高考一模理科数学试题含答案试卷分析解析

合集下载

高考数学一模试卷(理科)含解析答案

高考数学一模试卷(理科)含解析答案

山东省高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2015•山东一模)复数z=|(﹣i)i|+i5(i为虚数单位),则复数z的共轭复数为()A.2﹣i B.2+i C.4﹣i D.4+i【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:直接利用复数模的公式求复数的模,再利用虚数单位i的运算性质化简后得z,则复数z的共轭复数可求.【解析】:解:由z=|(﹣i)i|+i5=,得:.故选:A.【点评】:本题考查复数模的求法,考查了虚数单位i的运算性质,是基础题.2.(5分)(2015•山东一模)若[﹣1,1]⊆{x||x2﹣tx+t|≤1},则实数t的取值范围是()A.[﹣1,0] B.[2﹣2,0] C.(﹣∞,﹣2] D.[2﹣2,2+2]【考点】:集合的包含关系判断及应用.【专题】:计算题;函数的性质及应用;集合.【分析】:令y=x2﹣tx+t,由题意,将集合的包含关系可化为求函数的最值的范围.【解析】:解:令y=x2﹣tx+t,①若t=0,则{x||x2≤1}=[﹣1,1],成立,②若t>0,则y max=(﹣1)2﹣t(﹣1)+t=2t+1≤1,即t≤0,不成立;③若t<0,则y max=(1)2﹣t+t=1≤1,成立,y min=()2﹣t•+t≥﹣1,即t2﹣4t﹣4≤0,解得,2﹣2≤t≤2+2,则2﹣2≤t<0,综上所述,2﹣2≤t≤0.故选B.【点评】:本题考查了集合的包含关系的应用,属于基础题.3.(5分)(2015•山东一模)已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条【考点】:必要条件、充分条件与充要条件的判断.【专题】:简易逻辑.【分析】:根据抛物线的定义和性质,利用充分条件和必要条件的定义即可得到结论.【解析】:解:抛物线的交点坐标为F(,0),准线方程为x=﹣,则点M到抛物线焦点的距离PF=2﹣(﹣)=2+,若p≥1,则PF=2+≥,此时点M到抛物线焦点的距离不少于3不成立,即充分性不成立,若点M到抛物线焦点的距离不少于3,即PF=2+≥3,即p≥2,则p≥1,成立,即必要性成立,故“p≥1”是“点M到抛物线焦点的距离不少于3”的必要不充分条件,故选:B【点评】:本题主要考查充分条件和必要条件的判断,利用抛物线的定义和性质是解决本题的关键.4.(5分)(2015•山东一模)若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或【考点】:圆锥曲线的共同特征;等比数列的性质.【专题】:计算题.【分析】:先根据等比中项的性质求得m的值,分别看当m大于0时,曲线为椭圆,进而根据标准方程求得a和b,则c可求得,继而求得离心率.当m<0,曲线为双曲线,求得a,b和c,则离心率可得.最后综合答案即可.【解析】:解:依题意可知m=±=±4当m=4时,曲线为椭圆,a=2,b=1,则c=,e==当m=﹣4时,曲线为双曲线,a=1,b=2,c=则,e=故选D【点评】:本题主要考查了圆锥曲线的问题,考查了学生对圆锥曲线基础知识的综合运用,对基础的把握程度.5.(5分)(2015•山东一模)在△ABC中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为()A.B.2 C.2D. 4【考点】:正弦定理.【专题】:解三角形.【分析】:由条件求得c=2=b,可得B的值,再由正弦定理求得三角形外接圆的半径R的值.【解析】:解:△ABC中,∵b=2,A=120°,三角形的面积S==bc•sinA=c•,∴c=2=b,故B=(180°﹣A)=30°.再由正弦定理可得=2R==4,∴三角形外接圆的半径R=2,故选:B.【点评】:本题主要考查正弦定理的应用,属于基础题.6.(5分)(2015•山东一模)某几何体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此几何体的外接球的表面积为()A.3π B.4π C.2π D.【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R=正方体的对角线,利用球的表面积计算公式即可得出.【解析】:解:如图所示,该几何体是正方体的内接正四棱锥.因此此几何体的外接球的直径2R=正方体的对角线,其表面积S=4πR2=3π.故选:A.【点评】:本题考查了正方体的内接正四棱锥、球的表面积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)(2015•山东一模)定义max{a,b}=,设实数x,y满足约束条件,则z=max{4x+y,3x﹣y}的取值范围是()A.[﹣8,10] B.[﹣7,10] C.[﹣6,8] D.[﹣7,8]【考点】:简单线性规划.【专题】:分类讨论;转化思想;不等式的解法及应用.【分析】:由约束条件作出可行域,结合新定义得到目标函数的分段函数,然后化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解析】:解:由约束条件作出可行域如图,由定义max{a,b}=,得z=max{4x+y,3x﹣y}=,当x+2y≥0时,化z=4x+y为y=﹣4x+z,当直线y=﹣4x+z过B(﹣2,1)时z有最小值为4×(﹣2)+1=﹣7;当直线y=﹣4x+z过A(2,2)时z有最大值为4×2+1×2=10;当x+2y<0时,化z=3x﹣y为y=3x﹣z,当直线y=3x﹣z过B(﹣2,1)时z有最小值为3×(﹣2)﹣1=﹣7;当直线y=﹣4x+z过A(2,﹣2)时z有最大值为4×2﹣1×(﹣2)=10.综上,z=max{4x+y,3x﹣y}的取值范围是[﹣7,10].故选:B.【点评】:本题是新定义题,考查了简单的线性规划,考查了数形结合及数学转化思想方法,是中档题.8.(5分)(2015•山东一模)函数y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则的最小值为()A.2 B. 4 C.8 D.16【考点】:基本不等式;对数函数的图像与性质.【专题】:函数的性质及应用;不等式的解法及应用.【分析】:现根据对数函数图象和性质求出点A的坐标,再根据点在直线上,代入化简得到2m+n=1,再根据基本不等式,即可求出结果【解析】:解:∵y=log3(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,当x+3=1时,即x=﹣2时,y=﹣1,∴A点的坐标为(﹣2,﹣1),∵点A在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,∵m,n均大于0,∴=+=2+++2≥4+2=8,当且仅当m=,n=时取等号,故的最小值为8,故选:C【点评】:本题考查了对数函数图象和性质以及基本不等式,属于中档题9.(5分)(2015•山东一模)已知△ABC中,内角A、B、C所对的边分别为a,b,且acosC+c=b,若a=1,c﹣2b=1,则角B为()A.B.C.D.【考点】:余弦定理;正弦定理.【专题】:解三角形.【分析】:已知等式利用正弦定理化简,整理求出cosA的值,求出A的度数,利用余弦定理列出关系式,把a与sinA的值代入得到关于b与c的方程,与已知等式联立求出b与c 的值,再利用正弦定理求出sinB的值,即可确定出B的度数.【解析】:解:已知等式利用正弦定理化简得:sinAcosC+sinC=sinB=sin(A+C)=sinAcosC+cosAsinC,由sinC≠0,整理得:cosA=,即A=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=b2+c2﹣bc①,与c﹣2b=1联立,解得:c=,b=1,由正弦定理=,得:sinB===,∵b<c,∴B<C,则B=.故选:B.【点评】:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.10.(5分)(2015•山东一模)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=x2﹣6x+4lnx的“类对称点”的横坐标是()A.1 B.C.e D.【考点】:利用导数研究曲线上某点切线方程.【专题】:计算题;新定义;导数的概念及应用;导数的综合应用.【分析】:当a=4时,函数y=H(x)在其图象上一点P(x0,f(x0))处的切线方程为y=g (x)=(2x0+﹣6)(x﹣x0)++x02﹣6x0+4lnx0.由此能推导出y=h(x)存在“类对称点”,是一个“类对称点”的横坐标.【解析】:解:当a=4时,函数y=h(x)在其图象上一点P(x0,h(x0))处的切线方程为:y=g(x)=(2x0+﹣6)(x﹣x0)+x02﹣6x0+4lnx0,设m(x)=h(x)﹣g(x)=x2﹣6x+4lnx﹣(2x0+﹣6)(x﹣x0)﹣x02+6x0﹣4lnx0,则m(x0)=0.m′(x)=2x+﹣6﹣(2x0+﹣6)=2(x﹣x0)(1﹣)=(x﹣x0)(x﹣)若x0<,φ(x)在(x0,)上单调递减,∴当x∈(x0,)时,m(x)<m(x0)=0,此时<0;若x0,φ(x)在(,x0)上单调递减,∴当x∈(,x0)时,m(x)>m(x0)=0,此时<0;∴y=h(x)在(0,)∪(,+∞)上不存在“类对称点”.若x0=,(x﹣)2>0,∴m(x)在(0,+∞)上是增函数,当x>x0时,m(x)>m(x0)=0,当x<x0时,m(x)<m(x0)=0,故>0.即此时点P是y=f(x)的“类对称点”综上,y=h(x)存在“类对称点”,是一个“类对称点”的横坐标.故选B.【点评】:本题考查函数的单调增区间的求法,探索满足函数在一定零点下的参数的求法,探索函数是否存在“类对称点”.解题时要认真审题,注意分类讨论思想和等价转化思想的合理运用,此题是难题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•山东一模)已知函数f(x)=|2x﹣a|+a,若不等式f(x)≤6的解集为{x|﹣2≤x≤3},则实数a的值为a=1.【考点】:其他不等式的解法.【专题】:不等式的解法及应用.【分析】:不等式即|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再由已知不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,由此求得实数a的值.【解析】:解:由题意可得,不等式即|2x﹣a|≤6﹣a,∴a﹣6≤2x﹣a≤6﹣a,解得a﹣3≤x≤3.再由不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,故a=1,故答案为a=1.【点评】:本题主要考查绝对值不等式的解法,体现了等价转化的数学思想,属于基础题.12.(5分)(2015•山东一模)已知点A(2,0)抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=1:.【考点】:抛物线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:求出抛物线C的焦点F的坐标,从而得到AF的斜率k=﹣.过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.Rt△MPN中,根据tan∠MNP=,从而得到|PN|=2|PM|,进而算出|MN|=|PM|,由此即可得到|FM|:|MN|的值.【解析】:解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0),∴抛物线的准线方程为l:y=﹣1,直线AF的斜率为k==﹣,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠MNP=﹣k=,∴=,可得|PN|=2|PM|,得|MN|==|PM|因此可得|FM|:|MN|=|PM|:|MN|=1:.故答案为:1:.【点评】:本题给出抛物线方程和射线FA,求线段的比值.着重考查了直线的斜率、抛物线的定义、标准方程和简单几何性质等知识,属于中档题.13.(5分)(2015•山东一模)已知函数则=.【考点】:定积分.【专题】:导数的综合应用.【分析】:=,由定积分的几何意义可知:表示上半圆x2+y2=1(y≥0)的面积,即可得出.利用微积分基本定理即可得出dx=.【解析】:解:=,由定积分的几何意义可知:表示上半圆x2+y2=1(y≥0)的面积,∴=.又dx==e2﹣e.∴==好.故答案为:.【点评】:本题考查了定积分的几何意义、微积分基本定理,属于中档题.14.(5分)(2015•山东一模)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为96.(用数字作答)【考点】:排列、组合及简单计数问题.【专题】:概率与统计.【分析】:根据题意,先将票分为符合题意要求的4份,可以转化为将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号的问题,用插空法易得其情况数目,再将分好的4份对应到4个人,由排列知识可得其情况数目,由分步计数原理,计算可得答案.【解析】:解:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人一张,1人2张,且分得的票必须是连号,相当于将1、2、3、4、5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C43=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.故答案为96.【点评】:本题考查排列、组合的应用,注意将分票的问题转化为将1、2、3、4、5这五个数用3个板子隔开,分为四部分的问题,用插空法进行解决.15.(5分)(2015•山东一模)已知函数f(x)=xe x,记f0(x)=f′(x),f1(x)=f′(x0),…,f n(x)=f′n﹣1(x)且x2>x1,对于下列命题:①函数f(x)存在平行于x轴的切线;②>0;③f′2012(x)=xe x+2014e x;④f(x1)+x2<f(x2)+x1.其中正确的命题序号是①③(写出所有满足题目条件的序号).【考点】:导数的运算.【专题】:导数的概念及应用.【分析】:根据导数的几何意义判断①正确,根据导数和函数的单调性判断②错;根据导数的运算,得到③正确,根据导数与函数的单调性的关系判断④错【解析】:解:对于①,因为f′(x)=(x+1)e x,易知f′(﹣1)=0,函数f(x)存在平行于x轴的切线,故①正确;对于②,因为f′(x)=(x+1)e x,所以x∈(﹣∞,﹣1)时,函数f(x)单调递减,x∈(﹣1,+∞)时,函数f(x)单调递增,故>0的正负不能定,故②错;对于③,因为f1(x)=f′(x0)=xe x+2e x,f2(x)=f′(x1)=xe x+3e x,…,f n(x)=f′n﹣1(x)=xe x+(n+1)e x,所以f′2012(x)=f2013(x)=xe x+2014e x;故③正确;对于④,f(x1)+x2<f(x2)+x1等价于f(x1)﹣x1<f(x2)﹣x2,构建函数h(x)=f(x)﹣x,则h′(x)=f′(x)﹣1=(x+1)e x﹣1,易知函数h(x)在R上不单调,故④错;故答案为:①③【点评】:本题考查了导数的几何意义以及导数和函数的单调性的关系,以及导数的运算法则,属于中档题三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)(2015•山东一模)已知函数f(x)=2sinx+2sin(x﹣).(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c.已知f(A)=,a=b,证明:C=3B.【考点】:两角和与差的正弦函数;正弦定理.【专题】:计算题;三角函数的图像与性质;解三角形.【分析】:(1)运用两角差的正弦公式,即可化简,再由正弦函数的单调增区间,即可得到;(2)由f(A)=,及0<A<π,即可得到A=,再由正弦定理,及边角关系,即可得证.【解析】:(1)解:函数f(x)=2sinx+2sin(x﹣)=2(sinx+sinx﹣cosx)=2(sinx﹣cosx)=2sin(x﹣),令2kπ﹣≤x﹣≤2k,k∈Z,则2kπ﹣≤x≤2kπ,则f(x)的单调递增区间是[2kπ﹣,2kπ],k∈Z.(2)证明:由f(A)=,则sin(A﹣)=,由0<A<π,则﹣<A﹣<,则A=,由=,a=b,则sinB=,由a>b,A=,B=,C=,故C=3B.【点评】:本题考查三角函数的化简,正弦函数的单调区间,考查正弦定理及边角关系,注意角的范围,属于中档题.17.(12分)(2015•山东一模)2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:福娃名称贝贝晶晶欢欢迎迎妮妮数量1 1 1 2 3从中随机地选取5只.(Ⅰ)求选取的5只恰好组成完整“奥运吉祥物”的概率;(Ⅱ)若完整地选取奥运会吉祥物记10分;若选出的5只中仅差一种记8分;差两种记6分;以此类推.设ξ表示所得的分数,求ξ的分布列及数学期望.【考点】:离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】:概率与统计.【分析】:(Ⅰ)根据排列组合知识得出P=运算求解即可.(Ⅱ)确定ξ的取值为:10,8,6,4.分别求解P(ξ=10),P(ξ=8),P(ξ=6),P(ξ=4),列出分布列即可.【解析】:解:(Ⅰ)选取的5只恰好组成完整“奥运吉祥物”的概率P===,(Ⅱ)ξ的取值为:10,8,6,4.P(ξ=10)==,P(ξ=8)=,P(ξ=6)==,P(ξ=4)==ξ的分布列为:ξ 10 8 6 4P﹣Eξ==7.5.【点评】:本题综合考查了运用排列组合知识,解决古典概率分布的求解问题,关键是确定随机变量的数值,概率的求解,难度较大,仔细分类确定个数求解概率,属于难题.18.(12分)(2015•山东一模)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图2)(1)求证:A1E⊥平面BEP(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B﹣A1P﹣F的余弦值.【考点】:与二面角有关的立体几何综合题;直线与平面垂直的判定;直线与平面所成的角.【专题】:空间角.【分析】:(1)设正三角形ABC的边长为3.在图1中,取BE的中点D,连结DF.由已知条件推导出△ADF是正三角形,从而得到EF⊥AD.在图2中,推导出∠A1EB为二面角A1﹣EF﹣B的平面角,且A1E⊥BE.由此能证明A1E⊥平面BEP.(2)建立分别以EB、EF、EA为x轴、y轴、z轴的空间直角坐标系,利用向量法能求出直线A1E与平面A1BP所成的角的大小.(3)分别求出平面A1FP的法向量和平面BA1F的法向量,利用向量法能求出二面角B﹣A1P﹣F的余弦值.【解析】:(1)证明:不妨设正三角形ABC 的边长为3.在图1中,取BE的中点D,连结DF.∵AE:EB=CF:FA=1:2,∴AF=AD=2,而∠A=60度,∴△ADF是正三角形,又AE=DE=1,∴EF⊥AD.在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1﹣EF﹣B的平面角.由题设条件知此二面角为直二面角,∴A1E⊥BE.又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.(2)建立分别以EB、EF、EA为x轴、y轴、z轴的空间直角坐标系,则E(0,0,0),A(0,0,1),B(2,0,0),F(0,,0),P (1,,0),则,.设平面ABP的法向量为,由平面ABP知,,即令,得,.,,∴直线A1E与平面A1BP所成的角为60度.(3),设平面A1FP的法向量为.由平面A1FP知,令y 2=1,得,.,所以二面角B﹣A1P﹣F的余弦值是.【点评】:本题考查直线与平面垂直的证明,考查直线与平面所成的角的求法,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.19.(12分)(2015•山东一模)数列{a n}中,a1=1,当n≥2时,其前n项和为S n,满足S n2=a n (S n﹣).(1)求S n的表达式;(2)设b n=,数列{b n}的前n项和为T n,不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,求正整数m的最大值.【考点】:数列的求和;数列递推式.【专题】:等差数列与等比数列.【分析】:(1)当n≥2时,a n=S n﹣S n﹣1,代入利用等差数列的通项公式即可得出;(2)利用“裂项求和”、一元二次不等式的解法即可得出.【解析】:解:(1)∵S n2=a n(S n﹣)=.化为,∴数列是首项为==1,公差为2的等差数列.故=1+2(n﹣1)=2n﹣1,∴S n=.(2)b n===,故T n=+…+=.又∵不等式T n≥(m2﹣5m)对所有的n∈N*恒成立,∴≥(m2﹣5m),化简得:m2﹣5m﹣6≤0,解得:﹣1≤m≤6.∴正整数m的最大值为6.【点评】:本题考查了递推式的应用、“裂项求和”、等差数列的通项公式、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.20.(13分)(2015•山东一模)在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),P为椭圆G的上顶点,且∠PF1O=45°.(Ⅰ)求椭圆G的标准方程;(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.【考点】:直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】:综合题.【分析】:(Ⅰ)根据F1(﹣1,0),∠PF1O=45°,可得b=c=1,从而a2=b2+c2=2,故可得椭圆G的标准方程;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(ⅰ)直线l1:y=kx+m1与椭圆G联立,利用韦达定理,可求AB,CD的长,利用|AB|=|CD|,可得结论;(ⅱ)求出两平行线AB,CD间的距离为d,则,表示出四边形ABCD的面积S,利用基本不等式,即可求得四边形ABCD的面积S取得最大值.【解析】:(Ⅰ)解:设椭圆G的标准方程为.因为F1(﹣1,0),∠PF1O=45°,所以b=c=1.所以,a2=b2+c2=2.…(2分)所以,椭圆G的标准方程为.…(3分)(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(ⅰ)证明:由消去y得:.则,…(5分)所以===.同理.…(7分)因为|AB|=|CD|,所以.因为m1≠m2,所以m1+m2=0.…(9分)(ⅱ)解:由题意得四边形ABCD是平行四边形,设两平行线AB,CD间的距离为d,则.因为m1+m2=0,所以.…(10分)所以=.(或)所以当时,四边形ABCD的面积S取得最大值为.…(12分)【点评】:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查弦长的计算,考查三角形的面积,同时考查利用基本不等式求最值,正确求弦长,表示出四边形的面积是解题的关键.21.(14分)(2015•山东一模)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【考点】:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.【专题】:导数的综合应用.【分析】:(I)由,f′(1)=0,知,由此能求出a.(Ⅱ)由,令f′(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞),讨论两个根及﹣1的大小关系,即可判定函数的单调性;(Ⅲ)当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,由此能够证明ln(n+1)<2+.【解析】:解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.【点评】:本题考查函数极值的意义及利用导数研究函数的单调性,证明:对任意的正整数n.解题时要认真审题,注意导数的合理运用,恰当地利用裂项求和法进行解题.。

2019-2020年高三数学第一次统一考试试题 理(含解析)

2019-2020年高三数学第一次统一考试试题 理(含解析)

