复变函数练习题及答案
复变函数考试试题及参考答案
复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。
答案:$(1+i)^3=-2+2i$。
2.计算下列复数的幂函数:$z=-2+i$,$n=4$。
答案:$(-2+i)^4=7-24i$。
3.求解方程:$z^2+4z+5=0$。
答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。
4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。
答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。
5.计算下列复数的共轭复数:$z=2-i$。
答案:$z^*=2+i$。
6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。
答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。
7.计算下列复数的实部和虚部:$z=3+2i$。
答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。
答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。
9.求复数的幂函数:$z=-1-i$,$n=2$。
答案:$(-1-i)^2=1-2i-1=-2i$。
10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。
答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。
《复变函数》考试试题与答案各种总结.docx
---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
完整版)复变函数测试题及答案
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
(完整版)复变函数试题及答案
-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7
复变函数综合练习题及答案
1复变函数综合练习题及答案第一部分 习题一. 判断下列命题是否正确,如正确, 在题后括号内填√,否则填⨯.(共20题) 1. 在复数范围内31有唯一值1.( ) 2. 设z=x+iy , 则=z z 22y x +.()3. 设,2321i z -=则.32arg π=z ( ) 4. z cos =ω是有界函数.( ) 5. 方程1=ze 有唯一解z=0.( ) 6.设函数z g z f (),()在0z 处可导,则)()(z g z f 在点0z 处必可导.()7.设函数),(),()(y x iv y x u z f +=在00iy x z +=处可导,则)(00,0)()(y x yui y v z f ∂∂-∂∂='.( )8. 设函数)(z f 在区域D 内一阶可导,则)(z f 在D 内二阶导数必存在. ( ) 9.设函数)(z f 在0z 处可导, 则)(z f 在0z 处必解析.( ) 10. 设函数)(z f 在区域D 内可导, 则)(z f 在D 内必解析.()11. 设),(),,(y x v y x u 都是区域D 内的调和函数,则),(),()(y x iv y x u z f +=是D 内的解析函数.( ) 12. 设n 为自然数,r 为正实数,则0)(00=-⎰=-r z z n z z dz.()13. 设)(z f 为连续函数,则⎰⎰'=1)()]([)(t t cdt t z t z f dz z f ,其中10,),(t t t z z =分别为曲线c 的起点,终点对应的t 值.( )214. 设函数)(z f 在区域D 内解析,c 是D 内的任意闭曲线,则0)(=⎰cdz z f .( )15. 设函数)(z f 在单连通区域D 内解析, c 是D 内的闭曲线,则对于c D z ∈0有)(2)(00z if dz z z z f cπ=-⎰. ( )16. 设幂级数∑+∞=0n n nz c在R z ≤(R 为正实数)内收敛,则R 为此级数的收敛半径. ( )17. 设函数)(z f 在区域D 内解析,D z ∈0,则n n n z z n z fz f )(!)()(000)(-=∑+∞=. ( )18. 设级数n n nz z c)(0-∑+∞-∞=在园环域)(0R r R z z r <<-<内收敛于函数)(z f ,则它是)(z f 在此环域内的罗朗级数.( ) 19. 设0z 是)(z f 的孤立奇点,如果∞=→)(lim 0z f z z ,则0z 是)(z f 的极点.()20. 设函数)(z f 在圆周1<z 内解析,0=z 为其唯一零点,则⎰==1].0),([Re 2)(z z f s i z f dzπ ( )二. 单项选择题.(请把题后结果中唯一正确的答案题号填入空白处,共20题)1. 设复数3)22(i z -=,则z 的模和幅角的主值分别为____________.A. 45,8πB. 4,24πC. 47,22π2.)Re(1z z -<是__________区域.A. 有界区域B. 单连通区域C. 多连通区域3.下列命题中, 正确的是_____________. A. 零的幅角为零B. 仅存在一个z 使z z-=1C.iz z i=14.在复数域内,下列数中为实数的是__________.A. i cosB. 2)1(i -C.38-35.设i z +=1,则=)Im(sin z _________.A. sin1ch1B. cos1sh1C. cos1ch16.函数)(z f =2z 将区域Re(z)<1映射成___________.A. 412v u -<B. 412v u -≤C. 214v u -<7.函数)(z f =z 在0=z 处____________. A. 连续 B. 可导C. 解析8. 