.
17. 如图,O 为直线 AB 上一点,∠AOC 的平分线是 OM,∠BOC 的平分线是 ON,则∠MON 的度数为
.
2/8
18. 众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,文化价值极高.而数学与古诗词更是
B. 奉先殿
C. 永和宫
D. 长春宫
8. 小明从家里骑车到学校,每小时骑 15km,可早到 10 分钟,每小时骑 12 km,就会迟到 5 分钟.问他家到学校
的路程是多少千米?设他家到学校的路程为 x 千米,则根据题意列出方程正确的是
A. x 10 x 5 15 60 12 60
B. x 10 x 5 15 60 12 60
(2)作射线 OF,使射线 OC 是∠EOF 三等分线,则∠AOF 的度数为
.
28. (6 分)阅读下面材料:
小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数: x1, x2 , x3 ,称为数列 x1, x2 , x3 .计算 x1 ,
x1 x2 2
,
x1 x2 x3 3
将这三个数的最小值称为数列 x1, x2, x3 的价值.
1 ________
(
1 30 BOC 30
OE平分BOC
( ( 已知
)
) )
)
4/8
COE 1 BOC
(
)
2
COE 15
27.(6 分) 如图,已知∠AOB=120°,OE 平分∠AOB,射线 OC 在∠AOE 内部,∠BOC=90°,
(1)求∠EOC 的度数.
按照其所在计价区段,计算票价.规则如下表:
乘车路程计价区段
0-10
11-15
16-20
-
对应票价(元)
2
3
4
-
另外,一卡通刷卡实行 5 折优惠,小明用一卡通乘车上车时站名上对应的数字是 5,下车时站名上对应的数字
是 22,那么小明乘车的费用是
A. 1.5 元
B. 2 元
C. 3.5 元
D. 4 元
10. 若存在 3 个互不相同的有理数 a,b,c,使得|1﹣a|+|1﹣3a|+|1﹣4a|=|1﹣b|+|1﹣3b|+|1﹣4b|=|1﹣c|+|1
.(只填序
号)
①∠AOD 与∠BOE 互为余角;
②OD 平分∠COA;
③∠BOE=56°40′,则∠COE=61°40′;
④∠BOE=2∠COD.
20. 如图,将一条长为 60cm 的卷尺铺平后沿着图中箭头的方向折叠,使得卷尺自身的一部分重合,然后在重合
部分沿与卷尺的边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度比为 1:2:3,则折痕对应的刻度可能
(1)作射线 AB、DC 交于点 E; (2)作线段 AC,在线段 AC 上找到一点 P,使其到 B、D 两个点的距离之和最短; (3)作直线 PE 交线段 AD 于点 M.
25. (5 分)列方程或方程组解应用题: 某商店需要购进甲、乙两种商品共 160 件,其进价和售价如下表:
甲
乙
进价(元/件) 15
6
2
(3)
2x y 3, 3x 4 y 10.
解:
解:
解:
23.(5 分)先化简, 再求值: 1 xy2 (2x2 y 1) 2( 1 xy2 3 x2 y) ,其中 x 1, y 2 .
2
4
2
3/8
24.(5 分)如图,平面上有四个点 A,B,C,D,请按要求画图:
﹣3c|+|1﹣4c|=t,则 t=
A. 1
B. 3
C. 1
D. 2
12
4
二、填空题:本大题共 10 小题,每题 3 分,共 30 分。
11. 用两个钉子就可以把木条固定在墙上,这种现象的理论依据是
.
12. 若 2xm1 6 0 是关于 x 的一元一次方程,则 m 的值为
.
13.
关于
x、y
例如,对于数列 2,﹣1,3,因为 2 2 , 2 (1) 1 , 2 (1) 3 4 ,所以数列
22
3
3
2,﹣1,3 的价值为 1 . 2
小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列
﹣1,2,3 的价值为 1 ;数列 3,﹣1,2 的价值为 1;….经过研究,小丁发现,对于“2,﹣1,3”这三个数,按 2
C. x 10 x 5 15 60 12 60
D. x 10 x 5
15
12
9. 随着北京公交票制票价调整,公交集团更换了新版公交站票,乘客在乘车时可以通过新版公交站牌计算乘车
费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再
x 2 ………………4 分
(3)
2x 3x
y 3, 4 y 10.