2019-2020年高三数学第一次统一考试试题 理(含解析)【试卷综析】试题在重视基础,突出能力,体现课改,着眼稳定,实现了新课标高考数学试题与老高考试题的尝试性对接.纵观新课标高考数学试题,体现数学本质,凸显数学思想,强化思维量,控制运算量,突出综合性,无论是在试卷的结构安排方面,还是试题背景的设计方面以全新的面貌来诠释新课改的理念.【题文】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】 l.集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为A.3 B .4 C .11 D .12【知识点】集合中元素的特征:确定性,互异性,无序性. A1 【答案】【解析】C 解析:{1,2,3,4,5,6,8,9,10,12,15}C =,故选C. 【思路点拨】利用已知求得集合C 即可.【题文】 2.已知i 为虚数单位,复数123,12z ai z i =-=+,若12z z 复平面内对应的点在第四象限,则实数a 的取值范围为 A. {}|6a a <- B . 3|62a a ⎧⎫-<<⎨⎬⎩⎭ C .3|2a a ⎧⎫<⎨⎬⎩⎭ D . 3|62a a a ⎧⎫<->⎨⎬⎩⎭或 【知识点】复数的运算;复数的几何意义. L4 【答案】【解析】B 解析:12z z ()()()()312332612121255ai i ai a a i i i i ----+===-++-,因为12zz 复平面内对应的点在第四象限,所以32036602a a a ->⎧⇒-<<⎨+>⎩,故选 B.【思路点拨】先把复数z 化为最简形式,在利用复数的几何意义求解.【题文】3.已知θ为第二象限角, sin ,cos θθ是关于x 的方程22x R)∈的两根,则 sin -cos θθ的等于 A .12+ B .12C ..【知识点】已知三角函数式的值,求另一个三角函数式的值. C7 【答案】【解析】A解析:由已知得1sin cos 2θθ+=2sin cos 2θθ⇒=-又θ为第二象限角,所以sin -cos θθ==12+,故选 A.【思路点拨】由已知得1sin cos 2θθ-+=2sin cos 2θθ⇒=-,又θ为第二象限角,所以sin -cos θθ==12+. 【题文】4.下面四个推导过程符合演绎推理三段论形式且推理正确的是A .大前提:无限不循环小数是无理数;小前提:π丌是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提: π是无限不循环小数;结论: π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论: π是无理数D.大前提: π是无限不循环小数;小前提: π是无理数;结论:无限不循环小数是无理数 【知识点】演绎推理的定义及特点. M1【答案】【解析】B 解析:A :小前提不正确;C 、D 都不是由一般性命题到特殊性命题的推理,所以A 、C 、D 都不正确,只有B 正确,故选 B.【思路点拨】演绎推理是由一般性命题到特殊性命题的推理,及其推理的一般模式---“三段论”,由三段论的含义得出正确选项.【题文】5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为 A .38 B . 82π- C . 43π D . 283π-【知识点】几何体的三视图;几何体的结构. G1 G2【答案】【解析】D 解析:由三视图可知此几何体是:棱长为2 的正方体挖去了一个圆锥而形成的新几何体,其体积为3212212833ππ-⨯⨯⨯=-,故选 D.【思路点拨】由几何体的三视图得此几何体的结构,从而求得此几何体的体积.【题文】6.已知 ()f x 是定义在R 上的偶函数,且()f x 在(],0-∞上单调递增,设333(sin )(cos ),(tan )555a fb fc f πππ===,则a,b,c 的大小关系是,A .a<b<cB .b<a<cC .c<a<bD .a<c<b【知识点】函数奇偶性,单调性的应用. B3 B4【答案】【解析】C 解析:∵()f x 是定义在R 上的偶函数,且()f x 在(],0-∞上单调递增, ∴()f x 在[)0,+∞上单调递减,且22coscos 55b f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭, 22tantan 55c f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,又∵2sin 5a f π⎛⎫=⎪⎝⎭,且2220cos sin tan 555πππ<<<,∴ c<a<b ,故选 C.【思路点拨】由已知得函数()f x 在[)0,+∞上单调递减,而2sin5a f π⎛⎫= ⎪⎝⎭, 22coscos 55b f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,22tan tan 55c f f ππ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,所以只需比较 222cos,sin ,tan555πππ的大小关系即可. 【题文】7.执行如图的程序,则输出的结果等于 A .9950 B .200101 C .14950 D . 15050【知识点】对程序框图描述意义的理解. L1【答案】【解析】A 解析:根据框图中的循环结构知,此程序是求下式的值:1111136104950T =+++++222222612209900=+++++1111212233499100⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭1111111212233499100⎛⎫=-+-+-++- ⎪⎝⎭1992110050⎛⎫=-=⎪⎝⎭,故选A. 【思路点拨】由程序框图得其描述的算法意义.【题文】 8.在△ABC 中,D 为AC 的中点,3BC BE =,BD 与 AE 交于点F ,若 AF AE λ=,则实数λ的值为 A .12 B . 23 C . 34 D . 45【知识点】平面向量的线性运算. F1 【答案】【解析】C 解析:作EFAC 交BD 于G ,因为13BE BC =,所以13EG DC =,因为 D 为AC 的中点,所以13EG AD =,所以1334EF AF AE FA =⇒=,故选C.【思路点拨】画出几何图形,利用平行线分线段成比例定理求得结论.【题文】9.设 12,F F 分别为双曲线 221x y -=的左,右焦点,P 是双曲线上在x 轴上方的点, 1F PF ∠为直角,则 12sin PF F ∠的所有可能取值之和为A .83B .2C .D .2【知识点】双曲线的性质. H6【答案】【解析】D 解析:设P 是第一象限点,且12,PF m PF n ==,则222181m n m m n n ⎧-==⎧⎪⇒⎨⎨+==⎩⎪⎩,所以所求= 2m n c +==,故选 D. 【思路点拨】根据双曲线的定义及勾股定理,求得P 到两焦点的距离,这两距离和与焦距的比值为所求. 【题文】10.曲线 1(0)y x x=>在点 00(,)P x y 处的切线为 l .若直线l 与x ,y 轴的交点分别为A ,B ,则△OAB 的 周长的最小值为A. 4+5+ 【知识点】导数的几何意义;基本不等式求最值. B11 E6 【答案】【解析】A 解析:∵21y x '=-,∴00201:()l y y x x x -=--即20020x x y x +-=, 可得A(02x ,0),B(0,02x ),∴△OAB的周长00224l x x =+≥+当01x =时等号成立.故选 A.【思路点拨】由导数的几何意义得直线l 的方程,从而求得A 、B 的坐标,进而用0x 表示△OAB 的周长,再用基本不等式求得周长的最小值.【题文】11.若直线(31)(1)660x y λλλ++-+-= 与不等式组 70,310,350.x y x y x y +-<⎧⎪-+<⎨⎪-->⎩,表示的平 面区域有公共点,则实数λ的取值范围是 A . 13(,)(9,)7-∞-+∞ B . 13(,1)(9,)7-+∞ C .(1,9) D . 13(,)7-∞-【知识点】简单的线性规划. E5【答案】【解析】A 解析:画出可行域,求得可行域的三个顶点A(2,1),B(5,2),C(3,4) 而直线(31)(1)660x y λλλ++-+-=恒过定点P(0,-6),且斜率为311λλ+-,因为 7810,,253PA PB PC k k k ===,所以由8317512λλ+<<-得λ∈13(,)(9,)7-∞-+∞,故选A.【思路点拨】:画出可行域,求得可行域的三个顶点, 确定直线过定点P(0,-6),求得直线PA 、PB 、PC 的斜率,其中最小值85,最大值72,则由8317512λλ+<<-得λ的取值范围. 【题文】12.在平面直角坐标系中,点P 是直线 1:2l x =-上一动点,点 1(,0)2F ,点Q 为PF 的 中点,点M 满MQ ⊥PF ,且 ()MP OF R λλ=∈.过点M 作圆 22(3)2x y -+= 的切线,切点分别为S ,T ,则 ST 的最小值为A .. C . 72 D. 52【知识点】曲线与方程;距离最值问题. H9 【答案】【解析】A 解析:设M(x,y),1(,2)2P b -,则Q(0,b),由QM ⊥FP 得 (,)(1,2)02()0x y b b x b y b -⋅-=⇒-+-=.由()MP OF R λλ=∈得y=2b,所以点M 的轨迹方程为22y x =,M 到圆心距离=,易知当d 去最小ST 取最小值,此时MT ==,由三角形面积公式得:11222ST ST ==故选A. 【思路点拨】先求得点M 的轨迹方程22y x =,分析可知当M 到圆心距离最小时ST 最小,所以求M 到圆心距离d 得最小值,再用三角形面积公式求得ST 的最小值. 【题文】二、填空题:本大题共4小题,每小题5分,共20分. 【题文】13.设随机变量 2(,)N ξμσ,且 (1)(1),(2)0.3P P P ξξξ<-=>>=,则(20)P ξ-<<= _____________.【知识点】正态分布的意义. I3【答案】【解析】0.2 解析:因为(1)(1)P P ξξ<-=>,所以正态分布曲线关于y 轴对称, 又因为(2)0.3P ξ>=,所以(20)P ξ-<<=120.30.22-⨯=【思路点拨】根据正态分布的性质求解.【题文】14.若正四梭锥P- ABCD 的底面边长及高均为2,刚此四棱锥内切球的表面积为_______.【知识点】组合体的意义;几何体的结构. G1【答案】【解析】2(3π- 解析:根据题意得正四梭锥的底面面积为4,一个侧面面积为R ,则由等体积法得,()111442332R R =⨯⨯⇒=,所以球的表面积为2(3π.【思路点拨】由等体积法求得此四棱锥内切球的半径,再由球的表面积公式求得结论. 【题文】15.将函数 ()sin()223y sin x x ωωπ=+的图象向右平移3π个单位,所得图象关于y轴对称,则正数 ω的最小值为________.【知识点】sin()y A x ωϕ=+的图像与性质. C4 【答案】【解析】 1 解析:函数()sin()223y sin x x ωωπ=+=1sin()sin()cos()2222x x x ωωω⎛⎫+ ⎪ ⎪⎝⎭=21sin ()sin()cos()2222x x x ωωω+=11sin()264x πω-+,向右平移3π个单位后为: 1111sin[()]sin 23642364y x x πππωπωω⎡⎤⎛⎫=--+=-++ ⎪⎢⎥⎝⎭⎣⎦,这时图像关于y 轴对称,所以31362k k πωπππω+=+⇒=+,k Z ∈,所以正数 ω的最小值为1.【思路点拨】先利用两角和与差的三角函数,二倍角公式,把已知函数化为: y=11sin()264x πω-+,再由其平移后关于y 轴对称得31k ω=+,k Z ∈,所以正数 ω的最小值为1.【题文】 16.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b=l ,a= 2c ,则当C 取最大值时,△ABC 的面积为________.【知识点】余弦定理;三角形的面积公式. C8【答案】解析:当C 取最大值时,cosC 最小,由22223111cos 3244a b c c C c ab c c +-+⎛⎫===+≥⎪⎝⎭得,当且仅当c= 3时C 最大,且此时sinC=12,所以△ABC的面积为111sin 21222ab C c =⨯⨯⨯=【思路点拨】由余弦定理求得C 最大的条件,再由三角形面积公式求解.【题文】三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【题文】17.(本小题满分10分) 已知 {}{},n n a b 均为等差数列,前n 项和分别为 ,n n S T .(1)若平面内三个不共线向量 ,,OA OB OC 满足 315OC a OA a OB =+,且A ,B ,C 三点共线.是否存在正整数n ,使 n S 为定值?若存在,请求出此定值;若不存在,请说明理由。

高考数学一模试卷(理科)含解析试卷分析

高考数学一模试卷(理科)含解析试卷分析

天津市部分区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁R B)=()A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)2.设变量x,y满足约束条件,则目标函数z=x﹣y的最大值为()A.﹣1B.0C.1D.23.阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.4B.6C.8D.104.在△ABC中,A、B、C的对边分别为a、b、c,若B=,b=6,sinA﹣2sinC=0,则a=()A.3B.2C.4D.125.已知p:x2﹣4x+3≤0,q:f(x)=存在最大值和最小值,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件6.已知抛物线y2=20x的焦点F恰好为双曲线﹣=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为()A.=1B.=1C.=1D.=17.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣8.已知函数f(x)=,若函数g(x)=f(x)+2x﹣a有三个零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣3)D.(0,﹣3)二、填空题:本大题共6小题,每小题5分,共30分).9.已知a,b∈R,i是虚数单位,若复数=ai,则a+b=.10.(﹣)7的展开式中,x﹣1的系数是.(用数字填写答案)11.某三棱锥的三视图如图所示,则该几何体的体积为.12.直线y=4x与曲线y=4x3在第一象限内围成的封闭图形的面积为.13.在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),曲线C的参数方程为(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为.14.已知f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数x满足f(log|x+1|)<f(﹣1),则x的取值范围是.三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=sin(x﹣)cosx+1.(Ⅰ)求函数f(x)的最小正周期;(Ⅰ)当x∈[,]时,求函数f(x)的最大值和最小值.16.某校高三年级准备举行一次座谈会,其中三个班被邀请的学生数如表所示:班级高三(1)高三(2)高三(3)人数334(Ⅰ)若从这10名学生中随机选出2名学生发言,求这2名学生不属于同一班级的概率;(Ⅰ)若从这10名学生中随机选出3名学生发言,设X为来自高三(1)班的学生人数,求随机变量X的分布列和数学期望.17.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=,PD=BC=CD=AD,AP⊥CD.(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;(Ⅰ)求二面角P﹣AB﹣C的余弦值;(Ⅰ)若点Q在线段PA上,且BQ与平面ABCD所成角为,求CQ的长.18.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n 项和T n.19.已知椭圆C: +=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅰ)若点M(,)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅰ)求函数f(x)的单调区间;(Ⅰ)若函数f(x)有两个极值点x1,x2(x1<x2),求证:4f(x1)﹣2f(x2)≤1+3ln2.天津市部分区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩(∁R B)=()A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)【考点】交、并、补集的混合运算.【分析】先分别求出集合A和B,从而得到C R A,由此能求出集合A∩(∁R B).【解答】解:∵集合A={x|0<x≤3,x∈N}={1,2,3},B={x|y=}={x|x≤﹣3或x≥3},∴C R A={x|﹣3<x<3},集合A∩(∁R B)={1,2}.故选:A.2.设变量x,y满足约束条件,则目标函数z=x﹣y的最大值为()A.﹣1B.0C.1D.2【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,3),化目标函数z=x﹣y为y=x﹣z.由图可知,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为0.故选:B.3.阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.4B.6C.8D.10【考点】程序框图.【分析】利用循环结构可知道需要循环4次,根据条件求出i的值即可.【解答】解:第一次循环,s=﹣2<5,s=﹣1,i=2,第二次循环,s=﹣1<7,s=1,i=4,第三次循环,s=1<9,s=5,i=6,第四次循环,s=5<11,s=13,i=8,第五次循环,s=13≥13,此时输出i=8,故选:C.4.在△ABC中,A、B、C的对边分别为a、b、c,若B=,b=6,sinA﹣2sinC=0,则a=()A.3B.2C.4D.12【考点】正弦定理.【分析】由已知及正弦定理可得:c=,进而利用余弦定理即可求得a的值.【解答】解:∵sinA﹣2sinC=0,∴由正弦定理可得:c=,∵B=,b=6,∴由余弦定理b2=a2+c2﹣2accosB,可得:62=a2+(a)2﹣2a,整理可得:a=4,或﹣4(舍去).故选:C.5.已知p:x2﹣4x+3≤0,q:f(x)=存在最大值和最小值,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】解不等式,求出关于p的x的范围,根据函数的性质求出关于q的x的范围,根据集合的包含关系判断充分必要条件即可.【解答】解:由x2﹣4x+3≤0,解得:1≤x≤3,故命题p:1≤x≤3;f(x)==x+,x>0时,f(x)有最小值2,x<0时,f(x)有最大值﹣2,故命题q:x≠0,故命题p是命题q的充分不必要条件,故选:A.6.已知抛物线y2=20x的焦点F恰好为双曲线﹣=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为()A.=1B.=1C.=1D.=1【考点】圆锥曲线的综合.【分析】确定抛物线y2=20x的焦点坐标、双曲线﹣=1(a>0,b>0)的一条渐近线的方程,利用抛物线的焦点到双曲线渐近线的距离为4,求出b,a,即可求出双曲线的方程.【解答】解:抛物线y2=20x的焦点坐标为(5,0),双曲线﹣=1(a>0,b>0)的一条渐近线的方程为bx+ay=0,∵抛物线的焦点到双曲线渐近线的距离为4,∴=4,即b=4,∵c=5,∴a=3,∴双曲线方程为:=1.故选:D.7.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣【考点】向量在几何中的应用.【分析】利用已知条件,建立直角坐标系,求出相关点的坐标,然后求解向量的数量积.【解答】解:建立如图所示的直角坐标系:在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则A(0,0),B(1,0),C(﹣1,),O(0,),M(0,),=(1,﹣),=(﹣1,)=﹣1﹣=﹣.故选:D.8.已知函数f(x)=,若函数g(x)=f(x)+2x﹣a有三个零点,则实数a的取值范围是()A.(0,+∞)B.(﹣∞,﹣1)C.(﹣∞,﹣3)D.(0,﹣3)【考点】根的存在性及根的个数判断.【分析】由题意可得需使指数函数部分与x轴有一个交点,抛物线部分与x轴有两个交点,判断x≤0,与x>0交点的情况,列出关于a的不等式,解之可得答案.【解答】解:g(x)=f(x)+2x﹣a=,函数g(x)=f(x)+2x﹣a有三个零点,可知:函数图象的左半部分为单调递增指数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=﹣a﹣1,最多两个零点,如上图,要满足题意,函数y=2x+2x是增函数,x≤0一定与x相交,过(0,1),g(x)=2x+2x﹣a,与x轴相交,1﹣a≥0,可得a≤1.还需保证x>0时,抛物线与x轴由两个交点,可得:﹣a﹣1>0,△=4(a+1)2﹣4(1﹣a)>0,解得a<﹣3,综合可得a<﹣3,故选:C.二、填空题:本大题共6小题,每小题5分,共30分).9.已知a,b∈R,i是虚数单位,若复数=ai,则a+b=4.【考点】复数代数形式的乘除运算.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,再根据两个复数相等的充要条件求得a、b的值,可得a+b的值.【解答】解:=ai,则===ai,∴2﹣b=0,2+b=2a,∴b=2,a=2,∴a+b=4,故答案为:410.(﹣)7的展开式中,x﹣1的系数是﹣280.(用数字填写答案)【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于﹣1,求出r的值,即可求得x﹣1的系数.=•(﹣2)r•,令【解答】解:∵(﹣)7的展开式的通项公式为T r+1=﹣1,求得r=3,可得x﹣1的系数为•(﹣8)=﹣280,故答案为:﹣280.11.某三棱锥的三视图如图所示,则该几何体的体积为2.【考点】由三视图求面积、体积.【分析】根据三棱锥的三视图知,该三棱锥是底面为等腰直角三角形,高为3的三棱锥,结合图中数据,求出它的体积.【解答】解:根据三棱锥的三视图知,该三棱锥是底面为等腰直角三角形,高为3的三棱锥,结合图中数据,计算三棱锥的体积为V=××2×2×3=2.故答案为:2.12.直线y=4x与曲线y=4x3在第一象限内围成的封闭图形的面积为1.【考点】定积分.【分析】先根据题意画出区域,然后然后依据图形得到积分上限为1,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】1解:先根据题意画出图形,得到积分上限为1,积分下限为0,曲线y=4x3与直线y=4x在第一象限所围成的图形的面积是∫01(4x﹣4x3)dx,而∫01(4x﹣4x3)dx=(2x2﹣x4)|01=2×1﹣1=1∴曲边梯形的面积是1,故答案为:1.13.在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R),曲线C的参数方程为(α为参数),设直线l与曲线C交于A、B两点,当弦长|AB|最短时,直线l的普通方程为x+y﹣4=0.【考点】直线的参数方程.【分析】普通方程为y﹣1=a(x﹣3),过定点P(3,1),当弦长|AB|最短时,CP⊥AB,求出CP的斜率,可得AB的斜率,即可得出结论.【解答】解:直线l的参数方程为,普通方程为y﹣1=a(x﹣3),过定点P(3,1)曲线C的参数方程为(α为参数),普通方程为(x﹣2)2+y2=4,当弦长|AB|最短时,CP⊥AB,∵k CP==1,k AB=﹣1∴直线l的普通方程为x+y﹣4=0,故答案为:x+y﹣4=0.14.已知f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数x满足f(log|x+1|)<f(﹣1),则x的取值范围是.【考点】奇偶性与单调性的综合.【分析】利用函数是偶函数得到不等式f(log|x+1|)<f(﹣1),等价为f (|log2|x+1||)<f(1),然后利用函数在区间[0,+∞)上单调递增即可得到不等式的解集.【解答】解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.∴不等式f(log|x+1|)<f(﹣1),等价为f(|log2|x+1||)<f(1),即|log2|x+1||<1∴﹣1<log2|x+1|<1,解得x的取值范围是.故答案为.三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或演算过程.15.已知函数f(x)=sin(x﹣)cosx+1.(Ⅰ)求函数f(x)的最小正周期;(Ⅰ)当x∈[,]时,求函数f(x)的最大值和最小值.【考点】三角函数的周期性及其求法;三角函数的最值.【分析】(Ⅰ)利用和与差公式打开,根据二倍角公式和辅助角公式化解为y=Asin (ωx+φ)的形式,再利用周期公式求函数的最小正周期,(Ⅰ)当x∈[,]时,求出内层函数的取值范围,结合三角函数的图象和性质,可求出f(x)的最大值和最小值.【解答】解:(Ⅰ)==,∴函数f(x)的最小正周期.(Ⅰ)由(Ⅰ)知,∵,∴,∴,故当时,函数f(x)的最大值为.当时,函数f(x)的最小值为.16.某校高三年级准备举行一次座谈会,其中三个班被邀请的学生数如表所示:班级高三(1)高三(2)高三(3)人数334(Ⅰ)若从这10名学生中随机选出2名学生发言,求这2名学生不属于同一班级的概率;(Ⅰ)若从这10名学生中随机选出3名学生发言,设X为来自高三(1)班的学生人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)从10名学生随机选出2名的方法数为,选出2人中不属于同一班级的方法数为,由此能求出这2名学生不属于同一班级的概率.(Ⅰ)X可能的取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】(本小题满分13分)解:(Ⅰ)从10名学生随机选出2名的方法数为,选出2人中不属于同一班级的方法数为…设2名学生不属于同一班级的事件为A所以.…(Ⅰ)X可能的取值为0,1,2,3,,,,.…所以X的分布列为X0123P所以.…17.如图,五面体PABCD中,CD⊥平面PAD,ABCD为直角梯形,∠BCD=,PD=BC=CD=AD,AP⊥CD.(Ⅰ)若E为AP的中点,求证:BE∥平面PCD;(Ⅰ)求二面角P﹣AB﹣C的余弦值;(Ⅰ)若点Q在线段PA上,且BQ与平面ABCD所成角为,求CQ的长.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取PD的中点F,连接EF,CF,证明BE∥CF即可;(Ⅰ)(方法一)以P为坐标原点,PD,PA所在直线分别为x轴和y轴,建立如图所示的空间直角坐标系,求出法向量即可;(方法二)以D为坐标原点,DA,DC所在直线分别为x轴和z轴,建立如图所示的空间直角坐标系,求出法向量即可;(Ⅰ)建系同(II)利用向量求解.【解答】解:(Ⅰ)证明:取PD的中点F,连接EF,CF∵E,F分别是PA,PD的中点,∴EF∥AD且;…∵,BC∥AD,∴EF∥BC且EF=BC;∴BE∥CF.…又BE⊄平面PCD,CF⊂平面PCD,∴BE∥平面PCD.…(Ⅰ)(方法一)以P为坐标原点,PD,PA所在直线分别为x轴和y轴,建立如图所示的空间直角坐标系,不妨设BC=1,则,,.…设平面PAB的一个法向量为n=(x,y,z),则从而令x=2,得n=(2,0,﹣1).…同理可求平面ABD的一个法向量为.….平面ABD和平面ABC为同一个平面,所以二面角P﹣AB﹣C的余弦值为.…(方法二)以D为坐标原点,DA,DC所在直线分别为x轴和z轴,建立如图所示的空间直角坐标系,不妨设BC=1,则,C(0,0,1),B (1,0,1),,…设平面PAB的一个法向量为=(x,y,z),则,,令,得x=z=1,即.…易求平面ABC的一个法向量为.….所以二面角P﹣AB﹣C的余弦值为.…(Ⅰ)(方法一)建系同(II)(方法一),设Q(0,x,0),由(II)知平面ABCD的一个法向量为,;…若BQ与平面ABCD所成的角为,则==sin解得,所以Q(0,,0),,.…(方法二)建系同(II)(方法二),设,则,,由(II)知平面ABCD的一个法向量为.…若BQ与平面ABCD所成的角为,则.解得,则,从而…18.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n项和T n.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,可得{a n}为等差数列.再利用等差数列的通项公式与求和公式即可得出.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1),lgb1+lgb2+…+lgb n﹣1=lg(2n﹣1),作差可得b n=,(n≥2).c n==,再利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+1+a n﹣1=2a n,所以{a n}为等差数列.由a6=11,前9项和为81,得a1+5d=11,d=81,解得a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1)…①,lgb1+lgb2+…+lgb n﹣1=lg(2n﹣1)…②①﹣②,得,∴b n=,(n≥2).b1=3满足上式,因此b n=,(n≥2).c n==,∴数列{c n}的前n项和T n=+…++,又2T n=+…+,以上两式作差,得T n=+2﹣,,因此,T n=﹣.19.已知椭圆C: +=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅰ)若点M(,)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意,得,然后求解离心率即可.(Ⅰ)由(Ⅰ)得a=2c,则b2=3c2.将代入椭圆方程,解得c=1.求出椭圆方程,直线OM的方程为.当直线l的斜率不存在时,AB的中点不在直线上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与联立消y,设A(x1,y1),B(x2,y2),利用韦达定理求出AB的中点,推出﹣,且m≠0,利用弦长公式以及三角形的面积,推出结果即可.【解答】(本小题满分13分)解:(Ⅰ)由题意,得,…则,结合b2=a2﹣c2,得,即2c2﹣3ac+a2=0,…亦即2e2﹣3e+1=0,结合0<e<1,解得.所以椭圆C的离心率为.…(Ⅰ)由(Ⅰ)得a=2c,则b2=3c2.将代入椭圆方程,解得c=1.所以椭圆方程为.…易得直线OM的方程为.当直线l的斜率不存在时,AB的中点不在直线上,故直线l的斜率存在.设直线l的方程为y=kx+m(m≠0),与联立消y得(3+4k2)x2+8kmx+4m2﹣12=0,所以△=64k2m2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)>0.设A(x1,y1),B(x2,y2),则,.…由,得AB的中点,因为N在直线上,所以,解得k=﹣.…所以△=48(12﹣m2)>0,得﹣,且m≠0,|AB|=|x2﹣x1|= = =.又原点O到直线l的距离d=,…所以.当且仅当12﹣m2=m2,m=时等号成立,符合﹣,且m≠0.所以△OAB面积的最大值为:.…20.已知函数f(x)=﹣x2+ax﹣lnx(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅰ)求函数f(x)的单调区间;(Ⅰ)若函数f(x)有两个极值点x1,x2(x1<x2),求证:4f(x1)﹣2f(x2)≤1+3ln2.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(Ⅰ)求出函数的导数,通过讨论a的范围判断函数的单调性即可;(Ⅰ)根据函数的极值的个数求出a的范围,求出4f(x1)﹣2f(x2)的解析式,根据函数的单调性证明即可.【解答】解:(Ⅰ)当a=1时,f(x)=﹣x2+x﹣lnx,f′(x)=﹣x+1﹣,则f(1)=,f'(1)=﹣1,所以所求切线方程为y﹣=﹣(x﹣1),即2x+2y﹣3=0.(Ⅰ)由f(x)=﹣x2+ax﹣lnx,得f′(x)=﹣x+a﹣=﹣.令g(x)=x2﹣ax+1,则f′(x)=﹣,①当△=a2﹣4<0,即﹣2<a<2时,g(x)>0恒成立,则f′(x)<0,所以f)x)在(0,+∞)上是减函数.②当△=0,即a=±2时,g(x)=x2±2x+1=(x±1)2≥0,则f′(x)≤0,所以f(x)在(0,+∞)上是减函数.③当△=a2﹣4>0,即a<﹣2或a>2.(i)当a<﹣2时,g(x)=x2﹣ax+1是开口向上且过点(0,1)的抛物线,对称轴方程为x=(<﹣1),则g(x)>0恒成立,从而f′(x)<0,所以f(x)在(0,+∞)上是减函数.(ii)当a>2时,g(x)是开口向上且过点(0,1)的抛物线,对称轴方程为x=(>1),则函数g(x)有两个零点:,列表如下:x(0,x1)x1(x1,x2)x2(x2,+∞)f′(x)﹣0+0﹣f(x)减函数极小值增函数极大值减函数综上,当a≤2时,f(x)的减区间是(0,+∞);当a>2时,f(x)的增区间是,减区间是,.(Ⅰ)证明:根据(Ⅰ),当a>2时,f(x)有两个极值点x1,x2,(x1<x2),则x1,x2是方程g(x)=0的两个根,从而.由韦达定理,得x1x2=1,x1+x2=a.又a﹣2>0,所以0<x1<1<x2====.令,h(t)=﹣t+3lnt+2,(t>1),则.当1<t<2时,h'(t)>0;当t>2时,h′(t)<0,则h(t)在(1,2)上是增函数,在(2,+∞)上是减函数,从而h(t)max=h(2)=3ln2+1,于是4f(x1)﹣2f(x2)≤1+3ln2.4月10日。

