人教版2018-2019学年初一上册数学期末试卷及答案

合集下载

2018-2019学年江苏省扬州市高邮市七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省扬州市高邮市七年级(上)期末数学试卷(解析版)

8.1. 2. 3. 4. 5. 6. 7. 、填空题(本大题共 10 小题,共 30.0分)2018-2019 学年江苏省扬州市高邮市七年级(上)期末数学试卷、选择题(本大题共 8 小题,共 24.0 分) 9. 若向东走 20m 记作+20m ,则向西走 5m 可记作 ___________ m . 10. 如图所示,是一个立体图形的展开图,这立体图形是 ________________ 11. 计算: 2( a-b )+3b= ______ . 若把笔尖放在数轴的原点,先向左移动 3个单位长度,再向右移动 1 个单位长度,则这时笔尖位置表 示的数是( ) A. B. C. D. 我国的“嫦娥四号” 度搜索“嫦娥四号” A. 列各组单项式中, A.于北京时间 2019年 1月 3日 10: 26分,在月球背面成功软着陆,目前,通过百 可看到有相关的结果约 1250000 个,则数据 1250000 用科学记数法可表示为 ( 12.13. 14. 列各数中: +( -5)、 |-1|、 - 、 -( -2019 )、 负数有 ______ 个.已知 ∠1与∠2为对顶角,且 ∠1的补角的度数为 度数为 ________ .如图,甲从 O 点出发向北偏西 27 °方向走到点 向南偏东 42°方向走到点 B ,则∠AOB 的度数是0、 79 A , -2018) 2019°32′,则 ∠2的乙从点 O 出发B. C. D.是同类项一组的是(列结论中,正确的是(B. 2abc 与C. 2xy 与 2abD.与 3yxA. 单项式 的系数是 ,次数是 2B. 单项式 mn 的次数是 1,没有系数C. 单项式的系数是 ,次数是 4D. 多项式是三次三项式把一条弯曲的道路改成直道,可以缩短路程,其道理是( A. 两点确定一条直线 C. 垂线段最短 列方程变形中,正确的是( A. 由B. 由C. 由D. 由 B. 两点之间,线段最短 D. 以上都不正确,系数化为 1 得: ,移项得: ,去分母得: ,去括号得: 如图,已知点 C 为 AB 上一点, BC=12cm ,AC= CB ,D 、E 分别为 AC 、AB 的中点,则 DE 的长为( ) A. 3 B. 4 C. 5 D. 6钟面角是指时钟的时针与分针所成的角(这里所说的角均是指不大于平角的角),如:在 钟面角为 90°,那么在 3:30与 5:00 之间钟面角恰好为 90°的次数共有()3: 00 时的15. 若 a 2+ab=-2,b 2-3ab=-3,则 a 2+4ab-b 2的值为 _________ .16. 图①是边长为 40cm 的正方形纸板, 裁掉阴影部分后将其折叠成如图② 所示的长方体盒子,已知该长方体的宽与高相等,这个长方体的体积 为 cm 3.17. 如图,有理数 a 、b 、c 在数轴上,则化简|a-c|-|2a+b|+|c-b|的结果是 __________ .18. 数轴上,点 A 的初始位置表示的数为 2,现点 A 做如下移动:第 1次点 A 向左移动 1个单位长度至点 A 1,第 2次从点 A 1向右移动 2个单位长度至点 A 2,第 3 次从点 A 2向左移动 3个单位长度至点 A 3,按 照这种移动方式进行下去,点 A 2019 表示的数是 _______________________________ . 三、计算题(本大题共 2小题,共 16.0 分)19. 计算:(1)(-8)-(-7)-|-3|(2)-22+3×(-1)2019-9 ÷( -3)20. 先化简,后求值:( 3m 2-4mn )-2(m 2+2mn ),其中 m ,n 满足单项式 -x m+1y 3与 y n x 2的和仍是单项式.24. 一个由一些相同的正方体搭成的几何体,如图1 是它的俯视图和左视图.(1)这个几何体可以是图A、B、C 中的____________ ;(2)这个几何体最多有_______ 块相同的正方体搭成,并在网格中画出正方体最多时的主视图(如图2).四、解答题(本大题共8 小题,共80.0 分)21. 解下列方程:(1)3x-4=-2(x-1)(2)1+ =22. 利用网格作图:(1)过点C 作AB 的平行线CD;(2)过点B 作AC 的垂线,垂足为E;过点C 作AB的垂线,垂足为(3)点A到BE 的距离是线段________ 的长度.25. 如图,已知线段AB=20cm,C 是线段AB延长线上一点,点D 是BC 的中点.(1)当AC=6CD 时,求AC 的长;(2)若点E 是AC 的中点,求DE 的长.23. 已知:关于y的方程2-3(1-y)=2y的解和关于x的方程m(x-3)-2=-8 的解相同,求m 的值.26. 随着出行方式的多样化,我市三类打车方式的收费标准如下:出租车滴滴快车同城快车3 千米以内:8 元路程:1.4 元/千米路程:1.8 元/千米如:假设打车的平均车速为 40 千米 /小时,乘坐 8 千米,耗时 8÷40×60=12 分钟,出租车的收费为: 8+2.4 × ( 8-3)=20(元);滴滴快车的收费为: 8×1.4+12 ×0.6=18.4(元);同城快车的收费为: 8×1.8+12×0.4=19.2 (元)解决问题:(1)小明乘车从高邮文体公园去盂城驿,全程 10 千米,如果小明使用滴滴快车,需要支付的打车费用为 ______ 元;(2)小丽乘车从甲地去乙地,用滴滴快车比乘坐出租车节省了28.8 元,求甲、乙两地的距离;(3)同城快车为了和滴滴快车竞争客户,分别推出了优惠方式:滴滴快车对于乘车路程在5 千米以上(含 5 千米)的客户每次收费立减 11 元;同城快车车费对折优惠.通过计算,对同城快车和滴滴快车 两种打车方式,采用哪一种打车方式更合算提出你的建议.27. 定义:对于确定位置的三个数: a ,b ,c ,计算 a-b , , ,将这三个数的最小值称为 a ,b ,c 的“分差”,例如,对于 1,-2,3,因为 1-(-2)=3, =-1, =- ,所以 1,-2,3 的“分差”为 - .(1)-2,-4,1 的“分差”为 _________ ;( 2)调整“ -2,-4,1”这三个数的位置,得到不同的“分差”,那么这些不同“分差”中的最大值是(3)调整 -1,6, x 这三个数的位置,得到不同的“分差”,若其中的一个“分差”为28. 如图 1,已知∠AOB 和∠COD (∠COD <∠AOB ),∠COD 绕着点 O 旋转, OE ,OF 分别是∠AOC ,∠BOD 的角平分线.(1)如图 2,当∠COD 在∠AOB 的内部时,①当 ∠AOB=90°,∠COD=45°时, ∠EOF = ________ ; ②当 ∠AOB=80°,∠EOF=20°时,∠COD= ______ ;(2)当∠COD 在如图 3的位置时,猜想 ∠EOF 的与∠AOB 和∠COD 的数量关系,并说明你的理由; (3)当∠COD 在如图 4的位置时, ∠EOF 与∠AOB 和∠COD 的数量关系是 ___________ .超过 3千米的部分: 2.4 元/千米时间: 0.6 元/分钟 时间: 0.4 元/分钟2,求 x 的值.答案和解析1. 【答案】A【解析】解:由题意可得,0-3+1=-2.故选:A.向左移动3个长度单位,就是减3,向右移动 1 个单位就是加1,因此表示的数为0-3+1=-2本题考查了数轴,正确理解左减右加是解题的关键.2. 【答案】D【解析】解:将1250000用科学记数法表示为:1.25 ×106.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a<| 10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值> 10时,n 是正数;当原数的绝对值 <1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a<| 10,n为整数,表示时关键要正确确定a的值以及n 的值.3. 【答案】D【解析】解:A 、相同字母的指数不同,故 A 错误;B、字母不同不是同类项,故B 错误;C、字母不同不是同类项,故C 错误;D、字母项相同且相同字母的指数也同,故 D 正确;故选:D.根据同类项是字母项相同且相同字母的指数也同,可得答案.成了中考的常考点.4. 【答案】C【解析】解:A 、单项式的系数是,次数是3,故A 错误;B、单项式mn的次数是2,系数是1,故B错误;C、单项式-ab2x 的系数是-1,次数是4,故C正确;D、多项式2x2+xy+3 是二次三项式,故D 错误.故选:C.根据单项式的系数是数字因数,次数是字母指数和,多项式的次数是多项式中次数最高的单项式的次数,可得答案.本题考查了单项式,单项式的系数是数字因数,次数是字母指数和,多项式的次数是多项式中次数最高的单项式的次数.5. 【答案】B【解析】解:把弯曲的公路改成直道,其道理是两点之间线段最短.故选:B.根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短解答.本题主要考查了线段的性质,熟记两点之间线段最短是解题的关键.6. 【答案】D【解析】解:A 、3x=-4 ,系数化为1,得x=- ,故选项 A 错误,B、5=2-x ,移项,得x=2-5,故选项 B 错误,C、由+ =1,去分母得:4(x+1)+3(2x-3)=24,故选项 C 错误,D、由2x-(1-5x)=5,去括号得:2x+5x-1=5,故选项 D 正确,120°,查出个数即是所得.根据解方程的方法和等式的性质可以判断各个选项是否正确,从而可以解答本题.本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.7. 【答案】D 【解析】解:根据题意BC=12cm,AC= CB,所以AC=18cm,所以AB=AC+CB=30cm ,又因为D、E 分别为AC、AB 的中点,所以DE=AE-AD= (AB-AC )=6cm.故选:D.求DE的长度,即求出AD 和AE 的长度.因为D、E分别为AC、AB 的中点,故DE= (AB-AC ),又BC=12cm,AC= CB,可求出AC,即可求出AB ,代入上述代数式,即可求出DE 的长度.考查了两点间的距离,此题要求学生灵活运用线段的和、差、倍、分之间的数量关系,熟练掌握.8. 【答案】C 【解析】解:设n=分,m=点,当m=3 时,有5.5 °×n-30°×3=90°或 5.5 °×n-30°×3=270°,解得:n1= ,n2= ;当m=4 时,有5.5 °×n-30°×4=90°或30°×4-5.5 °×n=90°,解得:n3= ,n4= .当综上可知:钟面角为90°的情况有 4 次.故选:C.根据钟面角公式套入3点,4点即可求得具体哪个时间钟面角为90°,4点整时显然钟面角为考查了一元一次方程的应用,钟面角,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9. 【答案】-5【解析】解:若向东走20m记作+20m,则向西走5m 可记作-5m,故答案为:-5.根据题意,可以表示出向西走5m,本题得以解决.本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际含义.10. 【答案】圆锥【解析】解:如图所示,是一个立体图形的展开图,这个立体图形是圆锥.故答案为:圆锥.根据圆锥表面展开图的特点解题.本题考查圆锥表面展开图,记住圆锥的表面展开图的特征是解题的关键.11. 【答案】2a+b【解析】解:原式=2a-2b+3b=2a+b.故答案为:2a+b原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.12. 【答案】3【解析】解:在所列实数中,负数有+(-5)、- 、(-2018)2019这3个数,故答案为:3.故选:D.根据相反数的意义、绝对值的意义、乘方的意义,可化简各数,根据小于零的数是负数,可得答根据整式的运算法则即可求出答案.案.本题考查了正数和负数,化简各数是解题关键,注意小于零的数是负数.13. 【答案】100 °28′【解析】解:∵∠1 的补角的度数为79°32,′∴∠1=180 °-79° 32′ =100,° 28′∵∠1 与∠2 为对顶角,∴∠2=∠1=100 ° 2,8′故答案为:100°28.′求出∠1 的度数,根据对顶角相等求出即可.本题考查了对顶角和补角的定义,能熟记对顶角相等和补角的定义是解此题的关键.14. 【答案】165 °【解析】解:由题意得,∠AOB=27°+90°+90 °-42 °=165°,故答案为:165°.∠AOB 等于三个角的和,求出各角的度数,相加即可.本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.15. 【答案】1【解析】解:∵a2+ab=-2,b2-3ab=-3,∴原式=a2+ab-(b2-3ab)=-2-(-3)=1,故答案为:1.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.16. 【答案】2000【解析】解:设长方体的高为xcm,则其宽为,根据题意得:x=20-x ,解得x=10,故长方体的宽与高均为10cm,长为40-10×2=20cm,所以长方体的体积为:20×10×10=2000cm3.故答案为:2000设长方体的高为xcm,然后表示出其宽为20-x,根据该长方体的宽与高相等,列方程即可求出长方体的宽与高,再求出长,然后根据长方体的体积公式求解即可.本题考查了一元一次方程的应用以及展开图折叠成几何体,根据长方体宽和高之间的关系,列出一元一次方程是解题的关键.17. 【答案】a+2c【解析】解:由数轴可知,a<b<0<c,∴a-c<0,2a+b<0,c-b>0,|a-c|-|2a+b|+|c-b|=(-a+c)-(-2a-b)+(c-b)=-a+c+2a+b+c-b=a+2c,故答案为a+2c.先根据数轴确定绝对值里的代数式的正负,然后去括号合并同类项即可.本题考查了数轴与绝对值,正确去绝对值是解题的关键.18. 【答案】-1008【解析】解:第n次移动n 个单位,第2019次左移2019×1 个单位,每左移右移各一次后,点 A 右移1个所以A2019表示的数是1×(2018÷2)-2019×1+1=-1008.故答案为:-1008.奇数次移动是左移,偶数次移动是右移,第n次移动n个单位.每左移右移各一次后,点 A 右移1个单位,故第2018次右移后,点A 向右移动1×(2018÷2)个单位,第2019次左移2019个单位,故点A2019表示的数是1×(2018÷2)-2019×1+2.本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动的后的实际距离和方向是解答次题的关键.19. 【答案】解:(1)原式=-8+7-3=-4-3=-7;(2)原式=-4+3×(-1)-(-3)=-4-3+3=-4.【解析】(1)减法转化为加法、计算绝对值,再计算加减可得;(2)先计算乘方和除法,再计算乘法,最后计算加减可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.2 2 220. 【答案】解:原式=3m2-4mn-2m2-4mn=m2-8mn ,∵单项式-x m+1 y3与y n x2的和仍是单项式,∴-x m+1y3与y n x2是同类项,∴m+1=2,即m=1,n=3,则原式=1-8 ×1×3=-23.【解析】先去括号,合并同类项化简原式,再根据同类项的概念求出m和n的值,代入计算可得.本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.3x-4=-2x+2,3x+2x=2+4 ,5x=6,x=1.2;(2)1+ = ,6+2(2x+1)=3(3x-2),6+4x+2=9x-6,4x-9x=-6-6-2 ,-5x=-14,x= .【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 【答案】AE【解析】解:(1)取格点D,直线直线CD,直线CD即为所求.(2)取格点M,作直线BM 交AC于点E,直线BM 即为所求,取格点N,作直线CN交AB 于F,直线CN 即为所求.(3)点A 到BE的距离是线段AE 的长度故答案为AE.(1)取格点D,直线直线CD,直线CD 即为所求.(2)取格点M,作直线BM 交AC 于点E,直线BM 即为所求,取格点N ,作直线CN 交AB 于F,直线CN 即为所求.(3)点A 到BE的距离是线段AE 的长度本题考查作图-应用与设计,点到直线的距离,平行线的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23. 【答案】解:解方程2-3(1-y)=2y得:y=1,∵关于y的方程2-3(1-y)=2y的解和关于x 的方程m(x-3)-2=-8 的解相同,∴x=1,∴把x=1 代入m(x-3)-2=-8 得:-2m-2=-8 ,解得:m=3 .【解析】求出第一个方程的解,把求出的数代入第二个方程,再求出m 即可.本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的方程是解此题的关键.24. 【答案】B 10【解析】解:(1)观察俯视图和左视图可知几何体是B,故答案为B.2)这个几何体最多有10 个相同的正方体搭成.故答案为:B,10.(1)分别画出图A,B,C 的左视图,俯视图即可判断.(2)根据左视图,俯视图即可解决问题.本题考查作图-三视图,与三视图判定几何体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25. 【答案】解:(1)∵点D 是BC的中点,∴BC =2CD ,∵AC =6CD ,∴AB=4CD,∵AB =20 cm,∴CD =5cm,∴AC =30cm;(2)∵点E是AC 的中点,∴DE=CE-CD= AC- BC= (AC-BC)= AB=10cm.【解析】(1)由AC=6CD ,以及点D 是BC 的中点,可得AB=4CD,再根据AB=20cm,可求CD,进一步可求AC 的长;(2)根据中点的定义和线段的和差关系可得DE=CE-CD= AC- BC= (AC-BC )= AB ,依此可求DE 的长.本题考查的是两点间的距离,熟知中点的定义和各线段之间的和、差关系是解答此题的关键.26. 【答案】23【解析】主视图如图所示:解:(1)可根据上表可得,乘坐10千米,耗时10÷40×60=15分钟,则滴滴快车的收费为:10×1.4+15 ×0.6=23 元故答案为:23(2)∵28.8>8 ∴甲、乙两地的距离大于 3 千米∴设两地的距离为S,则有(S-3)×2.4+8-(×60×0.6)=28.8,整理得0.1S+0.8=28.8 解得S=280故甲、乙两地的距离为280 千米(3)当两地大于5千米时,设同城快车的费为M1,可得M1=0.5 ×(1.8S+ ×60×0.4)=1.2S,滴滴快车的收费为M2=1.4S+ ×60×0.6-11=2.3S-11①当M1=M2 时,有1.2S=2.3S-11,解得S=10,故当S为10千米时,两者都可以选②当两地相距离小于5千米时,滴滴快车没有优惠,此时滴滴快车的收费为:1.4S+×60×0.6=2.3S>1.2S,故选同城快车③当两地大于 5 千米小于10 千米时,可计算得M1>M2,故选滴滴快车④当两地大于10千米时,可计算得,M1<M2,故选同城快车(1)可根据上表可得,乘坐10千米,耗时10÷40×60=15分钟,则滴滴快车的收费为:10×1.4+15 ×0.6=23 元(2)由于滴滴快车比乘坐出租车节省了28.8元,可知行驶的路程超过了3千米.故可设两地的距离为S,则可列式子为:(S-3)×2.4+8-(×60×0.6)=28.8,求解S即可(3)首先计算出同城快车和滴滴快车两种收费相等时的情况,再进行讨论哪一种更合算.此题主要考查列代数式解方程,在第(3)中,也可以利用一次函数的图象进行解题.27.【答案】【解析】∴a-b=-2-(-4)=2,=∴-2,-4,1的“分差”为故答案为:2)① 若a=-2,b=1,c=-4∴-2,1,-4的“分差”为-3②若a=-4,b=-2,c=1则a-b=-4-(-2 )=-2,= ,=∴-4,-2,1的“分差”为③若a=-4,b=1,c=-2则a-b=-4-1=-5 ,= ,=∴-4,1,-2的“分差”为-5④若a=1,b=-4,c=-2则a-b=1-(-4 )=5,= ,=∴1,-4,-2的“分差”为⑤若a=1,b=-2,c=-4则a-b=1-(-2 )=3,= ,=∴1,-2,-4的“分差”为综上所述,这些不同“分差”中的最大值为故答案为:3)∵“分差”为2,-1-6=-7①a=6,b=x ,c=-1,则a-b=-2-1=-3 ,= =1,∴三个数的顺序不能是-1,6,x和-1,x,6和x,-1,6∴a-b=6-x,若6-x=2,得x=4,< 2,不符合若,得x=5,6-x=1<2,不符合②a=6,b=-1,c=x ,∴a-b=6-(-1)=7,= ,=若,得x=2,<2,不符合若,得x=-7,> 2,符合③a=x,b=6,c=-1∴a-b=x-6,= ,=若x-6=2,得x=8,> 2,符合若,得x=3,x-6=-3<2,不符合综上所述,x 的值为-7或8.(1)按“新定义”代入三个代数式求值再比较大小.(2)三个数顺便不同可以有 6 种组合,除第(1)题的顺序,计算其余五种情况的“分差”,再比较大小.(3)由“分差”为2(是正数)和-1-6=-7<2可知,-1-6 不能对应a-b,a-c,b-c,所以剩三种情况:6,-1,x 或6,x,-1或x,6,-1.每种情况下计算得三个代数式后,分别令两个含x的式子等于2,求出x,再代入检查此时“分差”是否为2.本题考查了实数的加减、一元一次方程的解法,分类讨论.分类的依据是3个数顺序不同时算法不同,还要再检验求出的x 是否满足题意.28.【答案】22.5 °40° ∠EOF =180 °- ∠AOB+ COD【解析】解:(1)①∵∠AOB=9°0 ,∠COD=4°5 ,设∠AOD=x ,则∠BOC=4°5 -x,∴∠AOC=45°+x,∠BOD=90°-x,∵OE,OF分别是∠AOC,∠BOD 的角平分线,∴∠AOE= ∠AOC= (45 °+x),∠DOF= ∠BOD=45°- x,∴∠AOF= ∠DOF+∠AOD=45°- x+x=45 +°x,∴∠EOF=∠AOF-∠AOE=22.5 °;②∵∠AOB=80°,∠EOF=20°,设∠AOD=x ,∠DOC=y,∴∠AOC=y+x ,∠BOD=80°-x,∵OE,OF分别是∠AOC,∠BOD 的角平分线,∴∠AOE= ∠AOC= (y+x ),∠DOF= ∠BOD=40°- x,∴∠AOF= ∠DOF+∠AOD=40°- x+x=40 +°x,∴∠EOF=∠AOF-∠AOE=40°+ x- (y+x )=20 °;∴y=40 °,∴∠COD=40°;(2)∠EOF= ∠AOB- ∠COD;理由:设∠BODα= ,∴∠AOC=∠AOB+α+∠COD,∵OE,OF分别是∠AOC,∠BOD 的角平分线,∴∠AOE= ∠AOC= (∠AOB+α+∠COD),∠BOF= ∠BOD= α,∴∠AOF= ∠AOB+ ∠BOF=∠AOB+ α,∴∠EOF=∠AOF-∠AOE= ∠AOB+ α- (∠AOB+α+∠COD)= ∠AOB- ∠COD;(3)∠EOF=18°0 - ∠AOB+ COD,理由:设∠AOCα= ,∠BODβ= ,∵∠AOB=360°-∠AOC-∠BOD-∠COD,∴α +β =36-(0∠°AOB+ ∠COD),∵OE,OF分别是∠AOC,∠BOD 的角平分线,∴∠COE= ∠AOC= α,∠DOF= ∠BOD= β,∴∠EOF=∠COE+∠COD+∠DOF= α+β+∠COD= (α +)β+∠COD= (360 °-∠AOB- ∠COD)+∠COD,即∠EOF=18°0 - ∠AOB+ COD.故答案为:22.5 °,40°,∠EOF=18°0 - ∠AOB+ COD.(1)①∠AOD=x ,则∠BOC=4°5 -x,求得∠AOC=4°5 +x,∠BOD=9°0 -x,根据角平分线的定义得到∠AOE= ∠AOC= (45°+x),∠DOF= ∠BOD=45°- x,根据角的和差即可得到结论;② 设∠AOD=x ,∠DOC=y,得到∠AOC=y+x ,∠BOD=80°-x,根据角平分线的定义和角的和差即可得到结论;(2)设∠BODα= ,根据角平分线的定义得到∠AOE= ∠AOC= (∠AOB+α+∠COD),∠BOF=∠BOD= α,根据角的和差即可得到结论;(3)设∠AOCα= ,∠BODβ= ,根据角平分线定义得到∠COE= ∠AOC= α,∠DOF=∠BOD= β,于是得到结论..本题考查了余角和补角,角的和差,角平分线的定义,正确的识别识别图形是解题的关键.。

2018-2019学年河南省许昌市襄城县七年级(上)期末数学试卷(解析版)

2018-2019学年河南省许昌市襄城县七年级(上)期末数学试卷(解析版)