下列函数中为解析函数的是_____________.A. )(z f =iy x -2B.)(z f =xshy i xchy cos sin + C.)(z f =3332y i x -9. 设函数),(),()(y x iv y x u z f +=且),(y x u 是区域D 内的调和函数,则当),(y x v 在D 内是_____________时, )(z f 在D 内解析.A. 可导函数B. 调和函数C. 共轭调和函数10. 设0z 是闭曲线c 内一点, n 为自然数,则⎰-cn z z dz)(0=________________. A. 0B. i π2C. 0或i π211. 积分dz z zz ⎰=-22)1(sin =_______________. A. 1cos B. i π21cos C. i π2sin112. 下列积分中,其积分值不为零的是___________________. A.⎰=-23z dz z zB. 1sin z zdz z =⎰C.⎰=15z zdz ze 13. 复数项级数∑+∞=13n nnz 的收敛范围是________________.A. 1≤zB.1<zC.1>z14. 设函数)(z f 在多连域D 内解析,210,,c c c 均为D 内闭曲线且210c c c ⋃⋃组成4复合闭路Γ且D D ⊂Γ,则___________________. A. 0)()()(21=++⎰⎰⎰c c c dz z f dz z f dz z fB. 0)(=⎰Γdz z fC.⎰⎰⎰-=21)()()(c c c dz z f dz z f dz z f15.函数)(z f =221ze z-在z=0的展开式是_______________________. A. 泰勒级数B. 罗朗级数C. 都不是16. 0=z 是4)(zshzz f =的极点的阶数是_____________. A. 1B. 3C. 417. 0=z 是411)(zez f z-=的____________________. A. 本性奇点B. 极点C. 可去奇点18. 设)(z f 在环域)0(0R r R z z r <<<-<内解析,则n n nz z cz f )()(0∑+∞-∞=-=,其中系数n c =______________________.A.!)(0)(n z fn , ,2,1,0=nB.!)(0)(n z fn ,,2,1,0±±=nC.,,2,1,0,)()(2110 ±±=-⎰+n d z f i c n ζζζπc 为环域内绕0z 的任意闭曲线. 19. 设函数)(z f =1-ze z,则]2),([Re i z f s π=__________________. A. 0B. 1C. i π2 20. 设函数)(z f =)1(cos -z e z z,则积分⎰=1)(z dz z f =________________.5A. i π2B. ]0),([Re 2z f s i πC. .2,0,]),([231i z zz f ik k kππ±=∑=三. 填空题 (共14题)1. 复数方程31i e z-=的解为____________________________________. 2. 设i z 22-=,则z arg =_____________,z ln =___________________________. 3.411<++-z z 表示的区域是___________________________________.4. 设,sin )(z z z f =则由)(z f 所确定的 ),(y x u =____________________,),(y x v =_______________________.5. 设函数)(z f =⎩⎨⎧=≠+-0,00,sin z z A e z z 在0=z 处连续,则常数A=____________.6. 设函数)(z f =ζζζζd z z ⎰=-++22173,则)1(+'i f =________________________.若)(z f =ζζζζd z z ⎰=-+2353,则)(i f ''=________________________. 7. 设函数)(z f 在单连域D 内解析,G(z )是它的一个原函数,且D z z ∈10,,则⎰1)(z z dz z f =_______________________.8. 当a =________时,xyiarctgy x a z f ++=)ln()(22在区域x>0内解析. 9. 若z=a 为f(z )的m 阶极点,为g(z)的n 阶极点(m>n ),则z=a 为f(z)g(z)的__________阶极点,为)()(z g z f 的____________阶极点. 10. 函数)(z f =tgz 在z=0处的泰勒展开式的收敛半经为_________________. 11. 函数)(z f =zzsin 在z=0处的罗朗展开式的最小成立范围为_____________.612. 设∑+∞-∞==n nn z c z z 3sin ,则______________________,02==-c c .13. 积分dz zez z⎰=11=________________________.14. 留数__________]0,1[Re _,__________]0,1[Re 2sin sin =-=-z e s z e s z z . 四. 求解下列各题(共6题)1. 设函数)(z f =)(2323lxy x i y nx my +++在复平面可导,试确定常数l n m ,,并求)(z f '.2. 已知,33),(22y x y x u -=试求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足i f =)0(.3. 试讨论定义于复平面内的函数2)(z z f =的可导性. 4. 试证22),(y x yy x u +=是在不包含原点的复平面内的调和函数, 并求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足1)(=i f .5. 