高考第一次模拟考试数学(理)试题含答案试卷分析详解

高考第一次模拟考试数学(理)试题含答案试卷分析详解

德州市高三第一次模拟考试数学(理)试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}1,2,3,4,5,6U =,集合{}1,3A =,集合{}3,4,5B =,则集合()U A C B ⋂=( )A .{}1,2,3,6B .{}1C .{}1,2D .{}1,3,4,52.设i 为虚数单位,a R ∈,若()()11i ai --为纯虚数,则复数1ai -的模是( ) A 2 B .2 C .1 D .03.已知命题():0,,sin p x x x ∀∈+∞>,命题121:,log 2xq x R x ⎛⎫∃∈= ⎪⎝⎭,则下列命题中的真命题为( )A .q ⌝B .p q ∧C .()p q ⌝∧D .()()p q ⌝∨⌝4.已知双曲线()222210,0x y a b a b -=>>的一个焦点在抛物线216y x =的准线上,且双曲线的—条渐近线过点)3,3,则双曲线的方程为( )A .221420x y -= B .221124x y -= C .221412x y -= D .221204x y -= 5.已知ABC ∆的三边分别是,,a b c ,设向量()()sin sin ,3,sin ,m B A a c n C a b =-+=+,且//m n ,则B 的大小是( )A .6πB .56π C .3π D .23π6.某几何体的三视图如图所示,则该几何体的表面积是( )A.162π+ B.164π++ C.164π+ D.162π++ 7.设()1,1XN ,其正态分布密度曲线如图所示,那么向正方形ABCD 中随机投掷100000个点,则落入阴影部分的点的个数的估计值是( ) 注:若()2,XN μσ,则()0.6826P X μσμσ-<<+≈,()220.9544P X μσμσ-<<+≈A. 60380B.65870C.70280D.753908.已知不等式组210y x y kx y ≤-+⎧⎪≤+⎨⎪≥⎩所表示的平面区域为面积等于94的三角形,则实数k 的值为( )A .1B .2-C .1或2-D .29-9.函数()ln cos f x x x =+(22x ππ-≤≤且0x ≠)的图象大致是( )A .B .C .D .10.已知公比不为1的等比数列{}n a 的前n 项和为n S ,且满足258,2,3a a a 成等差数列,则363S S =( ) A .134 B .1312 C .94 D .111211.已知函数()(](]111,1,012,0,1x x x f x x -⎧-∈-⎪+=⎨⎪∈⎩,且()()2g x f x mx m =-+在(]1,1-内有且仅有两个不同的零点,则实数m 的取值范围是( )A .11,4⎛⎤-- ⎥⎝⎦B .(]1,1,4⎛⎫-∞-⋃-+∞ ⎪⎝⎭C .11,4⎡⎫--⎪⎢⎣⎭D .()1,1,4⎡⎫-∞-⋃-+∞⎪⎢⎣⎭12.若关于x 的方程10x x x x e m e x e +++=+有三个不等的实数解123,,x x x ,且1230x x x <<<,其中, 2.71828m R e ∈=为自然对数的底数,则1232312111x x x xx x e e e ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .2eB .eC .1m -D .1m +第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.5名同学去参加2个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社团组织,则共有 种可能(结果用数字表示).14.在《九章算术》中记载着一道关于“持金出关”的题目,大意是:“在古代出关要交税.一天,某人拿钱若干出关,第1关交所拿钱数的12,第2关交所剩钱数的13,第3关交所剩钱数的14, ”.现以这则故事中蕴含的数学思想,设计如图所示程序框图,则运行此程序,输出n 的值为 .15.若圆22440x y x y +--=上至少有三个不同的点到直线:l y kx =,则直线l 的斜率的取值范围是 .16.如图所示,坐标纸上的每个单位格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{}()*n a n N ∈的前12项,其中横坐标为奇数项,纵坐标为偶数项,按如此规律,则2016201720182019a a a a +++= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数()22sin cos f x x x x =-(1)求()f x 的单调递增区间;(2)若11,324x ππ⎡⎤∈⎢⎥⎣⎦,且锐角ABC ∆的两边长分别是函数()f x 的最大值和最小值,ABC∆,求ABC ∆的面积.18.某数学小组从医院和气象局获得今年1月至6月份每月20日的昼夜温差(,3x C x ︒≥)和患感冒人数(y 人)的数据,画出折线图.(1)由折线图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)建立y 关于x 的回归方程(精确到0.01),预测昼夜温差为4C ︒时患感冒的人数(精确到整数).参考数据:6154.9i i x ==∑,()()6194i i i x x y y =--=∑6= 2.646≈.参考公式:相关系数:nxx y yr --=,回归直线方程是y a bx =+,()()()121,nii i nii xx y yb a y b x xx==--==-⋅-∑∑19. 如图1,在高为2的梯形ABCD 中,//,25AB CD AB CD ==,,过A B 、分别作,AE CD BF CD ⊥⊥,垂足分别为E F 、.已知1DE =,将D C 、沿AE BF 、折向同侧,得空间几何体ADE BCF -,如图2.(1)若AF BD⊥ ,求证:DE BE ⊥;(2)若//,DE CF CD =,线段AB 的中点是P ,求CP 与平面ACD 所成角的正弦值.20.已知椭圆()2222:10xy C a b a b +=>>,点⎛ ⎝在椭圆上,,A B 分别为椭圆的右顶点与上顶点,过点,A B 引椭圆C 的两条弦AE BF 、交椭圆于点,E F .(1)求椭圆C 的方程;(2)若直线,AE BF 的斜率互为相反数, ①求出直线EF 的斜率;②若O 为直角坐标原点,求OEF ∆面积的最大值.21.已知函数()()ln 0f x ax x a =>在点()(),e f e 处的切线和直线210x y ++=垂直. (1)求a 的值;(2)对于任意的0x >,证明:()32f x x e -≥--;(3)若()f x b =有两个实根()1212,x x x x ≠,求证:12331122x x b e-<++.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同.直线l cos 14πθ⎛⎫+= ⎪⎝⎭,曲线C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),设直线l 与曲线C 交于,A B 两点.(1)写出直线l 的普通方程与曲线C 的直角坐标方程,并求线段AB 的长; (2)已知点P 在曲线C 上运动,求点P 到直线l 距离的最大值. 23.选修4-5:不等式选讲 已知函数()3f x x a x =++-.(1)若()f x 的最小值为5,求实数a 的值;(2)当10x -≤≤时,不等式()4f x x ≤-恒成立,求实数a 的取值范围.。

高考一模考试数学试题(理)含解析试卷分析

高考一模考试数学试题(理)含解析试卷分析

延庆区—一模统一考试高三数学(理科) 3月本试卷共6页,满分150分,考试时间120分钟第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|02},{|1}A x x B x x =≤≤=>,则AB = ( )A.{|01}x x ≤≤B.{|0x x >或1}x <-C. {|12}x x <≤D.{|02}x x <≤2.复数21ii =+( ) A.1i + B .1i - C. 1i -+ D .1i --3.已知两条直线,a b 和平面α,若,a b b α⊥⊄,则“a α⊥”是“//b α”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4.某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为 ( ) A .2B.3C.2D.55.执行如图所示的程序框图,若输出的a 的值为15,则判断框应填写 ( ) A .2 B .3 C .4 D .51 1112 正(主)视图 侧(左)视图俯 视 图(4题图)否 是 开始2013201420151季度2季度3季度4季度1季度2季度3季度4季度1季度2013年2014年2015年年份增长率/%6.已知等比数列{}n a的公比1q≠,则下面说法中不正确...的是()A.2{}n na a++是等比数列 B.对于k*∈N,1k>,112k k ka a a-++≠C.对于n*∈N,都有2n na a+> D.若21a a>,则对于任意n*∈N,都有1n na a+>7.如图是近三年某市生产总值增速(累计,%)的折线统计图,据该市统计局初步核算,一季度全市生产总值为1552.38亿元,与去年同一时期相比增长12.9%(如图,折线图中其它数据类同).根据统计图得出正确判断是()A.近三年该市生产总值为负增长B. 近三年该市生产总值为正增长C.该市生产总值到为负增长,到为正增长D.以上A、B、C的判断都不正确8.已知偶函数()f x,奇函数()g x的图像分别如图(1)、图(2)所示,方程(())0f g x=,(())0g f x=的实根的个数分别为,a b,则a b+=()A.3B.7C.10D.14第Ⅱ卷(非选择题)二、填空题:本大题共6小题,每小题5分,共30分.9. 某校高一学雷锋志愿小组共有8人,其中一班、二班、三班、四班各2人,现在从中任选3人,要求每班至多选1人,不同的选取方法的种数为.10. 冬奥会高山滑雪项目将在延庆小海坨山举行。

高考第一次模拟考试数学(理)试题含答案试卷分析详解

高考第一次模拟考试数学(理)试题含答案试卷分析详解

普通高等学校招生全国统一考试(包头市第一次模拟考试)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设复数满足,则()A. B. C. D.【答案】A【解析】由题意复数满足,则,所以,故选A.2. 已知全集,,,则()A. B. C. D.【答案】D【解析】由题意,则,故选D.3. 《九章算术》中的“竹九节”问题:现有一根节的竹子,自上而下各节的容积成等差数列,上面节的容积共升,下面节的容积共升,则该竹子最上面一节的容积为()A. 升 B. 升 C. 升 D. 升【答案】C【解析】设竹子自上而下各节的容积分别为,且为等差数列,根据题意得,即,解得,即最上面一节的容积为升,故选C.4. 若,且,则的最小值为()A. B. C. D.【答案】D【解析】由题意,作出约束条件所表示的平面区域,如图所示,目标函数,可化为,由图可知,当直线过点时,得到目标函数的最小值,由,解得,则目标函数的最小值为,故选D.5. 已知,则()A. B. C. D.【答案】B【解析】由题意,二项式的展开式为,所以,令,则所以,故选B.6. 某多面体的三视图如图所示,则该多面体的体积为()A. B. C. D.【答案】C【解析】由题意知,根据给定的三视图可知,该几何体的左侧是一个底面为等腰直角三角形,且腰长为,侧棱长为的直三棱柱,右侧为一个底面为等腰直角三角形,且腰长为,高为的三棱锥,所以该几何体的体积为,故选C.7. 若双曲线:的离心率为,一条渐近线的倾斜角为,则的值()A. 大于B. 等于C. 小于D. 不能确定,与,的具体值有关【答案】B【解析】由双曲线的方程,得其一条渐近线的方程为,所以,且,所以,所以,故选B.8. 执行如图所示的程序框图,如果输入的,则输出的()A. B. C. D.【答案】B【解析】模拟执行程序,可得,执行循环体,;满足条件,执行循环体,;满足条件,执行循环体,;满足条件,执行循环体,;满足条件,执行循环体,;满足条件,执行循环体,;此时不满足条件,退出循环,输出的值,故选B.点睛:算法时新课程的新增加的内容,也必然是新高考的一个热点,应高度重视,程序填空与选择是重要的考查和命题方式,这种试题考查的重点有:①条件分支结构;②循环结构的添加循环条件;③变量的赋值;④变量的输出等,其中前两点是考试的重点,此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.9. 现有张牌(1)、(2)、(3)、(4),每张牌的一面都写上一个数字,另一面都写上一个英文字母。

2022年山西省高考数学一模试卷(理科)+答案解析(附后)

2022年山西省高考数学一模试卷(理科)+答案解析(附后)