2018-2019学年河南省许昌市襄城县七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.2019的绝对值等于()A.﹣2019B.2019C.﹣D.2.已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2B.m+2C.D.2m3.下列图形,不是柱体的是()A.B.C.D.4.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1025.若单项式a m﹣1b2与a2b n的和仍是单项式,则n m的值是()A.3B.6C.8D.96.近似数5.0×102精确到()A.十分位B.个位C.十位D.百位7.某商品打七折后价格为a元,则原价为()A.a元B.a元C.30%a元D.a元8.下列语句错误的是()A.两点确定一条直线B.同角的余角相等C.两点之间线段最短D.两点之间的距离是指连接这两点的线段9.湖南省2017年公务员录用考试是这样统计成绩的,综合成绩=笔试成绩×60%+面试成绩×40%,小红姐姐的笔试成绩是82分,她的竞争对手的笔试成绩是86分,小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多()A.2.4分B.4分C.5分D.6分10.下列说法:①若一个角的余角是62°,则它的补角的度数为118°;②32xy3是四次单项式;③;④两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为2cm,其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共15分)11.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是.12.下面是按一定规律排列的整式:a2,3a4,5a6,7a8,…则第8个整式是.13.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为14.《算法统宗》是我国明代的一部数学名著,记载了很多有趣的问题.其中有一道“李白饮酒”的数学诗谜,原诗如下:“今携一壶酒,游春郊外走,逢朋加一倍,入店饮斗九.相逢三处店,饮尽壶中酒.”诗文大意为:李白去郊外春游,带了一壶酒,每次遇见朋友,就先到酒馆里将壶里的酒增加一倍,然后喝掉其中的19升酒,这天他共三次遇到了朋友,恰好把壶中的酒喝光.根据诗中的叙述,若我们设壶中原有x升酒,可以列出的方程为.15.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?三、解答题(共75分)16.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有条.17.计算:(1)9﹣(﹣11)+(﹣4)﹣|﹣3|(2)(﹣1)2×(﹣5)+(﹣2)3÷4.18.解方程(1)2x﹣9=7x+6(2)=1﹣19.某粮库3天内粮食进出库的吨数如下表(“+“表示进库“﹣”表示出库):(1)经过这3天,管理员结算发现库里还有480吨粮食,那么3天前库里存粮多少吨?(2)若进出的装卸费是每吨5元,则这3天要付多少装卸费?20.如图,一块边长为x米(x>4)正方形的铁皮,如果截去一个长4米,宽3米的一个长方形.(1)用含x的代数式表示阴影部分的面积.(2)当x=6时,求阴影部分的面积.(3)直接写出阴影部分的周长(用含x的代数式表示).21.如图,A、B两地均为海上观测站,从A地发现它的东北方向上有一艘船,同时,从B 地发现它在东偏南30度方向上,试在图中确定这艘船(用点M表示)的位置,求出∠AMB的度数.22.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?23.如图,数轴上点A,B表示的有理数分别为﹣6,3,点P是射线AB上一个动点(不与点A,B重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.2018-2019学年河南省许昌市襄城县七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.2019的绝对值等于()A.﹣2019B.2019C.﹣D.【解答】解:2019的绝对值等于2019.故选:B.2.已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2B.m+2C.D.2m【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.3.下列图形,不是柱体的是()A.B.C.D.【解答】解:长方体是四棱柱,三棱柱是柱体,圆锥是锥体,圆柱是柱体,故选:D.4.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×102【解答】解:7600=7.6×103,故选:B.5.若单项式a m﹣1b2与a2b n的和仍是单项式,则n m的值是()A.3B.6C.8D.9【解答】解:∵单项式a m﹣1b2与a2b n的和仍是单项式,∴m﹣1=2,n=2,解得:m=3,n=2,∴n m=32=9,故选:D.6.近似数5.0×102精确到()A.十分位B.个位C.十位D.百位【解答】解:近似数5.0×102精确到十位.故选:C.7.某商品打七折后价格为a元,则原价为()A.a元B.a元C.30%a元D.a元【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.8.下列语句错误的是()A.两点确定一条直线B.同角的余角相等C.两点之间线段最短D.两点之间的距离是指连接这两点的线段【解答】解:A、两点确定一条直线是正确的,不符合题意;B、同角的余角相等是正确的,不符合题意;C、两点之间,线段最短是正确的,不符合题意;D、两点之间的距离是指连接这两点的线段的长度,原来的说法是错误的,符合题意.故选:D.9.湖南省2017年公务员录用考试是这样统计成绩的,综合成绩=笔试成绩×60%+面试成绩×40%,小红姐姐的笔试成绩是82分,她的竞争对手的笔试成绩是86分,小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多()A.2.4分B.4分C.5分D.6分【解答】解:设小红姐姐要使自己的综合成绩追平竞争对手,她的面试成绩必须比竞争对手多x分,根据题意得:82×60%+40%x=86×60%,解得:x=6.答:小红姐姐要使自己的综合成绩追平竞争对手,则她的面试成绩必须比竞争对手多6分.故选:D.10.下列说法:①若一个角的余角是62°,则它的补角的度数为118°;②32xy3是四次单项式;③;④两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为2cm,其中说法正确的个数有()A.1个B.2个C.3个D.4个【解答】解::①若一个角的余角是62°,则它的补角的度数为118°;故符合题意;②32xy3是四次单项式;故符合题意;③;故符合题意;④两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为2cm,故符合题意;故选:D.二、填空题(每小题3分,共15分)11.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是伟.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.12.下面是按一定规律排列的整式:a2,3a4,5a6,7a8,…则第8个整式是15a16.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.13.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为18°52′或116°10′【解答】解:如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;②OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.14.《算法统宗》是我国明代的一部数学名著,记载了很多有趣的问题.其中有一道“李白饮酒”的数学诗谜,原诗如下:“今携一壶酒,游春郊外走,逢朋加一倍,入店饮斗九.相逢三处店,饮尽壶中酒.”诗文大意为:李白去郊外春游,带了一壶酒,每次遇见朋友,就先到酒馆里将壶里的酒增加一倍,然后喝掉其中的19升酒,这天他共三次遇到了朋友,恰好把壶中的酒喝光.根据诗中的叙述,若我们设壶中原有x升酒,可以列出的方程为2[2(2x﹣19)﹣19]=19.【解答】解:设壶中原有x升酒,根据题意得:2[2(2x﹣19)﹣19]=19,故答案是:2[2(2x﹣19)﹣19]=19.15.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【解答】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.三、解答题(共75分)16.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有6条.【解答】解:(1)(2)(3)图中有线段6条.17.计算:(1)9﹣(﹣11)+(﹣4)﹣|﹣3|(2)(﹣1)2×(﹣5)+(﹣2)3÷4.【解答】解:(1)9﹣(﹣11)+(﹣4)﹣|﹣3|=20﹣4﹣3=16﹣3=13(2)(﹣1)2×(﹣5)+(﹣2)3÷4=1×(﹣5)+(﹣8)÷4=﹣5﹣2=﹣718.解方程(1)2x﹣9=7x+6(2)=1﹣【解答】解:(1)2x﹣9=7x+6,﹣5x=15,∴x=﹣3;(2)=1﹣,2(x+3)=12﹣3(3﹣2x),2x+6=12﹣9+6x,﹣4x=﹣3,∴x=.19.某粮库3天内粮食进出库的吨数如下表(“+“表示进库“﹣”表示出库):(1)经过这3天,管理员结算发现库里还有480吨粮食,那么3天前库里存粮多少吨?(2)若进出的装卸费是每吨5元,则这3天要付多少装卸费?【解答】解:(1)﹣30+20+(﹣5)=﹣15,480+15=495(吨),答:3天前库里存粮495吨;(2)(30+20+5)×5=275(元),答:这3天要付275元装卸费.20.如图,一块边长为x米(x>4)正方形的铁皮,如果截去一个长4米,宽3米的一个长方形.(1)用含x的代数式表示阴影部分的面积.(2)当x=6时,求阴影部分的面积.(3)直接写出阴影部分的周长(用含x的代数式表示).【解答】解:(1)S阴影=S正方形﹣S矩形=x2﹣3×4=(x2﹣12)平方米;(2)当x=6时,x2﹣12=36﹣12=24平方米;(3)阴影部分的周长=正方形的周长=4x米.21.如图,A、B两地均为海上观测站,从A地发现它的东北方向上有一艘船,同时,从B 地发现它在东偏南30度方向上,试在图中确定这艘船(用点M表示)的位置,求出∠AMB的度数.【解答】解:如图所示:作∠1=45°,∠2=30°,两射线相交于M点,则点M即为所求,∠AMB=180°﹣60°﹣45°=75°.22.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50y=或者60×y+50﹣60×y=400,解得y=.答:爸爸第一次追上小明后,在第二次相遇前,再经过或分钟,小明和爸爸相距50m.23.如图,数轴上点A,B表示的有理数分别为﹣6,3,点P是射线AB上一个动点(不与点A,B重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为6;若点P表示的有理数是6,那么MN的长为6.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.【解答】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=4,NP=BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=8,NP=BP=2,∴MN=MP﹣NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>﹣6且a≠3).当﹣6<a<3时(如图1),AP=a+6,BP=3﹣a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=(a+6),NP=BP=(3﹣a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a﹣3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=(a+6),NP=BP=(a﹣3),∴MN=MP﹣NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.。

山西省太原市2018-2019学年七年级上期末数学试卷含答案解析

山西省太原市2018-2019学年七年级上期末数学试卷含答案解析

山西省太原市2019~2019学年度七年级上学期期末数学试卷一、选择题:共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求.请选出并将其字母代码填入表格相应的位置1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.12.为完成下列任务,最适合用普查的是()A.了解全国2019~2019学年度七年级学生的视力情况B.对乘坐高铁的乘客进行安检C.了解一批电视机的使用寿命D.检测汾河某段水域的水质情况3.如图的立体图形是由7个完全相同的小立方体组成的,从正面看这个立体图形得到的形状图是()A.B.C.D.4.下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣|﹣2|5.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.16.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生7.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为()A.xy B.x+y C.10y+x D.10x+y8.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.5+3=8 B.﹣5+3=﹣2 C.5﹣3=2 D.﹣5﹣3=﹣89.下列解方程的步骤中正确的是()A.由13﹣x=﹣5,得13﹣5=xB.由﹣7x+3=﹣13x﹣2,得13x+7x=﹣3﹣2C.由﹣7x=1,得x=﹣7D.由=2,得x=610.如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是()A.甲公司近年的销售收入增长速度比乙公司快B.乙公司近年的销售收入增长速度比甲公司快C.甲、乙两公司近年的销售收入增长速度一样快D.不能确定甲、乙两公司近年销售收入增长速度的快慢二、填空题:本题共5个小题,每小题3分,共15分.只要求写出最后结果11.计算:2ab+3ab=.12.太阳的半径约为696000000米,用科学记数法表示为米.13.某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:.14.若方程4x﹣1=□x+2的解是x=3,则“□”处的数为.15.如图,用黑白两色正方形瓷砖按一定的规律铺设地图案,第n个图案中白色瓷砖有块(用含n的式子表示)16.家电经销部某品牌一种电视机的进价为800元/台,为了促销准备按标价的6折销售,若要使卖出一台这种电视机就能获利400元,则这种电视机的标价应为元/台.三、解答题:本大题共8小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤17.计算:(1)(﹣5)﹣2×4+(﹣3)(2)(﹣2)2+(﹣)×24.18.先化简,再求值:3(x2y+xy2)+(2x2y﹣3xy2),其中x=﹣2,y=3.19.解方程:(1)3x+1=9﹣x(2)=1﹣.20.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为,BD的长度为.21.某区环保部门为了提高宣传垃圾分类的实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,进行整理后,绘制了如下两幅不完整的统计图:根据统计图解答下列问题:(1)求抽样调查的生活垃圾的总吨数以及其中的有害垃圾的吨数;(2)求扇形统计图中,“D”部分所对应的圆心角的度数,并将条形统计图补充完整;(3)调查发现,在可回收物中废纸垃圾约占,每回收1吨废纸可再造0.85吨的再生纸,假设该城市每月生产的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可制成再生纸多少吨?22.某文具店中一种铅笔的售价为2元/支,一种圆珠笔的售价为3元/支,某一天该文具店卖出这两种笔共60支,卖的金额165元,求该文具店这一天卖出的这两种笔各多少支.23.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为°;(3)请从下列(A),(B)两题中任选一题作答.我选择:.(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC 与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON 的度数为°;∠AOM﹣∠CON的度数为°.24.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)请从下列(A),(B)两题中任选一题作答.我选择:.(A)当两车之间的距离为315千米时,求快车所行的路程;(B)①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;(用含x的代数式表示)②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.山西省太原市2019~2019学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题:共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求.请选出并将其字母代码填入表格相应的位置1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.1【考点】有理数大小比较.【分析】根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.【解答】解:比﹣2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有A符合.故选:A.【点评】本题考查实数大小的比较,是基础性的题目.2.为完成下列任务,最适合用普查的是()A.了解全国2019~2019学年度七年级学生的视力情况B.对乘坐高铁的乘客进行安检C.了解一批电视机的使用寿命D.检测汾河某段水域的水质情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全国2019~2019学年度七年级学生的视力情况,调查范围广,适合抽样调查,故A错误;B、对乘坐高铁的乘客进行安检是事关重大的调查,适合普查,故B正确;C、了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,故C错误;D、检测汾河某段水域的水质情况,无法普查,适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图的立体图形是由7个完全相同的小立方体组成的,从正面看这个立体图形得到的形状图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看从下面第一层是三个小正方形,第二层左右各一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,把从正面看到的图形画出是解题关键.4.下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣|﹣2|【考点】正数和负数.【分析】先化简,再利用负数的意义判定.【解答】解:A、|﹣2|=2,是正数;B、(﹣2)2=4,是正数;C、﹣(﹣2)=2,是正数;D、﹣|﹣2|=﹣2,是负数.故选:D.【点评】此题考查绝对值、相反数以、乘方以及负数的意义等基础知识.5.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.1【考点】专题:正方体相对两个面上的文字.【分析】把图中所示的展开图折叠成立体图形,标有数字1的面与标有数字4的面相对,标有数字2的面与标有数字6的面相对,标有数字3的面与标有数字5的面相对.【解答】解:根据题意和图示可知:“1”的对面是4,“6”的对面是2,“3”的对面是5.故选:C.【点评】本题考查了正方体相对两个面上的文字,关键是灵活运用正方体的相对面特点解答问题,立意新颖,是一道不错的题.6.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生【考点】全面调查与抽样调查.【专题】应用题.【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:因为要了解初中的视力情况范围较大、难度较大,所以应采取抽样调查的方法比较合适,本题考查的是调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,故只有D符合实际并具有普遍性,故选:D.【点评】本题考查了调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,难度适中.7.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为()A.xy B.x+y C.10y+x D.10x+y【考点】列代数式.【分析】把十位上的数字y乘以10后加上x即可.【解答】解:这个两位数表示为10x+y.故选D.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键是十位数的表示方法.8.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.5+3=8 B.﹣5+3=﹣2 C.5﹣3=2 D.﹣5﹣3=﹣8【考点】数轴.【专题】推理填空题.【分析】把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,根据“左减右加”的法则,用算式表示上述过程与结果,正确的是:﹣5+3=﹣2,据此解答即可.【解答】解:把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是:﹣5+3=﹣2.故选:B.【点评】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确“左减右加”的法则.9.下列解方程的步骤中正确的是()A.由13﹣x=﹣5,得13﹣5=xB.由﹣7x+3=﹣13x﹣2,得13x+7x=﹣3﹣2C.由﹣7x=1,得x=﹣7D.由=2,得x=6【考点】解一元一次方程.【分析】去分母,去括号时一定要注意:不要漏乘方程的每一项,移项要变号.【解答】解:A、移项﹣5没有变号,错误;B、﹣7x改变了符号,错误;C、系数化为1是两边同时除以﹣7,错误;D、正确.故选D.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.10.如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是()A.甲公司近年的销售收入增长速度比乙公司快B.乙公司近年的销售收入增长速度比甲公司快C.甲、乙两公司近年的销售收入增长速度一样快D.不能确定甲、乙两公司近年销售收入增长速度的快慢【考点】折线统计图.【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2010年的销售收入约为50万元,2019年约为90万元,则从2010~2019年甲公司增长了90﹣50=40万元;乙公司2010年的销售收入约为50万元,2019年约为70万元,则从2010~2019年甲公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.二、填空题:本题共5个小题,每小题3分,共15分.只要求写出最后结果11.计算:2ab+3ab=5ab.【考点】合并同类项.【专题】常规题型.【分析】这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(2+3)ab=5ab.故答案为:5ab.【点评】本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.12.太阳的半径约为696000000米,用科学记数法表示为 6.96×108米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:696 000 000=6.96×108,故答案为:6.96×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等.【考点】频数(率)分布直方图.【分析】根据频数分布直方图进行解答即可.【解答】解:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等,故答案为:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等.【点评】此题考查频数分布直方图问题,关键是根据频数分布直方图得出信息.14.若方程4x﹣1=□x+2的解是x=3,则“□”处的数为3.【考点】一元一次方程的解.【分析】根据方程解的定义,将x=3代入即可得出答案.【解答】解:∵方程4x﹣1=□x+2的解是x=3,∴12﹣1=3□+2,∴“□”处的数为3,故答案为3.【点评】本题考查了一元一次方程的解,根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.15.如图,用黑白两色正方形瓷砖按一定的规律铺设地图案,第n个图案中白色瓷砖有3n+2块(用含n的式子表示)【考点】规律型:图形的变化类.【分析】由图形可知:第1个图案是5个.第二个图案是8个,多了3个…依此类推,发现后一个图案中的白色瓷砖总比前一个多3个,即第n个图案中白色瓷砖块数是5+3(n﹣1)=3n+2.【解答】解:∵第n个图案中白色瓷砖有1+3+1=5块,第n个图案中白色瓷砖有1+3×2+1=5块,第n个图案中白色瓷砖有1+3×3+1=11块,…∴第n个图案中白色瓷砖有1+3n+1=3n+2块.故答案为:3n+2.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律:后一个图案中的白色瓷砖总比前一个多3个解决问题.16.家电经销部某品牌一种电视机的进价为800元/台,为了促销准备按标价的6折销售,若要使卖出一台这种电视机就能获利400元,则这种电视机的标价应为2000元/台.【考点】一元一次方程的应用.【分析】根据题意,设这种电视机的标价为x元,按照等量关系“标价×0.6﹣进价=400元,列出一元一次方程即可求解.【解答】解:设这种电视机的标价为x元,依题意有0.6x﹣800=400,解得x=2000.答:这种电视机的标价应为2000元/台.故答案为:2000.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题:本大题共8小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤17.计算:(1)(﹣5)﹣2×4+(﹣3)(2)(﹣2)2+(﹣)×24.【考点】有理数的混合运算.【分析】(1)先算乘法,再算加减即可;(2)根据乘法分配律进行计算即可.【解答】解:(1)原式=﹣5﹣8﹣3=﹣16;(2)原式=×4+×24﹣×24=2+9﹣4=7.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.18.先化简,再求值:3(x2y+xy2)+(2x2y﹣3xy2),其中x=﹣2,y=3.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2y+3xy2+2x2y﹣3xy2=5x2y,当x=﹣2,y=3时,原式=60.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:(1)3x+1=9﹣x(2)=1﹣.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去分母,再去括号,移项,合并同类项,最后化系数为1,从而得到方程的解.【解答】解:(1)移项得:3x+x=9﹣1,合并同类项得:4x=8,化系数为1得:x=2;(2)去分母得:3(2x﹣1)=12﹣4(x+2),去括号得:6x﹣3=12﹣4x﹣8,移项合并得:10x=7,系数化为1得:得x=.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为12,BD的长度为18.【考点】两点间的距离;直线、射线、线段.【专题】作图题.【分析】(1)根据题意画出图形即可;(2)由AC=2AB,AD=AC,以及DB=AD+AB求解即可.【解答】解:(1)如图所示;(2)∵AB=BC,∴AC=2AB=2×6=12.∵AD=AC=12,∴BD=AD+AB=12+6=18.故答案为:12;18.【点评】本题主要考查的是两点间的距离,掌握图形间线段之间的长度关系式解题的关键.21.某区环保部门为了提高宣传垃圾分类的实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,进行整理后,绘制了如下两幅不完整的统计图:根据统计图解答下列问题:(1)求抽样调查的生活垃圾的总吨数以及其中的有害垃圾的吨数;(2)求扇形统计图中,“D”部分所对应的圆心角的度数,并将条形统计图补充完整;(3)调查发现,在可回收物中废纸垃圾约占,每回收1吨废纸可再造0.85吨的再生纸,假设该城市每月生产的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可制成再生纸多少吨?【考点】条形统计图;扇形统计图.【分析】(1)根据D类垃圾的数量是5吨,所占的百分比是10%,据此即可求得总数,然后根据百分比的意义求得有害垃圾的数量;(2)利用360°乘以对应的百分比即可求得圆心角的度数,根据百分比的意义求得B类垃圾的数量;(3)利用总吨数乘以54%,再乘以,最后乘以0.85即可求解.【解答】解:(1)抽样调查的生活垃圾的总吨数是5÷10%=50(吨),其中的有害垃圾的吨数是:500(1﹣54%﹣30%﹣10%)=3(吨);(2)扇形统计图中,“D”部分所对应的圆心角的度数是360×10%=36°.B类的垃圾吨数是50×30%=15(吨).;(3)每月回收的废纸可制成再生纸的数量是:10000×54%××0.85=918(吨).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某文具店中一种铅笔的售价为2元/支,一种圆珠笔的售价为3元/支,某一天该文具店卖出这两种笔共60支,卖的金额165元,求该文具店这一天卖出的这两种笔各多少支.【考点】一元一次方程的应用.【分析】设文具店这一天卖出这种铅笔x支,圆珠笔(60﹣x)支.根据“铅笔的售价为2元/支,圆珠笔的售价为3元/支,卖的金额165元”列出方程并解答.【解答】解:设文具店这一天卖出这种铅笔x支,圆珠笔(60﹣x)支.根据题意得:2x+3(60﹣x)=165,解这个方程,得x=15.60﹣x=45.答:文具店这一天卖出这种铅笔15支,圆珠笔45支.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为120°,∠CON的度数为150°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为30°;(3)请从下列(A),(B)两题中任选一题作答.我选择:A(或B).(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为30°;∠DOC与∠BON 的数量关系是∠DOC=∠BON(填“>”、“=”或“<”);(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON 的度数为150°;∠AOM﹣∠CON的度数为30°.【考点】角的计算;角平分线的定义.【分析】(1)利用两角互补,即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据直角三角板MON各角的度数以及图中各角的关系即能得出结论.【解答】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°.故答案为:120;150.(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,∠BOC=120°,∴∠BOM=∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为:30°.(3)(A)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(B)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,150∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为:A(或B);30;=;150;30.【点评】本题考查了角的计算,解题的关键是利用角间的各种关系,利用互余、互补即可解决问题.24.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)请从下列(A),(B)两题中任选一题作答.我选择:(A).(A)当两车之间的距离为315千米时,求快车所行的路程;(B)①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;(用含x的代数式表示)②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.【考点】一元一次方程的应用.【分析】(1)设慢车行驶的时间为x小时,根据相遇时,快车行驶的路程+慢车行驶的路程=900,依此列出方程,求解即可;(2)(A)当两车之间的距离为315千米时,分三种情况:①两车相遇前相距315千米,快车行驶的路程+慢车行驶的路程=900﹣315;②两车相遇后相距315千米,快车行驶的路程+慢车行驶的路程=900+315;③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在;(B)分三种情况:①慢车与快车相遇前;慢车与快车相遇后;快车到达乙地时;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时间为4++=5小时.设第二列快车行驶y小时与慢车相遇,根据相遇时,快车行驶的路程+慢车行驶的路程=900,求出y的值,进而求解即可.【解答】解:(1)设慢车行驶的时间为x小时,由题意得120(x+)+90x=900,解得x=4.答:当快车与慢车相遇时,慢车行驶了4小时;(2)(A)当两车之间的距离为315千米时,有两种情况:①两车相遇前相距315千米,此时120(x+)+90x=900﹣315,解得x=2.5.120(x+)=360(千米);②两车相遇后相距315千米,此时120(x+)+90x=900+315,解得x=5.5.120(x+)=720(千米);③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在.答:当两车之间的距离为315千米时,快车所行的路程为360千米或720千米;(B)①当慢车与快车相遇前,即0≤x<4时,两车的距离为900﹣120(x+)﹣90x=840﹣210x;当慢车与快车相遇后,快车到达乙地前,即4≤x<7.5时,两车的距离为120(x+)+90x﹣900=210x﹣840;当快车到达乙地时,即7.5≤x≤10时,两车的距离为90x;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时间为4++=5小时.设第二列快车行驶y小时与慢车相遇,由题意,得120y+×90=900,解得y=4,。

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。

人教版辽宁省沈阳市皇姑区2018-2019学年七年级(上)期末数学试卷(含解析)

人教版辽宁省沈阳市皇姑区2018-2019学年七年级(上)期末数学试卷(含解析)