证明z e z f =)(在复平面内可导且zz e e =')(.6. 证明⎰⎩⎨⎧>==-c n n n i z z dz1,01,2)(0π,其中n 为正整数,c 是以0z 为圆心,半径为r 的圆周.五. 求下列积分 (共24题)1. 计算dz z c⎰sin ,其中c 是从原点沿x 轴至)0,1(0z ,然后由0z 沿直线x=1至)1,1(1z 的折线段.2.⎰+cdz z z )]Re(2[,其中c 是从点A(1,0)到点B(-1,0)的上半个圆周.73.⎰+-cdz z z)652(2, 其中c 为连接A(1,-1),B(0,0)的任意曲线.4.dz ze iz ⎰+π11. 5.dz z z i z ⎰=-++21)4)(1(122 6.dz z z zz ⎰=--ππ2)1(cos 2.7.⎰=-232)(sin z dz z zπ. 8.⎰-+=cz z dzI )2()1(2,其中c 为r r z ,=为不等于1,2的正常数. 9.⎰++=cz z dzI )1)(12(2,其中曲线c 分别为1)1=-i z2)23=+i z 10. 设c 为任意不通过z =0和z =1的闭曲线,求dz z z e cz⎰-3)1(. 11. 23cos sin [](2)zzz e z e I dz z z z ==+-⎰. 12.⎰=--2)1(12z dz z z z . 用留数定理计算下列各题.13. dz z z e z z⎰=-1302)(,其中0z 为10≠z 的任意复数.14. dz z e z z⎰=+222)1(π.815.⎰=-24)1(sin z dz z zπ. 16.dz z z zz ⎰=-+12)12)(2(sin π. 17.⎰=1z zdz tg π.18.dz z zz ⎰=22sin . 19.⎰=+-122521z dz z z . 20.dz z z z ⎰=+-14141. 21.dz iz z z ⎰=-+122521.22. dz z z z c ⎰++)4)(1(222,其中c 为实轴与上半圆周)0(3>=y z 所围的闭曲线.23. dz z z c ⎰++1142,其中c 同上.24.⎰++c dz z z )1)(9(122,其中c 为实轴与上半圆周)0(4>=y z 所围的闭曲线. 六. 求下列函数在奇点处的留数 (共8题)1.421)(z e z f z-=.2. 1sin )(-=z z z f .3.3)1(sin )(z zz f +=.94.224)1(1)(++=z z z f . 5.1)(-=z e z z f . 6.2)1()(-=z z e z f z. 7. 11)(23+--=z z z z f .8.z zz f sin 1)(+=. 七. 将下列函数在指定区域内展成泰勒级数或罗朗级数 (共10题)1.)2()1(1)(22z z z z f --=110<-<z2.13232)(2+--=z z zz f231<+z 3.1)(-=z e z f z+∞<-<10z4. 21)(2--=z z z f1)1<z ,2). 1<z <2,3). 2<∞<z5.)1(1)(2z z z f -=110<-<z 6.z z f cos )(=+∞<-πz 7.2)1(1)(z z f +=1<z8.zzz f sin 1)(+=π<<z 0 (写出不为零的前四项)9.)1(cos )(2-=z e z z z f+∞<<z 0 (写出不为零的前三项)1010. zz z f sin )(=π<<z 0 (写出不为零的前三项)11第二部分解答一、判断题.(共20题)1. ×2. √3. ×4. ×5. ×6. ×7. √8. √9. × 10. √ 11. × 12. × 13. √ 14. × 15. √ 16. × 17. × 18. √ 19. √ 20. √二、单项选择题.(共20题)1. A.2. B.3. C.4. A.5. B.6. A.7. A.8. B.9. C. 10. C. 11. B. 12. C. 13. A. 14. B. 15. B. 16. B. 17. A. 18. C. 19. C. 20. B.三、填空题 1.,210)(235(2ln ±±=++,,k k i ππ) 2.47π ,i 472ln 23π+ 3. 13422<+y x 4. xshy y xchy x cos sin - , xchy y xchy x sin cos +5. 16. i ππ2612+- ,π36-7.)()(01z G z G -8.21 9.n m + ,n m -10.2π 11. π<<z 01212. 1 ,-61 13.i π14. 0 ,1四、求解下列各题1. 由题意得⎪⎩⎪⎨⎧+=+=2323),(),(lxyx y x v ynx my y x u利用yv nxy x u ∂∂==∂∂2 ,得l n =222233ly x xvnx my y u --=∂∂-=+=∂∂,得3-=n ,3-=l ,1=m 则 )33(6)(22y x i xy xvi x u z f -+-=∂∂+∂∂='23iz =2. 由于x xu y v 6=∂∂=∂∂ 所以 ⎰+==)(66),(x xy xdy y x v ϕ,)(6x y xvϕ'+=∂∂ 又由yux v ∂∂-=∂∂,即y x y 6)(6='+ϕ 所以 0)(='x ϕ,C x =)(ϕ(C 为常数)故 c xy y x v +=6),(,ci z i c xy y x z f +=++-=2223)6(33)(将条件 i f =)0(代入可得1=C ,因此,满足条件i f =)0(的函数i z z f +=23)(3. 由题意知⎩⎨⎧=+=0),(),(22y x v y x y x u ,由于1302=∂∂==∂∂y v x x u ,02=∂∂-==∂∂x v y y u 可得⎩⎨⎧==00y x 由函数可导条件知,2)(z z f =仅在0=z 处可导。
复变函数经典习题及答案
于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C
•