2022年山西省高考数学一模试卷(理科)1.已知集合,,则( )A.B. C.D.2.设复数z 满足,则( )A. B.C. 0或D. 0或3.设,,则的最大值是( )A. 1B. C.D. 24.如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则该几何体各个表面中面积的最大值是( )A.B.C.D.5.已知命题p :,;命题q :,在定义域上是增函数.则下列命题中的真命题是( )A. B.C.D.6.展开式中的常数项是( )A. B. C.D.7.设,,,则a 、b 、c 的大小关系是( )A.B.C.D.8.“三分损益法”是古代中国制定音律时所用的生律法.三分损益包含“三分损一”“三分益一”.取一段弦,“三分损一”即均分弦为三段,舍一留二,便得到弦.“三分益一”即弦均分三段后再加一段,便得到弦.以宫为第一个音,依次按照损益的顺序,得到四个音,这五个音的音高从低到高依次是宫、商、角、徵、羽,合称“五音”.已知声音的音高与弦长是成反比的,那么所得四音生成的顺序是( )A. 徵、商、羽、角 B. 徵、羽、商、角C. 商、角、徵、羽D. 角、羽、商、徵9.已知数列的前n 项和,将该数列排成一个数阵如右图,其中第n 行有个数,则该数阵第9行从左向右第8个数是( )A. 263B. 1052C. 528D. 105110.过双曲线的右焦点F作渐近线的垂线,垂足为点A,交y轴于点B,若,则C的离心率是( )A. B. C. D.11.如图①,在中,,,D,E分别为AC,AB的中点,将沿DE 折起到的位置,使,如图②.若F是的中点,则四面体FCDE的外接球体积是( )A. B. C. D.12.已知函数在上恰有3个零点,则的取值范围是( )A. B. C. D.13.曲线在处的切线方程是______.14.将一枚质地均匀的骰子连续抛掷两次,向上的点数分别记为a,b,则关于x的方程有实根的概率是______.15.已知数列中,,,,数列的前n项和为若对于任意的,不等式恒成立,则实数t的取值范围是______.16.已知椭圆的焦点为,,点P为椭圆上任意一点,过作的外角平分线所在直线的垂线,垂足为点抛物线上有一点M,它在x轴上的射影为点H,则的最小值是______.17.如图,圆内接四边形ABCD中,,,求AC;求面积的最大值.18.在如图所示的几何体中,平面平面ABCD,四边形ADNM是矩形,四边形ABCD为梯形,,,证明:平面MBC;设,求二面角的余弦值.19.在平面直角坐标系xOy中,椭圆C:的离心率,且过点,A、B分别是C的左、右顶点.求C的方程;已知过点的直线交C于M,N两点异于点试证直线MA与直线NB交点在定直线上.20.已知函数当时,证明:在定义域上是增函数;记是的导函数,,若在内没有极值点,求a的取值范围.参考数据:,21.甲、乙两名选手争夺一场乒乓球比赛的冠军.比赛采取三局两胜制,即某选手率先获得两局胜利时比赛结束,且该选手夺得冠军.根据两人以往对战的经历,甲、乙在一局比赛中获胜的概率分别为,,且每局比赛的结果相互独立.求甲夺得冠军的概率;比赛开始前,工作人员买来一盒新球,共有6个.新球在一局比赛中使用后成为“旧球”,“旧球”再在一局比赛中使用后成为“废球”.每局比赛前裁判员从盒中随机取出一颗球用于比赛,且局中不换球,该局比赛后,如果这颗球成为废球,则直接丢弃,否则裁判员将其放回盒中.记甲、乙决出冠军后,盒内新球的数量为X,求随机变量X的分布列与数学期望.22.在极坐标系中,O为极点,直线与以点为圆心,且过点的圆相交于A,B两点.求圆C的极坐标方程;若,求23.已知函数当时,求不等式的解集;若恒成立,求a的取值范围.答案和解析1.【答案】A【解析】解:,,故选:可求出集合M,然后进行交集的运算即可.考查描述法、列举法的定义,一元二次不等式的解法,以及交集的运算.2.【答案】D【解析】解:设,,,即,即,解得或,故或故选:根据已知条件,结合共轭复数的概念,以及复数代数形式的乘法运算,即可求解.本题考查了共轭复数的概念,以及复数代数形式的乘法运算,需要学生熟练掌握公式,属于基础题.3.【答案】D【解析】解:因为,,所以,,当时,取得最大值为,所以的最大值是故选:根据平面向量的坐标运算和三角函数求值运算,即可求出答案.本题考查了平面向量的坐标运算和三角函数求值运算问题,是基础题.4.【答案】C【解析】解:根据几何体的三视图转换为直观图为:该几何体为三棱锥体;如图所示:所以,,,;故选:首先把三视图转换为几何体的直观图,进一步求出几何体的各个面的面积.本题考查的知识要点:三视图和几何体的直观图之间的转换,几何体的各个面的面积公式,主要考查学生的运算能力和数学思维能力,属于基础题.5.【答案】A【解析】解:构造函数,则,所以函数在上单调递增,所以,所以,所以命题p为真命题;因为,所以在定义域上是增函数.所以命题q为真命题.所以为真命题,为假命题,为假命题,为假命题.故选:构造函数,运用函数单调性可证明成立;根据对数函数单调性可判断命题本题考查命题真假判断及导数应用,考查数学运算能力及推理能力,属于基础题.6.【答案】B【解析】解:展开式的通项公式为,令,解得,所以展开式的常数项为,故选:求出展开式的通项公式,令x的指数为0,进而可以求解.本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.7.【答案】D【解析】解:构造函数,则,当时,,函数在上单调递增,因为,所以,,可得,所以因为,所以,即,所以故选:利用函数在上的单调性可得b、c的大小关系,利用对数函数的单调性可得出a、b的大小关系,以此可得结论.本题考查导数应用及函数单调性应用,考查数学运算能力及抽象能力,所以中档题.8.【答案】A【解析】解:由题设,若宫的弦长为a,则其它四音对应弦长依次为,,,,因为音高与弦长是成反比,所以四音的音高关系为,又音高从低到高依次是宫、商、角、徵、羽,所以五音生成顺序为宫、徵、商、羽、角.故选:设宫的弦长为a,根据生律法按顺序写出后续四音的弦长,再由题设音高与弦长的反比关系判断五音生成顺序,即可得到答案.本题考查简单的合情推理,属于基础题.9.【答案】D【解析】解:数列的前n项和为,,时,,时,上式成立,将该数列按第n行有个数排成一个数阵,如图,由该数阵前7行有:…项,该数阵第9行从左向右第8个数字为故选:求出,将该数列按第n行有个数排成一个数阵,由该数阵前7行有:…项,得到该数阵第9行从左向右第8个数字为,由此能求出结果.本题考查数阵第9行从左向右第8个数字的求法,考查等差数列和等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题.10.【答案】C【解析】解:由题意可知,渐近线方程,,直线BF的方程为,令得,点,联立方程,解得,,,,,,故选:根据题意求出直线BF的方程,进而求出点A,B的坐标,根据可求出的值,从而用表示出离心率.本题主要考查了双曲线的性质,考查了学生的运算求解能力,属于中档题.11.【答案】B【解析】解:以点D为坐标原点,建立如图所示的空间直角坐标系,则,设球的坐标为,由,,可得:,解得:,从而球的半径,球的体积故选:由题意首先求得球的半径,然后利用体积公式计算其体积即可.本题主要考查球与多面体的切接问题,空间想象能力的培养等知识,属于中等题.12.【答案】C【解析】解:函数在上恰有3个零点,由,且,可得,所以,且,或,且,解得,或,故选:由x的范围求得的范围,结合正弦函数的图象和零点,可得,且,或,且,解不等式可得所求取值范围.本题考查三角函数的零点个数,考查转化思想和运算能力、推理能力,属于中档题.13.【答案】【解析】解:由,得,又,曲线在处的切线方程为,即故答案为:求出原函数的导函数,得到函数在处的导数,再由直线方程的斜截式得答案.本题考查利用导数研究过曲线上某点处的切线方程,是基础题.14.【答案】【解析】解:将一枚质地均匀的骰子连续抛掷两次,向上的点数分别记为a,b,基本事件总数,关于x的方程有实根,,时,不成立,时,成立,时,b可以取1,2,3,时,b可以取1,2,3,4,时,b可以取1,2,3,4,5,6,时,b可以取1,2,3,4,5,6,满足条件的基本事件个数,关于x的方程有实根的概率是故答案为:根据已知条件,结合古典概型的概率公式,以及列举法,即可求解.本题主要考查古典概型的概率公式,考查列举法,属于基础题.15.【答案】【解析】解:由得,则有,化简得,即,所以,所以,所以不等式恒成立,则有故答案为:先根据累积法求得,再用裂项相消法求得,最后根据不等式恒成立可求解.本题考查了累积法求通项和裂项相消求和,属于中档题.16.【答案】【解析】解:如图所示,延长交于点N,连接因为的外角平分线是PQ,且,所以,因为,所以,因为,,,所以点Q的轨迹为以点O为圆心2为半径的圆,所以点Q的轨迹方程为由题得抛物线的焦点坐标为,准线方程为所以,所以,因为所以所以的最小值是故答案为:延长交于点N,连接OQ,求出点Q的轨迹方程为,证明,即得解.本题考查了椭圆、抛物线的定义及性质,也考查了转化思想和数形结合思想,难点在于确定Q点的轨迹,属于中档题.17.【答案】解:在中,由正弦定理得,即,所以因为四边形ABCD内接于圆,故,设,,在中,由余弦定理得:,因为,所以,即,当且仅当时等号成立,所以,所以面积的最大值是【解析】本题主要考查了正弦定理,余弦定理,基本不等式,三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.由题意在中由正弦定理即可求解AC的值.设,,在中,由余弦定理,基本不等式可求,进而根据三角形的面积公式即可求解.18.【答案】证明:取CD中点E,连接AE,NE,则,,四边形ABCE为平行四边形,所以又平面MBC,平面MBC,所以平面由,,则四边形ABED为平行四边形,所以,又,,所以,所以四边形MBEN为平行四边形.所以又平面MBC,平面MBC,所以平面因为,平面ANE,平面所以平面平面因为平面ANE,所以平面MBC因为平面平面ABCD,,所以平面因为,,,所以以D为原点,分别以DB,DC,DN所在真线为x,y,z轴.建立如图所示的空间直角坐标系则,,,所以,平面BCD的一个法向量为,设平面MBC的法向量为则,令,得,所以二面角的余弦值为【解析】取CD中点E,连接AE,NE,推出得到平面推出,,然后证明推出平面得到平面平面证明平面以D为原点,分别以DB,DC,DN所在真线为x,y,z轴.建立如图所示的空间直角坐标系求出平面MBC的法向量,平面BCD的一个法向量,利用空间向量的数量积求解二面角的余弦值即可.本题考查直线与平面平行的判定定理,平面与平面平行的判定定理的应用,二面角的平面角的求法,是中档题.19.【答案】解:且,;证明:设过点G的直线为:,,,联立,消元整理得,,,,,因为,,所以直线AM的斜率为,故直线AM的方程为,①同理可得直线NB的方程为,②整理得,,即,由,即,所以,即,解得,所以直线MA与直线NB交点在定直线上.【解析】根据条件列出关于a,b,c的方程组,求解可得a,b,从而求得椭圆的方程;设过点G的直线为:,,,联立直线与椭圆可得韦达定理,分别表示出直线AM,NB的方程,由两个方程可得,结合M,N在直线上以及韦达定理可得两直线交点所在直线.本题考查了椭圆的标准方程以及直线与椭圆的综合,属于中档题.20.【答案】解:证明:由题设,且定义域为,因为,则,当且仅当时等号成立,而,所以时有,故在上是增函数.由题设,,则且定义域为,因为在内没有极值点,即或,所以或在上恒成立,令,则,当时;当时,令,则,,所以在上递增,而,所以在上,故在上递增,而,综上,在上,即,所以,在上,即单调递增,则,故或,即a的取值范围为【解析】对函数求导得且,再应用基本不等式求,结合,可确定的符号,即证结论.对求导得且,将问题转化为或在上恒成立,构造,利用导数研究的单调性,进而求区间值域,即可求a的取值范围.本题考查了利用导数研究函数的单调性与极值,考查了函数思想和转化思想,属中档题.21.【答案】解:记事件“甲在第i局比赛中获胜”,,事件“甲在第i局比赛中未胜”.显然,,记事件“甲夺得冠军”,则设甲乙决出冠军共进行了Y局比赛,易知或则,故记“第i局比赛后抽到新球”,“第i局比赛后抽到旧球”.由题意知、比赛前盒内有6颗新球,比赛1局后,盒内必为5颗新球1颗旧球,此时,,若发生,则比赛2局后,盒内有4 颗新球,2颗旧球,此时若,发生,则比赛2局后,盒内有5颗新球,故下次必取得新球.即于是,故X的分布列为:X 3 4 5P故X的数学期望【解析】记事件:“甲在第i局比赛中获胜”,,事件:“甲在第i局比赛中末胜”.,记事件A:“甲夺得冠军“,分析事件A包含的情况,直接求概率;的可能取值:3,4,分析比赛过程,分别求概率,写出分布列,计算数学期望.本题考查离散型随机变量的分布列与期望,考查学生的运算能力,属于中档题.22.【答案】解:在极坐标系中,O为极点,直线与以点为圆心,且过点的圆相交于A,B两点,的直角坐标为,的直角坐标为,圆的半径为,圆的直角方程为,将,代入,得:,圆C的极坐标方程为将代入中,得,设,分别为A,B对应的极径,则,,,则,即,结合,解得,【解析】写出点C,M的直角坐标,求出圆的直角坐标方程,化为极坐标方程,可求出答案.将代入圆的极坐标方程,利用根与系数的关系求出,,再结合,求出,的值,由此能求出结果.本题考查圆的极坐标方程、正弦函数值、余弦函数值的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.【答案】解:当时,,所以不等式等价于或,解得:或所以不等式的解集为或因为,由恒成立,得所以或,解得或所以a的取值范围为【解析】当时,去绝对值符号,化为分段函数,再分段解不等式可得其解集;依题意,得恒成立,解之即可.本题考查函数恒成立问题,考查绝对值不等式的解法,考查运算求解能力,属于中档题.。

河北省石家庄市高考一模考试数学(理)试题(A)含解析

河北省石家庄市高考一模考试数学(理)试题(A)含解析

石家庄市高中毕业班模拟考试(一)理科数学(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】故选A.2. 已知为虚数单位,,其中,则()A. B. C. 2 D. 4【答案】A【解析】,其中,解得,,故选3. 函数,其值域为,在区间上随机取一个数,则的概率是()A. B. C. D.【答案】B【解析】函数的值域为,即,则在区间上随机取一个数的概率.故选B.4. 点是以线段为直径的圆上的一点,其中,则()A. 1B. 2C. 3D. 4【答案】D【解析】故选5. ,满足约束条件:,则的最大值为()A. -3B.C. 3D. 4【答案】C【解析】依题意可画出可行域如下:联立,可得交点(2,-1),如图所示,当经过点(2,-1)时,z最大为3.故选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.6. 程序框图如图所示,该程序运行的结果为,则判断框中可填写的关于的条件是()A. B. C. D.【答案】C【解析】第一次运行,第二次运行,第三次运行,第四次运行,第五次运行,此时,输出25,故选C7. 南宋数学家秦九韶早在《数书九章》中就创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:,),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为()A. 82平方里B. 83平方里C. 84平方里D. 85平方里【答案】C【解析】由题意可得:代入:则该三角形田面积为平方里故选8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】由图可知,几何体为半圆柱挖去半球体几何体的表面积为故选9. 已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.【答案】B【解析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选10. 在中,,,则的最大值为()A. B. C. D.【答案】D【解析】有正弦定理可得,故当时,的最大值为.故选D.11. 过抛物线焦点的直线交抛物线于,两点,点在直线上,若为正三角形,则其边长为()A. 11B. 12C. 13D. 14【答案】B【解析】如图:设,则:,取中点,分别作垂直于直线,连接则有,相减可得:即故设则,解得故,解得故选12. 设,为两个平面直角坐标系,它们具有相同的原点,正方向到正方向的角度为,那么对于任意的点,在下的坐标为,那么它在坐标系下的坐标可以表示为:,.根据以上知识求得椭圆的离心率为()A. B. C. D.【答案】A【解析】则故可化为方程表示为椭圆化简得:代入方程得:,,,故故选点睛:本题主要考查了三角函数的计算问题,以平面直角坐标系为载体,新定义坐标系,建立两坐标之间的关系,代入化简,由题意中的椭圆求出的值,再次代入求出结果,计算量比较大,有一定的难度。

高考一模理科数学试题含答案试卷分析解析

高考一模理科数学试题含答案试卷分析解析

高考一模理科数学试题含答案试卷分析解析门头沟区高三综合练习(一)数学(理) .4一、选择题(本大题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 设全集U = {}0,1,2,3,4,5,集合{1,3},{3,5}A B ==,则U ()C AB =A .{0,4}B .{1,5}C .{2,0,4}D .{2,0,5}2. 复数z 满足23zi i=-,复数z 对应的点在复平面的A .第一象限B .第二象限C .第三象限 D. 第四象限3.对于函数()sin (,,)f x a x bx c a b R c Z =++∈∈,计算(1)f 和(1)f -,所得出的正确结果一定不可能是A .4和6B .3和1C .2和4D .1和24. 抛物线28y x =焦点F 到双曲线22:13y C x -=的一条渐近线的距离是 A .1 B .2 C .3 D 35. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第五天走的路程为 A. 48里 B. 24里 C. 12里 D. 6里//,90AB CD DAB ∠=,且6.在直角梯形ABCD 中,222,AB CD AD P ===是BC 的中点,则PD PA ?为A .94 B .3 C .2 D .52DCP7. 已知函数)sin()(?ω+=x A x f )||,0,0(π?ω<>>A 的部分图像如图所示,则“2m ≥”是“函数()f x m ≤对[0,8]x ∈恒成立”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件8.某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标。

高考一模数学试卷(理)含答案试卷分析解析

高考一模数学试卷(理)含答案试卷分析解析

太原五中-第二学期阶段性检测高 三 数 学(理)出题人、校对人:刘晓瑜、郭舒平、董亚萍、刘锦屏、凌河、闫晓婷(.4.2) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知{}{}2ln(1),2,xP x y x Q y y x P ==-==∈,则=PQ ( ).A (0,1) .B 1(,1)2 .C 1(0,)2.D (1,2)2、已知复数(2a iz i i+=-为虚数单位)在复平面内对应的点在第三象限,则实数a 的取值范围是( ).A 1(2,)2- .B 1(,2)2- .C (,2)-∞- .D 1(+)2∞, 3、在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,若直线cos cos 0bx y A B ++=与cos cos 0ax y B A ++=平行,则ABC ∆一定是( ).A 锐角三角形 .B 等腰三角形 .C 直角三角形 .D 等腰或直角三角形4、在区间[1,5]随机地取一个数m ,则方程22241x m y +=表示焦点在y 轴上的椭圆的概率是( ).A 15 .B 14 .C 35 .D 345、若2012(21)n n n x a a x a x a x +=++++的展开式中的二项式系数和为32,则12+n a a a ++=( ).A 241 .B 242 .C 243 .D 2446、《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该著作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该著作中的“李白沽酒”问题,执行该程序框图,若输出的m 的值为0,则输入的a 的值为( ).A 218 .B 4516 .C 9332.D 189647、已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ).A 若30a >,则20150a < .B 若40a >,则20140a < .C 若30a >,则20150S > .D 若40a >,则20140S >8、已知k R ∈,点(,)P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( ).A 15 .B 9 .C 1 .D 53-9、若不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,所表示的平面区域存在点00(,)x y ,使00+20x ay +≤成立,则实数a 的取值范围是( ).A 1a ≤- .B 1a <- .C 1a > .D 1a ≥10、平行四边形ABCD 中,1,1,2-=⋅==AD AB AD AB ,点M 在边CD 上,则MB MA ⋅的最大值为( ).A 5 .B 2 .C 1- .D 111、已知12,F F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左支交于点A ,与右支交于点B ,若a AF 21=,3221π=∠AF F ,则=∆∆221ABF F AF S S ( ).A 1 .B 21 .C 31 .D 3212、不等式2ln (2)2x x x m x m ++-≤有且只有一个整数解,则m 的取值范围为( ).A [1,)-+∞ .B (,44ln 2][1,)-∞---+∞ .C (,33ln3][1,)-∞---+∞ .D (44ln 2,33ln3][1,)-----+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题—第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分 13、121(1sin 2)x x dx --+=⎰.14、已知函数()x f x e =,2()1(,)g x ax bx a b R =++∈,当0a =时,若()()f x g x ≥对任意的x R ∈恒成立,则b 的取值范围是 .15、如图是某四面体的三视图,则该四面体的体积为 .16、已知数列{}n a 满足22(2)(2)n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对n N *∀∈恒成立,则实数λ的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17、(本小题满分12分) 已知23BAC P π∠=,为BAC ∠内部一点,过点P 的直线与BAC ∠的两边交于点,B C ,且,3PA AC AP ⊥=.(1)若3AB =,求PC ;(2)求11PB PC+的取值范围. 18、(本小题满分12分)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,对角线AC 与BD 的交点为O ,2,6,60PD PB AB PA BCD ====∠=.(1)证明:PO ⊥平面ABCD ;(2)在棱CD 上是否存在点M ,使平面ABP 与平面MBP 所成锐二面角的余弦值为55?若存在,请指出M 点的位置;若不存在,请说明理由. 19、(本小题满分12分)正视图侧视图俯视图12 212 APBCD OA CPB在2月K12联盟考试中,我校共有500名理科学生参加考试,其中语文考试成绩近似服从正态分布2(95,17.5)N ,数学成绩的频率分布直方图如图:(1)如果成绩大于130的为特别优秀,这500名学生中本次考试语文、数学成绩特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.(3)根据以上数据,是否有99%以上的把握认为语文特别优秀的同学,数学也特别优秀? ①若X ~2(,)N μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<≤+=-<≤+=②22()=()()()()n ad bc K a b c d a c b d -++++③20()P K K ≥0.50 0.40 … 0.010 0.005 0.001 0K0.455 0.708…6.6357.87910.82820、(本小题满分12分)已知椭圆)0(1:22221>>=+b a by a x C ,F 为左焦点,A 为上顶点,)0,2(B 为右顶点,若AB AF 27=,抛物线2C 的顶点在坐标原点,焦点为F . (1)求1C 的标准方程;数学成绩50 70 150 130110 90 0.00120.008 0.0088 0.024频率/组距(2)是否存在过F 点的直线,与1C 和2C 交点分别是P ,Q 和M ,N ,使得OMN OPQ S S ∆∆=21?如果存在,求出直线的方程;如果不存在,请说明理由.21、(本小题满分12分) 已知函数()(2)()xf x x e ax =--.(1)当0a >时,讨论)(x f 的极值情况; (2)若(1)[()]0x f x a e --+≥,求a 的值.请考生从第22、23 题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22、(本小题满分10分)【选修4——4:坐标系与参数方程】 在平面直角坐标系xOy 中,曲线1C 的参数方程为2+2cos 2sin x ty t =⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy 有相同的长度单位,曲线2C 的极坐标方程为2sin ρθ=,曲线3C 的极坐标方程为=(0)6πθρ>.(1)求曲线1C 的普通方程和3C 的直角坐标方程; (2)设3C 分别交1C 、2C 于点P 、Q ,求1C PQ ∆的面积. 23、(本小题满分10分)【选修4——5:不等式选讲】 已知函数()||21f x x m x =++-. (1)当=1m 时,解不等式()3f x ≥; (2)若14m <,且当[,2]x m m ∈时,不等式1()12f x x ≤+恒成立,求实数m 的取值范围.理科数学 参考答案1.B2.C3.C 【解析】由两直线平行可得cos cos 0b B a A -=,由正弦定理可得sin cos sin cos 0B B A A -=,即11sin 2sin 222A B =,又,(0,)+(0,)A B A B ππ∈∈,,所以22A B =或2+2=A B π,即A B =或+=2A B π,当A B =时,cos cos a b A B ==,,此时两直线重合,不符合题意,舍去.则ABC ∆是直角三角形. 4. B 5. B 6.C7.C 【解析】等比数列的公比0q ≠,若30a >,则2201411201510,0,0a q a a a q>∴>∴=>,所以A 错误;若40a >,则3201311201410,0,0a q a q a a q>∴>∴=>,所以B 错误;若30a >,则312=0,1a a q q>∴=时,20150S >,1q ≠时,201512015(1)=0(11a q S q q ->--与20151q -同号),所以C 一定成立;易知D 不成立. 8.B 【解析】由题意得:d =≤,且2230k k -+>,解得31k -≤≤ .2222222=()()4(23)323ab a b a b k k k k k +-+=--+=+-,所以:当=3k -时,ab 取到最大值9.9. A 【解析】由线性区域可得00y >,由题意得0max 02()x a y +≤-,002yx +表示(2,0)-与00(,)x y 031y ,所以002713x y +-≤-≤-,1a ≤-.10.B 11.B12.D 【解析】由2ln (2)2x x x m x m ++-≤得2ln 2(2)x x x x x m +-≤-,所以当2x >时,满足2ln 2(2)x x x xm x +-≥-只有一个整数解或当02x <<时,满足2ln 2(2)x x x xm x +-≤-只有一个整数解.令2ln 2()(2)x x x x f x x +-=-,所以222ln 32()(2)x x x f x x -+-'=-,令2()2ln 32g x x x x =-+-,得(21)(2)()x x g x x--'=-,所以()g x 在(0,2)单调递增,(2)+∞,单调递减,所以max ()(2)2ln 24622ln 20g x g ==-+-=>,又(1)0g =, (3)2ln 320,(4)4ln 260g g =->=-<,所以存在0(3,4)x ∈,使0()=0g x ,所以()f x 在(0,1),0(,)x +∞单调递减,在(1,2),0(2,)x 单调递增,所以当(0,2)x ∈时,min ()(1)1f x f ==-,当(2,)x ∈+∞时,max 0()()f x f x =,又(3)33ln3(1),(4)44ln 2(1)f f f f =--<=--<,且16(3)(4)ln027ef f -=>,所以2ln 2(2)x x x x x m +-≤-有且只有一个整数解的解为1x =或3x =,所以(1)m f >或(4)(3)f m f <≤,即1m ≥-或44ln 233ln3m --<≤--13.2π 14. 1 15. 2 16. [0,)+∞17. 【解析】(1)2=326BAC PAC BAP πππ∠=∠∴∠=,,,在PAB ∆中,由余弦定理知2222cos36PB AP AB AP AB π=+-=,得PB AP ,则233BPA APC ππ∠=∠=,.在直角APC ∆中,=23cos3AP PC π=.(2)设APC θ∠=,则6ABP πθ∠=-,在直角APC ∆中,=cos APPC θ,在PAB ∆中,由正弦定理知,sin()sin2sin()666AP PB AP PB πππθθ=∴=-- .所以2sin()11cos 3sin 6=sin PB PC AP AP APπθθθθ-++==,由题意知1,sin 1622ππθθ<<∴<<,所以11PB PC +的取值范围是1(,1)2. 18.【解析】(Ⅰ)证明:∵ PD =PB ,且O 为BD 中点,∴ PO ⊥BD. 在菱形ABCD 中,∵ ∠BCD =600,AB =2,∴ OA =3,OB =1. 又PB =2, ∴ PO = 3.∵ PA =6,∴ PA 2=PO 2+OA 2,PO ⊥OA. ∵ BD ∩AO =O ,∴ PO ⊥平面ABCD ; (Ⅱ)建立如图所示坐标系,则A(3,0,0),B(0,1,0),C(-3,0,0),D(0,-1,0),P(0,0,3).∴ → AB =(-3,1,0),→ BP =(0,-1,3),→ BC =(-3,-10),→ CD =(3,-1,0),设平面ABP 的一个法向量为n 1,由⎩⎪⎨⎪⎧n 1·→ AB =0n 1·→ BP =0 得n 1=(1,3,1)设→ CM =λ→ CD ,则→ BM =→ BC +→ CM =→ BC +λ→CD =(3(λ-1),-(λ+1),0).设平面BPM 的一个法向量为n 2,由⎩⎪⎨⎪⎧n 2·→ BM =0n 2·→BP =0 得n 2=(λ+1,3(λ-1),λ-1) 由 |cos < n 1,n 2>|=|5λ-3|5(λ+1)2+4(λ-1)2=55 得 5λ2-6λ+1=0,∴ λ=1或λ=15 . 即,当点M 与点D 重合或|→ CM|=15 |→ CD|时,锐二面角的余弦值为55.19.【解析】解:(1)∵语文成绩服从正态分布2(95,17.5)N , ∴语文成绩特别优秀的概率为11(130)(10.96)0.022p P X =≥=-⨯=, zA PB CDOx y M数学成绩特别优秀的概率为20.0012200.024p =⨯=, ∴语文特别优秀的同学有5000.02=10⨯人, 数学特别优秀的同学有5000.024=12⨯人.(2)语文数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3,321101063316161231066331616327(0),(1),1456151(2),(3),5628C C C P X P X C C C C C P X P X C C ============∴X 的分布列为:X0 1 2 3P314 2756 1556 1283271519()0123145656288E X =⨯+⨯+⨯+⨯=.(3)2×2列联表:语文特别优秀 语文不特别优秀 合计数学特别优秀 6 6 12 数学不特别优秀4 484 488 合计10490500∴22500(648446)=144.5 6.6351049012488K ⨯⨯-⨯≈>⨯⨯⨯ ∴有99%以上的把握认为语文特别优秀的同学,数学也特别优秀.20. 【解析】(Ⅰ)依题意可知=,即2227b a a +=,由右顶点为)0,2(B ,得2=a ,解得32=b ,所以1C 的标准方程为13422=+y x . (Ⅱ)依题意可知2C 的方程为x y 42-=,假设存在符合题意的直线,设直线方程为1-=ky x ,),(11y x P ,),(22y x Q ,),(33y x M ,),(44y x N ,联立方程组⎪⎩⎪⎨⎧=+-=134122y x ky x ,得096)43(22=--+ky y k , 由韦达定理得436221+=+k k y y ,439221+-=k y y ,则431122221++=-k k y y ,联立方程组⎩⎨⎧-=-=xy ky x 412,得0442=-+ky y ,由韦达定理得k y y 443-=+,443-=y y ,所以14243+=-k y y ,若OMN OPQ S S ∆∆=21,则432121y y y y -=-,即1243112222+=++k k k ,解得36±=k ,所以存在符合题意的直线方程为0136=++y x 或0136=+-y x . 21.【解析】(1)已知()()(2)()(1)2(1)(1)(2)x x x xf x e ax x e a x e a x x e a '=-+--=---=--因为0a >,由()0f x '=得1x =或ln 2x a =.① 当=2e a 时,()(1)()0xf x x e e '=--≥,()f x 单调递增,故()f x 无极值; ② 当02ea <<时,ln21a <,则所以:()f x 有极大值2(ln 2)=(ln 22)f a a a --,极小值(1)=f a e - ③2ea >时,ln21a >,则所以:()f x 有极大值(1)=f a e -,极小值2(ln 2)=(ln 22)f a a a -- 综上所述:02e a <<时,()f x 有极大值2(ln 22)a a --,极小值a e -; =2ea 时,()f x 无极值;2e a >时,()f x 有极大值a e -,极小值2(ln 22)a a --; (2)令()()g x f x a e =-+,则(1)()0x g x -≥, 且()()(1)(2)xg x f x x e a ''==--①0a ≤时,20xe a ->,所以当1x <时,()0g x '<,()g x 单调递减,所以()(1)0g x g >=,此时(1)()0x g x -<,不满足题意;③ 由于()g x 与()f x 由相同的单调性,由(1)知a.当=2ea 时,()g x 在R 上单增,且(1)=0g ,所以1x ≥时,()0g x ≥,1x <时,()0g x <, 所以当=2ea 时,恒有(1)()0x g x -≥,满足题意; b.当02ea <<时,()g x 在(ln 2,1)a 上单减,所以(ln 2,1)x a ∈时,()(1)=0g x g >,此时 (1)()0x g x -<,不满足题意;c.当2ea >时,()g x 在(1,ln 2)a 递减,所以当(1,ln 2)x a ∈时,()(1)=0g x g <,此时 (1)()0x g x -<,不满足题意;综上:=2e a .22.【解析】(1)曲线1C 的普通方程:22(2)4x y -+=,即22-40x y x +=.所以1C 的极坐标方程为24cos 0ρρθ-=,即=4cos ρθ. 曲线3C的直角坐标方程:(0)y x x =>,...........5分 (2)依题意,设点P 、Q 的极坐标分别为12(,),(,)66ππρρ. 将=6πθ代入=4cos ρθ,得1ρ,将=6πθ代入=2sin ρθ,得2=1ρ,所以121PQ ρρ=-=,依题意得,点1C 到曲线=6πθ的距离为1sin16d OC π==.所以1111(231)222C PQ S PQ d ∆===. ......10分 23. 【解析】(1)当=1m 时,()|1|21f x x x =++-,则-3(1)1()2-(1)213()2x x f x xx x x ⎧⎪<-⎪⎪=-≤≤⎨⎪⎪>⎪⎩,由()3f x ≥解得1x ≤-或1x ≥,即原不等式的解集为(,1][1,)-∞-⋃+∞........5分(2)1()12f x x ≤+,即11+2-1122x m x x +≤+,又[,2]x m m ∈且14m <, 所以10,4m <<且0x > 所以11+121222m x x x ≤+--.即221m x x ≤+--.令()221t x x x =+--,则131(0)2()13()2x x t x x x ⎧+<<⎪⎪=⎨⎪-≥⎪⎩,所以[,2]x m m ∈时,min ()()=31t x t m m =+, 所以31m m ≤+,解得12m ≥-, 所以实数m 的取值范围是1(0,)4. ......10分。