2018-2019学年辽宁省沈阳市皇姑区七年级(上)期末数学试卷一、选择题1.(3分)﹣2019的相反数是()A.﹣2019B.2019C.﹣D.2.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2|C.﹣22D.(﹣2)23.(3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×106B.3.12×105C.31.2×105D.0.312×107 4.(3分)下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1C.﹣ab﹣ab=0D.﹣y2x+xy2=0 5.(3分)一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣13 6.(3分)下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式7.(3分)某商品打七折后价格为a元,则原价为()A.a元B.a元C.30%a元D.a元8.(3分)在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是()A.义B.仁C.智D.信9.(3分)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱10.(3分)如图,钟面上的时间是8:30,再经过t分钟,时针、分针第一次重合,则t为()A.B.C.D.二、填空题11.(3分)计算:15°37′+42°51′=.12.(3分)如果关于x的一元一次方程2x+a=x﹣1的解是x=﹣4,那么a的值为.13.(3分)把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC =.14.(3分)如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是.15.(3分)如图,找出其变化的规律,则第1345个图形中黑色正方形的数量是.16.(3分)当整数m=时,代数式的值是整数.三、解答题17.计算:﹣14﹣8÷(﹣2)×(﹣)18.解方程:x﹣=﹣119.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.20.补全下列解题过程如图,OD是∠AOC的平分线,且∠BOC﹣∠AOB=40°,若∠AOC=120°,求∠BOD 的度数.解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC=∠=°.∵∠BOC+∠=120°,∠BOC﹣∠AOB=40°,∴∠BOC=80°.∴∠BOD=∠BOC﹣∠=°.21.(1)如图是由10个同样大小的小正方体搭成的几何体,请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.22.某校共有900名学生,学校准备调查他们对“沈阳创建卫生城”知识的了解程度,团委对部分学生采用了随机抽样调查的方式,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示):(1)根据图中信息,学校决定对“不了解”和“了解一点”的同学进行培训,估计该校约有多少名学生参加培训?(2)请你直接将两个统计图补充完整.23.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:①两班各有多少学生?②如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?24.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图中的圆圈共有13层,请解决下列问题:(1)若自上往下,在图1每个圆圈中填上一串连续的正整数1,2,3,4,…,得到图3,则第11层最左边这个圆圈中的数是;(2)若自上往下,在图1每个圆圈中填上一串连续的整数﹣23,﹣22,﹣21,20,…,得到图4,则第10层最右边圆圈内的数是;(3)根据以上规律,求图4中第1层到第10层所有圆圈中各数之和(写出计算过程).25.如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为;(2)将长方形OABC沿数轴向右水平移动,移动后的长方形记为O1A1B1C1:①若移动后的长方形O1A1B1C1与原长方形OABC重叠部分的面积恰好等于原长方形OABC面积的时,则数轴上点A1表示的数为;②长方形OOBC在移动的过程中,点D为线段AA1的中点,点E为线段AO1的中点,当DO+EO=3时,AA1=.参考答案与试题解析一、选择题1.【解答】解:﹣2019的相反数是:2019.故选:B.2.【解答】解:A、﹣(﹣2)=2,错误;B、|﹣2|=2,错误;C、﹣22=﹣4,正确;D、(﹣2)2=4,错误;故选:C.3.【解答】解:3120000用科学记数法表示为3.12×106,故选:A.4.【解答】解:3x+2x2不是同类项不能合并,2a2b﹣a2b=a2b,﹣ab﹣ab=﹣2ab,﹣y2x+x y2=0.故选:D.5.【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选:C.6.【解答】解:A、调查你所在班级同学的身高,应采用全面调查方式,故方法不合理,故此选项错误;B、调查市场上某品牌电脑的使用寿命,采用普查的方式,方法不合理,故此选项错误;C、查嘉陵江的水质情况,采用抽样调查的方式,方法合理,故此选项正确;D、要了解全国初中学生的业余爱好,采用普查的方式,方法不合理,故此选项错误;故选:C.7.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.8.【解答】解:这是一个正方体的平面展开图,共有六个面,其中“礼”字对面的字是义.故选:A.9.【解答】解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.10.【解答】解:设从8:30点开始,经过x分钟,时针和分针第一次重合,由题意得:6x﹣0.5x=755.5x=75x=,答:至少再经过分钟时针和分针第一次重合.故选:B.二、填空题11.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.12.【解答】解:把x=﹣4代入方程2x+a=x﹣1得:﹣8+a=﹣5,解得:a=3,故答案为:3.13.【解答】解:∵沿OC折叠,B和B′重合,∴△BOC≌△B′OC,∴∠BOC=∠B′OC,∵∠AOB′=110°,∴∠BOB′=180°﹣110°=70°,∴∠B′OC=×70°=35°,故答案为:35°.14.【解答】解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.15.【解答】解:第(1)个图形中黑色正方形的数量为:2,第(2)个图形中黑色正方形的数量为:2+1=3,第(3)个图形中黑色正方形的数量为:2+1+2=2×2+1=5,第(4)个图形中黑色正方形的数量为:2+1+2+1=2×2+1×2=6,第(5)个图形中黑色正方形的数量为:2+1+2+1+2=2×3+1×2=8,∵1345是奇数,∴第1345个图形中黑色正方形的数量是:2×[(1345+1)÷2]+1×[(1345﹣1)÷2]=2018,故答案为:2018.16.【解答】解:∵要使代数式的值是整数,∴3m﹣1只能在±1、±2、±3、±6这四个数中取值,∵当3m﹣1=1时,∴m=,当3m﹣1=﹣1时,m=0,当3m﹣1=2时,m=1,当3m﹣1=﹣2时,m=﹣,当3m﹣1=3时,m=,当3m﹣1=﹣3时,m=﹣,当3m﹣1=6时,m=,当3m﹣1=﹣6时,m=﹣,又∵m也是整数,∴可得m=0或1,故答案为0或1.三、解答题17.【解答】解:原式=﹣1﹣8÷2×=﹣1﹣2=﹣3.18.【解答】解:15x﹣3(x﹣2)=5(2x+5)﹣1515x﹣3x+6=10x+25﹣1515x﹣3x﹣10x=25﹣15﹣6靖边县第五中学2x=4x=219.【解答】解:(4a2﹣3a)﹣(1﹣4a+4a2)=4a2﹣3a﹣1+4a﹣4a2=a﹣1,当a=﹣2时,a﹣1=﹣2﹣1=﹣3.20.【解答】解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC=∠AOC=60°.∵∠BOC+∠AOB=120°,∠BOC﹣∠AOB=40°,∴∠BOC=80°.∴∠BOD=∠BOC﹣∠DOC=20°故答案是:AOC,60,AOB,DOC,20.21.【解答】解:(1)如图所示:(2)最多还可以添加3个小正方体.故答案为:3.22.【解答】解:(1)∵被调查的学生人数为6÷10%=60(人),∴了解一点的人数为60﹣(6+18)=36(人),则估计该校约参加培训的学生约有900×=630(名);(2)了解一点的人数所占百分比为×100%=60%,比较了解的人数所占百分比为×100%=30%,补全图形如下:靖边县第五中学23.【解答】①解:设初一(1)班有x人,则有13x+11(104﹣x)=1240,解得:x=48.即初一(1)班48人,初一(2)班56人;②解:要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561,∴48人买51人的票可以更省钱.24.【解答】解:(1)∵1+2+3+…+10=55,∴第11层最左边这个圆圈中的数是56,故答案为56.(2)∵1+2+3+…+10=55,﹣23+(55﹣1)=31,∴第10层最右边圆圈内的数是31,故答案为31.(3)﹣23﹣22﹣21﹣20﹣…﹣1+1+2+3+…+31=220.25.【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=4,∴点A表示的数为4,故答案为:4;靖边县第五中学(2)长方形向右移动时,长方形O1A1B1C1与原长方形OABC重叠部分的面积是3,∴O1A=1,∴AA1=3,∴点A1表示的数为7,故答案为7;②设移动x个单位,DO=4+,EO=,∵DO+EO=3∴4+,解得x=﹣3,即左移3个单位时DO+EO=3时,AA1=3,故答案为:3.靖边县第五中学。

人教版数学七年级上学期期末测试题 (4)含答案

人教版数学七年级上学期期末测试题 (4)含答案

人教版数学七年级上学期期末测试题一、选择题(共10小题,每小题3分,共30分)1.﹣(﹣3)的绝对值是()A.﹣3B.C.3D.﹣2.2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害,将数据80亿用科学记数法表示为()A.8×108B.8×109C.0.8×109D.0.8×10103.下列式子计算正确的个数有()①a2+a2=a4;②3xy2﹣2xy2=1;③3ab﹣2ab=ab;④(﹣2)3﹣(﹣3)2=﹣17.A.1个B.2个C.3个D.0个4.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.5.某商店换季促销,将一件标价为240元的T恤打8折售出,获利20%,则这件T恤的成本为()A.144元B.160元C.192元D.200元6.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣17.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm8.若关于x的方程x m﹣1+2m+1=0是一元一次方程,则这个方程的解是()A.﹣5B.﹣3C.﹣1D.59.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b>0B.|a|>一b C.a+b>0D.ab<010.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d二、填空题(共6小题,每小题3分,共18分)11.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是.12.若∠α的补角为76°28′,则∠α=.13.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=.14.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有间教室.15.现定义某种运算“☆”,对给定的两个有理数a,b,有a☆b=2a﹣b.若||☆2=4,则x的值为.16.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB的中点,则PQ的长为.三、解答题17.(10分)计算(1)(﹣1)2018×5+(﹣2)3÷4(2)()×24﹣÷(﹣)3﹣|﹣25|.18.(10分)解方程(1)=1.(2)x﹣(3x﹣5)=2(5+x)19.(6分)先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.20.(8分)已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.21.(6分)一个角的补角比它的余角的3倍小20°,求这个角的度数.22.(10分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC 和∠COB的度数.23.(10分)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了9小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.24.(12分)某地区居民生活用电基本价格为每千瓦时0.40元,为了提倡节约用电,若每月用电量超过a千瓦时,则超过部分按基本电价提高20%收费.(1)某户八月份用电100千瓦时,共交电费43.20元,求a.(2)若该用户九月份的平均电费为0.42元,则九月份共用电多少千瓦时?应交电费是多少元?2018-2019学年内蒙古巴彦淖尔市临河区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】先根据相反数的定义化简,再根据正数的绝对值等于它本身解答.【解答】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C.【点评】本题考查了绝对值的性质,相反数的定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80亿=8×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解答】解:①a2+a2=2a2,故①错误;②3xy2﹣2xy2=xy2,故②错误;③3ab﹣2ab=ab,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B.【点评】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键.4.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.【点评】考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.【分析】先设成本为x元,则获利为20%x元,售价为0.8×240元,从而根据等量关系:售价=进价+利润列出方程,解出即可.【解答】解:设成本为x元,则获利为20%x元,售价为0.8×240元,由题意得:x+20%x=0.8×240,解得:x=160.即成本为160元.故选:B.【点评】本题考查一元一次方程的应用,是中考的热点,对于本题来说关键是设出未知数,表示出售价、进价、利润,然后根据等量关系售价=进价+利润列方程求解.6.【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.7.【分析】设较长的木条为AB,较短的木条为BC,根据中点定义求出BM、BN的长度,然后分①BC不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM﹣BN,分别代入数据进行计算即可得解.【解答】解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.【点评】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.8.【分析】根据一元一次方程的定义求出m的值,代入后求出方程的解即可.【解答】解:∵x m﹣1+2m+1=0是一元一次方程,∴m﹣1=1,∴m=2,即方程为x+5=0,解得:x=﹣5,故选:A.【点评】本题考查了对一元一次方程的定义和解一元一次方程的应用,关键是求出m的值.9.【分析】根据数轴上点的位置判断出a与b的正负,比较即可.【解答】解:由数轴上点的位置得:b<0<a,且|a|<|b|,∴|a|<﹣b,a+b<0,ab<0,故选:D.【点评】此题考查了数轴,绝对值,以及有理数的加法与乘法,熟练掌握运算法则是解本题的关键.10.【分析】根据等式的性质,依次分析各个选项,选出变形正确的选项即可.【解答】解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据角的和差计算即可.【解答】解:∠2=∠AOB﹣∠1=90°﹣35°=55°.故答案为:55°【点评】本题主要考查了角的和差,属于基础题,比较简单.12.【分析】根据互为补角的概念可得出∠α=180°﹣76°28′.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.【点评】本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.13.【分析】解方程x+5=7﹣2(x﹣2)得到x的值,代入6x+3k=14,得到关于k的一元一次方程,解之即可.【解答】解:解方程x+5=7﹣2(x﹣2)得:x=2,把x=2代入6x+3k=14得:12+3k=14,解得:k=,故答案为:【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.14.【分析】设有x间教室,根据若每间教室安排20名学生,则缺少3间教室,若每间教室安排24名学生,则空出一间教室,可列方程求解.【解答】解:设有x间教室.由题意,得:20(x+3)=24(x﹣1),解得x=21.故答案为:21.【点评】本题考查了列一元一次方程解实际问题的运用,解答时根据学生人数不变建立方程是关键.15.【分析】根据“a☆b=2a﹣b”,设||=m,得到关于m的一元一次方程,解之,根据不绝对值的定义,得到关于x的一元一次方程,解之即可.【解答】解:设||=m,则m☆2=4,根据题意得:2m﹣2=4,解得:m=3,则||=3,即=3或=﹣3,解得:x=﹣5或7,故答案为:﹣5或7.【点评】本题考查了解一元一次方程和有理数的混合运算,正确掌握一元一次方程的解法和有理数的混合运算是解题的关键.16.【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,于是得到结论.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm;故答案为:6cm.【点评】本题考查了两点间的距离.解题时,注意“数形结合”数学思想的应用.三、解答题17.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的灵活运用.【解答】解:(1)(﹣1)2018×5+(﹣2)3÷4=1×5+(﹣8)÷4=5﹣2=3;(2)()×24﹣÷(﹣)3﹣|﹣25|=15﹣16﹣÷(﹣)﹣25=15﹣16+2﹣25=﹣24.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【解答】解:(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=,(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.【分析】原式去括号合并得到最简结果,将m的值代入计算即可求出值.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.21.【分析】首先设这个角的度数为x°,则这个角的补角为(180﹣x)°,余角为(90﹣x)°,根据题意列出方程即可.【解答】解:设这个角的度数为x°,由题意得:180﹣x=3(90﹣x)﹣20,解得:x=35.答:这个角的度数为35°.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角22.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.23.【分析】设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,根据顺流航行的时间+逆流航行的时间=9h建立方程求出其解即可.【解答】解:设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,由题意,得解得:x=30,则A、B两码头间的距离为:30+10=40(km)答:A,B两地之间的路程是40km.【点评】本题考查了一元一次方程的应用,航行问题的数量关系的运用,顺水速度=静水速度+水速,逆水速度=静水速度﹣水速,列一元一次方程解实际问题的运用,解答时根据行程问题的数量关系建立方程是关键.24.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出.【解答】解:(1)根据题意可得:0.4a+0.4(1+20%)(100﹣a)=43.20解得:a=60答:a为60(2)设九月份共用电x千瓦0.42x=0.4×60+0.48×(x﹣60)解得:x=80∴0.42×80=33.6元答:九月份共用电80千瓦时,应交电费是33.6元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

2018-2019学年七年级上学期期末考试数学试题(含两套)

2018-2019学年七年级上学期期末考试数学试题(含两套)

2018-2019学年七年级(上)期末数学试卷一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5B.5C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE 的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B 看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度.(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.2018-2019学年辽宁省鞍山市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【解答】解:①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确.故选:B.【点评】此题主要考查了相反数、有理数、线段的性质、射线的表示方法,关键是牢固掌握基础知识.5.【分析】设每本书的进价是x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设每本书的进价是x元,根据题意得:(1+60%)x•﹣x=6.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点评】本题考查了余角和补角;根据题意得出各个角的度数是关键.7.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选:D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【点评】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.9.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:,的相反数是﹣,故答案为:﹣.【点评】本题考查了相反数,先求绝对值,再求相反数.10.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意,得﹣2m2n(答案不唯一),故答案为:﹣2m2n(答案不唯一).【点评】本题考查了单项式的定义,解答本题的关键是理解单项式的定义中的单项式的次数的正确含义.11.【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.5【点评】此题考查了角的计算,角平分线的定义,关键是观察图形可得∠BOC=135°,∠COD=45°.12.【分析】直接利用非负数的性质以及偶次方的性质得出x,y的值进而得出答案.【解答】解:∵|x+1|+(3﹣y)2=0,∴x+1=0,3﹣y=0,解得:x=﹣1,y=3,则x y的值是:(﹣1)3=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.【分析】观察题中的两个代数式a+b和2﹣3a﹣3b,可以发现,2﹣3a﹣3b=2﹣3(a+b),因此可整体代入a+b=2,求出结果.【解答】解:2﹣3a﹣3b=2﹣3(a+b)因为a+b=2,所以原式=2﹣3×2=2﹣6=﹣4故答案为:﹣4.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,应考虑a+b为一个整体,然后利用“整体代入法”求代数式的值.14.【分析】设这个角为x°,则这个角的补角为(180﹣x)°,根据题意可得方程x﹣(180﹣x)=36.8,再解即可.【解答】解:36°48′=36.8°,设这个角为x°,则这个角的补角为(180﹣x)°,x﹣(180﹣x)=36.8,解得:x=108.4,108.4°=108°24′,故答案为:108;24.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【分析】根据从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,可以列出相应的方程,从而可以解答本题.【解答】解:设变化后乙组有x人,33+(27﹣x)=3x,解得,x=15,即变化后乙组有15人,故答案为:15.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.16.【分析】根据题意分别计算出x3,x4,x5…,据此可得后面每个数均比前一个数大3,据此求解可得.【解答】解:由题意知=7,解得x3=10,=10,解得x4=13,=13,解得x5=16,……∴第n个数x n为3n+1,故答案为:3n+1.【点评】本题主要考查数字的变化规律,解题的关键是根据题意得出后面每个数均比前一个数大3的规律.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.【分析】(1)先算乘方,再算乘除法,最后加减法即可解答本题;(2)先算中括号里的,再根据有理数的乘法即可解答本题.【解答】解:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019=﹣4+8×(﹣)×﹣(﹣1)=﹣4﹣1+1=﹣4;(2)﹣×[﹣32×(﹣)2﹣2]====9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4x﹣(x﹣1)=4﹣2(3﹣x),去括号得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=3x2y﹣(2x2y﹣x2y﹣3x)=3x2y﹣(x2y﹣3x)=3x2y﹣x2y+3x=2x2y+3x当x=,y=2时,原式=2××2+3×()=1=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:∵A=x2+2x﹣1,A﹣B=﹣3x2+2x﹣1,∴A+B=2A﹣(A﹣B)=2x2+4x﹣2﹣(﹣3x2+2x﹣1)=2x2+4x﹣2+3x2﹣2x+1=5x2+2x﹣1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.四、解答题(每题8分,共16分)21.【分析】(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=×AC=×12=;(2)根据线段中点的定义得到AN=AC,得到AB=AC=AC,列方程即可得到结论.【解答】解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=×AC=×12=;(2)∵N为线段AC中点,∴AN=AC,∵AM:MB:BC=1:4:3,∴AB=AC=AC,∴BN=AB﹣AN=AC﹣AC=AC=2,∴AC=16.【点评】本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.22.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.【点评】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足,垂线的性质过一点有且只有一条直线与已知直线垂直.五、解答题(23题10分,24题10分,25题10分,共30分)23.【分析】设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据相遇时,两车行驶的路程和等于1180公里列出方程,求解即可.【解答】解:设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据题意,得200(x+)+280x=1180,解得x=2.25,2.25时=2时15分,7时+2时15分=9时15分.答:两车于9点15分相遇.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【分析】(1)设衬衫的单价为x元,则西装的单价为5x元,由两种产品共39000元为等量关系建立方程求出其解即可;(2)设单价为21元的A种产品为y件,单价为25元的B种产品为(105﹣y)件,根据支出总额为2447元为等量关系建立方程求出其解就可以判断结论.【解答】解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.【点评】本题考查了列一元一次方程的运用,解答时找准题目的等量关系是解答本题的关键.25.【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°﹣MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°.故答案为180;(2)∵∠AOC:∠BOC=1:3,∴∠BOC=180°×=135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°﹣∠MOC.∴∠BON=90°﹣∠MOB=90°﹣(135°﹣∠MOC)=∠MOC﹣45°.即∠COM﹣∠BON=45°.【点评】本题主要考查了角之间的和差关系,解题时一定要结合图形分析题目.2018—2019 学年度第一学期期末初一年级学业水平测试数学试卷(考试时间120分钟,全卷满分120分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。

七年级(上)期末数学试卷(含答案) (3)

七年级(上)期末数学试卷(含答案) (3)

北京市丰台区2018-2019学年七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)在﹣3,﹣1,2,0这四个数中,最小的数是()A.﹣3 B.﹣1 C.2 D.02.(3分)如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.3.(3分)北京某天的最高气温是6℃,最低气温是﹣1℃,则这天的温差是()A.﹣7℃B.﹣5℃C.5℃D.7℃4.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱5.(3分)如图,小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A.经过一点能画无数条直线B.两点之间,线段最短C.两点确定一条直线D.连接两点间的线段的长度,叫做这两点的距离6.(3分)下列运算正确的是()A.4m﹣m=3 B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=07.(3分)2018年10月24日珠港澳大桥正式通车,它是中国境内一座连接珠海、香港和澳门的桥隧工程.其中海底隧道由33节巨型沉管等部件组成,已知每节沉管重约74000吨,那么珠港澳大桥海底隧道所有巨型沉管的总重量约为()A.7.4×104吨B.7.4×105吨C.2.4×105吨D.2.4×106吨8.(3分)有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b9.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等的图形是()A.B.C.D.10.(3分)如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.63 B.70 C.96 D.105二、填空题(本题共16分,每小题2分)11.(2分)绝对值等于3的数是.12.(2分)单项式﹣x2y3的系数是,次数是.13.(2分)若a,b互为相反数,则5a+5b的值为.14.(2分)若∠α=47°30′,则∠α的补角的度数为.15.(2分)若x=4是关于x的一元一次方程ax=x﹣1的解,则a=.16.(2分)学习直线、射线、线段时,老师请同学们交流这样一个问题:直线上有三点A,B,C,若AB=6,BC=2,点D是线段AB的中点,请你求出线段CD的长.小华同学通过计算得到CD的长是5.你认为小华的答案是否正确(填“是”或“否”).你的理由是.17.(2分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地.若设此人第一天走的路程为x里,依题意可列方程为.18.(2分)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.集合中的元素是互不相同的,如一组数1,2,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比有理数可以进行加法运算,集合也可以“相加”.我们规定:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若已知A={﹣2,0,1,4,6},B={﹣1,0,4},则A+B.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.(3分)计算:﹣7﹣(﹣13)+(﹣9).20.(4分)计算:﹣8×(+﹣)21.(4分)计算:(﹣1)2019+|﹣|÷(﹣4)×822.(5分)解方程:2x+3(5﹣x)=4.23.(5分)=1﹣.24.(5分)如图,平面上有三个点A,O,B.(1)画直线OA,射线OB;(2)连接AB,用圆规在射线OB上截取OC=AB(保留作图痕迹);(3)用量角器测量∠AOB的大小(精确到度).25.(5分)先化简,再求值:3(a2b+ab2)﹣(3a2b﹣1)﹣ab2﹣1,其中a=1,b=﹣3.26.(5分)如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC与AC 边交于点E.(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于;(2)证明以上结论.证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=.(理由:)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠+∠)=.27.(6分)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,两班学生共104人,其中初一(1)班有40多人,不足50人,教育基地门票价格如下:原计划两班都以班为单位购票,则一共应付1136元,请回答下列问题:(1)初一(1)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?28.(6分)如图,数轴上点A对应的有理数为10,点P以每秒1个单位长度的速度从点A出发,点Q以每秒3个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分別是,,PQ=;(2)当PQ=8时,求t的值.29.(6分)阅读下面一段文字:问题:0.能化为分数形式吗?探求:步骤①设x=0.,步骤②10x=10×,步骤③10x=7.,则10x=7×,步骤④10x=7+x,解得:x=.根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是;(2)仿照上述探求过程,请你尝试把0.化为分数形式:步骤①设x=0.,步骤②100x=100×,步骤③;步骤④,解得x=;(3)请你将0.3化为分数形式,并说明理由.参考答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.解:如图所示,,由图可知,四个数中﹣3最小.故选:A.2.解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.3.解:这天的温差为6﹣(﹣1)=6+1=7(℃),故选:D.4.解:观察图形可知,这个几何体是三棱柱.故选:A.5.解:小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是两点之间,线段最短,故选:B.6.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.7.解:74000×33=2442000(吨),2442000吨≈2.4×106吨.故选:D.8.解:∵由图可知a<0<b,且|a|>|b|,∴a<﹣b.故选:D.9.解:A、∠α=∠β=90°﹣45°=90°,能判断∠α和∠β相等,故本选项错误;B、∠α和∠β都等于90°减去重合的角,故本选项错误;C、不能判断∠α和∠β相等,故本选项正确;D、∠α=∠β=180°﹣45°=135°,能判断∠α和∠β相等,故本选项错误.故选:C.10.解:设“H”型框中的正中间的数为x,则其他6个数分别为x﹣8,x﹣6,x﹣1,x+1,x+6,x+8,这7个数之和为:x﹣8+x﹣6+x﹣1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.二、填空题(本题共16分,每小题2分)11.解:绝对值等于3的数是±3.12.解:单项式﹣x2y3的系数为﹣,次数为5.故答案为:﹣,5.13.解:∵a,b互为相反数,∴5a+5b=5(a+b)=0.故答案为:0.14.解:180°﹣47°30′=132°30′,故答案为:132°30′.15.解:把x=4代入方程ax=x﹣1得:4a=4﹣1,解得:a=,故答案为:.16.解:如图1,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=5;如图2,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=1,∴小华的答案不正确,因为线段DC的长为1或5,故答案为:否;当点C在线段AB上时,CD=1或5.17.解:设此人第一天走的路程为x里,根据题意得:x+++++=378.故答案为:x+++++=378.18.解:∵A={﹣2,0,1,4,6},B={﹣1,0,4},∴由集合的定义,可得A+B={﹣2,﹣1,0,1,4,6}.故答案为:={﹣2,﹣1,0,1,4,6}.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.解:原式=﹣7+13﹣9=﹣3.20.解:原式=﹣1﹣2+12=9.21.解:原式=﹣1﹣××8=﹣1﹣1=﹣2.22.解:去括号得:2x+15﹣3x=4,移项合并得:﹣x=﹣11,解得:x=11.23.解:去分母得:4x﹣1=6﹣6x+2,移项合并得:10x=9,解得:x=0.9.24.解:(1)如图所示,直线OA和射线OB即为所求;(2)如图所示,线段OC即为所求;(3)∠AOB约为40°.25.解:原式=3a2b+3ab2﹣3a2b+1﹣ab2﹣1=2ab2,当a=1,b=﹣3时,原式=2×1×(﹣3)2=2×9=18.26.解:(1)补全图形,并猜想∠DAB+∠EBA的度数等于45°;(2)证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=∠CBA.(理由:角平分线的定义)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠CAB+∠ABC)=45°.故答案为:45°,∠CAB,角平分线的定义,,∠CAB,∠ABC,45°.27.解:(1)设初一(1)班有x人,则初一(2)班有(104﹣x)人,12x+10(104﹣x)=1136,解得,x =48,答:初一(1)有48人; (2)两个班一起购票最省钱,1136﹣8×104=1136﹣832=304(元), 即可以节省304元.28.解:(1)∵10+2×1=12,3×2=6,∴当t =2时,P ,Q 两点对应的有理数分别是12,6, ∴PQ =12﹣6=6. 故答案为:12;6;6;(2)运动t 秒时,P ,Q 两点对应的有理数分别是10+t ,3t . ①当点P 在点Q 右侧时, ∵PQ =8,∴(10+t )﹣3t =8, 解得:t =1;②当点P 在点Q 左侧时, ∵PQ =8,∴3t ﹣(10+t )=8, 解得:t =9.综上所述,t 的值为1秒或9秒.29.解:(1)步骤①到步骤②的依据是等式的基本性质2. 故答案为等式的基本性质2;(2)把0.化为分数形式:步骤①设x =0.,步骤②100x =100×,步骤③100x =37.,则100x =37+0.;步骤④100x =37+x ,解得x =.故答案为100x =37.,则100x =37+0.;100x =37+x ,;11(3)设x =0.,10x =10×0.,10x =8.,10x =8+0.,10x =8+x ,解得:x =.设m =0.3,10m =3.=3+=,m =. 即0.3=.。