解:由①得: y 2x 3分③
………………………1 分
把③代入②得 x 2 ……………………………… 2 分 把 x 2 代入③得 y 1 ……………………3 分
∴方程组的解为
x y
=1 ……………… …… 4 分
(1)x 7 10 4(x 0.5)
(2) 2x 5 3x 1 1
6
2
解:2x 5 3(3x 1) 6 …… 2 分 解:x 7 10 4x 2 …………2 分
x3
…… 4 分
2x 5 9x 3 6 ……………3 分
那么点 C 是【A,B】的好点; 又如,表示 0 的点 D 到点 A 的距离是 1,到点 B 的距离是 2,那么点 D 【A,B】
的好点,点 D 【B,A】的好点.(请在横线上填“是”或“不是”)
知识运用:
5/8
(2)如图 2,M、N 为数轴上两点,点 M 所表示的数为 4,点 N 所表示的数为﹣2.数
三、解答题:本大题共 9 小题,共 60 分.
21. (8 分)(1) 3 4 28 7
解:= 12+( 4) …………… 2 分
(2) 9 3 ( 1 1) 12 (2)2 . 23
解:=3+(6 4) 4 ……………2 分
= 16 ………………… 4 分 22.(12 分)
C. 由 8x=43x 得 8x3x =4
D. 由 2(x1)= 3 得 2x1=3
6. 下列选项中,左边的平面图形能够折成右边封闭的立体图形的是
7. 下图是北京故宫博物院地图的一部分.小明和小刚参观故宫,小明的位置在太和殿,此时小刚在小明的北偏西 约 20的排列顺序得到的不同数列中,价值的最小值为 1 .根据以上材料,回答下列问题: 2
(1)数列﹣4,﹣3,2 的价值为
;
(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值
为
,取得价值最小值的数列为
(写出一个即可);
(3)将 2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为
有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗
集,其中五言绝句比七言绝句多 13 首,总字数却反而少了 20 个字.问两种诗各多少首?设七言绝句有 x 首,根据
题意,可列方程为___________________.
19. 如图所示,O 为直线 AB 上一点,OC 平分∠AOE,∠DOE=90°,则以下结论正确的有
的方程组
ax y x by
0,
的解是
1.
x y
1, 1.
,则
a+b
的值为
.
14. 如图,已知线段 AB 6 ,延长线段 AB 到 C , 使 BC 2AB ,点 D 是 AC 的中点.则 BD 的长为
.
15. 若一个角的补角比它的余角的 2 倍还多 70°,则这个角的度数为
的值有
.
三、解答题:本大题共 9 小题,共 60 分.
21.(8 分)计算:
(1) 3 4 28 7 .
22.(12 分)解方程或方程组:
(2) 9 3 ( 1 1) 12 (2)2 . 23
(1) x 7 10 4(x 0.5) .
(2) 2x 5 3x 1 1.
26.(5 分)互余定义 …………………………………………………1 分 BOC,同角的余角相等 ………………………………………………3 分 等量代换 …………………………………………………………………4 分 角平分线定义. ……………………………………………………… 5 分
2018 北京 101 中学初一(上)期末
数学
一、选择题:本大题共 10 小题,每题 3 分,共 30 分. (下列每小题中有四个备选答案,其中只.有.一.个.是符合题意 的,请将正确选项前的字母填在答题纸表格中相应的位置上)
1. - 1 的相反数是 5
A. 1 5
B. 1 5
C. 5
D. 5
所表示的点是【N,
M】的好点;
(3)如图 3,A、B 为数轴上两点,点 A 所表示的数为﹣20,点 B 所表示的数为 40.现有一只电子蚂蚁 P 从点
B 出发,以 4 个单位每秒的速度向左运动,到达点 A 停止.求当经过多少秒时,P、A 和 B 中恰有一个点为其余两点