广西南宁市高考数学一模试卷(理科)含答案解析

广西南宁市高考数学一模试卷(理科)含答案解析

广西南宁市高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2+5x>0},B={x|﹣3<x<4},则A∩B等于()A.(﹣5,0)B.(﹣3,0)C.(0,4) D.(﹣5,4)2.已知复数z满足=(a∈R),若z的虚部为﹣3,则z的实部为()A.﹣1 B.1 C.3 D.53.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第3组B.第4组C.第5组D.第6组4.已知数列{a n}满足:=,且a2=2,则a4等于()A.﹣ B.23 C.12 D.115.已知角θ的终边过点(2sin2﹣1,a),若sinθ=2sin cos,则实数a等于()A.﹣B.﹣C.±D.±6.执行如图的程序框图,若输入k的值为3,则输出S的值为()A.10 B.15 C.18 D.217.已知非零向量、满足|﹣|=|+2|,且与的夹角的余弦值为﹣,则等于()A.B.C.D.28.如果实数x,y满足约束条件,则z=3x+2y+的最大值为()A.7 B.8 C.9 D.119.如图是某几何体的三视图,则该几何体的体积为()A.12 B.15 C.18 D.2110.已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f(m)的最小值为()A.4 B.2 C.D.211.已知双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0),M、N 在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN 的面积为cb,则双曲线C的离心率为()A.B.2 C.2 D.212.已知函数f(x)=﹣x2﹣6x﹣3,g(x)=2x3+3x2﹣12x+9,m<﹣2,若∀x1∈[m,﹣2),∃x2∈(0,+∞),使得f(x1)=g(x2)成立,则m的最小值为()A.﹣5 B.﹣4 C.﹣2D.﹣3二、填空题(共4小题,每小题5分,满分20分)13.(+3)(﹣)5的展开式中的常数项为.14.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与y轴相切且与线段MF相交于点A,若=2,则p=.15.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i段的重量为a i(i=1,2,…,10),且a1<a2<…<a10,若48a i=5M,则i=.16.在长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,AA1=3,E 是线段A1B1上一点,若二面角A﹣BD﹣E的正切值为3,则三棱锥A﹣A1D1E外接球的表面积为.三、解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c,且accosB﹣bccosA=3b2.(1)求的值;(2)若角C为锐角,c=,sinC=,求△ABC的面积.18.某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:非优良优良总计未设立自习室251540设立自习室103040总计354580(1)能否在在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;(2)设从该班第一次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为X,从该班第二次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为Y,求X与Y的期望并比较大小,请解释所得结论的实际意义.下面的临界值表供参考:P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)19.如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.20.已知F1(﹣c,0)、F2(c、0)分别是椭圆G: +=1(0<b<a<3)的左、右焦点,点P(2,)是椭圆G上一点,且|PF1|﹣|PF2|=a.(1)求椭圆G的方程;(2)设直线l与椭圆G相交于A、B两点,若⊥,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.21.已知函数f(x)=x﹣alnx,(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)设g(x)=﹣,若不等式f(x)>g(x)对任意x∈[1,e]恒成立,求a的取值范围.请考生在第22、23题中任选一题作答,如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.[选修4-5:不等式选讲]23.设实数x,y满足x+=1.(1)若|7﹣y|<2x+3,求x的取值范围;(2)若x>0,y>0,求证:≥xy.广西南宁市高考数学一模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2+5x>0},B={x|﹣3<x<4},则A∩B等于()A.(﹣5,0)B.(﹣3,0)C.(0,4) D.(﹣5,4)【考点】交集及其运算.【分析】求出关于A的解集,从而求出A与B的交集.【解答】解:∵A={x||x2+5x>0}={x|x<﹣5或x>0},B={x|﹣3<x<4},∴A∩B={x|0<x<4},故选:C.2.已知复数z满足=(a∈R),若z的虚部为﹣3,则z的实部为()A.﹣1 B.1 C.3 D.5【考点】复数代数形式的乘除运算.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由z的虚部为﹣3求得a值,则答案可求.【解答】解:∵=,∴=(2+ai)(1﹣i)=2+a+(a﹣2)i,∴a﹣2=﹣3,即a=﹣1.∴实部为2+a=2﹣1=1.故选:B.3.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第3组B.第4组C.第5组D.第6组【考点】频率分布直方图.【分析】根据频率分布直方图求出前4组的频数为22,且第四组的频数8,即可得到答案.【解答】解:由图可得,前第四组的频率为(0.0375+0.0625+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第4组,故选:B4.已知数列{a n}满足:=,且a2=2,则a4等于()A.﹣ B.23 C.12 D.11【考点】等比数列的通项公式.【分析】数列{a n}满足:=,可得a n+1+1=2(a n+1),利用等比数列的通项公式即可得出.【解答】解:∵数列{a n}满足:=,∴a n+1+1=2(a n+1),即数列{a n+1}是等比数列,公比为2.则a4+1=22(a2+1)=12,解得a4=11.故选:D.5.已知角θ的终边过点(2sin2﹣1,a),若sinθ=2sin cos,则实数a等于()A.﹣B.﹣C.±D.±【考点】任意角的三角函数的定义.【分析】利用二倍角公式化简,再利用正弦函数的定义,建立方程,即可得出结论.【解答】解:2sin2﹣1=﹣cos=﹣,2sin cos=﹣,∵角θ的终边过点(2sin2﹣1,a),sinθ=2sin cos,∴=﹣,∴a=﹣,故选B.6.执行如图的程序框图,若输入k的值为3,则输出S的值为()A.10 B.15 C.18 D.21【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的n,S的值,当n=5,S=15时,不满足条件S<kn=15,退出循环,输出S的值为15,即可得解.【解答】解:模拟程序的运行,可得k=3,n=1,S=1满足条件S<kn,执行循环体,n=2,S=3满足条件S<kn,执行循环体,n=3,S=6满足条件S<kn,执行循环体,n=4,S=10满足条件S<kn,执行循环体,n=5,S=15此时,不满足条件S<kn=15,退出循环,输出S的值为15.故选:B.7.已知非零向量、满足|﹣|=|+2|,且与的夹角的余弦值为﹣,则等于()A.B.C.D.2【考点】平面向量数量积的运算.【分析】由向量的平方即为模的平方.可得•=﹣2,再由向量的夹角公式:cos<,>=,化简即可得到所求值.【解答】解:非零向量、满足|﹣|=|+2|,即有(﹣)2=(+2)2,即为2+2﹣2•=2+4•+42,化为•=﹣2,由与的夹角的余弦值为﹣,可得cos<,>=﹣==,化简可得=2.故选:D.8.如果实数x,y满足约束条件,则z=3x+2y+的最大值为()A.7 B.8 C.9 D.11【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移直线,得到最优解,求出斜率的最值,即可求z的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由u=3x+2y,平移直线u=3x+2y,由图象可知当直线u=3x+2y经过点A时,直线u=3x+2y的截距最大,此时u最大.而且也恰好是AO的连线时,取得最大值,由,解得A(1,2).此时z的最大值为z=3×1+2×2+=9,故选:C.9.如图是某几何体的三视图,则该几何体的体积为()A.12 B.15 C.18 D.21【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图可得:该几何体是一个长宽高分别为4,3,3的长方体,切去一半得到的,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个长宽高分别为4,3,3的长方体,切去一半得到的,其直观图如下所示:其体积为:×4×3×3=18,故选:C10.已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f(m)的最小值为()A.4 B.2 C.D.2【考点】函数的最值及其几何意义;分段函数的应用.【分析】做出f(x)的图象,根据图象判断m的范围,利用基本不等式得出最小值.【解答】解:做出f(x)的函数图象如图所示:∵f(m)=f(n),m>n≥﹣1,∴1≤m<4,∴mf(m)=m(1+)=m+≥2.当且仅当m=时取等号.故选:D.11.已知双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0),M、N 在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN 的面积为cb,则双曲线C的离心率为()A.B.2 C.2 D.2【考点】双曲线的简单性质.【分析】设M(x0,y0),y0>0,由四边形OFMN为平行四边形,四边形OFMN 的面积为cb,由x0=﹣,丨y0丨=b,代入双曲线方程,由离心率公式,即可求得双曲线C的离心率.【解答】解:双曲线C:﹣=1(a>0,b>0)焦点在x轴上,设M(x0,y0),y0>0,由四边形OFMN为平行四边形,∴x0=﹣,四边形OFMN的面积为cb,∴丨y0丨c=cb,即丨y0丨=b,∴M(﹣,b),代入双曲线可得:﹣=1,整理得:,由e=,∴e2=12,由e>1,解得:e=2,故选D.12.已知函数f(x)=﹣x2﹣6x﹣3,g(x)=2x3+3x2﹣12x+9,m<﹣2,若∀x1∈[m,﹣2),∃x2∈(0,+∞),使得f(x1)=g(x2)成立,则m的最小值为()A.﹣5 B.﹣4 C.﹣2D.﹣3【考点】函数的最值及其几何意义.【分析】利用导数先求出函数g(x)的最小值,再根据函数f(x)的图象和性质,即可求出m的最小值【解答】解:∵g(x)=2x3+3x2﹣12x+9,∴g′(x)=6x2+6x﹣12=6(x+2)(x﹣1),则当0<x<1时,g′(x)<0,函数g(x)递减,当x>1时,g′(x)>0,函数g(x)递增,∴g(x)min=g(1)=2,∵f(x)=﹣x2﹣6x﹣3=﹣(x+3)2+6≤6,作函数y=f(x)的图象,如图所示,当f(x)=2时,方程两根分别为﹣5和﹣1,则m的最小值为﹣5,故选:A二、填空题(共4小题,每小题5分,满分20分)13.(+3)(﹣)5的展开式中的常数项为40.【考点】二项式定理的应用.【分析】把(﹣)5按照二项式定理展开,可得(+3)(﹣)5的展开式中的常数项.【解答】解:(+3)(﹣)5 =(+3)(﹣•2x+•4﹣•8x ﹣2+•16﹣•32x﹣5),故展开式中的常数项为•4=40,故答案为:40.14.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与y轴相切且与线段MF相交于点A,若=2,则p=2.【考点】抛物线的简单性质.【分析】设M到准线的距离为|MB|,则|MB|=|MF|,利用=2,得x0=p,即可得出结论.【解答】解:设M到准线的距离为|MB|,则|MB|=|MF|,∵=2,∴x0=p,∴2p2=8,∵p>0,∴p=2.故答案为2.15.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i段的重量为a i(i=1,2,…,10),且a1<a2<…<a10,若48a i=5M,则i=6.【考点】等差数列的通项公式.【分析】由题意知由细到粗每段的重量成等差数列,记为{a n}且设公差为d,由条件和等差数列的通项公式列出方程组,求出a1和d值,由等差数列的前n项和公式求出该金杖的总重量M,代入已知的式子化简求出i的值.【解答】解:由题意知由细到粗每段的重量成等差数列,记为{a n},设公差为d,则,解得a1=,d=,所以该金杖的总重量M==15,因为48a i=5M,所以48[+(i﹣1)×]=25,即39+6i=75,解得i=6,故答案为:6.16.在长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,AA1=3,E 是线段A1B1上一点,若二面角A﹣BD﹣E的正切值为3,则三棱锥A﹣A1D1E外接球的表面积为35π.【考点】球的体积和表面积.【分析】如图所示,求出三棱锥A﹣A1D1E外接球的直径为,问题得以解决.【解答】解:过点E作EF∥AA1交AB于F,过F作FG⊥BD于G,连接EG,则∠EGF为二面角A﹣BD﹣E的平面角,∵tan∠EGF=3,∴=3,∵EF=AA1=3,∴FG=1,则BF==B1E,∴A1E=2,则三棱锥A﹣A1D1E外接球的直径为=,则其表面积为35π,故答案为:35π三、解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c,且accosB﹣bccosA=3b2.(1)求的值;(2)若角C为锐角,c=,sinC=,求△ABC的面积.【考点】正弦定理.【分析】(1)根据余弦公式求出a2=4b2,根据正弦定理求出的值即可;(2)求出cosC的值,得到=以及==2,求出a,b的值,求出三角形的面积即可.【解答】解:(1)∵accosB﹣bccosA=3b2,∴﹣=3b2,∴a2﹣b2=3b2,∴a2=4b2,∴=4,∴=2;(2)若角C为锐角,sinC=,∴cosC>0,∴cosC==,∴=,∴=①,由(1)得,==2②,联立①②得:b=,a=2,∴S=absinC=•2•=2.18.某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:非优良优良总计未设立自习室251540设立自习室103040总计354580(1)能否在在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;(2)设从该班第一次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为X,从该班第二次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为Y,求X与Y的期望并比较大小,请解释所得结论的实际意义.下面的临界值表供参考:P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)【考点】性检验的应用;离散型随机变量的期望与方差.【分析】(1)求出K2,与临界值比较,即可得出能在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;(2)求出期望,即可得出结论.【解答】解:(1)由题意,K2==>7.879,∴能在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;(2)X的取值为0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,∴E(X)=0×=.Y的取值为0,1,2,则:P(Y=0)==,P(Y=1)==,P(Y=2)==,E(Y)==.也即EX<EY,其实际含义即表明设立自习室有效.19.如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(1)取DB中点G,连结EG、FG.证面EGF∥平面ABC,即可得EF∥平面ABC.(2)以点D为原点,建立如图所示的直角坐标系D﹣xyz,则A(0,0,),E (0,,0),B(2,0,0),C(,,0).求出平面ACE的法向量即可【解答】证明:(1)取DB中点G,连结EG、FG.∵F是AD的中点,∴FG∥AB.∵BD=2CE,∴BG=CE.∵∠DBC=∠BCE∴E、G到直线BC的距离相等,则BG∥CB,∵EG∩FG=G∴面EGF∥平面ABC,则EF∥平面ABC.解:(2)以点D为原点,建立如图所示的直角坐标系D﹣xyz,设EC=1,则DB=2,取BC中点C,则EG∥BC,∴BC=3,∵AD=DE,则A(0,0,),E(0,,0),B(2,0,0),C(,,0).,.设平面ACE的法向量,,令y=1,则,|cos|=.∴BE与平面ACE所成角的正弦值为:20.已知F1(﹣c,0)、F2(c、0)分别是椭圆G: +=1(0<b<a<3)的左、右焦点,点P(2,)是椭圆G上一点,且|PF1|﹣|PF2|=a.(1)求椭圆G的方程;(2)设直线l与椭圆G相交于A、B两点,若⊥,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.【考点】椭圆的简单性质.【分析】(1)根据椭圆的定义,求得丨PF1丨=a=3|PF2|,根据点到直线的距离公式,即可求得c的值,则求得a的值,b2=a2﹣c2=4,即可求得椭圆方程;(2)当直线l⊥x轴,将直线x=m代入椭圆方程,求得A和B点坐标,由向量数量积的坐标运算,即可求得m的值,求得O到直线l的距离;当直线AB的斜率存在时,设直线方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算,点到直线的距离公式,即可求得O到直线l的距离为定值.【解答】解:(1)由椭圆的定义可知:|PF1|+|PF2|=2a.由|PF1|﹣|PF2|=a.∴丨PF1丨=a=3|PF2|,则=3,化简得:c2﹣5c+6=0,由c<a<3,∴c=2,则丨PF1丨=3=a,则a=2,b2=a2﹣c2=4,∴椭圆的标准方程为:;(2)由题意可知,直线l不过原点,设A(x1,x2),B(x2,y2),①当直线l⊥x轴,直线l的方程x=m,(m≠0),且﹣2<m<2,则x1=m,y1=,x2=m,y2=﹣,由⊥,∴x1x2+y1y2=0,即m2﹣(4﹣)=0,解得:m=±,故直线l的方程为x=±,∴原点O到直线l的距离d=,②当直线AB的斜率存在时,设直线AB的方程为y=kx+n,则,消去y整理得:(1+2k2)x2+4knx+2n2﹣8=0,x1+x2=﹣,x1x2=,则y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2=,由⊥,∴x1x2+y1y2=0,故+=0,整理得:3n2﹣8k2﹣8=0,即3n2=8k2+8,①则原点O到直线l的距离d=,∴d2=()2==,②将①代入②,则d2==,∴d=,综上可知:点O到直线l的距离为定值.21.已知函数f(x)=x﹣alnx,(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)设g(x)=﹣,若不等式f(x)>g(x)对任意x∈[1,e]恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)先求导,再分类讨论,得到函数的单调区间,从而求出函数的极值点的个数;(2)由题意,只要求出函数f(x)min>0即可,利用导数和函数的最值的关系,进行分类讨论,即可得到a的范围.【解答】解:(1)f(x)=x﹣alnx,(x>0),f′(x)=1﹣=,①a≤0时,f′(x)>0,f(x)递增,f(x)无极值;②a>0时,令f′(x)>0,解得:x>a,令f′(x)<0,解得:0<x<a,∴f(x)在(0,a)递减,在(a,+∞)递增,f(x)有1个极小值点;(2)若不等式f(x)>g(x)对任意x∈[1,e]恒成立,>0在[1,e]恒成立,令h(x)=f(x)﹣g(x),即h(x)最小值则h(x)=x﹣alnx+(a∈R),∴h′(x)=1﹣﹣=,①当1+a≤0,即a≤﹣1时,在[1,e]上为增函数,f(x)min=f(1)=1+1+a>0,解得:a>﹣2,即﹣2<a≤﹣1,当a>﹣1时①当1+a≥e时,即a≥e﹣1时,f(x)在[1,e]上单调递减,∴f(x)min=f(e)=e+﹣a>0,解得a<,∵>e﹣1,∴e﹣1≤a<;②当0<1+a≤1,即﹣1<a≤0,f(x)在[1,e]上单调递增,∴f(x)min=f(1)=1+1+a>0,解得a>﹣2,故﹣2<a<﹣1;③当1<1+a<e,即0<a<e﹣1时,f(x)min=f(1+a),∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴f(1+a)=a+2﹣aln(1+a)>2,此时f(1+a)>0成立,综上,﹣2<a<时,不等式f(x)>g(x)对任意x∈[1,e]恒成立.请考生在第22、23题中任选一题作答,如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)对于曲线C:由ρ=4cosθ可得ρ2=4ρcosθ,坐标化即可,对于l,消去t整理可得;(2)由(1)可知圆和半径,可得弦心距,进而可得弦长,可得面积.【解答】解:(1)对于曲线C:由ρ=4cosθ,得ρ2=4ρcosθ,∴x2+y2=4x.对于l:由(t为参数),消去t可得,化为一般式可得;(2)由(1)可知C为圆,且圆心为(2,0),半径为2,∴弦心距,∴弦长,∴以PQ为边的圆C的内接矩形面积[选修4-5:不等式选讲]23.设实数x,y满足x+=1.(1)若|7﹣y|<2x+3,求x的取值范围;(2)若x>0,y>0,求证:≥xy.【考点】不等式的证明;绝对值不等式的解法.【分析】(1)根据题意,由x+=1,则y=4﹣4x,则|7﹣y|<2x+3,可得|4x+3|<2x+3,解可得x的范围,即可得答案;(2)根据题意,由基本不等式可得1=x+≥2=,即≤1,用作差法分析可得﹣xy=(1﹣),结合的范围,可得﹣xy≥0,即可得证明.【解答】解:(1)根据题意,若x+=1,则4x+y=4,即y=4﹣4x,则由|7﹣y|<2x+3,可得|4x+3|<2x+3,即﹣(2x+3)<4x+3<2x+3,解可得﹣1<x<0;(2)证明:x>0,y>0,1=x+≥2=,即≤1,﹣xy=(1﹣),又由0<≤1,则﹣xy=(1﹣)≥0,即≥xy.3月30日。