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。

2018-2019学年天津市部分区七年级(上)期末数学试卷(解析版)

2018-2019学年天津市部分区七年级(上)期末数学试卷(解析版)

2018-2019学年天津市部分区七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果把得到10元钱记作+10元,那么花去6元钱记作()A. 元B. 元C. 元D. 元2.下列说法中正确的是()A. 的相反数是B. 的倒数2C.D.3.地球赤道周长约为40076000米,用科学记数法表示40076000的结果是()A. B. C. D.4.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是()A.B.C.D.5.下列说法不正确的是()A. 两点之间的连线中,线段最短B. 若点B为线段AC的中点,则C. 若,则点P为线段为AB的中点D. 直线与射线不能比较大小6.下面说法:①-a一定是负数;②若|a|=|b|,则a=b;③一个有理数中不是整数就是分数;④一个有理数不是正数就是负数.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个7.已知a、b两数在数轴上的位置如图所示,将0、-a、-b用“<”连接,其中正确的是()A. B. C. D.8.下列说法正确的是()A. 多项式是二次三项式B. 5不是单项式C. 多项式的次数是3D. 单项式的系数是,次数是69.已知代数式与的值相等,则x的值为()A. B. 7 C. D.10.张磊比小海大10岁,5年前张磊的年龄是小海的年龄的2倍,小海现在的年龄为()A. 10B. 15C. 20D. 2511.小刚从家跑步到学校,每小时跑12km,会迟到5分钟;若骑自行车,每小时骑15km,则可早到10分钟.设他家到学校的路程是xkm,则根据题意列出方程是()A. B. C. D.12.已知线段MN=10cm,现有一点P满足PM+PN=20cm,有下列说法:①点P必在线段MN上;②点P必在直线MN上;③点P必在直线MN外;④点P可能在直线MN外,也可能在直线MN上.其中正确的说法是()A. ①②B. ②③C. ③④D. ④二、填空题(本大题共6小题,共18.0分)13.延长线段AB到C,使BC=4,若AB=8,则线段AC的长为______.14.将3.6457用四舍五入法精确到十分位的近似数是______.15.“7减x差的比x的3倍大1”用方程表示为______.16.如图,已知∠AOC=90°,∠COB=α,OD平分∠AOB,则∠AOD的大小为______(度)17.如图,已知点D在点O的北偏西35°方向,如果∠DOE=80°,那么点E在点O的______方向.18.如图,已知OM,ON分别是∠BOC和∠AOC的角平分线,∠AOB=86°,(1)∠MON=______(度);(2)当OC在∠AOB内绕点O转动时,∠MON的值______改变(填“会”或“不会”).三、计算题(本大题共3小题,共20.0分)19.计算:(1)-14-(2-1)××[5+(-2)3];(2)[1-(-+)×16]÷5.20.(1)化简:(3x2+1)+2(x2-2x+3)-(3x2+4x);(2)先化简,再求值:m-(n2-m)+2(m-n2)+5,其中m=2,n=-3.21.国庆节期间,甲、乙两商场以同样价格出售相同的商品,并且各自推出不同的优惠方案:在甲商场累计购物超过250元后,超出部分打八五折;在乙商场累计购物超过100元后,超出部分打九五折.问:(1)购买多少元商品时(大于250元),两个商场的实际花费相同?(2)张华要购买500元的商品,李刚要购买300元的商品,他们分别选哪个商场购物实际花费会少些?说明理由.四、解答题(本大题共4小题,共26.0分)22.解方程:(1)2(x+3)-7=x-5(2x-1);(2)-=-1.23.用方程解答下列问题(1)一个角的补角比它的余角的3倍少25°,求这个角的余角的度数.(2)甲乙两个工程队要开钻一条长560米的山洞.两工程队分别从山洞两头同时施工,甲队每天钻20米,16天后两队会合.求乙工程队每天钻山洞多少米?24.如图,已知点C、D在线段AB上,且AC:CB=2:3,点E是线段AC的中点,D是AB的中点,若ED=9cm,求AB的长度.25.如图,已知O为直线AB上的点,OC在∠BOD内,∠DOC:∠COB=2:3,OE平分∠AOD,∠EOC=78°,求∠BOD的度数.答案和解析1.【答案】B【解析】解:根据题意,花去6元钱记作-6元,故选:B.如果把得到记作“+”,那么花去记作“-”,据此可得.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【答案】A【解析】解:A、的相反数是-,正确;B、-2的倒数是-,错误;C、-24=-16,错误;D、23=8,错误;故选:A.根据有理数的乘方、倒数和相反数解答即可.此题考查有理数的乘方,关键是根据有理数的乘方、倒数和相反数解答.3.【答案】B【解析】解:40076000=4.0076×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:该几何体的主视图是故选:C.找到从正面看所得到的图形即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.【答案】C【解析】解:A.线段公理,此项正确;B.中点的性质,中点将线段分成长度相等的两条线段,此项正确;C.A、B、P三点不一定在同一条直线上,因此点P不一定是线段AB的中点,此项错误;D.直线具有两边无限延伸性,射线具有一边无限延伸性,故直线与射线不能比较大小,此项正确;故选:C.分别根据直线、射线以及线段的定义和性质判断即可得出.此题主要考查了直线、射线以及线段的定义及相关性质,正确区分它们的定义和性质是解题关键.6.【答案】A【解析】解:①-a一定是负数,说法错误,如果a=-1,则-a=1;②若|a|=|b|,则a=b,说法错误,例如|3|=|-3|,但是3≠-3;③一个有理数中不是整数就是分数,说法正确;④一个有理数不是正数就是负数,说法错误,还有0,0既不是正数也不是负数;正确的个数有1个,故选:A.根据负数的定义和绝对值的定义可得①②错误;根据有理数的分类可得③正确,④错误.此题主要考查了绝对值、有理数的分类,关键是掌握0既不是正数也不是负数.7.【答案】A【解析】解:令b=-0.6,a=1.3,则-b=0.6,-a=-1.3,则可得:-a<b<0<-b<a.故选:A.根据a、b在数轴上的位置,可对a、b赋值,然后即可用“<”连接.本题考查了有理数的大小比较及数轴的知识,同学们注意赋值法的运用,这可以给我们解题带来很大的方便.8.【答案】D【解析】解:A、多项式ab+c是二次二项式,故此选项错误;B、5是单项式,故此选项错误;C、多项式2x2+3y的次数是2,故此选项错误;D、单项式-x3y2z的系数是-1,次数是6,正确.故选:D.直接利用多项式的次数与项数确定方法和单项式得出与系数确定方法分别判断即可.此题主要考查了多项式的次数与项数和单项式得出与系数,正确把握相关定义是解题关键.9.【答案】A【解析】解:根据题意得:=,去分母得:2x-2=9x-3,移项合并得:7x=1,解得:x=,故选:A.根据题意列出方程,求出方程的解即可得到x的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.【答案】B【解析】解:设小海现在的年龄为x岁,根据题意可得:2(x-5)=x+10-5,解得:x=15,答:小海现在的年龄为15岁.故选:B.直接利用张磊比小海大10岁,分别表示出5年前两人的年龄,进而得出答案.此题主要考查了一元一次方程的应用,正确得出等式是解题关键.11.【答案】D【解析】解:设他家到学校的路程是xkm,依题意,得:+=-.故选:D.设他家到学校的路程是xkm,根据时间=路程÷速度结合上课时间不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.【答案】D【解析】解:∵MN=10cm,点P满足PM+PN=20cm,∴点P不可能在线段MN上,点P可能在直线MN外,也可能在直线MN上.故只有④说法正确.故选:D.根据线段的MN长度,及PM+PN的长度即可判断出P的位置.本题考查比较线段长度的知识,比较简单,这类题目一般不能具体确定P的位置,只是可能不能说必然.13.【答案】12【解析】解:如图,∵BC=4,AB=8,∴AC=AB+BC=12.故答案为:12.由已知条件可知,AC=AB+BC,代入求值即可.考查了两点间的距离,借助图形来计算,这样才直观形象,便于思维.灵活运用线段的和、倍转化线段之间的数量关系.14.【答案】3.6【解析】解:将3.6457用四舍五入法精确到十分位的近似数是3.6;故答案为:3.6.把3.6457精确到十分位就是对这个数的十分位后面的数进行四舍五入即可.此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.15.【答案】(7-x)=3x+1【解析】解:依题意,得:(7-x)=3x+1.故答案为:(7-x)=3x+1.由7减x 差的比x的3倍大1,可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.16.【答案】45°+【解析】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD平分∠AOB,∴∠AOD=∠AOB=(90°+α)=45°+.故答案为45°+.先用90°和α表示出∠AOB度数,再根据角平分线的定义求解∠AOD度数.本题主要考查了角平分线的定义,正确表示出角之间的关系是解题的关键.17.【答案】北偏东45°(或东北)【解析】解:∵D在点O的北偏西35°方向,∠DOE=80°,∴∠EOF=80°-35°=45°,即点E在点O的北偏东45°(或东北)方向上.故答案为:北偏东45°(或东北).利用方向角的定义求解即可.本题主要考查了方向角,解答此类题需要从运动的角度,正确画出方位角,再结合角与角间的和差关系进行解答.18.【答案】43 不会【解析】解:(1)∵OM,ON分别是∠BOC和∠AOC的角平分线,∴∠MOC=∠OBC,∠NOC=∠AOC.∴∠MON=∠MOC+∠NOC=∠OBC+∠AOC=(∠OBC+∠AOC)=∠AOB=×86°=43°.故答案为43;(2)有(1)可知∠MON=∠AOB,即∠MON的度数始终等于∠AOB度数的一半,所以当OC在∠AOB内绕点O转动时,∠MON的值不会改变.故答案为不会.(1)根据角平分线的定义,及角的和差找到∠MON与∠AOB之间的关系即可求解;(2)求出∠MON与∠AOB的倍数关系即可说明问题.本题主要考查角平分线的定义,会运用整体思想找到∠MON与∠AOB的倍分关系是解题的关键.19.【答案】解:(1)原式=-1-××(5-8)=-1-×(-3)=-1+=-;(2)原式=(1-6+5-4)÷5=(-)×=-.【解析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算中括号中的乘法运算,再计算减法运算,最后算除法运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)原式=3x2+1+2x2-4x+6-3x2-4x=2x2-8x+7;(2)原式=m+m+3m+5=4m-n2+5,当m=2,n=-3时,原式=4×2-9+5=4;【解析】(1)根据整式的运算法则即可求出答案.(2)先根据整式的运算法则将原式化简,然后将m与n的值代入即可求出答案.本题考查整式的运算,解题的关键是熟练熟练运用整式的运算法则,本题属于基础题型.21.【答案】解:(1)设购买x元商品时,两个商场的实际花费相同.由题意,得250+(x-250)×85%=(x-100)×95%+100 解得:x=325答:当购买325元商品时,两个商场的实际花费相同.(2):当张华购买500元的商品时,在甲商场实际花费为:(500-250)×85%+250=462.5元在乙商场实际花费为:(500-100)×95%+100=480元∵462.5<480∴张华选甲商场的实际花费较少当李刚购买300元的商品时,在甲商场实际花费为:(300-250)×85%+250=292.5元在乙商场实际花费为:(300-100)×95%+100=290元∵290<292.5∴李刚选乙商场的实际花费较少.【解析】(1):设购买x元商品时,满足题意,根据甲,乙两个商场的优惠方式列方程.(2):分别讨论张华和李刚在两种商场优惠下的实际消费,最后比较哪一种更实惠.本题主要是应用题中的销售类,此题考查了关于优惠下的实际消费问题.22.【答案】解:(1)去括号得:2x+6-7=x-10x+5,移项得:2x-x+10x=5-6+7,合并同类项得:11x=6,系数化为1得:x=,(2)去分母得:4(2x-1)-3(x+1)=6(3x+1)-12,去括号得:8x-4-3x-3=18x+6-12,移项得:8x-3x-18x=6-12+4+3,合并同类项得:-13x=1,系数化为1得:x=-.【解析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.23.【答案】解:(1)设这个角的余角的度数为x,则这个角为90°-x,它的补角为90°+x.根据题意,得90°+x=3x-25°,解得x=57.5°.答:这个角的余角的度数是57.5°;(2)设乙工程队每天钻山洞x米.根据题意,得16(20+x)=560,解得x=15.答:乙工程队每天钻山洞15米.【解析】(1)设这个角的余角的度数为x,则这个角为90°-x,它的补角为90°+x,根据一个角的补角比它的余角的3倍少25°列出方程,解方程即可;(2)设乙工程队每天钻山洞x米.根据等量关系:(甲的工作效率+乙的工作效率)×工作时间=工作总量列出方程,解方程即可.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.也考查了余角和补角.24.【答案】解:∵D是AB的中点,∴AD=AB,∵AC:CB=2:3,点E是线段AC的中点,∴DE=AD-AE=AB-×AB=9cm,∴AB=30cm.【解析】根据AC:CB=2:3,线段中点的性质,可得DE=AD-AE=AB-×AB=9cm,依此即可求解.本题考查两点间距离,线段的中点、线段的和差倍分定义等知识,熟知各线段之间的和差和倍分关系是解答此题的关键.25.【答案】解:∵∠DOC:∠COB=2:3,∴设∠DOC=2x,∠COB=3x,则∠BOD=5x,∵∠EOC=78°,∠EOC=∠EOD+DOC,∴∠EOD=78°-2x,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(78°-2x),∵∠AOD+∠DOB=180°,∴2×(78°-2x)+5x=180°,解得:x=24°,∴∠BOD=120°.【解析】设∠DOC=2x,∠COB=3x,则∠BOD=5x,求得∠EOD=78°-2x,根据角平分线的定义得到∠AOD=2∠EOD=2(78°-2x),列方程即可得到结论.本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.。