O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6
(完整版)复变函数试题及答案
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()
复变函数考试题及答案
复变函数考试题及答案一、选择题(每题2分,共40分)1. 下列哪个不是复数的实部?A. 2B. -3iC. -4D. 5i答案:B2. 设z = x + yi,其中x和y都是实数,若z和z*的虚部相等,则x和y满足的关系是:A. x = yB. x = -yC. x = 0D. y = 0答案:C3. 设复函数f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)是光滑函数,若f(z)满足Cauchy-Riemann方程,则u和v满足的关系是:A. ∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂xB. ∂u/∂x = ∂v/∂y,∂u/∂y = ∂v/∂xC. ∂u/∂y = -∂v/∂x,∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x,∂u/∂x = -∂v/∂y答案:A4. 设f(z)是复平面上的解析函数,若f(z)的实部为2x^2 + 3y,则f(z)的虚部为:A. 2x^2 - 3yB. 3yC. 2x^2D. 2x^3 + 3y答案:C5. 若f(z) = z^3,其中z为复数,则f(z)的导数为:A. 3z^2B. z^2C. 2zD. 0答案:A......二、计算题(共60分)1. 计算下列复数的模和辐角:(1)z1 = 3 + 4i(2)z2 = -2 + 2i(3)z3 = -4 - 3i答案:(1)|z1| = sqrt(3^2 + 4^2) = 5,arg(z1) = arctan(4/3)(2)|z2| = sqrt((-2)^2 + 2^2) = 2sqrt(2),arg(z2) = arctan(2/(-2)) + π = -π/4(3)|z3| = sqrt((-4)^2 + (-3)^2) = 5,arg(z3) = arctan((-3)/(-4)) + π = π/42. 设复数z满足|z-2| = 3,且arg(z-2) = π/3,求z的值答案:由题意得,z-2的模为3,即|z-2| = 3,且z-2的辐角为π/3,即arg(z-2) = π/3根据复数的模和辐角定义,可以得到:3 = |z-2| = sqrt((Re(z-2))^2 + (Im(z-2))^2)π/3 = arg(z-2) = arctan((Im(z-2))/(Re(z-2)))解方程组可以得到:Re(z-2) = 3/2Im(z-2) = 3sqrt(3)/2再加上z-2 = Re(z-2) + Im(z-2)i,可以计算得到:z = 3/2 + 3sqrt(3)/2 + 2 = 2 + 3sqrt(3)/23. 将复数z = 1 + i转化为极坐标形式,并计算z^3的值。
复变函数试题库(含答案)
复变函数一、选择题1. 设函数()(,)(,)f z u x y iv x y =+且),(y x u 是区域D 内的调和函数,则当),(y x v 在D 内是( C )时, )(z f 在D 内解析. A. 可导函数B.调和函数C.共轭调和函数2、复积分()nCdzz a -⎰的值为( B ) (A) 0 (B) 0;2(C)(D)2i i ππ不存在 3、0z =是sin ()zf z z=的奇点类型是( D ) (A) (B) (C)(D) 一阶极点本性奇点不是奇点可去奇点 4、计算12()i eπ-的结果是( B )(A) (B) (C)(D)i i i ±-05、下列函数在z S 处处解析的是( C )(A) (B) (C)(D)z z e z z z e z zRe z f()=f()=f()=f()= 6.当x 〈0, y 0≥时,argz=( C ).A. π-x y arctan; B. x yarctan ; C π+x y arctan ; D. π2arctan +xy.7.argz 1z 2=( A )..A .argz 1+argz 2; B. argz 1+argz 2+2k π(k 是整数); C.argz 1+argz 2+2k 1π(k 1是某个整数); D.argz 1+argz 2+π. 8.下列集合是有界闭区域的是( C ) A 0<R z ≤;B Rez<2; C.1≤z 且Imz 0≥; D.1≥z 且 Rez>0 .9.方程z=t+)(R t ti∈在平面上表示的是( B ).A .直线y=x; B. 双曲线 y=x1;C 椭圆周;D 圆周 10.函数)(z f =z 在0z =处( A ). A. 连续B. 可导C. 解析11.ii-+23=( A ). A .i +1 i B +2. i C 32.+ i D -1.12.函数w=f(z)仅在点z 0可微,则w=f(z)在点z 0( D ) A 解析; B 某邻域内处处解析; C.不解析。
复变函数考试题和答案
复变函数考试题和答案****一、选择题(每题5分,共30分)1. 复数 \( z = a + bi \) 的共轭复数为()。
A. \( a - bi \)B. \( a + bi \)C. \( -a + bi \)D. \( -a - bi \)**答案:A**2. 复数 \( z = a + bi \) 的模长为()。
A. \( \sqrt{a^2 + b^2} \)B. \( \sqrt{a^2 - b^2} \)C. \( \sqrt{a^2 + b} \)D. \( \sqrt{a + b^2} \)**答案:A**3. 函数 \( f(z) = \frac{1}{z} \) 在 \( z = 0 \) 处的性质是()。
A. 可导B. 连续C. 可微D. 奇点**答案:D**4. 函数 \( f(z) = z^2 \) 在复平面上是()。
A. 单叶函数B. 多叶函数C. 常数函数D. 线性函数**答案:A**5. 函数 \( f(z) = \sin(z) \) 是()。