山西省太原市高考数学一模试卷(理科)含答案解析

山西省太原市高考数学一模试卷(理科)含答案解析

山西省太原市高考数学一模试卷(理科)一、选择题1.已知全集U={0,1,2,3,4,5,6},集合A={0,1,3},集合B={2,6},则(∁U A)∩(∁U B)为()A.{5,6}B.{4,5}C.{0,3}D.{2,6}2.已知i是虚数单位,则复数的共轭复数是()A.1﹣i B.﹣1+i C.1+i D.﹣1﹣i3.已知双曲线的一条渐近线方程是,它的一个焦点坐标为(2,0),则双曲线的方程为()A.B.C.D.4.等比数列{a n}中,a1=1,公比q=2,前n项和为S n,下列结论正确的是()A.B.∀n∈N*,a n•a n+1≤a n+2C.∀n∈N*,S n<a n+1D.5.执行如图所示的程序框图,若输出的S=,则判断框内填入的条件可以是()A.k≥7 B.k>7 C.k≤8 D.k<86.设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<07.函数f(x)=Asin(ωx+φ)的部分图象如图所示,若,且f(x1)=f(x2)(x1≠x2),则f(x1+x2)=()A.1 B.C.D.8.现有12张不同的卡片,其中红色、黄色、绿色、蓝色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且蓝色卡片至多1张.则不同的取法的共有()A.135 B.172 C.189 D.2169.某几何体的三视图如图所示,则该几何体的体积是()A.2 B.C.4 D.10.已知变量x,y满足约束条件,若,则实数a的取值范围是()A.(0,1]B.[0,1)C.[0,1]D.(0,1)11.在三棱锥A﹣BCD中,底面BCD为边长为2的正三角形,顶点A在底面BCD上的射影为△BCD的中心,若E为BC的中点,且直线AE与底面BCD所成角的正切值为2,则三棱锥A﹣BCD外接球的表面积为()A.3πB.4πC.5πD.6π12.若函数有唯一零点x0,且m<x0<n(m,n为相邻整数),则m+n的值为()A.1 B.3 C.5 D.7二、填空题13.若(a+x)(1+x)4的展开式中,x的奇数次幂的系数和为32,则展开式中x3的系数为_______.14.圆心在曲线上,且与直线2x+y+1=0相切的面积最小的圆的方程为_______.15.已知在锐角△ABC中,已知∠B=,|﹣|=2,则的取值范围是_______.16.若数列{a n}满足a n﹣(﹣1)n a n=n(n≥2,n∈N*),S n是{a n}的前n项和,则S40=_______.﹣1三、解答题17.已知a,b,c分别为锐角△ABC内角A,B,C的对边,且a=2csinA.(1)求角C;(2)若c=,且△ABC的面积为,求a+b的值.18.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(Ⅰ)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(Ⅱ)X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望.19.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.20.如图所示,已知椭圆C的离心率为,A、B、F分别为椭圆的右顶点、上顶点、右焦点,且.(1)求椭圆C的方程;(2)已知直线l:y=kx+m被圆O:x2+y2=4所截弦长为,若直线l与椭圆C交于M、N两点.求△OMN面积的最大值.21.已知函数f(x)=ln(x+1)﹣x(1)若k∈z,且f(x﹣1)+x>k(1﹣)对任意x>1恒成立,求k的最大值.(2)对于在(0,1)中的任意一个常数a,是否存在正数x0,使得e f(x0)<1﹣x02成立.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.选修4-1:几何证明选讲22.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC (Ⅰ)求证:BE=2AD;(Ⅱ)当AC=3,EC=6时,求AD的长.23.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=,曲线C的参数方程为.(1)写出直线l与曲线C的直角坐标方程;(2)过点M平行于直线l1的直线与曲线C交于A、B两点,若|MA|•|MB|=,求点M轨迹的直角坐标方程.24.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.山西省太原市高考数学一模试卷(理科)参考答案与试题解析一、选择题1.已知全集U={0,1,2,3,4,5,6},集合A={0,1,3},集合B={2,6},则(∁U A)∩(∁U B)为()A.{5,6}B.{4,5}C.{0,3}D.{2,6}【考点】交、并、补集的混合运算.【分析】利用已知条件求出集合的补集关系,然后求解交集.【解答】解:全集U={0,1,2,3,4,5,6},集合A={0,1,3},集合B={2,6},(C U A)∩(C U B)=C U(A∪B)={4,5}.故选:B.2.已知i是虚数单位,则复数的共轭复数是()A.1﹣i B.﹣1+i C.1+i D.﹣1﹣i【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简得答案.【解答】解:,∴复数的共轭复数是1﹣i.故选:A.3.已知双曲线的一条渐近线方程是,它的一个焦点坐标为(2,0),则双曲线的方程为()A.B.C.D.【考点】双曲线的标准方程.【分析】直接利用双曲线的渐近线方程以及焦点坐标,得到关系式,求出a、b,即可得到双曲线方程.【解答】解:双曲线的一条渐近线方程是,可得,它的一个焦点坐标为(2,0),可得c=2,即a2+b2=4,解得a=1,b=,所求双曲线方程为:.故选:C.4.等比数列{a n}中,a1=1,公比q=2,前n项和为S n,下列结论正确的是()A.B.∀n∈N*,a n•a n+1≤a n+2C.∀n∈N*,S n<a n+1D.【考点】等比数列的前n项和.【分析】由题意可得a n和S n,逐个选项验证可得.【解答】解:由题意可得,A.,,∴A错;B.,构造函数f(x)=2x,易知f(x)在R上单调递增,当x=2时,f(2x﹣1)=f(x+1),∴R上不能保证f(2x﹣1)≤f(x+1)恒成立,∴B错;C.S n<a n+1恒成立即2n﹣1<2n恒成立,显然C正确.同A的解析可得D错误.故选:C5.执行如图所示的程序框图,若输出的S=,则判断框内填入的条件可以是()A.k≥7 B.k>7 C.k≤8 D.k<8【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的k,S的值,当k=8时,退出循环,输出S的值为,故判断框图可填入的条件是k<8.【解答】解:模拟执行程序框图,可得:S=0,k=0满足条件,k=2,S=满足条件,k=4,S=+满足条件,k=6,S=+满足条件,k=8,S=++=由题意,此时应不满足条件,退出循环,输出S的值为.结合选项可得判断框内填入的条件可以是:k<8.故选:D.6.设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0 【考点】函数的值;不等关系与不等式.【分析】先判断函数f(x),g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b的取值范围即可.【解答】解:①由于y=e x及y=x﹣2关于x是单调递增函数,∴函数f(x)=e x+x﹣2在R 上单调递增,分别作出y=e x,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a <1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g()=,g(b)=0,∴.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=e b+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选A.7.函数f(x)=Asin(ωx+φ)的部分图象如图所示,若,且f(x1)=f(x2)(x1≠x2),则f(x1+x2)=()A.1 B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由图象可得A=1,由周期公式可得ω=2,代入点(,0)可得φ值,进而可得f (x)=sin(2x+),再由题意可得x1+x2=,代入计算可得.【解答】解:由图象可得A=1,=,解得ω=2,∴f(x)=sin(2x+φ),代入点(,0)可得sin(+φ)=0∴+φ=kπ,∴φ=kπ﹣,k∈Z又|φ|<,∴φ=,∴f(x)=sin(2x+),∴sin(2×+)=1,即图中点的坐标为(,1),又,且f(x1)=f(x2)(x1≠x2),∴x1+x2=×2=,∴f(x1+x2)=sin(2×+)=,故选:D8.现有12张不同的卡片,其中红色、黄色、绿色、蓝色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且蓝色卡片至多1张.则不同的取法的共有()A.135 B.172 C.189 D.216【考点】计数原理的应用.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有4种取法,两种蓝色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有4种取法,两种蓝色卡片,共有种取法,故所求的取法共有﹣4﹣=189种.故选:C.9.某几何体的三视图如图所示,则该几何体的体积是()A.2 B.C.4 D.【考点】由三视图求面积、体积.【分析】由三视图知:几何体是四棱锥,如图所示,求出相应数据即可求出几何体的体积.【解答】解:由三视图知:几何体是四棱锥,如图所示,ABCD的面积为2×=2,△SAD中,SD=AD=,SA=2,∴cos∠SDA==,∴sin∠SDA=,∴S△SAD==2设S到平面ABCD的距离为h,则=2,∴h=所以几何体的体积是=,故选:B.10.已知变量x,y满足约束条件,若,则实数a的取值范围是()A.(0,1]B.[0,1)C.[0,1]D.(0,1)【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的几何意义,求出a的取值范围即可.【解答】解:表示区域内点(x,y)与定点A(2,0)连线斜率K,由图易观察到BC与y轴重合时,,当BC向右移动时,,综上,a∈[0,1].故选:C.11.在三棱锥A﹣BCD中,底面BCD为边长为2的正三角形,顶点A在底面BCD上的射影为△BCD的中心,若E为BC的中点,且直线AE与底面BCD所成角的正切值为2,则三棱锥A﹣BCD外接球的表面积为()A.3πB.4πC.5πD.6π【考点】球的体积和表面积.【分析】先判断三棱锥为正四面体,构造正方体,由面上的对角线构成正四面体,故可得正方体的棱长,即可求出外接球的半径,从而可得三棱锥A﹣BCD外接球的表面积.【解答】解:∵定点A在底面BCD上的射影为三角形BCD的中心,而且底面BCD是正三角形,∴三棱锥A﹣BCD是正三棱锥,∴AB=AC=AD,令底面三角形BCD的重心(即中心)为P,∵底面BCD为边长为2的正三角形,DE是BC边上的高,∴DE=,∴PE=,DP=∵直线AE与底面BCD所成角的正切值为2,即∴AP=,∵AD2=AP2+DP2(勾股定理),∴AD=2,于是AB=AC=AD=BC=CD=DB=2,∴三棱锥为正四面体,构造正方体,由面上的对角线构成正四面体,故正方体的棱长为,∴正方体的对角线长为,∴外接球的半径为∴外接球的表面积=4πr2=6π.故选:D.12.若函数有唯一零点x0,且m<x0<n(m,n为相邻整数),则m+n的值为()A.1 B.3 C.5 D.7【考点】函数零点的判定定理.【分析】构造函数,由函数有唯一零点x0,则y1,y2有公切点,由此求x0的解析式,即可求出m、n的值.【解答】解:令,则,在(0,1)上y1为减函数,在(1,+∞)上y1为增函数,所以y1为凹函数,而y2为凸函数;∵函数有唯一零点x0,∴y1,y2有公切点(x0,y0),则,消去a,得+﹣2(﹣)lnx0=0;构造函数,则g(1)=3,欲比较5与7ln2大小,可比较e5与27大小,∵e5>27,∴g(2)>0,,∴x∈(2,e);∴m=2,n=3,∴m+n=5.二、填空题13.若(a+x)(1+x)4的展开式中,x的奇数次幂的系数和为32,则展开式中x3的系数为18.【考点】二项式定理的应用.【分析】设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,分别令x=1、x=﹣1,求得a的值,再利用排列组合的知识求得x3的系数.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1)…①,令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0…②,①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.当(3+x)中取3,则(1+x)4取x,x,x,1,即可得x3的系数为,当(3+x)中取x,则(1+x)4取x,x,1,1,即x3的系数为,∴展开式中x3的系数为18.故答案为:18.14.圆心在曲线上,且与直线2x+y+1=0相切的面积最小的圆的方程为(x﹣1)2+(y﹣2)2=5.【考点】圆的标准方程.【分析】根据圆心在曲线上,设出圆心的坐标,然后根据圆与直线2x+y+1=0相切,得到圆心到直线的距离等于圆的半径,要使圆的面积最小即为圆的半径最小,利用点到直线的距离公式表示出设出的圆心到已知直线的距离d,利用基本不等式求出d的最小值及此时a的值,进而得到此时的圆心坐标和圆的半径,根据圆心坐标和半径写出圆的方程即可.【解答】解:由圆心在曲线上,设圆心坐标为(a,)a>0,又圆与直线2x+y+1=0相切,所以圆心到直线的距离d=圆的半径r,由a>0得到:d=≥=,当且仅当2a=即a=1时取等号,所以圆心坐标为(1,2),圆的半径的最小值为,则所求圆的方程为:(x﹣1)2+(y﹣2)2=5.故答案为:(x﹣1)2+(y﹣2)2=515.已知在锐角△ABC中,已知∠B=,|﹣|=2,则的取值范围是(0,12).【考点】平面向量数量积的运算.【分析】以B为原点,BA所在直线为x轴建立坐标系,得到C的坐标,找出三角形为锐角三角形的A的位置,得到所求范围.【解答】解:以B为原点,BA所在直线为x轴建立坐标系,因为∠B=,|﹣|=||=2,所以C(1,),设A(x,0)因为△ABC是锐角三角形,所以A+C=120°,∴30°<A<90°,即A在如图的线段DE上(不与D,E重合),所以1<x<4,则=x2﹣x=(x﹣)2﹣,所以的范围为(0,12).故答案为:(0,12).16.若数列{a n}满足a n﹣(﹣1)n a n﹣1=n(n≥2,n∈N*),S n是{a n}的前n项和,则S40=440.【考点】数列的求和.【分析】由(n≥2),对n分类讨论,可得:a2k+a2k﹣2=4k﹣1,a2k+1+a2k ﹣1=1,分组求和即可得出.【解答】解:∵(n≥2),∴当n=2k时,即a2k﹣a2k﹣1=2k,①当n=2k﹣1时,即a2k﹣1+a2k﹣2=2k﹣1,②当n=2k+1时,即a2k+1+a2k=2k+1,③①+②a2k+a2k﹣2=4k﹣1,③﹣①a2k+1+a2k﹣1=1,S40=(a1+a3+a5+…+a39)+(a2+a4+a6+a8+…+a40)=.三、解答题17.已知a,b,c分别为锐角△ABC内角A,B,C的对边,且a=2csinA.(1)求角C;(2)若c=,且△ABC的面积为,求a+b的值.【考点】余弦定理;正弦定理.【分析】(1)由正弦定理化简已知等式可得,结合A锐角,sinA>0,可得sinC=,又C为锐角,即可得解C的值.(2)由余弦定理及已知可得7=a2+b2﹣ab,又由△ABC的面积公式可得ab=6,即可得解a+b 的值.【解答】解:(1)∵a=2csinA,∴正弦定理得,∵A锐角,∴sinA>0,∴sinC=,又∵C为锐角,∴C=,(2)∵三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC,即7=a2+b2﹣ab,又∵由△ABC的面积得S=absinC=ab×=.即ab=6,∴(a+b)2=a2+b2+2ab=25,∵由于a+b为正,∴a+b=5.18.在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(Ⅰ)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(Ⅱ)X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)设A表示事件:“媒体甲选中3号歌手”,事件B表示“媒体乙选中3号歌手”,事件C表示“媒体丙选中3号歌手”,由等可能事件概率公式求出P(A),P(B),由此利用相互事件的概率乘法公式和对立事件的概率公式能求出媒体甲选中3号且媒体乙未选中3号歌手的概率.(Ⅱ)先由等可能事件概率计算公式求出P(C),由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列及数学期望.【解答】解:(Ⅰ)设A表示事件:“媒体甲选中3号歌手”,事件B表示“媒体乙选中3号歌手”,事件C表示“媒体丙选中3号歌手”,P(A)==,P(B)==,媒体甲选中3号且媒体乙未选中3号歌手的概率:P(A)=P(A)(1﹣P(B))==.(Ⅱ)P(C)=,由已知得X的可能取值为0,1,2,3,P(X=0)=P()=(1﹣)(1﹣)(1﹣)=,P(X=1)=P(A)+P()+P()=+(1﹣)×=,P(X=2)=P(AB)+P(A)+P()=+(1﹣)×=,P(X=3)=P(ABC)==,∴X的分布列为:X 0 1 2 3PEX==.19.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【分析】(Ⅰ)证明平面EAC⊥平面PBC,只需证明AC⊥平面PBC,即证AC⊥PC,AC⊥BC;(Ⅱ)根据题意,建立空间直角坐标系,用坐标表示点与向量,求出面PAC的法向量=(1,﹣1,0),面EAC的法向量=(a,﹣a,﹣2),利用二面角P﹣A C﹣E的余弦值为,可求a的值,从而可求=(2,﹣2,﹣2),=(1,1,﹣2),即可求得直线PA与平面EAC 所成角的正弦值.【解答】(Ⅰ)证明:∵PC⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PC,∵AB=2,AD=CD=1,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,∵AC⊂平面EAC,∴平面EAC⊥平面PBC.…(Ⅱ)如图,以C为原点,取AB中点F,、、分别为x轴、y轴、z轴正向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,﹣1,0).设P(0,0,a)(a>0),则E(,﹣,),…=(1,1,0),=(0,0,a),=(,﹣,),取=(1,﹣1,0),则•=•=0,为面PAC的法向量.设=(x,y,z)为面EAC的法向量,则•=•=0,即取x=a,y=﹣a,z=﹣2,则=(a,﹣a,﹣2),依题意,|cos<,>|===,则a=2.…于是=(2,﹣2,﹣2),=(1,1,﹣2).设直线PA与平面EAC所成角为θ,则sinθ=|cos<,>|==,即直线PA与平面EAC所成角的正弦值为.…20.如图所示,已知椭圆C的离心率为,A、B、F分别为椭圆的右顶点、上顶点、右焦点,且.(1)求椭圆C的方程;(2)已知直线l:y=kx+m被圆O:x2+y2=4所截弦长为,若直线l与椭圆C交于M、N两点.求△OMN面积的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的简单性质.【分析】(1)设出椭圆方程,利用椭圆C的离心率为,,建立方程,联立,即可求椭圆C的方程;(2)直线l:y=kx+m被圆O:x2+y2=4所截弦长为,确定m,k的关系,直线代入椭圆方程,表示出面积,换元,利用配方法,即可确定结论.【解答】解:(1)设方程为(a>b>0),则A(a,0),B(0,b),F(c,0)∵椭圆C的离心率为,∴=∴a=2b,∴①∵②∴联立①②,解得b=1,c=∴a=2,∴椭圆的方程为;(2)圆O的圆心为坐标原点,半径为2,∵直线l:y=kx+m被圆O:x2+y2=4所截弦长为,∴=1∴m2=1+k2③直线l代入椭圆方程,可得()x2+2kmx+m2﹣1=0设M(x1,y1),N(x2,y2),则x1+x2=,∴==④③代入④可得=,∴|x1﹣x2|=∴|MN|==∴=令t=4k2+1≥1,则代入上式的,S=∴t=3,即4k2+1=3,解得时,S取得最大值为1.21.已知函数f(x)=ln(x+1)﹣x(1)若k∈z,且f(x﹣1)+x>k(1﹣)对任意x>1恒成立,求k的最大值.(2)对于在(0,1)中的任意一个常数a,是否存在正数x0,使得e f(x0)<1﹣x02成立.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出xlnx+x﹣kx+3k>0,令g(x)=xlnx+x﹣kx+3k,根据函数的单调性求出函数的最小值,从而求出k的最大值即可;(2)假设存在这样的x0满足题意,得到+﹣1<0,令h(x)=x2+﹣1,根据函数的单调性求出h(x)的最小值,从而求出满足条件的x的值.【解答】解:(1)∵f(x﹣1)+x>k(1﹣),∴lnx﹣(x﹣1)+x>k(1﹣),∴lnx+1>k(1﹣),即xlnx+x﹣kx+3k>0,令g(x)=xlnx+x﹣kx+3k,则g′(x)=lnx+1+1﹣k=lnx+2﹣k,若k≤2,∵x>1,∴lnx>0,g′(x)>0恒成立,即g(x)在(1,+∞)上递增;∴g(1)=1+2k≥0,解得,k≥﹣;故﹣≤k≤2,故k的最大值为2;若k>2,由lnx+2﹣k>0,解得x>e k﹣2,故g(x)在(1,e k﹣2)上单调递减,在(e k﹣2,+∞)上单调递增;∴g min(x)=g(e k﹣2)=3k﹣e k﹣2,令h(k)=3k﹣e k﹣2,h′(k)=3﹣e k﹣2,∴h(k)在(1,2+ln3)上单调递增,在(2+ln3,+∞)上单调递减;∵h(2+ln3)=3+3ln3>0,h(4)=12﹣e2>0,h(5)=15﹣e3<0;∴k的最大取值为4,综上所述,k的最大值为4.(2)假设存在这样的x0满足题意,∵e f(x0)<1﹣x02,∴+﹣1<0,令h(x)=x2+﹣1,则h′(x)=x(a﹣),令h′(x)=0,得:e x=,故x=﹣lna,取x0=﹣lna,在0<x<x0时,h′(x)<0,当x>x0时,h′(x)>0;∴h min(x)=h(x0)=(﹣lna)2+alna+a﹣1,在a∈(0,1)时,令p(a)=(lna)2+alna+a﹣1,则p′(a)=(lna)2≥0,故p(a)在(0,1)上是增函数,故p(a)<p(1)=0,即当x0=﹣lna时符合题意.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.选修4-1:几何证明选讲22.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC (Ⅰ)求证:BE=2AD;(Ⅱ)当AC=3,EC=6时,求AD的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)连接DE,证明△DBE∽△CBA,利用AB=2AC,结合角平分线性质,即可证明BE=2AD;(Ⅱ)根据割线定理得BD•BA=BE•BC,从而可求AD的长.【解答】(Ⅰ)证明:连接DE,∵ACED是圆内接四边形,∴∠BDE=∠BCA,又∠DBE=∠CBA,∴△DBE∽△CBA,即有,又∵AB=2AC,∴BE=2DE,∵CD是∠ACB的平分线,∴AD=DE,∴BE=2AD;…(Ⅱ)解:由条件知AB=2AC=6,设AD=t,则BE=2t,BC=2t+6,根据割线定理得BD•BA=BE•BC,即(6﹣t)×6=2t•(2t+6),即2t2+9t﹣18=0,解得或﹣6(舍去),则.…23.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=,曲线C的参数方程为.(1)写出直线l与曲线C的直角坐标方程;(2)过点M平行于直线l1的直线与曲线C交于A、B两点,若|MA|•|MB|=,求点M轨迹的直角坐标方程.【考点】直线与圆锥曲线的综合问题;简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)利用极坐标与直角坐标方程的互化,直接写出直线l的普通方程,消去参数可得曲线C的直角坐标方程;(2)设点M(x0,y0)以及平行于直线l1的直线参数方程,直线l1与曲线C联立方程组,通过|MA|•|MB|=,即可求点M轨迹的直角坐标方程.通过两个交点推出轨迹方程的范围,【解答】解:(1)直线l的极坐标方程为θ=,所以直线斜率为1,直线l:y=x;曲线C的参数方程为.消去参数θ,可得曲线…(2)设点M(x0,y0)及过点M的直线为由直线l1与曲线C相交可得:,即:,x2+2y2=6表示一椭圆…取y=x+m代入得:3x2+4mx+2m2﹣2=0由△≥0得故点M的轨迹是椭圆x2+2y2=6夹在平行直线之间的两段弧…24.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)利用||x﹣1|+2|<5,转化为﹣7<|x﹣1|<3,然后求解不等式即可.(2)利用条件说明{y|y=f(x)}⊆{y|y=g(x)},通过函数的最值,列出不等式求解即可.【解答】解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…9月9日。