最新2018-2019年七年级上期末数学试卷含答案解析

最新2018-2019年七年级上期末数学试卷含答案解析

七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。

四川省成都市西川中学2018-2019学年七年级(上)期末数学试卷 含解析

四川省成都市西川中学2018-2019学年七年级(上)期末数学试卷  含解析

2018-2019学年七年级(上)期末数学试卷一、选择题(每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣的相反数是()A.﹣B.﹣C.D.2.如图,由5个完全一样的小正方体组成的几何体的俯视图是()A.B.C.D.3.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是()A.1.598×1011B.15.98×1010C.1.598×1010D.1.598×1084.下列说法正确的是()A.延长射线AB到CB.过三点能作且只能做一条直线C.两点确定一条直线D.若AC=BC,则C是线段AB的中点5.下列代数式中,单项式有()①;②;③;④x3﹣2xy2+3;⑤24;⑥aA.①③⑤B.②③⑥⑤C.①⑤⑥D.①④⑤⑥6.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査7.下列各式中,一元一次方程有()个①x=2x;②2x+1;③x+y=3;④x2+x=5;⑤ax=b;⑥6a+2=a﹣1A.1个B.2个C.3个D.4个8.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=;②∠DOC=2∠BOC;③;④∠COD=3∠BOC.正确的是()A.①②B.③④C.②③D.①④9.如果多项式A减去﹣3x+5,再加上x2﹣x﹣7后得5x2﹣3x﹣1,则A为()A.4x2+5x+11 B.4x2﹣5x﹣11 C.4x2﹣5x+11 D.4x2+5x﹣11 10.在长方形ABCD中放入六个相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=x(cm),依题意可得方程()A.16﹣3x=8 B.8+2x=16﹣3xC.8+2x=16﹣x D.8+2x=x+(16﹣3x)二、填空题(每小题4分,共16分)11.在数轴上与表示﹣1的点的距离等于5的点所表示的数是.12.某小区一块长方形绿地如图所示(单位:m),其中两个扇形表示绿地,两块绿地用五彩石隔开,需要铺五彩石的部分面积为m2.13.如图,OA⊥OC,OB⊥OD,下面结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正确的有(填序号).14.定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2018=.15.已知,则的值为.16.2点20分时,时针与分针夹角为.17.关于x的方程4x+2m=3x+1与2x﹣m=3x+3的解相同,则m的值是.18.如图,已知∠AOD比∠COD小40°,OB平分∠AOC,则∠BOD=.19.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非”.如图,将一个边长为1的正方形纸片依次分割为若干部分,部分①的面积是,部分②的面积是,部分③的面积是,…,以此类推,第n部分的面积是(n是大于1的整数).请你用“数形结合”的思想计算=.三、解答题(本大题有6个题,共74分)20.计算:(1)(2)21.解方程:(1)4(x﹣2)=﹣3﹣(x﹣5)(2)22.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<30 4B30≤x<60 16C60≤x<90 aD90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.23.如图:已知线段AB=20cm,在AB上取一点P,M是AB的中点,N是AP中点,若MN=3cm,求线段AP的长.24.已知:A=4m2﹣2mn+4n2,B=﹣3m2+2mn﹣n2,且.求A﹣[(2A+B)﹣3(A+B)]的值.25.暑假期间,小明和小颖两家共8人相约外出旅行,分别乘坐两辆出租车前往机场在距离机场11千米处一辆车出了故障不能继续行驶.此时离机场停止办理登机手续还有30分钟,唯一可以利用的交通工具只有另一辆出租车,连同司机在内限乘5人,车速每小时60千米.(1)如果这辆车分两批接送,其中4人乘车先走,余下4人原地等候,8人能否及时到达机场办理登机手续?(上下车时间忽略不计)(2)如果这辆车在送第一批客人的时候,余下的人以每小时6千米的速度步行前往机场,待司机将第一批客人送达后立即返回接第二批客人,他们能及时到达机场吗?26.已知∠AOB=50°,过点O引射线OC,若∠AOC:∠BOC=2:3,OD平分∠AOB,求∠COD 的度数.27.某校夏令营活动中,科技小组同学准备在3名老师的带领下前往国家森林公园考察,公园内有A、B两个景区可供选择,当地有甲、乙两家旅行社,可以在其中选一个两家旅行社收取的服务费用定价均为每人200元,实际收费标准如下:甲旅行社表示服务费用学生按8折优惠,带队老师免费:乙旅行社表示服务费用师生一律按照7折优惠两个景区门票定价均为每人100元,实际收费标准如下:A景区对师生均收半价,B景区规定总人数超过30人时,按4折优惠,否则按6折优惠.(1)经核算,两家旅行社的实际服务费正好相等请你分析去哪个景区比较合算?(2)若该学校在活动中,增加了8名学生,老师人数不变你认为去哪个景区比较合算?(3)当有n名学生,3名老师参加时,试给出合理的方案,使得总费用最少.(总费用=服务费+门票费用)28.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:C.2.如图,由5个完全一样的小正方体组成的几何体的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看有3列两层,3列从左到右分别有2、1、1个小正方形,且下层1个,上层3个.故选:D.3.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是()A.1.598×1011B.15.98×1010C.1.598×1010D.1.598×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示数1598亿是1.598×1011.故选:A.4.下列说法正确的是()A.延长射线AB到CB.过三点能作且只能做一条直线C.两点确定一条直线D.若AC=BC,则C是线段AB的中点【分析】根据射线,直线的性质以及线段的性质解答.【解答】解:A、射线本身是无限延伸的,不能延长,故本选项错误;B、只有三点共线时才能做一条直线,故本选项错误;C、两点确定一条直线,故本选项正确;D、若AC=BC,此时点C在线段AB的垂直平分线上,故本选项错误;故选:C.5.下列代数式中,单项式有()①;②;③;④x3﹣2xy2+3;⑤24;⑥aA.①③⑤B.②③⑥⑤C.①⑤⑥D.①④⑤⑥【分析】数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,由此判断即可.【解答】解:代数式中①;②;③;④x3﹣2xy2+3;⑤24;⑥a,单项式有①;⑤24;⑥a.故选:C.6.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査【分析】根据抽样调查的具体性和代表性解答即可.【解答】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,故选:D.7.下列各式中,一元一次方程有()个①x=2x;②2x+1;③x+y=3;④x2+x=5;⑤ax=b;⑥6a+2=a﹣1A.1个B.2个C.3个D.4个【分析】利用一元一次方程的定义判断即可.【解答】解:①x=2x、⑥6a+2=a﹣1都符合一元一次方程的定义;②2x+1不是方程;③x+y=3属于二元一次方程;④x2+x=5属于一元二次方程;⑤当a=0时,ax=b不是一元一次方程;故选:B.8.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=;②∠DOC=2∠BOC;③;④∠COD=3∠BOC.正确的是()A.①②B.③④C.②③D.①④【分析】设∠AOB=α,由∠BOD=2∠AOB,OC是∠AOD的平分线,可得∠BOD=2α,∠AOC=∠COD=α,故能判断出选项中各角大小关系.【解答】解:设∠AOB=α,∵∠BOD=2∠AOB,OC是∠AOD的平分线,∴∠BOD=2α,∠AOC=∠COD=α,∴,∠COD=3∠BOC,故选:B.9.如果多项式A减去﹣3x+5,再加上x2﹣x﹣7后得5x2﹣3x﹣1,则A为()A.4x2+5x+11 B.4x2﹣5x﹣11 C.4x2﹣5x+11 D.4x2+5x﹣11【分析】列式:A﹣(﹣3x+5)+(x2﹣x﹣7)=5x2﹣3x﹣1.先移项再合并同类项即得.【解答】解:根据题意得:A=(5x2﹣3x﹣1)﹣(x2﹣x﹣7)+(﹣3x+5)=4x2﹣5x+11.故选C.10.在长方形ABCD中放入六个相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=x(cm),依题意可得方程()A.16﹣3x=8 B.8+2x=16﹣3xC.8+2x=16﹣x D.8+2x=x+(16﹣3x)【分析】设AE=xcm,观察图形结合小长方形的长不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设AE=xcm,依题意,得:8+2x=x+(16﹣3x).故选:D.二.填空题(共9小题)11.在数轴上与表示﹣1的点的距离等于5的点所表示的数是﹣6或4 .【分析】在数轴上和表示﹣1的点的距离等于5的点,可能表示﹣1左边的比﹣1小5的数,也可能表示在﹣1右边,比﹣1大5的数.据此即可求解.【解答】解:表示﹣1左边的,比﹣1小5的数时,这个数是﹣1﹣5=﹣6;表示﹣1右边的,比﹣1大5的数时,这个数是﹣1+5=4.故答案为﹣6或4.12.某小区一块长方形绿地如图所示(单位:m),其中两个扇形表示绿地,两块绿地用五彩石隔开,需要铺五彩石的部分面积为(a2+ab﹣)m2.【分析】根据题意和图形可知,需要铺五彩石的部分面积是长方形的面积减去两个扇形的面积,本题得以解决.【解答】解:由图可得,需要铺五彩石的部分面积为:(a+b)a﹣﹣=(a2+ab﹣)(m2),故答案为:(a2+ab﹣).13.如图,OA⊥OC,OB⊥OD,下面结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正确的有①③④(填序号).【分析】根据垂直的定义和同角的余角相等分别计算,然后对各小题分析判断即可得解.【解答】解:∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠AOB+∠COD不一定等于90°,故②错误;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故③正确;∠AOC﹣∠COD=∠AOC﹣∠AOB=∠BOC,故④正确;综上所述,说法正确的是①③④.故答案为:①③④.14.定义:a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2018=.【分析】计算出数列的前4个数,得出数列以﹣,,3为周期,每3个数一循环,据此求解可得.【解答】解:∵a1=﹣,∴a2==,a3==3,a4==﹣,……∴以上数列以﹣,,3为周期,每3个数循环,∵2018÷3=672……2,∴a2018=a2=,故答案为:.15.已知,则的值为7 .【分析】首先把分式变为=+,然后再代入=2即可.【解答】解:=+3=2×2+3=7,故答案为:7.16.2点20分时,时针与分针夹角为50°.【分析】根据分针旋转的角度减去时针旋转的角度,可得答案.【解答】解:由题意,得20×6﹣(2×30+20×)=120﹣70=50°.故答案为:50°.17.关于x的方程4x+2m=3x+1与2x﹣m=3x+3的解相同,则m的值是 4 .【分析】分别表示出两个方程的解,由两方程解相同求出m的值即可.【解答】解:由题意得:4x+2m=3x+1,解得:x=﹣2m+1.由2x﹣m=3x+3,解得:x=﹣m﹣3,∵两个方程的解相同,∴﹣2m+1=﹣m﹣3,解得:m=4.故答案为:4.18.如图,已知∠AOD比∠COD小40°,OB平分∠AOC,则∠BOD=20°.【分析】设∠AOD=x°,则∠COD=(x+40)°,∠AOC=(2x+40)°,根据角的和差定义求解即可.【解答】解:设∠AOD=x°,则∠COD=(x+40)°,∠AOC=(2x+40)°,∵OB平分∠AOC,∴∠BOA=∠AOC=(x+20)°,∴∠BOD=∠AOB﹣∠AOD=(x+20)°﹣x°=20°,故答案为20°19.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非”.如图,将一个边长为1的正方形纸片依次分割为若干部分,部分①的面积是,部分②的面积是,部分③的面积是,…,以此类推,第n部分的面积是(n是大于1的整数).请你用“数形结合”的思想计算=1﹣.【分析】如果假设图中阴影的部分就是面积为,那么所求的式子其实就是正方形纸片上被分割的面积.那么没有被分割的面积为﹣=.【解答】解:根据公式,+++…+=1﹣,故答案为:1﹣.三.解答题(共9小题)20.计算:(1)(2)【分析】(1)先算同分母分数,再相加即可求解;(2)先算乘方,再算乘法,最后算减法,如果有括号或绝对值,要先做括号或绝对值内的运算;注意灵活运用乘法分配律简便计算.【解答】解:(1)=﹣2+2=0;(2)=﹣1﹣8﹣8+×24﹣×24=﹣1﹣8﹣8+33﹣32=﹣16.21.解方程:(1)4(x﹣2)=﹣3﹣(x﹣5)(2)【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:4x﹣8=﹣3﹣x+5,移项得:4x+x=﹣3+5+8,合并同类项得:5x=10,系数化为1得:x=2,(2)去分母得:9(1﹣x)﹣2(2x﹣1)=6﹣(3x﹣5),去括号得:9﹣9x﹣4x+2=6﹣3x+5,移项得:﹣9x﹣4x+3x=6+5﹣2﹣9,合并同类项得:﹣10x=0,系数化为1得:x=0.22.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<30 4B30≤x<60 16C60≤x<90 aD90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b=28 ,m=8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).23.如图:已知线段AB=20cm,在AB上取一点P,M是AB的中点,N是AP中点,若MN=3cm,求线段AP的长.【分析】根据线段中点的定义和线段的和差即可得到结论.【解答】解:∵AB=20cm,M是AB的中点,∴AM=AB=20=10cm,∵MN=3cm,∴AN=AM﹣MN=10﹣3=7cm,∵N是AP中点,∴AP=2an=2×7=14.24.已知:A=4m2﹣2mn+4n2,B=﹣3m2+2mn﹣n2,且.求A﹣[(2A+B)﹣3(A+B)]的值.【分析】先化简原式,用m、n的代数式表示,再根据非负数的性质,结合条件.求得m、n的值,再代入计算便可.【解答】解:原式=A﹣[2A+B﹣3A﹣3B]=A﹣2A﹣B+3A+3B=2A+2B,当A=4m2﹣2mn+4n2,B=﹣3m2+2mn﹣n2时,原式=8m2﹣4mn+8n2﹣6m2+4mn﹣2n2=2m2+6n2,∵.∴,n+1=0,∴m=2,n=﹣1,当m=2,n=﹣1时,原式=8+6=14.25.暑假期间,小明和小颖两家共8人相约外出旅行,分别乘坐两辆出租车前往机场在距离机场11千米处一辆车出了故障不能继续行驶.此时离机场停止办理登机手续还有30分钟,唯一可以利用的交通工具只有另一辆出租车,连同司机在内限乘5人,车速每小时60千米.(1)如果这辆车分两批接送,其中4人乘车先走,余下4人原地等候,8人能否及时到达机场办理登机手续?(上下车时间忽略不计)(2)如果这辆车在送第一批客人的时候,余下的人以每小时6千米的速度步行前往机场,待司机将第一批客人送达后立即返回接第二批客人,他们能及时到达机场吗?【分析】(1)根据路程、速度、时间之间的等量关系即可求出答案;(2)设余下的人共步行了x小时,然后根据题意给出的等量关系即可求出答案.【解答】解:(1)由题意可知:汽车共走了3次全程,即3×11=33千米,∴所有人到达机场共用了小时,即33分钟,答:8人不能及时到达机场办理登记手续;(2)设余下的人共步行了x小时,所以汽车第一次到达机场再返回接余下的人时,共走了(60x﹣11)千米,∴6x+60x﹣11=11,解得:x=,即余下的人共行了22分钟,∴从接到余下的人后,第二次到达机场共时间为:=小时≈8.8分钟,所以所有人达到机场共用了30.8分钟,也是不能及时到达机场,答:在送第一批客人的时候,余下的人以每小时6千米的速度步行前往机场,待司机将第一批客人送达后立即返回接第二批客人,他们不能及时到达机场.26.已知∠AOB=50°,过点O引射线OC,若∠AOC:∠BOC=2:3,OD平分∠AOB,求∠COD的度数.【分析】分射线OC在∠AOB的内部、射线OC在∠AOB的外部两种情况进行解答,当射线OC在∠AOB的内部时,设∠AOC、∠COB的度数分别为2x、3x,计算出x的值,进而计算出∠AOC、∠AOD的度数,从而得出结论.当射线OC在∠AOB的外部时,∠AOC、∠COB 的度数分别为2x、3x,则∠AOB=x,得x的值,进而计算出∠AOC与∠AOD的度数,然后得出结论.【解答】解:如图(1)射线OC在∠AOB的内部,(2)射线OC在∠AOB的外部(1)设∠AOC、∠COB的度数分别为2x、3x,则2x+3x=50°∴x=10°,∠AOC=2x=20°,∠AOD=×50°=25°∴∠COD=∠AOD﹣∠AOC=25°﹣20°=5°;(2)设∠AOC、∠COB的度数分别为2x、3x,则∠AOB=3x﹣2x=x=50°,∴∠AOC=2x=100°∠AOD=25°∴∠COD=∠AOC+∠AOD=100°+25°=125°.27.某校夏令营活动中,科技小组同学准备在3名老师的带领下前往国家森林公园考察,公园内有A、B两个景区可供选择,当地有甲、乙两家旅行社,可以在其中选一个两家旅行社收取的服务费用定价均为每人200元,实际收费标准如下:甲旅行社表示服务费用学生按8折优惠,带队老师免费:乙旅行社表示服务费用师生一律按照7折优惠两个景区门票定价均为每人100元,实际收费标准如下:A景区对师生均收半价,B景区规定总人数超过30人时,按4折优惠,否则按6折优惠.(1)经核算,两家旅行社的实际服务费正好相等请你分析去哪个景区比较合算?(2)若该学校在活动中,增加了8名学生,老师人数不变你认为去哪个景区比较合算?(3)当有n名学生,3名老师参加时,试给出合理的方案,使得总费用最少.(总费用=服务费+门票费用)【分析】(1)设学生有x人,根据题意得:×200x=×200×(3+x),解得:x=21,得出总人数为:24,即可得出结论;(2)增加了8名学生,老师人数不变,则学生29人,总人数为32人,得出去B景区比较合算;(3)求出甲旅行社服务费用S=×200n=160n(元),乙旅行社服务费用S′=×200×(3+n)=420+140n(元),得出S﹣S′=160n﹣420﹣140n=20n﹣420=20(n﹣21),再分情况讨论即可.【解答】解:(1)设学生有x人,根据题意得:×200x=×200×(3+x),解得:x=21,∴总人数为:24,∵A景区对师生均收半价,B景区规定总人数超过30人时,按4折优惠,否则按6折优惠,∴去A景区比较合算;(2)增加了8名学生,老师人数不变,则学生29人,总人数为:32,∵A景区对师生均收半价,B景区规定总人数超过30人时,按4折优惠,否则按6折优惠,∴去B景区比较合算;(3)甲旅行社服务费用S=×200n=160n(元),乙旅行社服务费用S′=×200×(3+n)=420+140n(元),∴S﹣S′=160n﹣420﹣140n=20n﹣420=20(n﹣21),∴当n<21时,S<S′,选择甲旅行社合算;当n=21时,两家旅行社的服务费用相同;当n>21时,选择乙旅行社合算;对于景区,当n+3≤30,即n≤27时,选择A景区合算;当n+3>30,即n>27时,选择B景区合算;综上所述,当n<21时,选择甲旅行社,去A景区总费用最少;当n=21时,任选一个旅行社,去A景区总费用最少;当21<n≤27时,选择乙旅行社,去A景区总费用最少;当n>27时,选择乙旅行社,去甲景区总费用最少.28.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6 ,点P表示的数8﹣5t(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据点A的坐标和AB之间的距离即可求得点B的坐标和点P的坐标;(2)根据距离的差为14列出方程即可求解;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(4)分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)点B表示的数是﹣6;点P表示的数是8﹣5t,(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…(4分)解得:x=7,∴点P运动7秒时,在点C处追上点Q.…(5分)(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=7…(7分)②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=7…(9分)综上所述,线段MN的长度不发生变化,其值为7 …(10分)(4)式子|x+6|+|x﹣8|有最小值,最小值为14.…(12分)。

2018-2019学年湖北省襄阳市老河口市七年级(上)期末数学试卷(解析版)

2018-2019学年湖北省襄阳市老河口市七年级(上)期末数学试卷(解析版)

2018-2019学年湖北省襄阳市老河口市七年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置.)1.﹣2的相反数是()A.2B.﹣2C.D.±22.下列计算错误的是()A.﹣3﹣5=﹣8B.﹣3×(﹣)=1C.﹣3×|﹣2|=6D.﹣32÷(﹣2)3=3.若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零4.下列算式:(1)3a+2b=5ab;(2)5y2﹣2y2=3;(3)7a+a=7a2;(4)4x2y﹣2xy2=2xy中正确的有()A.0个B.1个C.2个D.3个5.下列各式中,正确的是()A.﹣(x﹣5)=﹣x﹣5B.﹣(2x﹣1)=﹣2x+1C.﹣x+5=﹣(x﹣5)D.5﹣x=﹣(x+5)6.下列方程变形一定成立的是()A.如果S=ab,那么b=B.如果=6,那么x=3C.如果x﹣3=2x﹣3,那么x=0D.如果mx=my,那么x=y7.某商店进了一批商品,每件商品的进价为a元,若要获利20%,则每件商品的零售价应定为()A.20% a元B.(1﹣20%)a元C.(1+20%)a元D.元8.将方程﹣=2进行变形,结果正确的是()A.﹣=2B.﹣=20C.﹣=20D.5(x+4)﹣2(x﹣3)=29.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“国”相对的面上的汉字是()A.诚B.信C.友D.善10.过平面上A,B,C,D四点中的任意两点作直线,一共可作的直线条数不可能是()A.6B.5C.4D.111.已知线段MN=10cm,点C是直线MN上一点,NC=4cm,若P是线段MN的中点,Q 是线段NC的中点,则线段PQ的长度是()A.7cm B.7cm或3cm C.5cm D.3cm12.如图,∠AOD=∠BOD=∠COE=90°,∠AOC≠∠COD,则图中互余的角有()A.2对B.3对C.4对D.5对二、填空题:(本大题共8个小题,每小题3分,共24分,把答案填在答题卡的对应位置的横线上.)13.计算:(﹣﹣)÷(﹣)=.14.如果3x2y3与x2y1﹣n的和仍是单项式,那么n=.15.已知2a﹣3b=7,则8+6b﹣4a=.16.一艘轮船在静水中航行的速度为akm/h,水流的速度为bkm/h,该轮船先顺水航行2h,再逆水航行3h,一共航行了km.17.|a+3|+(b﹣2)2=0,求a b=.18.已知C、D是线段AB上的两点,点C是AD的中点,AB=10cm,AC=4cm,则DB的长度为cm.19.某地居民生活用电基本价格为0.50元/度,规定每月基本用电量为a度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费,某用户在5月份用电120度,共交电费66元,则a=.20.如图,OD平分∠AOC,OE平分∠BOC,若∠DOE=45°,∠BOC=60°,则∠AOC 的度数为.三、解答题(本大题共9个小题,共60分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内,)21.计算:﹣22÷﹣[﹣22﹣(1﹣×)]×6.22.解方程:.23.先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.24.画图并计算:已知线段AB=1cm,延长线段AB至点C,使得BC=2AB,再反向延长AC至点D,使得AD=AC,点E为线段AC中点.(1)准确地画出图形,并标出相应的字母;(2)求出线段DE的长度.25.如图,O是直线AB上一点,OD是∠BOC的平分线.(1)写出图中互补的角;(2)若∠AOC=53°18′,求∠AOD的度数.26.关于x的方程4x﹣(3a+1)=6x+2a﹣1的解与5(x﹣3)=4x﹣10的解互为相反数,求﹣3a2+7a﹣1的值.27.如图,∠AOC与∠BOC互余,OD平分∠BOC,∠AOE=2∠COE.若∠DOE=36°,求∠EOC的度数.28.甲车间有32人,乙车间有28人,现从乙车间抽调部分人到甲车间,请用列方程的方法解答下列问题:(1)调人后甲车间人数是乙车间人数的2倍,求抽调的人数;(2)若每人每天能加工A零件300个或B零件140个,3个A零件和一个B零件刚好配成一套,甲车间负责加工A零件,乙车间负责加工B零件,为了使每天加工的零件刚好完全配套,求抽调的人数.29.有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有40m2墙面未来得及粉刷;同样时间内5名二级技工刚好粉刷了10个房间,每名一级技工比二级技工一天多粉刷20m2墙面.(1)一级技工和二级技工每人每天各粉刷多少墙面?(2)现有若干间这样的房间需要在规定的时间内粉刷完墙面,若安排一名一级技工单独粉刷,可比规定时间提前1天完成;若安排一名二级技工单独完成,到规定时间还有4间房间没粉刷.需要粉刷的房间一共有多少间?2018-2019学年湖北省襄阳市老河口市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置.)1.﹣2的相反数是()A.2B.﹣2C.D.±2【解答】解:﹣2的相反数是:﹣(﹣2)=2.故选:A.2.下列计算错误的是()A.﹣3﹣5=﹣8B.﹣3×(﹣)=1C.﹣3×|﹣2|=6D.﹣32÷(﹣2)3=【解答】解:A、原式=﹣8,不符合题意;B、原式=1,不符合题意;C、原式=﹣6,符合题意;D、原式=,不符合题意,故选:C.3.若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零【解答】解:∵a的相反数是﹣a,且|a|=﹣a,∴a一定是负数或零.故选:D.4.下列算式:(1)3a+2b=5ab;(2)5y2﹣2y2=3;(3)7a+a=7a2;(4)4x2y﹣2xy2=2xy中正确的有()A.0个B.1个C.2个D.3个【解答】解:(1)(3)(4)不是同类项,不能合并;(2)5y2﹣2y2=3y2,所以4个算式都错误.故选:A.5.下列各式中,正确的是()A.﹣(x﹣5)=﹣x﹣5B.﹣(2x﹣1)=﹣2x+1C.﹣x+5=﹣(x﹣5)D.5﹣x=﹣(x+5)【解答】解:A、原式=﹣x+5,故本选项不符合题意.B、原式=﹣x+,故本选项不符合题意.C、原式=﹣(x﹣5),故本选项符合题意.D、原式=﹣(﹣x﹣5),故本选项不符合题意.故选:C.6.下列方程变形一定成立的是()A.如果S=ab,那么b=B.如果=6,那么x=3C.如果x﹣3=2x﹣3,那么x=0D.如果mx=my,那么x=y【解答】解:A、∵S=ab,∴b=,故本选项错误;B、∵=6,∴x=12,故本选项错误;C、∵x﹣3=2x﹣3,∴x=0,故本选项正确;D、∵mx=my,∴当m=0时,x≠y,故本选项错误.故选:C.7.某商店进了一批商品,每件商品的进价为a元,若要获利20%,则每件商品的零售价应定为()A.20% a元B.(1﹣20%)a元C.(1+20%)a元D.元【解答】解:由题意可得,每件商品的零售价为:a(1+20%)元,故选:C.8.将方程﹣=2进行变形,结果正确的是()A.﹣=2B.﹣=20C.﹣=20D.5(x+4)﹣2(x﹣3)=2【解答】解:方程﹣=2进行变形得:﹣=2,即5(x+4)﹣2(x﹣3)=2,故选:D.9.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“国”相对的面上的汉字是()A.诚B.信C.友D.善【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“诚”与面“友”相对,面“爱”与面“善”相对,面“信”与面“国”相对.故选:B.10.过平面上A,B,C,D四点中的任意两点作直线,一共可作的直线条数不可能是()A.6B.5C.4D.1【解答】解:(1)当四点共线时,可画1条,如图(1);(2)当四点中有三点共线时,可画4条,如图(2);(3)当四点中任意三点不共线时,可画6条,如图(3);观察选项,只有选项B符合题意.故选:B.11.已知线段MN=10cm,点C是直线MN上一点,NC=4cm,若P是线段MN的中点,Q 是线段NC的中点,则线段PQ的长度是()A.7cm B.7cm或3cm C.5cm D.3cm【解答】解:P是线段MN的中点,Q是线段NC的中点,得PN=MN=×10=5cm,QN=NC=×4=2cm.①当C在MN上时,如图1,PQ=PN﹣QN=5﹣2=3cm;②当C在MN的延长线上时如图2,PQ=PN+QN=5+2=7cmm,③点C在MN的反向延长线上,NC<MN,不成立,故选:B.12.如图,∠AOD=∠BOD=∠COE=90°,∠AOC≠∠COD,则图中互余的角有()A.2对B.3对C.4对D.5对【解答】解:∵∠AOD=∠BOD=∠COE=90°.∴∠AOC+∠COD=90°,∠COD+∠DOE=90°,∠DOE+∠BOE=90°,∠AOC+∠BOE =90°,∴互余的角有:∠AOC与∠COD,∠COD与∠DOE,∠DOE与∠BOE,∠AOC与∠BOE,4对;故选:C.二、填空题:(本大题共8个小题,每小题3分,共24分,把答案填在答题卡的对应位置的横线上.)13.计算:(﹣﹣)÷(﹣)=4.【解答】解:原式=(﹣﹣)×(﹣6)=﹣1+2+3=4,故答案为:414.如果3x2y3与x2y1﹣n的和仍是单项式,那么n=﹣2.【解答】解:∵单项式3x2y3与x2y1﹣n的和还是单项式,∴单项式3x2y3与x2y1﹣n是同类项,得1﹣n=3.解得n=﹣2,故答案为:﹣2.15.已知2a﹣3b=7,则8+6b﹣4a=﹣6.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.16.一艘轮船在静水中航行的速度为akm/h,水流的速度为bkm/h,该轮船先顺水航行2h,再逆水航行3h,一共航行了(5a﹣b)km.【解答】解:∵轮船在静水中航行的速度为akm/h,水流的速度为bkm/h,∴轮船顺水航行的速度为(a+b)km/h,逆水航行的速度为(a﹣b)km/h,则轮船先顺水航行2h的路程为2(a+b)km,逆水航行3h的路程为3(a﹣b),∴轮船航行的总路程为2(a+b)+3(a﹣b)=5a﹣b(km),故答案为:(5a﹣b).17.|a+3|+(b﹣2)2=0,求a b=9.【解答】解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得a=﹣3,b=2.∴a b=9.18.已知C、D是线段AB上的两点,点C是AD的中点,AB=10cm,AC=4cm,则DB的长度为2cm.【解答】解:由点C是AD的中点,AC=4cm,得AD=2AC=8cm.由线段的和差,得DB=AB﹣AD=10﹣8=2cm,故答案为:2.19.某地居民生活用电基本价格为0.50元/度,规定每月基本用电量为a度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费,某用户在5月份用电120度,共交电费66元,则a=60.【解答】解:由题意可知:0.5a+(120﹣a)×(0.5+0.2×0.5)=66,∴0.5a+72﹣0.6a=66,∴a=60,故答案为:6020.如图,OD平分∠AOC,OE平分∠BOC,若∠DOE=45°,∠BOC=60°,则∠AOC 的度数为150°.【解答】解:∵OE平分∠BOC,OE平分∠BOC,∴∠COE=,∴∠COD=∠COE+∠DOE=30°+45°=75°,又∵OD平分∠AOC,∴∠AOC=2∠COD=150°.故答案为:150°三、解答题(本大题共9个小题,共60分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内,)21.计算:﹣22÷﹣[﹣22﹣(1﹣×)]×6.【解答】解:﹣22÷﹣[﹣22﹣(1﹣×)]×6===﹣3﹣(﹣24﹣5)=﹣3﹣(﹣29)=﹣3+29=26.22.解方程:.【解答】解:去分母得,5(3x+1)﹣20=(3x﹣2)﹣2(2x+3),去括号得,15x+5﹣20=3x﹣2﹣4x﹣6,移项得,15x﹣3x+4x=﹣2﹣6﹣5+20,合并同类项得,16x=7,系数化为1得,x=.23.先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.【解答】解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.24.画图并计算:已知线段AB=1cm,延长线段AB至点C,使得BC=2AB,再反向延长AC至点D,使得AD=AC,点E为线段AC中点.(1)准确地画出图形,并标出相应的字母;(2)求出线段DE的长度.【解答】解:(1)依题意得:(2)如上图所示:∵AC=AB+BC,BC=2AB,AB=1cm,∴AC=AB+BC=3AB=3×1=3cm又∵AD=AC,∴AD=3 cm又∵点E为线段AC中点,∴DE===cm,又∵DE=AD+AE,∴DE=3+=cm.25.如图,O是直线AB上一点,OD是∠BOC的平分线.(1)写出图中互补的角;(2)若∠AOC=53°18′,求∠AOD的度数.【解答】解:(1)∵OD是∠BOC的平分线,∴∠COD=∠BOD,∴互补的角有:∠AOC与∠BOC,∠BOD与∠AOD,∠COD与∠AOD.(2)∵O是直线AB上一点,∴∠AOB=180°,∴∠BOC=180°﹣∠AOC=180°﹣53°18′=126°42′,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=×126°42′=63°21′.∴∠AOD=180°﹣∠BOD=180°﹣63°21′=116°39′.26.关于x的方程4x﹣(3a+1)=6x+2a﹣1的解与5(x﹣3)=4x﹣10的解互为相反数,求﹣3a2+7a﹣1的值.【解答】解:解方程5(x﹣3)=4x﹣10得:x=5,∵两个方程的根互为相反数,∴另一个方程的根为x=﹣5,把x=﹣5代入方程4x﹣(3a+1)=6x+2a﹣1得:4×(﹣5)﹣(3a+1)=6×(﹣5)+2a﹣1,所以﹣3a2+7a﹣1=﹣3×22+7×2﹣1=1.27.如图,∠AOC与∠BOC互余,OD平分∠BOC,∠AOE=2∠COE.若∠DOE=36°,求∠EOC的度数.【解答】解:∵∠AOC与∠BOC互余,∴∠AOB=∠AOC+∠BOC=90°.∵OD平分∠BOC,∴∠BOD=∠COD,∵∠DOE=36°,∴∠AOE=∠AOB﹣∠DOE﹣∠BOD=90°﹣36°﹣∠BOD=54°﹣∠BOD,∠COE=∠DOE﹣∠COD=36°﹣∠BOD,∵∠AOE=2∠COE,∴54°﹣∠BOD=2(36°﹣∠BOD),解得∠BOD=18°,∴∠EOC=36°﹣∠BOD=36°﹣18°=18°.28.甲车间有32人,乙车间有28人,现从乙车间抽调部分人到甲车间,请用列方程的方法解答下列问题:(1)调人后甲车间人数是乙车间人数的2倍,求抽调的人数;(2)若每人每天能加工A零件300个或B零件140个,3个A零件和一个B零件刚好配成一套,甲车间负责加工A零件,乙车间负责加工B零件,为了使每天加工的零件刚好完全配套,求抽调的人数.【解答】解:(1)设抽调了x人,根据题意,得32+x=2(28﹣x).答:抽调了8人.(2)设抽调了y人,根据题意,得300(32+y)=3×140(28﹣y).解这个方程,得x=3.答:抽调了3人.29.有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有40m2墙面未来得及粉刷;同样时间内5名二级技工刚好粉刷了10个房间,每名一级技工比二级技工一天多粉刷20m2墙面.(1)一级技工和二级技工每人每天各粉刷多少墙面?(2)现有若干间这样的房间需要在规定的时间内粉刷完墙面,若安排一名一级技工单独粉刷,可比规定时间提前1天完成;若安排一名二级技工单独完成,到规定时间还有4间房间没粉刷.需要粉刷的房间一共有多少间?【解答】解:(1)设每名一级技工每天粉刷x m2墙面,则每名二级技工每天粉刷(x﹣20)m2墙面.根据题意,得.解这个方程,得x=120.∴x﹣20=120﹣20=100 (m2).答:每名一级技工每天粉刷120m2墙面,每名二级技工每天粉刷100m2墙面;(2)设需要粉刷的房间一共有y间.每个房间的粉刷面积为(m2)根据题意可知,.解这个方程,得y=36.答:需要粉刷的房间一共有36间.。