A. 整函数B. 亚纯函数C. 非解析函数D. 多项式函数**答案:A**6. 函数 \( f(z) = e^z \) 在复平面上是()。
A. 整函数B. 亚纯函数C. 非解析函数D. 多项式函数**答案:A**二、填空题(每题5分,共20分)1. 复数 \( z = 3 + 4i \) 的共轭复数是 \( \_\_\_\_\_\_\_ \)。
**答案:3 - 4i**2. 复数 \( z = 1 + i \) 的模长是 \( \_\_\_\_\_\_\_ \)。
**答案:\( \sqrt{2} \)**3. 函数 \( f(z) = z^3 \) 在 \( z = 1 \) 处的导数是 \( \_\_\_\_\_\_\_ \)。
**答案:3**4. 函数 \( f(z) = \frac{1}{z-1} \) 的奇点是 \( \_\_\_\_\_\_\_ \)。
复变函数习题及解答
第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数)(1)1-; (2)ππ2(cosisin )33-; (3)1cos isin αα-+;(4)1ie +; (5)i sin R e θ; (6)i +答案 (1)实部-1;虚部 2;辐角为4π2π,0,1,2,3k k +=±±;主辐角为4π3;原题即为代数形式;三角形式为4π4π2(cosisin )33+;指数形式为4πi 32e .(2)略为 5πi 35π5π2[cos sin ], 233i e +(3)略为 i arctan[tan(/2)][2sin()]2c e αα(4)略为 i;(cos1isin1)ee e +(5)略为:cos(sin )isin(sin )R R θθ+(6)该复数取两个值略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+=+=+1.2 计算下列复数 1)()103i 1+-;2)()31i 1+-;答案 1)3512i 512+-;2)()13π/42k πi632e 0,1,2k +=;1.3计算下列复数(1 (2答案 (1(2)(/62/3)i n eππ+1.4 已知x 的实部和虚部.【解】令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到2212()2i x p q xy +=-+,根据复数相等,所以即实部为 ,x ±虚部为 说明 已考虑根式函数是两个值,即为±值.1.5 如果 ||1,z =试证明对于任何复常数,a b 有||1az bbz a +=+【证明】 因为||1,11/z zz z z =∴=∴=,所以1.6 如果复数b a i +是实系数方程()01110=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根.证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()()kkz z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根.注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.【解】 因为222244444444(1)2(cos sin )2(cos sin )(1)2(cos sin )2(cos sin )n nnnn n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π=所以4,4,(0,1,2,)n k n k k ππ===±±1.9将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ答案 53244235(1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθθθθθθ-+-+1.10 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有1.11 对于复数,k k αβ,证明复数形式的柯西(Cauchy)不等式:22221111||(||||)||||n n nnk k k k k kk k k k αβαβαβ====≤≤∑∑∑∑ 成立。
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、假设Z 1=〔a, b 〕,Z 2=(c, d),那么Z 1·Z 2=〔C 〕 A 〔ac+bd, a 〕 B (ac-bd, b) C 〔ac-bd, ac+bd 〕 D (ac+bd, bc-ad)2、假设R>0,那么N 〔∞,R 〕={ z :〔D 〕} A |z|<R B 0<|z|<R C R<|z|<+∞ D |z|>R3、假设z=x+iy, 那么y=(D)A B C D4、假设A= ,那么|A|=〔C 〕A 3B 0C 1D 2二、填空题1、假设z=x+iy, w=z 2=u+iv, 那么v=〔 2xy 〕2、复平面上满足Rez=4的点集为〔 {z=x+iy|x=4} 〕3、〔 设E 为点集,假设它是开集,且是连通的,那么E 〕称为区域。
2zz +2z z -iz z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),那么{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式 的值。
+∞→n lim +∞→n limππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明假设 ,那么a 2+b 2=1。
《复变函数》习题及答案
第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。
( ) 12、有界整函数必为常数。
( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。
( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。
( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。
( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。
( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。
( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。
( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。
复变函数试题及答案
复变函数试题及答案一、选择题(每题4分,共40分)1. 下列哪个函数在全平面上是解析的?A. f(z) = |z|^2B. f(z) = e^zC. f(z) = ln(z)D. f(z) = 1/z答案:B2. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
下列哪个条件是解析函数的充分必要条件?A. u满足柯西-黎曼方程B. v满足柯西-黎曼方程C. u和v满足柯西-黎曼方程D. u和v的一阶偏导数满足柯西-黎曼方程答案:C3. 设f(z) = u(r, θ)是解析函数,其中r和θ是极坐标系下的变量。
下列哪个条件是解析函数的充分必要条件?A. u满足极坐标下的柯西-黎曼方程B. f(z)在全平面上是解析的C. f(z)在圆心附近是解析的D. f(z)在正实轴上是解析的答案:A4. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若u和v满足柯西-黎曼方程,则A. f(z)在全平面上是解析的B. f(z)在实轴上是解析的C. f(z)在虚轴上是解析的D. f(z)在解析的那部分上满足柯西-黎曼方程答案:A5. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若f(z)在实轴上是解析的,则A. u(x, y)在全平面上是解析的B. v(x, y)在全平面上是解析的C. u(x, y)和v(x, y)满足柯西-黎曼方程D. u(x, y)和v(x, y)处处可微分答案:C二、填空题(每空5分,共30分)1. 若f(z) = x^2 - y^2 + 2xyi是解析函数,则它的共轭函数为________。
答案:f*(z) = x^2 - y^2 - 2xyi2. 设f(z) = u(x, y)是解析函数,且满足柯西-黎曼方程的实部形式,则函数f(z)可表示为f(z) = ________。
复变函数14套题目和答案
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1.=-⎰=-1||00)(z z n z z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)1、 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dz z zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
(完整版)复变函数试题及答案
2、计算积分
5z 2 z 2 z( z 1)2 dz
3、将函数 f z z 1 在 z 1的邻域内展成泰勒级数 , 并指出收敛范围 z1
x2
4、计算实积分 I= 0
(x2
1)( x 2
dx 4)
5、求 f ( z)
1 1 z2 在指定圆环 2
zi
内的洛朗展式
6、求将上半平面 Im z 0 共形映射成单位圆 w 1的分式线性变换
I=
1 2
(x2
x2 1)( x 2
dx 4)
= 1 2 i Re s f ( z) Resf (z)
2
zi
z 2i
z2
=i (z
i )( z2
4) z i
z2 ( z2 1)( z 2i ) z 2i
= 6
5 解: f ( z)
1
( z i)( z i )
1
1
=
2
(z i) 1
2i
zi
= 6 解:
1
(z
i)2
n
(
0
1) n
(2i )n (z i )n
w =L(i)=k z i zi
2i
w
k (z
i)2
2 zi
-3 -
6分
…4 分 …6分 …1 分 …2 分 …3 分 …5 分 …6 分 …1 分 …3 分
…6 分 2分
…3 分
____________________________________________________________________________________________________________
w L z ,使符合条件 L i 0 , L i 0
复变函数考试试题及答案
C.第三象限
D.第四象限
B. 2k- , k 0,1, 4
D. 2k , k 0,1, 4
)
A. ze z ez 1
B. ze z ez 1
C. ze z e z 1
D. ze z ez 1
7.幂级数 z n-1 的收敛半径为(
n1 n!
)
A.
B. 0
C.1
D.2
8. z
是函数
B.Rez=π
C.π-arctan 1
2
) C.椭圆
C.|z|=0
D.π+arctan 1
2
D.双曲线
D.argz=π
4.复数 e3i 对应的点在( )
A.第一象限
B.第二象限
5.设 w=Ln(1-i),则 Imw 等于( )
A.- 4
C. 4
6.设函数 f(z)= z e d ,则 f(z)等于( 0
复变函数模拟题 1
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.复数 z 16 - 8 i 的辐角主值为( ) 25 25
A. arctan 1
2
B.-arctan 1
2
2.方程 Rez2 1所表示的平面曲线为(
A. 圆
B.直线
3.设 z=cosi,则( )
A.Imz=0
23. y(t) L1[ s 2 s 2 ] 1 4 e2t 8 e3t
s(s 2)(s 3) 3 5
15
11.
z
0 为函数
f
z
1 cos z8
z
的_____级极点.