河南省焦作市高考数学一模试卷(理科)含答案解析

河南省焦作市高考数学一模试卷(理科)含答案解析

河南省焦作市高考数学一模试卷(理科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|﹣1<x<2},B={x|2x2﹣5x﹣3>0},则A∩B=()A.{x|﹣1<x<﹣,或2<x<3}B.{x|2<x<3}C.{x|﹣<x<2}D.{x|﹣1<x<﹣}2.若复数z满足z(1+i)=|1+i|,则在复平面内z的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设向量=(2,0),=(1,1),则下列结论中不正确的是()A.||=|2|B.•=2 C.﹣与垂直D.∥4.执行如图所示的程序框图,输出的S值为﹣4时,则输入的S0的值为()A.7 B.8 C.9 D.105.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.6.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=log a|x|的图象是()A.B.C.D.7.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=()A.﹣2 B.0 C.1 D.88.已知函数f(x)=sinx+acosx的图象的一条对称轴为x=.则函数f(x)的单调递增区间为()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ﹣,2kπ+](k∈Z)C.[2kπ﹣,2kπ+](k∈Z)D.[2kπ﹣,2kπ+](k∈Z)9.已知数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,则当n为偶数时,数列{a n}的前n项和S n=()A.﹣B. +C.D.10.某几何体的三视图如图所示,其中俯视图为扇形,则一个质点从扇形的圆心起始,绕几何体的侧面运动一周回到起点,其最短路径为()A.4+B.6C.4+D.611.已知椭圆(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则的最小值为()A.B. C. D.112.已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f (x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A. B.C.D.二、填空题(本大题共4个小题,每小题5分,共20分).请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.直线x﹣y+2=0与圆x2+y2=4相交于A、B两点,则|AB|=.14.若实数x,y满足,则z=|x+2y﹣3|的最小值为.15.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:可以转化为平面上点M (x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=+的最小值为.16.在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是.三、解答题(本大题共5小题,满分60分)解答下列各题应在答题纸的相应编号的规定区域内写出必要的步骤.17.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA﹣sinB)=(c﹣b)sinC(Ⅰ)求∠A的大小;(Ⅱ)若f(x)=,求f(B)的取值范围.18.在市高三学业水平测试中,某校老师为了了解所教两个班100名学生的数学得分情况,按成绩分成六组:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)统计数据如下:分数段[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)人数 2 8 30 30 20 10 (Ⅰ)请根据上表中的数据,完成频率分布直方图,并估算这100学生的数学平均成绩;(Ⅱ)该教师决定在[110,120),[120,130),[130,140)这三组中用分层抽样抽取6名学生进行调研,然后再从这6名学生中随机抽取2名学生进行谈话,记这2名学生中有ξ名学生在[120,130)内,求ξ的分布列和数学期望.19.如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;(Ⅱ)求证:平面CBE⊥平面EDB;(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.20.已知抛物线C:y2=2px(p>0),定点M(2,0),以O为圆心,抛物线C的准线与以|OM|为半径的圆所交的弦长为2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线y=﹣x+m(m∈R)与抛物线交于不同的两点A、B,则抛物线上是否存在定点P(x0,y0),使得直线PA,PB关于x=x0对称.若存在,求出P点坐标,若不存在,请说明理由.21.已知函数f(x)=x2+ax﹣lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)﹣2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:<0.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时.用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-1:几何证明选讲] 22.如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:A、P、D、F四点共圆;(Ⅱ)若AE•ED=12,DE=EB=3,求PA的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.河南省焦作市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|﹣1<x<2},B={x|2x2﹣5x﹣3>0},则A∩B=()A.{x|﹣1<x<﹣,或2<x<3}B.{x|2<x<3}C.{x|﹣<x<2}D.{x|﹣1<x<﹣}【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式变形得:(2x+1)(x﹣3)>0,解得:x<﹣或x>3,即B={x|x<﹣或x>3},∵A={x|﹣1<x<2},∴A∩B={x|﹣1<x<﹣},故选:D.2.若复数z满足z(1+i)=|1+i|,则在复平面内z的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的代数形式混合运算化简求出复数,得到复数对应点的坐标,即可得到结果.【解答】解:复数z满足z(1+i)=|1+i|=2,可得z==1﹣i,复数对应点为(1,﹣1),在复平面内z的共轭复数对应的点(1,1).故选:A.3.设向量=(2,0),=(1,1),则下列结论中不正确的是()A.||=|2|B.•=2 C.﹣与垂直D.∥【考点】平面向量的坐标运算.【分析】根据平面向量的坐标表示与运算,对选项中的命题进行分析判断即可.【解答】解:∵向量=(2,0),=(1,1),∴||=2,||===2,||=||,A正确;•=2×1+0×1=2,B正确;(﹣)•=(1,﹣1)•(1,1)=1×1﹣1×1=0,∴(﹣)⊥,C正确;2×1﹣0×1≠0,∴∥不成立,D错误.故选:D.4.执行如图所示的程序框图,输出的S值为﹣4时,则输入的S0的值为()A.7 B.8 C.9 D.10【考点】程序框图.【分析】根据程序框图,知当i=4时,输出S,写出前三次循环得到输出的S,列出方程求出S0的值.【解答】解:根据程序框图,知当i=4时,输出S,∵第一次循环得到:S=S0﹣1,i=2;第二次循环得到:S=S0﹣1﹣4,i=3;第三次循环得到:S=S0﹣1﹣4﹣9,i=4;∴S0﹣1﹣4﹣9=﹣4,解得S0=10故选:D.5.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.【考点】双曲线的标准方程.【分析】由抛物线标准方程易得其准线方程为x=﹣6,而通过双曲线的标准方程可见其焦点在x轴上,则双曲线的左焦点为(﹣6,0),此时由双曲线的性质a2+b2=c2可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为y=±x,可得=,则得a、b的另一个方程.那么只需解a、b的方程组,问题即可解决.【解答】解:因为抛物线y2=24x的准线方程为x=﹣6,则由题意知,点F(﹣6,0)是双曲线的左焦点,所以a2+b2=c2=36,又双曲线的一条渐近线方程是y=x,所以,解得a2=9,b2=27,所以双曲线的方程为.故选B.6.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=log a|x|的图象是()A.B.C.D.【考点】函数的图象;指数函数的图象变换.【分析】根据指数函数的图象和性质求出0<a<1,利用对数函数的图象和性质进行判断即可.【解答】解:∵|x|≥0,∴若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},∴0<a<1,当x>0时,数y=log a|x|=log a x,为减函数,当x<0时,数y=log a|x|=log a(﹣x),为增函数,且函数是偶函数,关于y轴对称,故选:A7.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=()A.﹣2 B.0 C.1 D.8【考点】利用导数研究曲线上某点切线方程.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a 的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故选D.8.已知函数f(x)=sinx+acosx的图象的一条对称轴为x=.则函数f(x)的单调递增区间为()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ﹣,2kπ+](k∈Z)C.[2kπ﹣,2kπ+](k∈Z)D.[2kπ﹣,2kπ+](k∈Z)【考点】正弦函数的对称性;正弦函数的单调性.【分析】由题意知函数f(x)=sinx+acosx在x=处取得最值,从而可得(•+a)2=3+a2,从而解出f(x)=sinx+cosx=2sin(x+),从而确定单调增区间.【解答】解:∵函数f(x)=sinx+acosx的图象的一条对称轴为x=,∴函数f(x)=sinx+acosx在x=处取得最值;∴(•+a)2=3+a2,解得,a=1;故f(x)=sinx+cosx=2sin(x+),故2kπ﹣≤x+≤2kπ+,k∈Z,故2kπ﹣≤x≤2kπ+,k∈Z,故选:C.9.已知数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,则当n为偶数时,数列{a n}的前n项和S n=()A.﹣B. +C.D.【考点】等差数列的前n项和.【分析】数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,可知:此数列的奇数项与偶数项分别成等差数列,公差都为3,利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,可知:此数列的奇数项与偶数项分别成等差数列,公差都为3,=1+3(k﹣1)=3k﹣2,a2k=2+3(k﹣1)=3k﹣1.且a2k﹣1则当n为偶数时,设2k=n,数列{a n}的前n项和S n=+=3k2=.故选:C.10.某几何体的三视图如图所示,其中俯视图为扇形,则一个质点从扇形的圆心起始,绕几何体的侧面运动一周回到起点,其最短路径为()A.4+B.6C.4+D.6【考点】由三视图求面积、体积.【分析】作出几何体侧面展开图,将问题转化为平面上的最短问题解决.【解答】解:由三视图可知几何体为圆锥的一部分,圆锥的底面半径为2,几何体底面圆心角为120°,∴几何体底面弧长为=.圆锥高为2.∴圆锥的母线长为.作出几何体的侧面展开图如图所示:其中,AB=AB′=2,AB⊥BC,AB′⊥B′D,B′D=BC=2,AC=AD=4,.∴∠BAC=∠B′AD=30°,∠CAD=.∴∠BAB′=120°.∴BB′==6.故选D.11.已知椭圆(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则的最小值为()A.B. C. D.1【考点】椭圆的简单性质.【分析】由题意画出图形,利用转化思想方法求得OQ=a,又OQ=2b,得a=2b,进一步得到a,e与b的关系,然后利用基本不等式求得的最小值.【解答】解:如图,由题意,P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为Q,延长F2Q交F1P延长线于M,得PM=PF2,由椭圆的定义知PF1+PF2=2a,故有PF1+PM=MF1=2a,连接OQ,知OQ是三角形F1F2M的中位线,∴OQ=a,又OQ=2b,∴a=2b,则a2=4b2=4(a2﹣c2),即c2=a2,∴===2b+≥2=.当且仅当2b=,即b=时,有最小值为.故选:C.12.已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f (x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A. B.C.D.【考点】数列与函数的综合.【分析】根据定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),可得f(x+2)=f (x),从而f(x+2n)=f(x),利用当x∈[0,2)时,f(x)=﹣2x2+4x,可求(x)在[2n﹣2,2n)上的解析式,从而可得f(x)在[2n﹣2,2n)上的最大值为a n,进而利用等比数列的求和公式,即可求得{a n}的前n项和为S n.【解答】解:∵定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),∴f(x+2)=f(x),∴f(x+4)=f(x+2)=f(x),f(x+6)=f(x+4)=f(x),…f(x+2n)=f(x)设x∈[2n﹣2,2n),则x﹣(2n﹣2)∈[0,2)∵当x∈[0,2)时,f(x)=﹣2x2+4x.∴f[x﹣(2n﹣2)]=﹣2[(x﹣(2n﹣2)]2+4[x﹣(2n﹣2)].∴=﹣2(x﹣2n+1)2+2∴f(x)=21﹣n[﹣2(x﹣2n+1)2+2],x∈[2n﹣2,2n),∴x=2n﹣1时,f(x)的最大值为22﹣n∴a n=22﹣n∴{a n}表示以2为首项,为公比的等比数列∴{a n}的前n项和为S n==故选B.二、填空题(本大题共4个小题,每小题5分,共20分).请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.直线x﹣y+2=0与圆x2+y2=4相交于A、B两点,则|AB|=2.【考点】直线与圆的位置关系.【分析】利用点到直线的距离公式求出圆心(0,0)到直线x﹣y+2=0的距离d,再由弦长公式可得弦长.【解答】解:圆心(0,0)到直线x﹣y+2=0的距离d==1,半径r=2,故|AB|=2=2,故答案为:2.14.若实数x,y满足,则z=|x+2y﹣3|的最小值为1.【考点】简单线性规划.【分析】由约束条件作出可行域,令t=x+2y﹣3,化为直线方程的斜截式,利用线性规划知识求出t的范围,取绝对值得答案.【解答】解:由约束条件作出可行域如图,令t=x+2y﹣3,则,由图可知,当直线过O时,直线在y轴上的截距最小,t有最小值为﹣3;直线过A时,直线在y轴上的截距最大,t有最大值为﹣1.∴z=|x+2y﹣3|的最小值为1.故答案为:1.15.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=+的最小值为5.【考点】类比推理.【分析】f(x)=+=,表示平面上点M(x,0)与点N(﹣2,4),O(﹣1,﹣3)的距离和,利用两点间的距离公式,即可得出结论.【解答】解:f(x)=+=,表示平面上点M(x,0)与点N(﹣2,4),O(﹣1,﹣3)的距离和,∴f(x)=+的最小值为=5.故答案为:5.16.在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是6π.【考点】与二面角有关的立体几何综合题;球的体积和表面积;球内接多面体.【分析】审题后,二面角S﹣AC﹣B的余弦值是是重要条件,根据定义,先作出它的平面角,如图所示.进一步分析此三棱锥的结构特征,找出其外接球半径的几何或数量表示,再进行计算.【解答】解:如图所示:取AC中点D,连接SD,BD,则由AB=BC,SA=SC得出SD⊥AC,BD⊥AC,∴∠SDB为S﹣AC﹣B的平面角,且AC⊥面SBD.由题意:AB⊥BC,AB=BC=,易得:△ABC为等腰直角三角形,且AC=2,又∵BD⊥AC,故BD=AD=AC,在△SBD中,BD===1,在△SAC中,SD2=SA2﹣AD2=22﹣12=3,在△SBD中,由余弦定理得SB2=SD2+BD2﹣2SD•BDcos∠SDB=3+1﹣2×=2,满足SB2=SD2﹣BD2,∴∠SBD=90°,SB⊥BD,又SB⊥AC,BD∩AC=D,∴SB⊥面ABC.以SB,BA,BC为顶点可以补成一个棱长为的正方体,S、A、B、C都在正方体的外接球上,正方体的对角线为球的一条直径,所以2R=,R=,球的表面积S=4=6π.故答案为:6π.三、解答题(本大题共5小题,满分60分)解答下列各题应在答题纸的相应编号的规定区域内写出必要的步骤.17.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA﹣sinB)=(c﹣b)sinC(Ⅰ)求∠A的大小;(Ⅱ)若f(x)=,求f(B)的取值范围.【考点】余弦定理;正弦定理.【分析】(I)由(a+b)(sinA﹣sinB)=(c﹣b)sinC,由正弦定理可得:(a+b)(a﹣b)=(c﹣b)c,化为b2+c2﹣a2=bc.再利用余弦定理可得:cosA.(II)f(x)=sinx+=+,在锐角△ABC中,<B,可得<B+<,即可得出.【解答】解:(I)∵(a+b)(sinA﹣sinB)=(c﹣b)sinC,由正弦定理可得:(a+b)(a﹣b)=(c﹣b)c,化为b2+c2﹣a2=bc.由余弦定理可得:cosA===,∵A∈(0,π),∴A=.(II)f(x)==sinx+=+,在锐角△ABC中,<B,∴<B+<,∴∈,∴f(B)的取值范围是.18.在市高三学业水平测试中,某校老师为了了解所教两个班100名学生的数学得分情况,按成绩分成六组:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)统计数据如下:分数段[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)人数 2 8 30 30 20 10 (Ⅰ)请根据上表中的数据,完成频率分布直方图,并估算这100学生的数学平均成绩;(Ⅱ)该教师决定在[110,120),[120,130),[130,140)这三组中用分层抽样抽取6名学生进行调研,然后再从这6名学生中随机抽取2名学生进行谈话,记这2名学生中有ξ名学生在[120,130)内,求ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)由统计数据能作出频率分布直方图,利用频率分布直方图能估算这100学生的数学平均成绩.(Ⅱ)由题意,在[110,120),[120,130),[130,140)三组中,利用分层抽样抽取的学生数分别为3,2,1,ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(Ⅰ)由统计数据作出频率分布直方图如下:∴估算这100学生的数学平均成绩:=10(85×0.002+95×0.008+105×0.03+115×0.03125×0.02+135×0.01)=113.8.(Ⅱ)由题意,在[110,120),[120,130),[130,140)三组中,利用分层抽样抽取的学生数分别为3,2,1,∴ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为:ξ 0 1 2PEξ==.19.如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;(Ⅱ)求证:平面CBE⊥平面EDB;(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)根据四点F、B、C、E共面,以及三角形相似建立方程关系进行求解;(Ⅱ)根据面面垂直的判定定理即可证明平面BDE⊥平面BEC;(Ⅲ)建立空间坐标系,求出平面的法向量,利用向量法即可.【解答】证明:(Ⅰ)∵AF∥DE,AB∥CD,AF∩AB=A,DE∩DC=D,∴平面ABF∥平面DCE,∵平面ADEF⊥平面ABCD,∴FB∥CE,∴△ABF~△DCE,∵AB=a,∴ED=a,CD=2a,AF=,由相似比得,即,得x=4(Ⅱ)连接BD,设AB=1,则AB=AD=1,CD=2,可得BD=,取CD的中点M,则MD与AB平行且相等,则△BMD为等腰直角三角形,则BC=BD=,∵BD2+BC2=CD2,∴BC⊥BD.∵平面四边形ADEF与梯形ABCD所在的平面互相垂直,平面ADEF∩平面ABCD=AD,ED⊥AD,∴ED⊥平面ABCD,BC⊥DE,又∵ED∩BD=D,∴BC⊥平面BDE.又∵BC⊂平面BCE,∴平面BDE⊥平面BEC.( III)建立空间坐标系如图:设AB=1,∵x=2,∴CD=2,则F(1,0,1),B(1,1,0),E(0,0,1),C(0,2,0),=(1,0,0),=(1,1,﹣1),=(0,2,﹣1),设平面EF的一个法向量为=(x,y,z),则由得,则取=(0,1,1),设平面EBC的法向量为=(x,y,z),则,得,令y=1,则z=2,x=1,即=(1,1,2),则cos<,>===,则<,>=30°,∵二面角F﹣EB﹣C是钝二面角,∴二面角F﹣EB﹣C的大小为150°.20.已知抛物线C:y2=2px(p>0),定点M(2,0),以O为圆心,抛物线C的准线与以|OM|为半径的圆所交的弦长为2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线y=﹣x+m(m∈R)与抛物线交于不同的两点A、B,则抛物线上是否存在定点P(x0,y0),使得直线PA,PB关于x=x0对称.若存在,求出P点坐标,若不存在,请说明理由.【考点】抛物线的简单性质.【分析】(I)利用垂径定理和勾股定理列方程解出p即可得出抛物线方程;(II)联立方程组,由根与系数的关系得出A,B纵坐标的关系,假设存在符合条件的P 点,则k PA+k PB=0,代入斜率公式化简即可求出x0,y0.【解答】解:(I)设抛物线的准线方程为x=﹣.圆O的半径r=2,由垂径定理得=4,解得p=2.∴抛物线方程为y2=4x.(II)联立方程组得y2+4y﹣4m=0,∴△=16+16m>0,解得m>﹣1.设A(x1,y1),B(x2,y2),则y1+y2=﹣4,y1y2=﹣4m.若抛物线上存在定点P(x0,y0),使得直线PA,PB关于x=x0对称,则k PA+k PB=0,∴+=+==0,∴y0=﹣=2,x0==1.∴存在点P(1,2),只要m>﹣1,直线PA,PB关于直线x=1对称.21.已知函数f(x)=x2+ax﹣lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)﹣2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:<0.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求导根据导数和函数的单调性的关系即可求出,(Ⅱ)求导,根据中点坐标公式得到=﹣(x1+x2)+a+,①,分别把两个零点x1,x2,代入到F(x)中,转化,分离参数得到a﹣(x1+x2)=,再代入得到= [ln+],换元,构造函数得到h(t)=lnt+,根据导数求出h(t)的最大值,即可证明.【解答】解:(Ⅰ)函数的定义域为(0,+∞),∴f′(x)=2x+a﹣=,令f′(x)>0,得x>,f′(x)<0,得0<x<,∴函数f(x)在(,+∞)为增函数,在(0,)为减函数,(Ⅱ)由已知g(x)=f(x)+2lnx,∴F(x)=3g(x)﹣2xg′(x)=﹣x2+ax+3lnx﹣2,∴F′(x)=﹣2x+a+,即: =﹣(x1+x2)+a+,①∵函数F(x)在定义域内有两个零点x1,x2,∴﹣x12+ax1+3lnx1﹣2=0,②﹣x22+ax2+3lnx2﹣2=0,③②﹣③得﹣(x12﹣x22)+a(x1﹣x2)+3(lnx1﹣lnx2)=0可得(x1﹣x2)[a﹣(x1+x2)]+3ln=0,∴a﹣(x1+x2)=,代入①得: =+=[ln+]= [ln+],令=t,则0<t<1,∴h(t)=lnt+,∴h′(t)=+=﹣=≥0∴h(t)在(0,1)上为增函数,∴h(t)<h(1)=0,∵x1<x2,∴<0.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时.用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-1:几何证明选讲] 22.如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:A、P、D、F四点共圆;(Ⅱ)若AE•ED=12,DE=EB=3,求PA的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)由已知中DE2=EF•EC,我们易证明,△DEF~△CED,进而结合CD∥AP,结合相似三角形性质,得到∠P=∠EDF,由圆内接四边形判定定理得到A、P、D、F 四点共圆;(Ⅱ)由(Ⅰ)中的结论,结合相交弦定理得PE•EF=AE•ED=12,结合已知条件,可求出PB,PC的长,代入切割线定理,即可求出PA的长.【解答】解:(Ⅰ)证明:∵DE2=EF•EC,∴=,又∠DEF=∠CED,∴△DEF~△CED,∠EDF=∠ECD,又∵CD∥PA,∴∠ECD=∠P故∠P=∠EDF,所以A,P,D,F四点共圆;…5分(Ⅱ)由(Ⅰ)及相交弦定理得:PE•EF=AE•ED=12,又BE•EC=AE•ED=12,∴EC=4,EF==,PE=,PB=,PC=PB+BE+EC=,由切割线定理得PA2=PB•PC=×=,所以PA=为所求…10分[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.【考点】参数方程化成普通方程;直线与圆的位置关系.【分析】(Ⅰ)利用极坐标方程的定义即可求得;(Ⅱ)数形结合:作出图象,根据图象即可求出有两交点时a的范围.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ(sinθ+cosθ)=a,∴曲线C1的直角坐标方程为x+y﹣a=0.(Ⅱ)曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(﹣1≤y≤0),为半圆弧,如图所示,曲线C1为一族平行于直线x+y=0的直线,当直线C1过点P时,利用得a=﹣2±,舍去a=﹣2﹣,则a=﹣2+,当直线C1过点A、B两点时,a=﹣1,∴由图可知,当﹣1≤a<﹣2+时,曲线C1与曲线C2有两个公共点.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.【考点】一般形式的柯西不等式.【分析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)运用柯西不等式,注意等号成立的条件,即可得到最小值.【解答】解:(1)因为f(x)=|x+a|+|x﹣b|+c≥|(x+a)﹣(x﹣b)|+c=|a+b|+c,当且仅当﹣a≤x≤b时,等号成立,又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b+c,所以a+b+c=4;(2)由(1)知a+b+c=4,由柯西不等式得,(a2+b2+c2)(4+9+1)≥(•2+•3+c•1)2=(a+b+c)2=16,即a2+b2+c2≥当且仅当==,即a=,b=,c=时,等号成立.所以a2+b2+c2的最小值为.8月1日。