2018-2019学年七年级上学期期末考试数学试题(解析版)

2018-2019学年七年级上学期期末考试数学试题(解析版)

2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。

2018-2019学年浙江省宁波市宁海县七年级(上)期末数学试卷(解析版)

2018-2019学年浙江省宁波市宁海县七年级(上)期末数学试卷(解析版)

2018-2019学年浙江省宁波市宁海县七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利2000元记作“+2000元”,那么亏损3000元记作()A. 元B. 3000元C. 5000元D. 元2.64的平方根是()A. 8B. 4C.D.3.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A. B. C. D.4.下列各式运算正确的是()A. B.C. D.5.如图为洪涛同学的小测卷,他的得分应是()A. 25分B. 50分C. 75分D. 100分6.下列说法中正确是()A. 是分数B. 实数和数轴上的点一一对应C. 的系数为D. 的余角7.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A. B. C. D.8.已知a,b为两个连续整数,且a<<b,则a+b的值为()A. 9B. 8C. 7D. 69.定义一种新运算:a※b=,则2※3-4※3的值()A. 5B. 8C. 7D. 610.某同学在解关于x的方程5a-x=13时,误将-x看作+x,得到方程的解为x=-2,则a的值为()A. 3B.C. 2D. 111.一列数a1,a2,a3…,其中a1=,a2=,a3=,……,a n=(n为不小于2的整数),则a2018=()A. B. 2 C. 2018 D.12.如图是一张长方形的拼图卡片,它被分割成4个大小不同的正方形和一个长方形,若要计算整张卡片的周长,则只需知道哪个正方形的边长即可()A. B. C. D.二、填空题(本大题共6小题,共18.0分)13.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为______.14.若(a+1)2+|b-2|=0,则a+b=______.15.已知3b-a=2,则代数式2a-6b-3的值是______.16.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.17.已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2 cm,则线段DC=______.18.实验室里,水平桌面上有半径相同的甲、乙、丙三个圆柱形容器(容器足够高),用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入______分钟的水量后,乙的水位高度比甲的水位高度高0.5cm.三、计算题(本大题共3小题,共28.0分)19.计算:(1)|-2|++(-1)2018(2)-22-24×(-+)20.解方程:(1)2-3(x-5)=2x(2)=1-21.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36800元,试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两车型的数量比进行投放,且投资总价值达到184万元,请问投放后城区有A型车与B型车各多少辆?四、解答题(本大题共4小题,共38.0分)22.先化简,再求值:3(1-a)-2(a2+4a-2),其中a=-223.某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,请仔细观察并找出规律,解答下列问题:(1)按照此规律,摆第10个图时,需______根火柴棒;摆第n个图时所需______根火柴棒;(2)用1202根火柴棒能按此规律摆出一个“金鱼”图案吗?若能,说明是第几个图形;若不能,请说明理由.24.如图,直线AB、CD相交于点O,已知∠AOC=80°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3(1)求∠EOB的度数;(2)过点O作射线OF⊥OE,求∠DOF的度数.25.如图所示,已知A,B是数轴上的两点(点A在点B左边),O为原点,且OA:OB=1:5,AB=180.现有点P从点A出发向右运动,与此同时点Q从点B出发向左运动,经过30秒后,P、Q在点D处相遇.相遇后,两点继续沿之前方向运动,点Q到达点A后立刻按原速向右运动,当点Q返回到点B时,P、Q两点立即停止运动,若点Q的速度是点P的3倍,设运动的时间为t秒,请回答下列问题:(1)点A表示的数为______;(2)求点D表示的数是多少;(3)t为何值时,点Q在返途中追上点P?答案和解析1.【答案】A【解析】解:如果盈利2000元记作“+2000元”,那么亏损3000元记作“-3000元”,故选:A.利用相反意义量的定义判断即可.此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.2.【答案】C【解析】解:∵(±8)2=64,∴64的平方根是±8.故选:C.根据平方根的定义回答即可.本题主要考查的是平方根的定义和性质,掌握平方根的定义和性质是解题的关键.3.【答案】B【解析】解:7600=7.6×103,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:A、3x+2y=3x+2y,错误;B、3x+5x=8x,错误;C、10x2-3x2=7x2,错误;D、10xy2-5y2x=5xy2,正确;故选:D.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行解答.5.【答案】D【解析】解:①2的相反数是-2,正确;②倒数等于它本身的数是1和-1,正确;③-1的绝对值是1,正确;④8的立方根是2,正确;故选:D.根据相反数、倒数、绝对值和立方根解答即可.此题考查立方根、相反数、倒数、绝对值,关键是根据相反数、倒数、绝对值和立方根解答.6.【答案】B【解析】解:A、是无理数,不是分数,故A错误;B、实数与数轴上的点一一对应,故B正确;C、-的系数为-,故C错误;D、∠α的补角=180°-∠α,或∠α的余角=90°-∠α,故D错误;故选:B.根据实数,单项式以及余角的定义进行选择即可.本题考查了实数,单项式以及余角的定义,熟练掌握实数,单项式以及余角的定义是解题的关键.7.【答案】B【解析】解:∵-1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a-b<0,正确,符合题意;C、a•b<0,错误,不符合题意;D、<0,错误,不符合题意;故选:B.根据a,b两数在数轴的位置依次判断所给选项的正误即可.考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.8.【答案】C【解析】解:∵9<13<16,∴3<<4,即a=3,b=4,则a+b=7,故选:C.估算确定出a,b的值,即可求出a+b的值.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.9.【答案】B【解析】解:2※3-4※3=3×3-(4-3)=9-1=8,故选:B.根据新定义规定的运算法则列式计算可得.本题主要考查有理数的混合运算,解题的关键是掌握新定义规定的运算法则及有理数的混合运算顺序和运算法则.10.【答案】A【解析】解:把x=-2代入方程5a+x=13得:5a-2=13,解得:a=3,故选:A.把x=-2代入看错的方程计算即可求出a的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.11.【答案】B【解析】解:a1=,a2===2,a3===-1,a4===……,2018÷3=672……2,∴a2018=2,故选:B.把a1,a2,a3代入代数式计算,找出规律,根据规律计算.本题考查的是规律型:数字的变化类问题,正确找出数字的变化规律是解题的关键.12.【答案】B【解析】解:设正方形③的边长为x,正方形①的边长为y,则正方形②的边长为x-y,正方形④的边长为x+y,长方形⑤的长为y+x+y=x+2y,所以整张卡片的周长=2(x-y+x)+2(x-y+x+2y)=4x-2y+2x-2y+2x+4y=8x,所以只需知道正方形③的边长即可.故选:B.设正方形③的边长为x,正方形①的边长为y,再表示出正方形②的边长为x-y,正方形④的边长为x+y,长方形⑤的长为y+x+y=x+2y,则可计算出整张卡片的周长为8x,从而可判断只需知道哪个正方形的边长.本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.整式的加减实质上就是合并同类项.13.【答案】两点确定一条直线【解析】解:用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为:两点确定一条直线.故答案为:两点确定一条直线.根据直线的性质,两点确定一条直线解答.本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.14.【答案】1【解析】解:根据题意得,a+1=0,b-2=0,解得a=-1,b=2,所以,a+b=-1+2=1.故答案为:1.根据非负数的性质列式求出a、b的值,然后相加即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.【答案】-7【解析】解:∵3b-a=2,∴2a-6b-3=-2(3b-a)-3=-2×2-3=-4-3=-7,故答案为:-7.先将2a-6b-3变形为-2(3b-a)-3,然后再代入数值进行计算即可.本题主要考查的是求代数式的值,整体代入是解题的关键.16.【答案】=【解析】解:设羊价为x钱,根据题意可得方程:=,故答案为:=.设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.17.【答案】7cm或3cm【解析】解:∵点D是线段AB的中点,∴BD=0.5AB=0.5×10=5cm,(1)C在线段AB延长线上,如图.DC=DB+BC=5+2=7cm;(2)C在线段AB上,如图.DC=DB-BC=5-2=3cm.则线段DC=7cm或3cm.分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.18.【答案】1.8或8.1【解析】解:(1)在容器乙中的水未注入容器甲之前由题意,注入单个容器中水位上升的高度与时间的关系为cm/分钟,所以当乙中水位为1.5cm时满足条件,所用时间为:1.5÷=1.8(分钟)(2)在容器乙中的水注入容器甲之后当三个容器中的水位为5cm时,设注水时间为x,则2×x+1=2×5+4.5,解得x=8.1(分钟)要使乙中水位高出甲0.5cm,则还需注水的时间为:8.1分钟所以,答案为1.8或8.1本题有两种可能性:(1)在容器乙中的水未注入容器甲之前,注入的水仅存放在乙、丙容器内;(2)在容器乙中的水注入容器甲之后,注入容器乙和丙中的水流入到甲容器中,在注入的过程中产生0.5cm 的高度差.此题考查了一元一次方程的应用,根据题意分析产生水位差的两种情况是解答本题的关键点,建立方程时要注意甲容器中原有的水.19.【答案】解:(1)原式=2++1=3.5;(2)原式=-4-2+20-9=5.【解析】根据实数的运算法则即可求出答案.本题考查实数的运算,解题的关键是熟练运用实数的运算法则,本题属于基础题型.20.【答案】解:(1)去括号得:2-3x+15=2x,移项合并得:5x=17,解得:x=3.4;(2)去分母得:6x-2=6-4x+1,移项合并得:10x=9,解得:x=0.9.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)设本次试点投放的A型车有x辆,则B型车有(100-x)辆,根据题意,得:400x+320(100-x)=36800,解得:x=60,答:本次试点投放的A型车有60辆,则B型车有40辆;(2)由(1)知A,B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆,B型车2a辆,根据题意,得:3a×400+2a×320=1840000,解得:a=1000,答:整个城区全面铺开时投放的A型车3000辆,B型车2000辆.【解析】(1)设本次试点投放的A型车有x辆,则B型车有(100-x)辆,依据“总价值36800元”列出关于x的方程,解之可得;(2)由(1)知A,B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆,B型车2a辆,由投资总价值为184万列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并据此列出方程.22.【答案】解:3(1-a)-2(a2+4a-2)=3-a-a2-8a+4=-a2-9a+7,当a=-2时,原式=-4+18+7=21.【解析】原式去括号合并得到最简结果,将a的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】62 (6n+2)【解析】解:(1)由图可得,第一幅图的火柴数为:2+6×1=8,第二幅图的火柴数为:2+6×2=14,第三幅图的火柴数为:2+6×3=20,则第10个图的火柴数为:2+6×10=62,第n个图的火柴数为:2+6n,故答案为:62,(6n+2);(2)用1202根火柴棒能按此规律摆出一个“金鱼”图案,令6n+2=1202,解得,n=200,答:是第200个图形.(1)根据题目中的图形,可以发现火柴数的变化规律,从而可以写出第10个图的火柴数和第n个图的火柴数;(2)根据(1)中的结果,可以判断用1202根火柴棒能否按此规律摆出一个“金鱼”图案并计算出是第几个图形.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵∠BOE:∠EOD=2:3,∴∠BOE=80°×=32°;(2)∠DOE=∠BOD-∠BOE=80°-32°=48°,∵OF⊥OE,∴∠EOF=90°,OF在∠AOD的内部时,∠DOF=∠EOF-∠DOE=90°-48°,=42°,OF在∠BOC的内部时,∠DOF=∠DOE+∠EOF=90°+48°,=138°,综上所述∠DOF=42°或138°.【解析】(1)根据对顶角相等可得∠BOD=∠AOC,然后根据比例求解即可;(2)先求出∠DOE,再分OF在∠AOD的内部时,∠DOF=∠EOF-∠DOE,OF在∠BOC的内部时,∠DOF=∠DOE+∠EOF进行计算即可得解.本题考查了对顶角相等的性质,角的计算,熟记概念并准确识图是解题的关键.25.【答案】-30【解析】解:(1)设OA=k,BO=5k∵OA+OB=180,即k+5k=180,∴k=30,∴OA=30,OB=150.由于点A在负半轴上,所以点A表示的数为-30.故答案为:-30;(2)设点P的速度为x,则点Q的速度为3x,由题意(x+3x)×30=180,解得,x=1.5,所以点P的速度为1.5,点Q的速度为4.5.∴点D表示的数为:-30+1.5×30=15,(或者150-4.5×30=15)答:点D表示的数是15.(3)由题意,得1.5t+180=4.5t解得,t=60.(1)设OA=k,BO=5k,根据AB=180,计算出k,然后在数轴上得到点A表示的数是多少;(2)把问题看成相遇问题,先求出点P、Q的速度,再求出点D表示的数;(3)把问题看成追击问题,列方程求出t即可.本题考查了一元一次方程的应用.行程问题基本的等量关系为:路程=速度×时间.本题(2)的等量关系为:点P走的+点Q走的=AB;本题(3)的等量关系为:点P走的-点Q走的=AB.。

2018-2019学年四川省成都市金牛区七年级(上)期末数学试卷(解析版)

2018-2019学年四川省成都市金牛区七年级(上)期末数学试卷(解析版)

2018-2019学年四川省成都市金牛区七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.2018的相反数是()A. B. 2018 C. D.2.如图所示的正六棱柱从上面所看见的平面图形是()A.B.C.D.3.经党中央批准、国务院批复自2018年起,将每年秋分日设立为“中国农民丰收节”,据国家统计局数据显示,2018年某省夏季粮食总产量达到2389000吨,将数据“2389000”用科学记数法表示为()A. B. C. D.4.下列计算正确的是()A. B. C. D.5.下列调查,比较适合使用普查方式的是()A. 乘坐地铁的安检B. 长江水质情况C. 某品牌灯泡使用寿命D. 中秋节期间市场上的月饼质量情况6.下列运用等式的性质变形错误的是()A. 若,则B. 若,则C. 若,则D. 若,则7.数轴上点A与数轴上表示3的点相距6个单位,点A表示的数是()A. 3B.C. 9D. 或98.如图,在A、B两处观测到C处的方位角分别是()A. 北偏东,北偏西B. 北偏东,北偏西C. 北偏东,北偏西D. 北偏东,北偏西9.如图,∠AOB=20°,∠BOC=80°,OE是∠AOC的角平分线,则∠COE的度数为()A.B.C.D.10.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际该班组每天比计划多生产了6个零件,结果比规定的时间提前3天完成.若设该班组要完成的零件任务为x个,则可列方程为()A. B. C. D.二、填空题(本大题共9小题,共36.0分)11.单项式的次数是______.12.已知x=3是方程2x-a=1的解,则a=______.13.若|x-1|+|y+2|=0,则5x-2y的值为______.14.如图,已知C是线段AB的中点,点D在线段BC上,若AD=8,BD=6,则CD的长为______.15.若a2+a=,则2a2+2a-2019的值为______.16.已知a、b互为相反数,c,d互为倒数,m的绝对值为2,那么(a+b)m3+5m+2019cd的值为______.17.已知a、b、c在数轴上对应的点如图所示,化简:|b+c|-|a-b|=______.18.规定:用{m}表示大于m的最小整数,例如{}=3,{4}=5,{-1.5}=-1等;用[m]表示不大于m的最大整数,例如[]=3,[2]=2,[-3.2]=-4,如果整数x满足关系式:3{x}+2[x]=13,则x=______.19.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形.第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,……,以此类推,解决以下问题:则a6=______,若第n幅图中“●”的个数为______.(用含n的代数式表示)三、计算题(本大题共2小题,共18.0分)20.计算:(1)14-20+(-12)×(2)-13-23×[-3÷+(-3)2]21.已知代数式A=x2+xy-2y,B=2x2-2xy+x-1(1)求2A-B;(2)若2A-B的值与x的取值无关,求y的值.四、解答题(本大题共7小题,共66.0分)22.解方程:(1)3x+2(x-3)=8-(x+2)(2)=-123.先化简,再求值:5(3a2b-ab2)-2(-ab2+4a2b),其中a=2,b=-3.24.某商场将某种商品按原标价的八折出售,此时商品的利润率是10%,已知商品的进价为1200元,那么此商品的原标价是多少元?25.某校学生会准备调查七年级学生参加”武术类”,“书画类“、“棋牌类”“器乐类”四类校本课程的人数;他们采用了合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图,请你根据以下图表提供的信息解答下列问题:①a=______,b=______;②在扇形统计图中棋牌类所对应扇形的圆心角的度数是______度;③若某校七年级有学生600人,请你估计大约有多少学生参加书画类校本课程.26.如图1,已知线AB=24,点C为线段AB上的一点,点D、E分别是AC和BC的中点.(1)若AC=8,则DE的长为______;(2)若BC=a,求DE的长;(3)动点P,Q分别从A,B两点同时出发,相向而行,点P以每秒3个单位长度沿线段AB向右匀速运动,Q点以P点速度的两倍,沿线段AB向左匀速运动,设运动时间为t秒,问当t为多少秒时P,Q之间的距离为6?27.成都市“滴滴快车中的优享型”计价规则如下:车费由里程费+时长费两部分构成:(1)小刘家的车周三限号,小刘早上在7:10乘坐“滴滴快车中的优享型”去上学,行车里程6公里,行车时间10分钟,则他应付车费多少元?(2)下晚自习后小刘乘坐“滴滴快车中的优享型”回家,21:10在学校上车,由于堵车,走另外一条路回家,平均速度是20公里/小时,共付了23.36元,请问从学校到家快车行驶了多少公里?28.如图1,点O为线段MN上一点,一副直角三角板的直角顶点与点O重合,直角边DO、BO在线段MN上,∠COD=∠AOB=90°.(1)将图1中的三角板COD绕着点O沿顺时针方向旋转到如图2所示的位置,若∠AOC=35°,则∠BOD=______;猜想∠AOC与∠BOD的数量关系为______;(2)将图1中的三角板COD绕着点O沿逆时针方向按每秒15°的速度旋转一周,三角板AOB不动,请问几秒后OD所在的直线平分∠AOB?(3)将图1中的三角板COD绕着点O沿逆时针方向按每秒15°的速度旋转两周,同时三角板AOB绕着点O沿逆时针方向按每秒5°的速度旋转(随三角板COD停止而停止),请直接写出几秒后OC所在直线平分∠AON.答案和解析1.【答案】A【解析】解:2018的相反数是:-2018.故选:A.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】D【解析】解:如图所示的正六棱柱从上面所看见的平面图形是故选:D.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.3.【答案】B【解析】解:2 389000用科学记数法表示为2.389×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:(A)原式=2b,故A错误;(B)原式=3a2-8a,故B错误;(D)原式=a2-a,故D错误;故选:C.根据合并同类项的法则即可求出答案.本题考查合并同类项,解题的关键宿熟练运用合并同类项法则,本题属于基础题型.5.【答案】A【解析】解:A.乘坐地铁的安检适合全面调查;B.调查长江水质情况适合抽样调查;C.调查某品牌灯泡使用寿命适合抽样调查;D.调查中秋节期间市场上的月饼质量情况适合抽样调查;故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【答案】D【解析】解:A、若a=b,则a+6=b+6,正确,不合题意;B、若-3x=-3y,则x=y,正确,不合题意;C、若n+3=m+3,则m=n,正确,不合题意;D、若x=y,则≠,故此选项错误,符合题意.故选:D.直接利用等式的基本性质分别分析得出答案.此题主要考查了等式的基本性质,正确掌握等式的基本性质是解题关键.7.【答案】D【解析】解:设A点表示的数为x当x>3时,应有x-3=6,解得,x=9.当x<3时,应有3-x=6,解得,x=-3.故选:D.因为A点在数轴上,且该点表示的数到数轴上表示数3 的点的距离是6个单位,但是A点表示的数与数轴上表示3的数大小未知,因此要考虑到A<3和A>3时两种情况.本题考查了数轴上的两数之间的距离用绝对值表示的方法与有理数的加减运算的能力8.【答案】B【解析】解:A处观测到的C处的方向角是:北偏东65°,B处观测到的C处的方向角是:北偏西50°.故选:B.根据方向角的定义即可判断.本题考查了方向角,方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.9.【答案】A【解析】解:∵∠AOB=20°,∠BOC=80°,∴∠AOC=∠AOB+∠BOC=100°而OE是∠AOC的角平分线,∴∠COE=∠AOC=50°故选:A.根据∠COE=∠AOC,而∠AOC可以写在两个已知角的和,即可求出结果.本题考查的是角平分线的定义及角的相关计算,严格把握定义并进行计算是解决本题的关键.10.【答案】B【解析】解:设该班组要完成的零件任务为x个,依题意,得:-=3.故选:B.设该班组要完成的零件任务为x个,根据工作时间=工作总量÷工作效率结合时间比规定提前3天完成,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.【答案】8【解析】解:该单项式的次数为:5+3=8,故答案为:8根据单项式的次数概念即可求出答案.本题考查单项式,解题的关键是熟练运用单项式的概念,本题属于基础题型.12.【答案】5【解析】解:把x=3代入方程得:6-a=1,解得:a=5,故答案为:5把x=3代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【答案】9【解析】解:∵|x-1|+|y+2|=0,∴x-1=0,y+2=0,解得:x=1,y=-2,故5x-2y=5+4=9.故答案为:9.直接利用绝对值的性质得出x,y的值,进而得出答案.此题主要考查了非负数的性质,正确得出x,y的值是解题关键.14.【答案】1【解析】解:∵AD=8,BD=6,∴AB=AD+BD=14,∵C是AB的中点,∴AC=AB=7,∴CD=AD-AC=8-7=1.故答案为:1.根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.15.【答案】-2018【解析】解:当a2+a=时,原式=2(a2+a)-2019 =2×-2019=1-2019 =-2018,故答案为:-2018.将a2+a=代入原式=2(a2+a)-2019计算可得.本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.16.【答案】2029或2009【解析】解:由题意得:a+b=0,cd=1,m=2或-2,当m=2时,原式=10+2019=2029;当m=-2时,原式=-10+2019=2009.故答案为:2029或2009.利用相反数,倒数以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.此题考查了有理数的混合运算,代数式求值,熟练掌握运算法则是解本题的关键.17.【答案】-c-a【解析】解:由图得,c<b<0<a.∴b+c<0,a-b>0∴:|b+c|-|a-b|=-(b+c)-(a-b)=-b-c-a+b=-c-a从图中易看出b+c的和小于0,则|b+c|=-(b+c),同理看出a-b的差大于0,则||a-b|=a-b.本题考察了有理数的计算法则以及去绝对值的技巧运用能力.18.【答案】2【解析】解:依题意,得[x]=x,3{x}=3(x+1)∴3{x}+2[x]=13可化为:3(x+1)+2x=13整理得3x+3+2x=13移项合并得:5x=10解得:x=2故答案为:2根据题意可将3{x}+2[x]=13化为:3(x+1)+2x=13,解出即可此题主要考查有理数的比较大小,根据题意的形式即可求解19.【答案】48 n(n+2)【解析】解:由图知a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,∴a n=n(n+2),当n=6时,a6=6×8=48,故答案为:48,n(n+2).由点的分布情况得出a n=n(n+2),据此求解可得.本题主要考查图形的变化类,解题的关键是得出a n=n(n+2).20.【答案】解:(1)14-20+(-12)×=14-20-4=-10;(2)-13-23×[-3÷+(-3)2]=-1-8×(-9+9)=-1-8×0=-1-0=-1.【解析】(1)先算乘法,再算加减法;同级运算,应按从左到右的顺序进行计算;(2)先算乘方,再算乘除法,最后算加减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.【答案】解:(1)2A-B=2(x2+xy-2y)-(2x2-2xy+x-1)=2x2+2xy-4y-2x2+2xy-x+1=4xy-x-4y+1;(2)∵2A-B=4xy-x-4y+1=(4y-1)x-4y+1,且其值与x无关,∴4y-1=0,解得y=.【解析】(1)把A与B代入2A-B中,去括号合并即可得到结果;(2)由2A-B与x取值无关,确定出y的值即可.此题主要考查了整式的加减运算,正确合并同类项是解题关键.22.【答案】解:(1)去括号得:3x+2x-6=8-x-2,移项得:3x+2x+x=8-2+6,合并同类项得:6x=12,系数化为1得:x=2,(2)方程两边同时乘以12得:3(3+x)=4(2x-1)-12,去括号得:9+3x=8x-4-12,移项得:3x-8x=-4-12-9,合并同类项得:-5x=-25,系数化为1得:x=5.【解析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.23.【答案】解:原式=15a2b-5ab2+2ab2-8a2b=7a2b-3ab2,当a=2,b=-3时,原式=7×22×(-3)-3×2×(-3)2=-84-54=-138.【解析】先根据整式的加减混合运算顺序和运算法则化简原式,再将a和b的值代入计算可得.本题主要考查整式的加减-化简求值,解题的关键是掌握整式加减混合运算顺序和运算法则.24.【答案】解:设原价为x元,根据题意可得:80%x=1200(1+10%),解得:x=1650.答:所以该商品的原价为1650元.【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.此题主要考查了一元一次方程的应用,根据题意得出售价是解题关键.25.【答案】100 0.15 54【解析】解:①∵样本容量a=24÷0.24=100,∴b=15÷100=0.15,故答案为:100,0.15;②在扇形统计图中棋牌类所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54;③估计参加书画类校本课程的学生约有600×0.21=126(人).①用武术类频数除以频率可得样本容量a的值,再用书画类人数除以总人数可得b的值;②用360°乘以棋牌类对应的频率即可得;③总人数乘以样本中书画类对应的频率即可得.本题考查的用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.26.【答案】12【解析】解:(1)∵AB=24,AC=8,∴BC=16,∵点D、E分别是AC和BC的中点,∴DC=4,CE=8,∴DE=DC+CE=12,即DE的长是12;故答案为:12;(2)∵AB=24,BC=a,∴AC=24-a,∵点D、E分别是AC和BC的中点,∴DC=12-a,CE=a,∴DE=DC+CE=12,即DE的长是12;(3)∵AP=3t,BQ=6t,∴AP+PQ+BQ=24或AP+BQ-PQ=24,∴3t+6+6t=24或3t+6t-6=24,解得:t=或t=,∴当t为=秒或t=秒时,P,Q之间的距离为6.(1)由AB=24,AC=8,即可推出BC=8cm,然后根据点D、E分别是AC和BC的中点,即可推出DC=4,CE=8,即可推出DE的长度;(2)方法同(1);(3)根据题意列方程即可得到结论.本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.27.【答案】解:(1)由题意可得,小刘应付车费为:1.90×6+0.43×10=15.7(元),答:小刘应付车费15.7元;(2)设从学校到家快车行驶了x公里,1.90x+0.34×(×60)=23.36,解得,x=8,答:从学校到家快车行驶了8公里.【解析】(1)根据题意和表格中的数据可以计算出小刘应付的车费,本题得以解决;(2)根据题意和表格中的数据可以列出相应的方程,本题得以解决.本题考查一元一次方程的应用,解答本题关键是明确题意,列出相应的方程,注意单位要统一.28.【答案】145°180°【解析】解:(1)∵∠COD=90°,∠AOC=35°,∴∠AOD=∠COD-∠AOC=55°,∵∠AOB=90°,∴∠BOD=∠AOB+AOD=145°;∵∠BOD=∠AOD+∠AOC+BOC,∴∠AOC+∠BOD=∠AOC+∠AOD+∠AOC+∠BOC=∠COD+∠AOB=90°+90°=180°,∴∠AOC+∠BOD=∠=180°;故答案为:145°;180°.(2)根据题意可得,当旋转135°或315°时,OD所在的直线平分∠AOB,所以,旋转时间为:135°÷15°=9(秒),315°÷15°=21(秒),答:9秒或21秒后OD所在的直线平分∠AOB.(3)①当三角板AOB绕着点O沿逆时针方向旋转0°到90°,OC直线平分∠AON时,有(90°+5t)=180°-15t,解得t=(秒);②当三角板AOB绕着点O沿逆时针方向旋转90°到180°,OC直线平分∠AON时,有(270°-5t)=360°+90°-15t,解得,t=(秒);③当三角板AOB绕着点O沿逆时针方向旋转180°到240°,OC直线平分∠AON时,有(270°-5t)=360°+270°-15t,解得,t=(秒).综上,秒秒或秒或后OC所在直线平分∠AON.(1)根据互余关系先求出∠AOD,再由角的和差求出结果;(2)当旋转135°或315°时,OD所在的直线平分∠AOB,由此便可求得结果;(3)根据当三角板AOB绕着点O沿逆时针方向旋转0°到90°,90°到180°,180°到240°三种情况,满足OC直线平分∠AON时,列出关于t的方程进行解答.本题是一个图形旋转综合题,考查了旋转性质,互余角的性质,一元一次方程的应用,射线所在直线平分角,分为两种情况,射线在角内,射线在角外,应考虑全面.第(3)小题分三种情况研究平分角,从中找出t的方程,是解决难点的突破口,难度较大.。