12.设 f(z)=zez, 则 f (z)
大学数学复变函数练习题及答案
大学数学复变函数练习题及答案1. 解析函数(1)求函数 $f(z)=|z|^2+z^3$ 的实部和虚部。
解:设 $z=x+yi$,其中 $x,y \in \mathbb{R}$,则有$f(z)=|z|^2+z^3=(x^2+y^2)+(x+yi)^3=(x^2+y^2)+(x^3-3xy^2+i(3x^2y-y^3))$则实部为$u(x,y)=x^3-3xy^2+x^2+y^2$,虚部为$v(x,y)=3x^2y-y^3$。
(2)求函数 $f(z)=xe^z$ 的实部和虚部。
解:设 $z=x+yi$,其中 $x,y \in \mathbb{R}$,则有$f(z)=xe^z=x(e^x \cos y + i e^x \sin y)$则实部为 $u(x,y)=x e^x \cos y$,虚部为 $v(x,y)=x e^x \sin y$。
2. 应用题(1)一个圆盘的温度分布表示为 $u(r,\theta)=r^2(1-\cos \theta)$其中 $r$ 表示距离圆心的半径,$\theta$ 表示与 $x$ 轴的夹角。
求圆盘表面的温度分布。
解:由题意可知,圆盘的温度分布是一个解析函数,且满足实部和虚部均为调和函数的条件。
而根据复变函数理论,解析函数的等温线一定是亚纯函数的对数螺旋线。
由此,圆盘表面的温度分布可以表示为$f(z)=|z|^2(1-\cos(\arg(z)))$,其中 $z=re^{i\theta}$。
(2)已知 $f(z)=u(x,y)+iv(x,y)$ 为解析函数,其中 $u(x,y)$ 和$v(x,y)$ 均为连续可微函数。
试证明:当且仅当 $u_x=v_y$ 和 $u_y=-v_x$ 时,$f(z)$ 为调和函数。
证明:设函数 $f(z)=u(x,y)+iv(x,y)$ 为解析函数,则满足柯西-黎曼方程 $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ 和$\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数卷答案与评分标准
一、填空题:
1.叙述区域内解析函数的四个等价定理。
定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:
(1)(,)u x y ,(,)v x y 在D 内可微,
(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)
定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:
(1),,,x y x y u u v v 在D 内连续,
(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)
定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =⎰。
(3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。
(3分)
2.叙述刘维尔定理:复平面上的有界整函数必为常数。
(3分)
3、方程2z e i =+的解为:11ln 5arctan 222
i k i π++,其中k 为整数。
(3分) 4、设()2010sin z f z z
+=,则()0Re z s f z ==2010。
(3分) 二、验证计算题(共16分)。
1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件
()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。
(8分) 解:(1)22u x x
∂=+∂,222u x ∂=∂;2u y y ∂=-∂,222u y ∂=-∂。
由于22220u u y x
∂∂+=∂∂,所以(,)u x y 为复平面上的调和函数。
(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有
22v u x y x
∂∂==+∂∂,所以(,)2222()v x y x dy xy y C x =+=++⎰ 2,v u y x y ∂∂=-=∂∂又2()v y C x x
∂'=+∂ ,所以 ()0C x '=,即()C x 为常数。
所以22
()2(22)f z x y x xy y C i =-++++。
(8分)
由于()12f i i =-+,所以0C =。
即()222()2222f z x y x xy y i z z =-+++=+。
(8分) 2、方程201020092920092109100z z z -++=在单位圆1z <内有几个根?为什么?(8分)
解:有29个根,因为在圆周1z =上,20102009292009102109z z z -+<,由儒歇定理知 在1z <由201020092920092109100z z z -++=有29个根。
(8分)
三、计算题(每题6分,共18分,用复变函数论的方法,并指出计算的理论根据)。
1、()()2434
12z z dz z z =+--⎰。
解:原式=2211213434(1)(2)(1)(2)z z z z dz dz z z z z -=-=+++
----⎰⎰ 2342701z z i z π=⎛⎫'+⎛⎫ ⎪=+= ⎪ ⎪-⎝⎭⎝⎭
(6分) 2.2054cos d π
θθ
-⎰ 解:原式=1(21)(2)z i dz z z =--⎰(3分)1
2222(2)3
z i i z ππ==⋅=
-。
(6分) 3.2220(1)(9)
x dx x x +∞
++⎰ 解:原式=2
2212(1)(9)
x dx x x +∞-∞++⎰ (1分)
2
22Im 0
Re (1)(9)k k z a a z i s z z π=>=++∑ (3分) 22
223()(9)(1)(3)z i z i z z i z i z z z i π==⎛⎫=+ ⎪ ⎪++++⎝
⎭(5分) 8π
=。
(6分)
四、罗朗级数与奇点(15分)
1、设()()()1
23f z z z =--,试求
(1)()f z 在圆环23z <<内的罗郎展式;(5分)
(2)()f z 在3z =为中心的去心邻域内的罗郎展式,并指出收敛圆环。
(5分) 解:(1)111111()2323113f z z z z z z
-=-=⋅-⋅----(2分) 0011233n n n n z z z ∞∞==-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭
∑∑(5分) 1100
123n n n n n n z z ∞∞
--+==-=⋅+-⋅∑∑
1
110123n n n n n n z z ∞---+==-∞
-=⋅+-⋅∑∑ 23z <<
(2)1111()32313
f z z z z z =-=----+-(2分) ()0
11(3)3n n n z z ∞==--⋅--∑ 31z -<。
(5分) 2、试判断函数()631
11cos 2z z --在奇点0z =的类型。
(5分) 解由于61218
3cos 12246!z z z z =-+-+,(2分)
所以 61218
21cos 2246!z z z z --=-++(3分)
因此 0z =为函数4
2
1
1cos 2z z --的12级极点。
(5分)
五、求一分式线性变换()f z ω=将上半平面()0Im z >共形映射成单位圆
1ω<使得()20f i =,()20f i '>。
(10分) 解:由题意知
(2)0,(2)f i f i =-=∞ ,(0)1f =(3分) 所以可设2()2i z i f z e z i θ
ω-==+, (5分)求导得24()(2)i ie f z z i θ'=+。
由于(2)04i ie f i θ-'=>,所以122
k θππ=
+。
此处 k 是整数。
因此2()2z i f z i z i ω-==+。
(10分) 六、证明题:
1、设()f z 在区域D 内解析;(2)在D 内一点a 处有()()0k f a =,1,2,3,,k =⋅⋅⋅,则()f z 在区域D 内必为常数。
证明:设a 到区域D 的边界的距离为12d 。
由于()f z 在区域D 内解析,1z a d D -<⊂,所以在1z a d -<内,()f z 可展成z a -的幂级数
()0()()()()!
n n n f a f z z a f a n ∞==⋅-=∑ 即()f z 在1z a d -<内为常数。
(5分)
设b 为区域D 内任意一点,设连接a 和b 的包含与区域D 内的折线的分点依次为12,,n a b b b b ==,设折线到区域D 的边界的距离为22d ,令12min{,}d d d =。
考虑折线2ab ,在折线2ab 上依次取分点122,,m a b ξξξ==,使得相邻两分点间的距离小于d ,作圆:,1,2,k k C z d k m ξ-<=。
由于()f z 在z a d -<内为常数,由唯一性定理知()f z 在2z d ξ-<内为常数,同样可得,()f z 在3z d ξ-<内为常数,于是可得知()f z 在2z b d -<内为常数,类似地考虑折线231,
,n b b b b -,可得()f z 在b 的某领域内为常数,
即有
()()f b f a =。
由b 的任意性知()f z 在区域D 内为常数。
第二步只要讲出由唯一性定理得到结论即可。
(10分)
2、如果函数()f z 在单位圆1z <内解析,并且满足条件()00f =,且对于单位圆1z <内的任意点z 有()1f z <,则在单位圆1z <内恒有()f z z ≤,且有()01f '≤。
证明:由题意可得
()23123f z c z c z c z =+++⋅⋅⋅ 1z <
令
()()2123f z z c c z c z z
ϕ==+++⋅⋅⋅ 1z < 由()z ϕ的构造知()z ϕ在1z <内解析,且()()100c f ϕ'==。
考虑()z ϕ在去心单位圆01z <<内任意一点0z 处的值,取r 满足1z r <<,由最大模定理,有()()()01max max z r z r f z z z z r
ϕϕ==≤=≤;令1r →,得()01z ϕ≤。
所以()()001f ϕ'=≤。
当0z =时,显然有()000f =≤。
当01z <<时,有()()1f z z z
ϕ=≤,即()f z z ≤。
综上所述,即在单位圆1z <内恒有()f z z ≤,且有()01f '≤。
证毕。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。