2018-2019学年江苏省扬州市高邮市七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省扬州市高邮市七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省扬州市高邮市七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.若把笔尖放在数轴的原点,先向左移动3个单位长度,再向右移动1个单位长度,则这时笔尖位置表示的数是()A. −2B. −1C. +1D. +22.我国的“嫦娥四号”于北京时间2019年1月3日10:26分,在月球背面成功软着陆,目前,通过百度搜索“嫦娥四号”可看到有相关的结果约1250000个,则数据1250000用科学记数法可表示为()A. 1.25×104B. 1.25×105C. 0.125×106D. 1.25×1063.下列各组单项式中,是同类项一组的是()A. 3x2y与3xy2B. 2abc与−3acC. 2xy与2abD. −2xy与3yx4.下列结论中,正确的是()A. 单项式πx2y3的系数是13,次数是2 B. 单项式mn的次数是1,没有系数C. 单项式−ab2x的系数是−1,次数是4D. 多项式2x2+xy+3是三次三项式5.把一条弯曲的道路改成直道,可以缩短路程,其道理是()A. 两点确定一条直线B. 两点之间,线段最短C. 垂线段最短D. 以上都不正确6.下列方程变形中,正确的是()A. 由3x=−4,系数化为1得:x=−34B. 由5=2−x,移项得:x=5−2C. 由x+16+2x−38=1,去分母得:4(x+1)+3(2x−3)=1D. 由2x−(1−5x)=5,去括号得:2x+5x−1=57.如图,已知点C为AB上一点,BC=12cm,AC=32CB,D、E分别为AC、AB的中点,则DE的长为()A. 3B. 4C. 5D. 68.钟面角是指时钟的时针与分针所成的角(这里所说的角均是指不大于平角的角),如:在3:00时的钟面角为90°,那么在3:30与5:00之间钟面角恰好为90°的次数共有()A. 2次B. 3次C. 4次D. 5次二、填空题(本大题共10小题,共30.0分)9.若向东走20m记作+20m,则向西走5m可记作______m.10.如图所示,是一个立体图形的展开图,这立体图形是______.11.计算:2(a-b)+3b=______.12.下列各数中:+(-5)、|-1|、-π2、-(-2019)、0、(-2018)2019,负数有______个.13.已知∠1与∠2为对顶角,且∠1的补角的度数为79°32′,则∠2的度数为______.14.如图,甲从O点出发向北偏西27°方向走到点A,乙从点O出发向南偏东42°方向走到点B,则∠AOB的度数是______.15.若a2+ab=-2,b2-3ab=-3,则a2+4ab-b2的值为______.16.图①是边长为40cm的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽与高相等,这个长方体的体积为______cm3.17.如图,有理数a、b、c在数轴上,则化简|a-c|-|2a+b|+|c-b|的结果是______.18.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是______.三、计算题(本大题共2小题,共16.0分)19.计算:(1)(-8)-(-7)-|-3|(2)-22+3×(-1)2019-9÷(-3)20.先化简,后求值:(3m2-4mn)-2(m2+2mn),其中m,n满足单项式-x m+1y3与32y n x2的和仍是单项式.四、解答题(本大题共8小题,共80.0分) 21. 解下列方程:(1)3x -4=-2(x -1) (2)1+2x+13=3x−2222. 利用网格作图:(1)过点C 作AB 的平行线CD ;(2)过点B 作AC 的垂线,垂足为E ;过点C 作AB 的垂线,垂足为F ; (3)点A 到BE 的距离是线段______的长度.23. 已知:关于y 的方程2-3(1-y )=2y 的解和关于x 的方程m (x -3)-2=-8的解相同,求m 的值.24. 一个由一些相同的正方体搭成的几何体,如图1是它的俯视图和左视图.(1)这个几何体可以是图A 、B 、C 中的______;(2)这个几何体最多有______块相同的正方体搭成,并在网格中画出正方体最多时的主视图(如图2).25. 如图,已知线段AB =20cm ,C 是线段AB 延长线上一点,点D 是BC 的中点.(1)当AC =6CD 时,求AC 的长; (2)若点E 是AC 的中点,求DE 的长.26. 随着出行方式的多样化,我市三类打车方式的收费标准如下:出租车 滴滴快车 同城快车 3千米以内:8元路程:1.4元/千米路程:1.8元/千米超过3千米的部分:2.4元/千米 时间:0.6元/分钟 时间:0.4元/分钟如:假设打车的平均车速为40千米/小时,乘坐8千米,耗时8÷40×60=12分钟,出租车的收费为:8+2.4×(8-3)=20(元);滴滴快车的收费为:8×1.4+12×0.6=18.4(元);同城快车的收费为:8×1.8+12×0.4=19.2(元) 解决问题:(1)小明乘车从高邮文体公园去盂城驿,全程10千米,如果小明使用滴滴快车,需要支付的打车费用为______元;(2)小丽乘车从甲地去乙地,用滴滴快车比乘坐出租车节省了28.8元,求甲、乙两地的距离; (3)同城快车为了和滴滴快车竞争客户,分别推出了优惠方式:滴滴快车对于乘车路程在5千米以上(含5千米)的客户每次收费立减11元;同城快车车费对折优惠.通过计算,对同城快车和滴滴快车两种打车方式,采用哪一种打车方式更合算提出你的建议.27. 定义:对于确定位置的三个数:a ,b ,c ,计算a -b ,a−c 2,b−c 3,将这三个数的最小值称为a ,b ,c 的“分差”,例如,对于1,-2,3,因为1-(-2)=3,1−32=-1,−2−33=-53,所以1,-2,3的“分差”为-53. (1)-2,-4,1的“分差”为______;(2)调整“-2,-4,1”这三个数的位置,得到不同的“分差”,那么这些不同“分差”中的最大值是______;(3)调整-1,6,x 这三个数的位置,得到不同的“分差”,若其中的一个“分差”为2,求x 的值.28. 如图1,已知∠AOB 和∠COD (∠COD <∠AOB ),∠COD 绕着点O 旋转,OE ,OF 分别是∠AOC ,∠BOD的角平分线.(1)如图2,当∠COD 在∠AOB 的内部时,①当∠AOB =90°,∠COD =45°时,∠EOF =______; ②当∠AOB =80°,∠EOF =20°时,∠COD =______;(2)当∠COD 在如图3的位置时,猜想∠EOF 的与∠AOB 和∠COD 的数量关系,并说明你的理由; (3)当∠COD 在如图4的位置时,∠EOF 与∠AOB 和∠COD 的数量关系是______.答案和解析1.【答案】A【解析】解:由题意可得,0-3+1=-2.故选:A.向左移动3个长度单位,就是减3,向右移动1个单位就是加1,因此表示的数为0-3+1=-2本题考查了数轴,正确理解左减右加是解题的关键.2.【答案】D【解析】解:将1250000用科学记数法表示为:1.25×106.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:A、相同字母的指数不同,故A错误;B、字母不同不是同类项,故B错误;C、字母不同不是同类项,故C错误;D、字母项相同且相同字母的指数也同,故D正确;故选:D.根据同类项是字母项相同且相同字母的指数也同,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【答案】C【解析】解:A、单项式的系数是,次数是3,故A错误;B、单项式mn的次数是2,系数是1,故B错误;C、单项式-ab2x的系数是-1,次数是4,故C正确;D、多项式2x2+xy+3是二次三项式,故D错误.故选:C.根据单项式的系数是数字因数,次数是字母指数和,多项式的次数是多项式中次数最高的单项式的次数,可得答案.本题考查了单项式,单项式的系数是数字因数,次数是字母指数和,多项式的次数是多项式中次数最高的单项式的次数.5.【答案】B【解析】解:把弯曲的公路改成直道,其道理是两点之间线段最短.故选:B.根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短解答.本题主要考查了线段的性质,熟记两点之间线段最短是解题的关键.6.【答案】D【解析】解:A、3x=-4,系数化为1,得x=-,故选项A错误,B、5=2-x,移项,得x=2-5,故选项B错误,C 、由+=1,去分母得:4(x+1)+3(2x-3)=24,故选项C错误,D、由2x-(1-5x)=5,去括号得:2x+5x-1=5,故选项D正确,故选:D.根据解方程的方法和等式的性质可以判断各个选项是否正确,从而可以解答本题.本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.7.【答案】D【解析】解:根据题意BC=12cm,AC=CB,所以AC=18cm,所以AB=AC+CB=30cm,又因为D、E分别为AC、AB的中点,所以DE=AE-AD=(AB-AC)=6cm.故选:D.求DE的长度,即求出AD和AE的长度.因为D、E分别为AC、AB的中点,故DE=(AB-AC),又BC=12cm,AC=CB,可求出AC,即可求出AB,代入上述代数式,即可求出DE的长度.考查了两点间的距离,此题要求学生灵活运用线段的和、差、倍、分之间的数量关系,熟练掌握.8.【答案】C【解析】解:设n=分,m=点,当m=3时,有5.5°×n-30°×3=90°或5.5°×n-30°×3=270°,解得:n1=,n2=;当m=4时,有5.5°×n-30°×4=90°或30°×4-5.5°×n=90°,解得:n3=,n4=.当综上可知:钟面角为90°的情况有4次.故选:C.根据钟面角公式套入3点,4点即可求得具体哪个时间钟面角为90°,4点整时显然钟面角为120°,查出个数即是所得.考查了一元一次方程的应用,钟面角,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.【答案】-5【解析】解:若向东走20m记作+20m,则向西走5m可记作-5m,故答案为:-5.根据题意,可以表示出向西走5m,本题得以解决.本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际含义.10.【答案】圆锥【解析】解:如图所示,是一个立体图形的展开图,这个立体图形是圆锥.故答案为:圆锥.根据圆锥表面展开图的特点解题.本题考查圆锥表面展开图,记住圆锥的表面展开图的特征是解题的关键.11.【答案】2a+b【解析】解:原式=2a-2b+3b=2a+b.故答案为:2a+b原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.12.【答案】3【解析】解:在所列实数中,负数有+(-5)、-、(-2018)2019这3个数,故答案为:3.根据相反数的意义、绝对值的意义、乘方的意义,可化简各数,根据小于零的数是负数,可得答案.本题考查了正数和负数,化简各数是解题关键,注意小于零的数是负数.13.【答案】100°28′【解析】解:∵∠1的补角的度数为79°32′,∴∠1=180°-79°32′=100°28′,∵∠1与∠2为对顶角,∴∠2=∠1=100°28′,故答案为:100°28′.求出∠1 的度数,根据对顶角相等求出即可.本题考查了对顶角和补角的定义,能熟记对顶角相等和补角的定义是解此题的关键.14.【答案】165°【解析】解:由题意得,∠AOB=27°+90°+90°-42°=165°,故答案为:165°.∠AOB等于三个角的和,求出各角的度数,相加即可.本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.15.【答案】1【解析】解:∵a2+ab=-2,b2-3ab=-3,∴原式=a2+ab-(b2-3ab)=-2-(-3)=1,故答案为:1.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.16.【答案】2000【解析】解:设长方体的高为xcm,则其宽为,根据题意得:x=20-x,解得x=10,故长方体的宽与高均为10cm,长为40-10×2=20cm,所以长方体的体积为:20×10×10=2000cm3.故答案为:2000设长方体的高为xcm,然后表示出其宽为20-x,根据该长方体的宽与高相等,列方程即可求出长方体的宽与高,再求出长,然后根据长方体的体积公式求解即可.本题考查了一元一次方程的应用以及展开图折叠成几何体,根据长方体宽和高之间的关系,列出一元一次方程是解题的关键.17.【答案】a+2c【解析】解:由数轴可知,a<b<0<c,∴a-c<0,2a+b<0,c-b>0,|a-c|-|2a+b|+|c-b|=(-a+c)-(-2a-b)+(c-b)=-a+c+2a+b+c-b=a+2c,故答案为a+2c.先根据数轴确定绝对值里的代数式的正负,然后去括号合并同类项即可.本题考查了数轴与绝对值,正确去绝对值是解题的关键.18.【答案】-1008【解析】解:第n次移动n个单位,第2019次左移2019×1个单位,每左移右移各一次后,点A右移1个单位,所以A2019表示的数是1×(2018÷2)-2019×1+1=-1008.故答案为:-1008.奇数次移动是左移,偶数次移动是右移,第n次移动n个单位.每左移右移各一次后,点A右移1个单位,故第2018次右移后,点A向右移动1×(2018÷2)个单位,第2019次左移2019个单位,故点A2019表示的数是1×(2018÷2)-2019×1+2.本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动的后的实际距离和方向是解答次题的关键.19.【答案】解:(1)原式=-8+7-3=-4-3=-7;(2)原式=-4+3×(-1)-(-3)=-4-3+3=-4.【解析】(1)减法转化为加法、计算绝对值,再计算加减可得;(2)先计算乘方和除法,再计算乘法,最后计算加减可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.【答案】解:原式=3m2-4mn-2m2-4mn=m2-8mn,∵单项式-x m+1y3与32y n x2的和仍是单项式,∴-x m+1y3与32y n x2是同类项,∴m+1=2,即m=1,n=3,则原式=1-8×1×3=-23.【解析】先去括号,合并同类项化简原式,再根据同类项的概念求出m和n的值,代入计算可得.本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.21.【答案】解:(1)3x-4=-2(x-1),3x-4=-2x+2,3x+2x=2+4,5x=6,x=1.2;(2)1+2x+13=3x−22,6+2(2x+1)=3(3x-2),6+4x+2=9x-6,4x-9x=-6-6-2,-5x=-14,x=145.【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.【答案】AE【解析】解:(1)取格点D,直线直线CD,直线CD即为所求.(2)取格点M,作直线BM交AC于点E,直线BM即为所求,取格点N,作直线CN交AB于F,直线CN即为所求.(3)点A到BE的距离是线段AE的长度故答案为AE.(1)取格点D,直线直线CD,直线CD即为所求.(2)取格点M,作直线BM交AC于点E,直线BM即为所求,取格点N,作直线CN交AB于F,直线CN即为所求.(3)点A到BE的距离是线段AE的长度本题考查作图-应用与设计,点到直线的距离,平行线的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:解方程2-3(1-y)=2y得:y=1,∵关于y的方程2-3(1-y)=2y的解和关于x的方程m(x-3)-2=-8的解相同,∴x=1,∴把x=1代入m(x-3)-2=-8得:-2m-2=-8,解得:m=3.【解析】求出第一个方程的解,把求出的数代入第二个方程,再求出m即可.本题考查了解一元一次方程和一元一次方程的解,能得出关于m的方程是解此题的关键.24.【答案】B10【解析】解:(1)观察俯视图和左视图可知几何体是B,故答案为B.(2)这个几何体最多有10个相同的正方体搭成.主视图如图所示:故答案为:B,10.(1)分别画出图A,B,C的左视图,俯视图即可判断.(2)根据左视图,俯视图即可解决问题.本题考查作图-三视图,与三视图判定几何体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】解:(1)∵点D是BC的中点,∴BC=2CD,∵AC=6CD,∴AB=4CD,∵AB=20cm,∴CD=5cm,∴AC=30cm;(2)∵点E是AC的中点,∴DE=CE-CD=12AC -12BC=12(AC-BC)=12AB=10cm.【解析】(1)由AC=6CD,以及点D是BC的中点,可得AB=4CD,再根据AB=20cm,可求CD,进一步可求AC的长;(2)根据中点的定义和线段的和差关系可得DE=CE-CD=AC-BC=(AC-BC)=AB,依此可求DE的长.本题考查的是两点间的距离,熟知中点的定义和各线段之间的和、差关系是解答此题的关键.26.【答案】23【解析】解:(1)可根据上表可得,乘坐10千米,耗时10÷40×60=15分钟,则滴滴快车的收费为:10×1.4+15×0.6=23元故答案为:23(2)∵28.8>8∴甲、乙两地的距离大于3千米∴设两地的距离为S,则有(S-3)×2.4+8-(×60×0.6)=28.8,整理得0.1S+0.8=28.8解得S=280故甲、乙两地的距离为280千米(3)当两地大于5千米时,设同城快车的费为M1,可得M1=0.5×(1.8S+×60×0.4)=1.2S,滴滴快车的收费为M2=1.4S+×60×0.6-11=2.3S-11①当M1=M2时,有1.2S=2.3S-11,解得S=10,故当S为10千米时,两者都可以选②当两地相距离小于5千米时,滴滴快车没有优惠,此时滴滴快车的收费为:1.4S+×60×0.6=2.3S>1.2S,故选同城快车③当两地大于5千米小于10千米时,可计算得M1>M2,故选滴滴快车④当两地大于10千米时,可计算得,M1<M2,故选同城快车(1)可根据上表可得,乘坐10千米,耗时10÷40×60=15分钟,则滴滴快车的收费为:10×1.4+15×0.6=23元(2)由于滴滴快车比乘坐出租车节省了28.8元,可知行驶的路程超过了3千米.故可设两地的距离为S,则可列式子为:(S-3)×2.4+8-(×60×0.6)=28.8,求解S即可(3)首先计算出同城快车和滴滴快车两种收费相等时的情况,再进行讨论哪一种更合算.此题主要考查列代数式解方程,在第(3)中,也可以利用一次函数的图象进行解题.27.【答案】−532 3【解析】解:(1)∵a=-2,b=-4,c=1∴a-b=-2-(-4)=2,=,=,∴-2,-4,1的“分差”为故答案为:(2)①若a=-2,b=1,c=-4则a-b=-2-1=-3,==1,=,∴-2,1,-4的“分差”为-3②若a=-4,b=-2,c=1则a-b=-4-(-2)=-2,=,=∴-4,-2,1的“分差”为③若a=-4,b=1,c=-2则a-b=-4-1=-5,=,=∴-4,1,-2的“分差”为-5④若a=1,b=-4,c=-2则a-b=1-(-4)=5,=,=∴1,-4,-2的“分差”为⑤若a=1,b=-2,c=-4则a-b=1-(-2)=3,=,=∴1,-2,-4的“分差”为综上所述,这些不同“分差”中的最大值为故答案为:(3)∵“分差”为2,-1-6=-7∴三个数的顺序不能是-1,6,x 和-1,x,6和x,-1,6①a=6,b=x,c=-1,∴a-b=6-x,=,=若6-x=2,得x=4,<2,不符合若,得x=5,6-x=1<2,不符合②a=6,b=-1,c=x , ∴a-b=6-(-1)=7,=,=若,得x=2,<2,不符合 若,得x=-7,>2,符合③a=x ,b=6,c=-1 ∴a-b=x-6,=,= 若x-6=2,得x=8,>2,符合若,得x=3,x-6=-3<2,不符合综上所述,x 的值为-7或8.(1)按“新定义”代入三个代数式求值再比较大小.(2)三个数顺便不同可以有6种组合,除第(1)题的顺序,计算其余五种情况的“分差”,再比较大小.(3)由“分差”为2(是正数)和-1-6=-7<2可知,-1-6不能对应a-b ,a-c ,b-c ,所以剩三种情况:6,-1,x 或6,x ,-1或x ,6,-1.每种情况下计算得三个代数式后,分别令两个含x 的式子等于2,求出x ,再代入检查此时“分差”是否为2.本题考查了实数的加减、一元一次方程的解法,分类讨论.分类的依据是3个数顺序不同时算法不同,还要再检验求出的x 是否满足题意.28.【答案】22.5° 40° ∠EOF =180°-12∠AOB +12∠COD 【解析】解:(1)①∵∠AOB=90°,∠COD=45°, 设∠AOD=x ,则∠BOC=45°-x , ∴∠AOC=45°+x ,∠BOD=90°-x , ∵OE ,OF 分别是∠AOC ,∠BOD 的角平分线,∴∠AOE=∠AOC=(45°+x ),∠DOF=∠BOD=45°-x , ∴∠AOF=∠DOF+∠AOD=45°-x+x=45°+x , ∴∠EOF=∠AOF-∠AOE=22.5°; ②∵∠AOB=80°,∠EOF=20°, 设∠AOD=x ,∠DOC=y , ∴∠AOC=y+x ,∠BOD=80°-x , ∵OE ,OF 分别是∠AOC ,∠BOD 的角平分线,∴∠AOE=∠AOC=(y+x ),∠DOF=∠BOD=40°-x , ∴∠AOF=∠DOF+∠AOD=40°-x+x=40°+x , ∴∠EOF=∠AOF-∠AOE=40°+x-(y+x )=20°; ∴y=40°, ∴∠COD=40°; (2)∠EOF=∠AOB-∠COD ; 理由:设∠BOD=α, ∴∠AOC=∠AOB+α+∠COD ,∵OE ,OF 分别是∠AOC ,∠BOD 的角平分线,∴∠AOE=∠AOC=(∠AOB+α+∠COD ),∠BOF=∠BOD=α, ∴∠AOF=∠AOB+∠BOF=∠AOB+α,∴∠EOF=∠AOF-∠AOE=∠AOB+α-(∠AOB+α+∠COD )=∠AOB-∠COD ; (3)∠EOF=180°-∠AOB+COD ,理由:设∠AOC=α,∠BOD=β, ∵∠AOB=360°-∠AOC-∠BOD-∠COD , ∴α+β=360°-(∠AOB+∠COD ),∵OE ,OF 分别是∠AOC ,∠BOD 的角平分线, ∴∠COE=∠AOC=α,∠DOF=∠BOD=β,∴∠EOF=∠COE+∠COD+∠DOF=α+β+∠COD=(α+β)+∠COD=(360°-∠AOB-∠COD )+∠COD ,即∠EOF=180°-∠AOB+COD .故答案为:22.5°,40°,∠EOF=180°-∠AOB+COD.(1)①∠AOD=x,则∠BOC=45°-x,求得∠AOC=45°+x,∠BOD=90°-x,根据角平分线的定义得到∠AOE=∠AOC=(45°+x),∠DOF=∠BOD=45°-x,根据角的和差即可得到结论;②设∠AOD=x,∠DOC=y,得到∠AOC=y+x,∠BOD=80°-x,根据角平分线的定义和角的和差即可得到结论;(2)设∠BOD=α,根据角平分线的定义得到∠AOE=∠AOC=(∠AOB+α+∠COD),∠BOF=∠BOD=α,根据角的和差即可得到结论;(3)设∠AOC=α,∠BOD=β,根据角平分线定义得到∠COE=∠AOC=α,∠DOF=∠BOD=β,于是得到结论..本题考查了余角和补角,角的和差,角平分线的定义,正确的识别识别图形是解题的关键.第11页,共11页。

2018-2019学年七年级(上)期末数学试卷含答案解析

2018-2019学年七年级(上)期末数学试卷含答案解析

2018-2019学年七年级(上)期末数学试卷一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×1063.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣15.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=138.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°二、填空题(每小题3分,共计30分)9.﹣3的绝对值是.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是℃.11.多项式2x2+xy+3是次三项式.12.已知∠A=70°,则∠A的补角是度.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.20.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为,分针1分钟转过的角度为;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?2018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:A.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1390000用科学记数法表示为1.39×106.故选B.3.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b【考点】合并同类项.【分析】根据合并同类项的法则,合并同类项是把同类项系数相加减而字母和字母的指数不变,即可解答.【解答】解:A、2a﹣a=a,故错误;B、2a与b不是同类项,故错误;C、3a2+2a2=5a2,故错误;D、正确;故选:D.4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣1【考点】解一元一次方程.【分析】先移项,再合并同类项,最后化系数为1,从而得到方程的解.【解答】解:移项得:﹣3x+2x=4﹣2,合并得:﹣x=2,系数化为1得:x=﹣2.故选B.5.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.【考点】几何体的展开图.【分析】由棱锥的侧面展开图的特征可知答案.【解答】解:棱锥的侧面是三角形.故选:C.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=13【考点】由实际问题抽象出一元一次方程.【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数13元,明确了等量关系再列方程就不那么难了.【解答】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x﹣1)元,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,可得方程为:2(x﹣1)+3x=13.故选A.8.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.二、填空题(每小题3分,共计30分)9.﹣3的绝对值是3.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是11℃.【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为5﹣(﹣6)=11℃.故答案为:11.11.多项式2x2+xy+3是二次三项式.【考点】多项式.【分析】直接利用多项式的次数即单项式最高次数,进而得出答案.【解答】解:多项式2x2+xy+3是二次三项式.故答案为:二.12.已知∠A=70°,则∠A的补角是110度.【考点】余角和补角.【分析】根据补角的定义,两个角的和是180°即可求解.【解答】解:∠A的补角是:180°﹣∠A=180°﹣70°=110°.故答案是:110.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为﹣4.【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m=2,n﹣3=3,解得n=6,m﹣n=2﹣6=﹣4,故答案为:﹣4.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为7.【考点】一元一次方程的解.【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=﹣2代入方程2x+m=1﹣x就得到关于m的方程,从而求出m的值.【解答】解:把x=﹣2代入方程2x+m=1﹣x,得:﹣4+m=1+2,解得:m=7.故答案为:7.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为14.【考点】两点间的距离.【分析】根据点P是线段MN的中点,可得MN=2PN,再根据PN=7,求出线段MN的长为多少即可.【解答】解:∵点P是线段MN的中点,∴MN=2PN=2×7=14.故答案为:14.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为120°.【考点】角的计算;角平分线的定义.【分析】根据角平分线的性质得出∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,进而求出x的值,即可得出答案.【解答】解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【考点】平行线;认识立体图形;对顶角、邻补角;垂线段最短.【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)﹣5+(﹣2)﹣(﹣3)=﹣7+3=﹣4(2)﹣22×3﹣(﹣3)+6﹣|﹣5|=﹣12+3+6﹣5=﹣8(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3=64﹣3[﹣9+6]+3+=64+9+3+=7620.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=时,原式=51.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=2,解得:x=1;(2)去括号得:3x﹣4x+4=2x+10,移项合并得:﹣3x=6,解得:x=﹣2;(3)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).【考点】作图-三视图.【分析】由已知条件可知,主视图有2行,每行小正方数形数目为4;左视图有2行,每行小正方形数目为3;俯视图有3行,每行小正方数形数目为4.据此即可画出图形.【解答】解:画出这个长方体的三视图如图所示.23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于m的方程,解方程求得m的值,然后代入所求的解析式即可求解.【解答】解:把x=2代入方程得:2﹣(m﹣2)=4,解得:m=﹣4,则m2﹣(6m+2)=16﹣(﹣24+2)=38.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是垂直.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)【考点】作图—复杂作图;点到直线的距离;平行线的性质.【分析】(1)分别根据垂线与平行线的性质与即可画出图形;(2)根据平行线的性质即可得出结论;(3)用刻度尺量出C点到直线AB的距离即可.【解答】解:(1)如图,线段CD与直线EF即为所求;(2)∵EF∥AB,CH⊥AB,∴EF⊥CH.(3)C点到直线AB的距离约为2.5cm.故答案为:垂直.25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.【考点】对顶角、邻补角.【分析】(1)由邻补角定义即可得出结果;(2)由对顶角相等得出∠BOD=∠AOC=74°,由角平分线定义即可得出结果;(3)求出∠BOF=∠DOF﹣∠BOD=16°,即可得出∠EOF的度数.【解答】解:(1)∵∠AOC=74°,∴∠BOC=180°﹣74°=106°;(2)∵∠BOD=∠AOC=74°,OE平分∠BOD,∴∠BOE=∠BOD=37°;(3)∵∠BOF=∠DOF﹣∠BOD=90°﹣74°=16°,∴∠EOF=∠BOE+∠BOF=37°+16°=53°.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?【考点】一元一次方程的应用;钟面角.【分析】(1)钟表表盘共360°,被分成12大格,每一个大格是360°÷12=30°.(2)分①当分针在时针上方时②当分针在时针下方时两种情况列出方程解答即可.【解答】解:(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°,故答案为:30°,6°(2)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:﹣6x=60解得:②当分针在时针下方时,由题意得:解得:.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.。

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中最小的数是A. B. 0 C. D.【答案】D【解析】解:,四个数中最小的数是.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.2.巢湖是中国五大淡水湖之一,位于安徽省中部,最大水容积达亿立方米,其中“亿”用科学记数法可表示为A. B. C. D.【答案】B【解析】解:“亿”用科学记数法可表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关系式正确的是A. B. C. D.【答案】C【解析】解:A、,错误;B、,错误;C、15^{\circ}5’'/>,正确;D、15^{\circ}5’'/>,错误;故选:C.根据,求得结果.本题考查了度分秒的换算,相对比较简单,注意以60为进制即可.4.“把弯曲的公路改直就可以缩短路程”,其中蕴含的数学道理是A. 经过两点有一条直线,并且只有一条直线B. 直线比曲线短C. 两点之间的所有连线中,直线最短D. 两点之间的所有连线中,线段最短【答案】D【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.5.在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为A. 1B.C. 或1D. 或5【答案】C【解析】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是;与点M距离等于3个单位长度的点在M左边时,该点表示的数是,故选:C.与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为加减3即可.本题考查数轴的相关知识运用分类讨论和数形结合思想是解答此类问题的关键.6.如图,若AB,CD相交于点O,,则下列结论不正确的是A. 与互为余角B. 与互为余角C. 与互为补角D. 与互为补角【答案】C【解析】解:,,,,,,故A、B、D选项正确,C错误.故选:C.直接利用垂直的定义结合互余以及互补的定义分析得出答案.此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.7.在解方程过程中,以下变形正确的是A. B. C.D.【答案】A【解析】解:去分母得:,去括号得:,故选:A.方程两边乘以6去分母得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.8.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利,另七年级个亏损,则在这次买卖中,商店的盈亏情况是A. 盈利元B. 盈利6元C. 不盈不亏D. 亏损6元【答案】D【解析】解:设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据题意得:,,解得:,,元.答:商店亏损6元.故选:D.设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据售价进价利润,即可得出关于的一元一次方程,解之即可得出的值,再利用利润售价进价即可找出商店的盈亏情况.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.9.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母所对应的点重合.A. AB. BC. CD. D【答案】D【解析】解:设数轴上的一个整数为x,由题意可知当时为整数,A点与x重合;当时为整数,D点与x重合;当时为整数,C点与x重合;当时为整数,B点与x重合;而,所以数轴上的1949所对应的点与圆周上字母D重合.故选:D.因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示的数都与D点重合,依此按序类推.本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.有理数a,b,c在数轴上的对应点如图所示,化简代数式,结果为A. B. C. D.【答案】C【解析】解:由数轴知,,,故选:C.由数轴知,,,去绝对值合并同类项即可.本题考查绝对值的性质确定绝对值符号内代数式的性质符号是解答此类题目的关键.二、填空题(本大题共6小题,共24.0分)11.如果向东走10米记作米,那么向西走15米可记作______米【答案】【解析】解:向东走10米记作米,向西走15米记作米.故答案为:.明确“正”和“负”所表示的意义,再根据题意作答.本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若的值与2互为相反数,则x的值为______.【答案】【解析】解:的值与2互为相反数,,解得:.故答案为:.直接利用相反数的定义得出,进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.13.如图是某市2015年至2018年各年底私人汽车拥有量折线统计图从中可以看出该市私人汽车数量增加最多的年份是______年【答案】~【解析】解:由图可得,~年增加辆,~年增加辆,~年增加辆,故答案为:~.根据函数图象中的数据,可以求得该市私人汽车数量增加最多的年份.本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.【答案】【解析】解:由题意,可得这个三位数为:.故答案为.根据m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,即可得出答案.主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.15.当时,代数式的值为3,则______.【答案】1【解析】解:根据题意,将代入,得:,则原式,故答案为:1.由已知条件得出,代入原式计算可得.本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.16.已知,,OM平分,ON平分,那么等于______度【答案】或80【解析】解:当射线OC在内部时,,OM平分,ON平分,,,;当射线OC在外部时,,OM平分,ON平分,,,,故答案为:或80.分射线OC在内部和外部两种可能来解答.本题考查角平分线的意义分类讨论是解答此题的关键.三、计算题(本大题共3小题,共24.0分)17.计算:【答案】解:原式.【解析】根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.先化简再求值:,其中,.【答案】解:原式当,时,原式【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.《九章算术》是中国古代数学的经典著作书中有一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”意思是:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多出11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、买鸡的钱数各是多少?请解答这个题目.【答案】解:设买鸡的人数为x,则鸡的钱数为文钱,根据题意,得:,解得:,则,答:买鸡的人数为9,则鸡的钱数为70文钱.【解析】设买鸡的人数为x,则鸡的钱数为文钱,根据“每人出6文钱,又会缺16文钱”列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.四、解答题(本大题共3小题,共32.0分)20.解方程.【答案】解:去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.某中学为了了解学生参加体育运动的兴趣情况,从全校学生中随机抽取部分学生进行调查,对样本数据整理后画出如下统计图统计图不够完整请结合图中信息解答下列问题:此样本的样本容量为:______;补全条形统计图;求兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.【答案】200【解析】解:样本容量为:,故答案为:200;兴趣为“高”的学生有:人,补全的条形统计图如右图所示;兴趣为“中”的学生所占的百分比是:,兴趣为“中”的学生对应扇形的圆心角是:.根据统计图中兴趣为“极高”的学生所占的百分比和人数,可以求得此样本的容量;根据中的结果,可以求得条形统计图中兴趣为“高”的学生人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.本题考查条形统计图、扇形统计图、总体、个体、样本、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,数轴上点A表示的数为,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动设运动时间为t秒.,B两点间的距离等于______,线段AB的中点表示的数为______;用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;求当t为何值时,?若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.【答案】20 6【解析】解:点A表示的数为,点B表示的数为16,,B两点间的距离等于,线段AB的中点表示的数为故答案为:20,6点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,点P表示的数为:,点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,点Q表示的数为:,故答案为:,或6答:或6时,线段MN的长度不会变化,点M为PA的中点,点N为PB的中点,,由数轴上两点距离可求A,B两点间的距离,由中点公式可求线段AB的中点表示的数;由题意可求解;由题意可列方程可求t的值;由线段中点的性质可求MN的值不变.本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。

2018-2019七上期末数学试卷(1)

2018-2019七上期末数学试卷(1)

2018-2019学年山西省太原市七年级(上)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下表相应的位置1.(3分)比﹣2大3的数是()A.3B.1C.﹣2D.﹣32.(3分)下列计算正确的是()A.3a﹣2a=1B.x2y﹣2xy2=﹣xy2C.3a2+5a2=8a4D.3ax﹣2xa=ax3.(3分)为创建文明城市,太原市政府提出“创建文明城市共建美好家园”的号召,学校为了解全体学生(共1000名,每班30人左右)对“创城”知识的掌握情况,让小颖设计抽样的方式,其中最合适的是()A.从全校的每个班级中抽取学号为5、15和25的学生进行调查B.在七年级学生中随机抽取一个班级进行调查C.在学校操场随机抽取10名学生进行调查D.从学校的男同学中随机抽取50名学生进行调查4.(3分)下面是小明对4个几何图形的描述:①图1:直线EF经过点C;②图2:点A在直线l外;③图3:射线OP平分∠AOB;④图4:直线AB,CD相交于点O.其中正确的是()A.①②③B.①②④C.①③④D.②③④5.(3分)如图是一个正方体线段AB,BC,CA是它的三个面的对角线下列图形中,是该正方体的表面展开图的是()A.B.C.D.6.(3分)下列解一元一次方程的过程,正确的是()A.将方程4x﹣5=3x+2移项,得4x﹣3x=﹣2+5B.将方程x=6两边同除以,得x=18C.将方程3(x﹣1)=2(x+3)去括号,得3x﹣1=2x+6D.将方程x﹣1=x+3去分母,得4x﹣6=3x+37.(3分)如图,下列数轴上的点A都表示有理数a,其中a+2一定是正数的是()A.B.C.D.8.(3分)如图,是某住宅小区平面图,点B是某小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路,从居民楼点A到“菜鸟驿站”点B的最短路径是()A.A﹣C﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F ﹣E﹣B9.(3分)甲、乙两种酒近几年的销量如折线统计图所示,由此得出的下列判断正确的是()A.甲种酒年销量增长速度比乙快B.甲、乙两种酒年销量增长速度相同C.乙种酒年销量增长速度比甲快D.甲种酒的销量平均每年增长约13.3万箱10.(3分)《九章算术》中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊,若每人出5钱,则还差45钱;若每人出7钱,则仍然差3钱.求买羊的人数和这头羊的价格.设买羊的人数为x人,根据题意,可列方程为()A.5x﹣45=7x+3B.5x+45=7x﹣3C.5x﹣45=7x﹣3D.5x+45=7x+3二、填空题(本大题含5个小题,每小题2分,共10分)把结果直接填在横线上11.(2分)2018年12月8日凌晨,我国嫦娥四号月球探测器顺利升空,即将完成人类首次月背软着陆和巡视勘察,临近月球时其飞行速度高于2380米/秒,数据2380米/秒用科学记数法表示为米/秒.12.(2分)用相等长度的火柴棒搭成如图所示的一组图形,按照此规律,搭第n 个图形要用的火柴棒的根数用含n的代数式表示为根.13.(2分)如图,两块三角板的直角顶点在点O处重合,若OB恰好平分∠COD,则∠AOC的度数为.14.(2分)某商场以每件120元的价格购进某品牌的衬衫500件,按标价的八折销售,若商场销售完这批衬衫共获利20000元,则每件衬衫标价应为元.15.(2分)幻方历史悠久,趣味无穷如图1,将9个整数填入九宫格,使每行、每列、每条对角线上3个数之和都相等,得到一个幻方,如图2,是另外9个整数填入九宫格后形成的幻方的一部分,请将图2幻方中所缺的数补充完整.三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程16.(8分)计算(1)(﹣1)2×23﹣4×÷(﹣2)(2)(a2+4ab)﹣2(2a2﹣3ab)17.(8分)解方程(1)x﹣3(x+2)=14;(2)﹣=1.18.(5分)如图1,已知线段AB=10,点C是线段AB上一点且AC=4,点M 是AC的中点.(1)求线段MB的长度;(2)如图2,若点C是线段AB上任意一点,点M,N分别是AC,BC的中点,则MN与AB的数量关系是.19.(9分)白色污染(Whitepollution)是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区40户居民,记录了这些家庭2018年某个月丢弃塑料袋的数量(单位:个)29 39 35 39 39 27 33 35 31 31 32 32 34 31 3339 38 40 38 4231 31 38 31 39 27 33 35 40 38 29 39 35 33 3939 38 42 37 32请根据上述数据,解答以下问题:(1)小彬按“组距为5”列出了如下的频数分布表(每组数据含最小值不含最大值),请将表中空缺的部分补充完整,并补全频数分布直方图;35正正45(2)根据(1)中的直方图可以看出,这40户居民家这个月丢弃塑料袋的个数在组的家庭最多;(填分组序号)(3)根据频数分布表,小彬又画出了如图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中,并求出C组对应的扇形圆心角的度数;(4)若该小区共有1000户居民家庭,请你估计每月丢弃的塑料袋数量不小于30个的家庭个数.20.(6分)某公司要把一台机器运往外地,现有两种运输方式可供选择:方式一:使用快递公司运输装卸费500元,另外每千米再加收4元;方式二:使用火车运输装卸费820元,另外每千米再加收2元.(1)若运输路程是x千米,请用含x的代数式分别表示两种运输方式的总费用;(2)若两种运输方式的总费用相同,求运输这台机器的路程.21.(6分)农民王伯伯在县政府精准扶贫办工作人员的扶持下,种植了香瓜和甜瓜两种水果共25亩,投资成本共44000元,已知香瓜每亩投资1700元,甜瓜每亩投资1800元.王伯伯分别种植香瓜和甜瓜各多少亩?22.(6分)请从下列A、B两题中任选一题作答,我选择题A:如图1,已知∠AOB=90°,射线OC在∠AOB外部,且∠BOC=30°,若射线OD平分∠BOC.求∠AOD的度数.B:如图2,已知∠AOB=90°,射线OC在∠AOB的内部,射线OD在∠COB 内部,且∠COD=10°,若射线OM平分∠AOC,射线ON平分∠BOD,求∠MON的度数.23.(12分)综合与实践情境再现:举世瞩目的港珠澳大桥东接香港,西接珠海、澳门,全长55千米,是世界上最长的跨海大桥,被誉为“新世界七大奇迹”之一.如图,香港口岸点B至珠海口岸点A约42千米,海底隧道CD全长约7千米,隧道一端的东人工岛点C到香港口岸的路程为12千米,某一时刻,一辆穿梭巴士从香港口岸发车,沿港珠澳大桥开往珠海口岸.10分钟后,一辆私家车也从香港口岸出发沿港珠澳大桥开往珠海口岸,在私家车出发的同时,一辆大客车从珠海口岸出发开往香港口岸.已知穿梭巴士的平均速度为72千米/时,大客车的平均速度为78千米/时,私家车的平均速度为84千米/时.问题解决:(1)穿梭巴士出发多长时间与大客车相遇?(2)私家车能否在到达珠海口岸前追上穿梭巴士?说明理由;(3)穿梭巴士到达珠海口岸后停车5分钟供乘客上下车,之后立即沿原路按原速度返回香港口岸.设该巴士从香港口岸出发后经过的时间为t小时.请从下列A,B两题中任选一题作答我选择题A:①该巴士返程途中到珠海口岸的路程为千米(用含t的代数式表示);②该巴士返程途中到东人工岛的路程为6千米时,t的值为.B:①该巴士返程途中到香港口岸的路程为千米(用含t的代数式表示);②私家车到达珠海口岸时,用5分钟办完事立即返回香港口岸.若其返程途中的速度为96千米/时,私家车返程途中与巴士之间相距的路程为4千米时,t的值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年七年级数学上册期末试卷
一.单选题(共10题;共30分)
1.已知a是有理数,则下列结论正确的是()
A. a≥0
B. |a|>0
C. ﹣a<0
D. |a|≥0
2.王老师给学生分作业本,若每人分4本,则多8本,若每人分5本,则少2本,则学生数、本数分别为( )
A. 18人,40本
B. 10人,48本
C. 50人,8本
D. 18人,5本
3.式子﹣4+10+6﹣5的正确读法是()
A. 负4、正10、正6、减去5的和
B. 负4加10加6减负 5
C. 4加10加6减5
D. 负4、正10、正6、负5的和
4.已知∠A=45°15′
,∠C=45.15°,则()
,∠B=45°12′18″
A. ∠A>∠B>∠C
B. ∠B>∠A>∠C
C. ∠A>∠C>∠B
D. ∠C>∠A>∠B
5.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中正数有()
A. 1个
B. 2个
C. 3个
D. 4个
6.如果|a﹣1|+(b+2)2=0,则a﹣b的值是()
A. -1
B. 1
C. -3
D. 3
7.某日嵊州的气温是7℃,长春的气温是﹣8℃,则嵊州的气温比长春的气温高()
A. 15℃
B. ﹣15℃
C. 1℃
D. ﹣1℃
8.广东水质监测部门半年共监测水量达48909.6万吨。

用科学记数法表示(保留三个有效数字)监测水量约为( )
A. 4.89×108吨
B. 4.89 × 109吨
C. 4.90×108吨
D. 4.90 ×108吨
9.1﹣2+3﹣4+5﹣6+…+2017﹣2018的结果不可能是()
A. 奇数
B. 偶数
C. 负数
D. 整数
10.方程x﹣3=2x﹣4的解为()
A. 1
B. -1
C. 7
D. -7
二.填空题(共8题;共24分)
11.已知两个有理数相加,和小于每一个加数,请写出满足上述条件的一个算式:________.
12.人体内某种细胞的形状可近似看作球体,它的直径为0.0000156m,则这个数用科学记数
法表示为________ (保留两个有效数字)。

相关文档
最新文档