2022年河南省南阳一中高考理科数学一模试卷及答案解析

2022年河南省南阳一中高考理科数学一模试卷及答案解析

2022年河南省南阳一中高考理科数学一模试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡的非答题区域均无效。

3、非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交。

一、单选题(每小题5分,共60分)1.若集合M ={x ∈Z |sin (πx )=0},N ={x ∈Z|cos πx2=0},则( ) A .M =NB .M ⊆NC .N ⊆MD .M ∩N =Φ2.若复数z 满足:z +2i =3−i 31+i (i 为虚数单位),则z 等于( )A .2﹣iB .2+iC .2﹣3iD .2+3i3.函数y =(e x ﹣e ﹣x )sin|2x |的图象可能是( )A .B .C .D .4.为了得到函数f(x)=sin 13x +cos 13x 的图象,可以将函数g(x)=√2cos 13x 的图象( ) A .向右平移3π4单位长度 B .向右平移π4个单位长度C .向左平移3π4个单位长度D .向左平移π4个单位长度5.在等差数列{a n }中,a 11=2a 8+6,则a 2+a 6+a 7=( ) A .﹣18B .﹣6C .8D .126.设奇函数f (x )在R 上存在导数f ′(x ),且在(0,+∞)上f ′(x )<x 2,若f (1﹣m )﹣f (m )≥13[(1−m)3−m 3],则实数m 的取值范围为( ) A .[−12,12] B .[12,+∞)C .(−∞,12]D .(−∞,−12]∪[12,+∞)7.A 同学和B 同学参加某市青少年围棋比赛并进入决赛,决赛采取“3局2胜”制,若A 同学每局获胜的概率均为23,且每局比赛相互独立,则在A 先胜一局的条件下,A 最终能获胜的概率是( ) A .34B .89C .79D .568.ABCD ﹣A 1B 1C 1D 1是棱长为2的正方体,E 、F 、G 分别为AA 1、D 1C 1、BC 的中点,过E 、F 、G 的平面截正方体的截面面积为( ) A .√3 B .√2C .3√3D .3√29.在(2x +12x )2n的展开式中,1x的系数是14,则x 2的系数是( ) A .28B .56C .112D .22410.设实数x ,y 满足约束条件{x −y −1≤0x +y −1≤0x ≥−1,则x 2+(y +2)2的取值范围是( )A .[12,17]B .[1,17]C .[1,√17]D .[√22,√17] 11.△ABC 中,AB =2,BC =2√6,AC =4,点O 为△ABC 的外心,若AO →=mAB →+nAC →,则实数m+n m−n的值为( )A .7B .15C .−15D .1712.过双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点F 作直线l ,且直线l 与双曲线C 的一条渐近线垂直,垂足为A ,直线l 与另一条渐近线交于点B .已知O 为坐标原点,若△OAB 的内切圆的半径为√3−12a ,则双曲线C 的离心率为( ) A .2√33B .√3+1C .4√33D .2√33或2二、填空题(本大题共4小题,每小题5分,共20分)13.已知a →=(x −5,−2x −1),b →=(3+2x ,2),且a →与b →的夹角为钝角,则x 的取值范围是 .14.为培养学生的综合素养,某校准备在高二年级开设A ,B ,C ,D ,E ,F 六门选修课程,学,校规定每个学生必须从这6门课程中选3门,且A ,B 两门课程至少要选1门,则学生甲共有 种不同的选法.15.已知x 1,x 2是函数f (x )=2sin2x +cos2x ﹣m 在[0,π2]内的两个零点,则sin (x 1+x 2)= .16.已知函数f (x )={2x ,0≤x ≤1lnx ,x >1,若存在实数x 1,x 2满足0≤x 1<x 2,且f (x 1)=f(x 2),则x 2﹣4x 1的最小值为 . 三、解答题(共70分)17.(12分)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3=9.数列{b n }满足a 1b 1+a 2b 2+⋅⋅⋅+a nb n=2n +1.(1)求{a n }和{b n }的通项公式;(2)设数列{b n }的前n 项和为T n ,求证:T n <163.18.(12分)2021年,福建、河北、辽宁、江苏、湖北、湖南、广东、重庆8省市将迎来“3+1+2”新高考模式.“3”指的是:语文、数学、英语,统一高考;“1”指的是:物理和历史,考生从中选一科;“2”指的是:化学、生物、地理和政治,考生从四科中选两科.为了迎接新高考,某中学调查了高一年级1500名学生的选科倾向,随机抽取了100人,统计选考科目人数如表:选考物理 选考历史 总计 男生 40 50 女生 总计30(Ⅰ)补全2×2列联表,并根据表中数据判断是否有95%的把握认为“选考物理与性别有关”;(Ⅱ)将此样本的频率视为总体的概率,随机调查该校3名学生,设这3人中选考历史的人数为X,求X的分布列及数学期望.参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.参考数据:P(K2≥k0)0.100.050.0250.0100.0050.001k0 2.706 3.841 5.024 6.6357.87910.82819.(12分)如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=12CD=1,现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF 与平面ABCD垂直,M为ED的中点,如图2.(1)求证:AM∥平面BEC;(2)求证:BC⊥平面BDE;(3)求直线DC与平面BEC所成角的正弦值.20.(12分)已知椭圆C:x2a+y2b=1的离心率为√63,其长轴的两个端点分别为A(﹣3,0),B(3,0).(1)求椭圆C的标准方程;(2)点P为椭圆上除A,B外的任意一点,直线AP交直线x=4于点E,点O为坐标原点,过点O且与直线BE垂直的直线记为l,直线BP交y轴于点M,交直线l于点N,求N点的轨迹方程,并探究△BMO与△NMO的面积之比是否为定值.21.(12分)已知函数f(x)=x2−1−2axlnxx.(1)讨论函数f(x)的单调性;(2)若lnm−1m=lnn+1n,求证:m﹣n>2.选做题,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(10分)22.在直角坐标系xOy中,直线l的参数方程为{x=−2+tcosαy=tsinα(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,直线l 与曲线C交于不同的两点A,B.(1)求曲线C的参数方程;(2)若点P为直线l与x轴的交点,求1|PA|+1|PB|的取值范围.23.已知函数f(x)=|x﹣a|+2|x+1|(a∈R).(1)当a=4时,解不等式f(x)<8;(2)记关于x的不等式f(x)≤2|x﹣3|的解集为M,若[﹣4,﹣1]⊆M,求a的取值范围.2022年河南省南阳一中高考理科数学一模试卷参考答案与试题解析一、单选题(每小题5分,共60分)1.若集合M ={x ∈Z |sin (πx )=0},N ={x ∈Z|cos πx2=0},则( ) A .M =NB .M ⊆NC .N ⊆MD .M ∩N =Φ解:∵M ={x ∈Z |sin (πx )=0}=Z , N ={x ∈Z|cos πx2=0}={x |x =2k +1,k ∈Z }, ∴N ⊆M , 故选:C .2.若复数z 满足:z +2i =3−i 31+i (i 为虚数单位),则z 等于( )A .2﹣iB .2+iC .2﹣3iD .2+3i解:∵z +2i =3−i 31+i =3+i 1+i =(3+i)(1−i)(1+i)(1−i)=3−3i+i−i 212+12=4−2i2=2﹣i , ∴z =2﹣3i ,则z =2+3i , 故选:D .3.函数y =(e x ﹣e ﹣x )sin|2x |的图象可能是( )A .B .C .D .解:函数的定义域为R ,f (﹣x )=(e ﹣x ﹣e x )sin|﹣2x |=﹣(e x ﹣e ﹣x )sin|2x |=﹣f (x ),为奇函数,故排除选项B ,C ;又f(12)=(e 12−e −12)sin1>0,f(π2)=0,且π2是第一个大于0的零点,故排除选项D .故选:A .4.为了得到函数f(x)=sin 13x +cos 13x 的图象,可以将函数g(x)=√2cos 13x 的图象( ) A .向右平移3π4单位长度 B .向右平移π4个单位长度C .向左平移3π4个单位长度D .向左平移π4个单位长度解:∵f(x)=sin 13x +cos 13x =√2cos(13x −π4)=√2cos 13(x −3π4), ∴将函数g(x)=√2cos 13x 的图象向右平移3π4单位长度,可得f (x )的图象,故选:A .5.在等差数列{a n }中,a 11=2a 8+6,则a 2+a 6+a 7=( ) A .﹣18B .﹣6C .8D .12解:根据题意,设等差数列{a n }的公差为d ,由a 11=2a 8+6,得2a 8﹣a 11=﹣6,即a 8﹣3d =a 5=﹣6, 所以a 2+a 6+a 7=3a 5=﹣18; 故选:A .6.设奇函数f (x )在R 上存在导数f ′(x ),且在(0,+∞)上f ′(x )<x 2,若f (1﹣m )﹣f (m )≥13[(1−m)3−m 3],则实数m 的取值范围为( ) A .[−12,12] B .[12,+∞)C .(−∞,12]D .(−∞,−12]∪[12,+∞)解:令g(x)=f(x)−13x 3,∵g(−x)+g(x)=f(−x)−13(−x)3+f(x)−13x 3=0, ∴函数g (x )为奇函数, ∵x ∈(0,+∞)时, g ′(x )=f ′(x )﹣x 2<0,函数g (x )在x ∈(0,+∞)为减函数, 又由题可知,f (0)=0,g (0)=0, 所以函数g (x )在R 上为减函数,f(1−m)−f(m)≥13[(1−m)3−m 3],即g (1﹣m )≥g (m ), ∴1﹣m ≤m , ∴m ≥12. 故选:B .7.A 同学和B 同学参加某市青少年围棋比赛并进入决赛,决赛采取“3局2胜”制,若A 同学每局获胜的概率均为23,且每局比赛相互独立,则在A 先胜一局的条件下,A 最终能获胜的概率是( ) A .34B .89C .79D .56解:在A 先胜一局的条件下,A 最终能获胜的情况有3种: ①第二局A 胜,概率为:P 1=23, ②第二局A 负,第三局A 胜,概率为P 2=13×23=29, ∴在A 先胜一局的条件下,A 最终能获胜的概率是: P =P 1+P 2=23+29=89. 故选:B .8.ABCD ﹣A 1B 1C 1D 1是棱长为2的正方体,E 、F 、G 分别为AA 1、D 1C 1、BC 的中点,过E 、F 、G 的平面截正方体的截面面积为( ) A .√3B .√2C .3√3D .3√2解:取A 1D 1,C 1C ,AB 的中点M ,N ,K ,连接EM ,MF ,FN ,NG ,GK ,EK . 根据正方体的性质,得六边形EMFNGK 为边长为√2的正六边形, 所以面积为6×(12×√2×√2×sin60°)=3√3. 故选:C .9.在(2x +12x )2n 的展开式中,1x 的系数是14,则x 2的系数是( )A .28B .56C .112D .224解:∵(2x +12x )2n 的展开式的通项公式为 T r +1=C 2n r•22n﹣2r•x 2n﹣2r,令2n ﹣2r =﹣2,求得r =n +1, 故展开式中1x的系数是C 2n n+1•2﹣2=14,∴C 2n n+1=C 2n n−1=56,求得n =4. 令2n ﹣2r =8﹣2r =2,求得r =3,可得x 2的系数是 C 83•22=224,故选:D .10.设实数x ,y 满足约束条件{x −y −1≤0x +y −1≤0x ≥−1,则x 2+(y +2)2的取值范围是( )A .[12,17]B .[1,17]C .[1,√17]D .[√22,√17]解:由题意作平面区域如下,,x 2+(y +2)2的几何意义是点A (0,﹣2)与阴影内的点的距离的平方, 而点A 到直线y =x ﹣1的距离d =|1−0−2|√2=√22, B (﹣1,2),故|AB |=√(−1)2+42=√17, 故(√22)2≤x 2+(y +2)2≤(√17)2, 即12≤x 2+(y +2)2≤17, 故选:A .11.△ABC 中,AB =2,BC =2√6,AC =4,点O 为△ABC 的外心,若AO →=mAB →+nAC →,则实数m+n m−n的值为( )A .7B .15C .−15D .17解:由余弦定理可得cos∠BAC =AB 2+AC 2−BC 22AB⋅AC =4+16−242×2×4=−14∵AO →=mAB →+nAC →,∴{AO →⋅AB →=mAB →2+nAC →⋅AB →AO →⋅AC →=mAB →⋅AC →+nAC →2, 又∵AO →⋅AB →=|AB →|⋅|AO →|⋅cos∠OAB =|AB →|⋅12|AB →|=2,同理可得:AO →⋅AC →=8,代入上式,∴{4m −2n =2−2m +16n =8,解得:m =45,n =35, 所以m+n m−n=7,故选:A .12.过双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 作直线l ,且直线l 与双曲线C 的一条渐近线垂直,垂足为A ,直线l 与另一条渐近线交于点B .已知O 为坐标原点,若△OAB 的内切圆的半径为√3−12a ,则双曲线C 的离心率为( )A .2√33B .√3+1C .4√33D .2√33或2解(1)若A ,B 在y 轴同侧,不妨设A 在第一象限.如图,设△OAB 内切圆的圆心为M ,则M 在∠AOB 的平分线Ox 上,过点M 分别作MN ⊥OA 于N ,MT ⊥AB 于T ,由F A ⊥OA 得四边形MTAN 为正方形,由焦点到渐近线的距离为b 得|F A |=b ,又|OF |=c ,所以|OA |=a , 又|NA|=|MN|=√3−12a ,所以|NO|=3−√32a , 所以ba=tan∠AOF =|MN||NO|=√33,从而可得e =√1+(b a )2=2√33.(2)若A ,B 在y 轴异侧,不妨设A 在第一象限如图,易知|F A |=b ,|OF |=c ,|OA |=a ,所以△OAB 的内切圆半径为|AB|+|OA|−|OB|2=√3−12a , 所以|OB|−|AB|=2a −√3a ,又因为|OB |2=|AB |2+a 2,所以|AB|=√3a ,|OB |=2a , 所以∠BOA =60°,∠AOF =60°,则ba =tan60°=√3,从而可得e =√1+(ba )2=2.综上,双曲线C 的离心率为2√33或2.故选:D .二、填空题(本大题共4小题,每小题5分,共20分)13.已知a →=(x −5,−2x −1),b →=(3+2x ,2),且a →与b →的夹角为钝角,则x 的取值范围是 (11−√2574,−5+√534)∪(−5+√534,11+√2574) .解:a →=(x −5,−2x −1),b →=(3+2x ,2),且a →与b →的夹角为钝角, 所以{a →⋅b →<0a →与b →不平行,即{(x −5)(3+2x)+2(−2x −1)<02(x −5)≠(−2x −1)(3+2x),即{2x 2−11x −17<04x 2+10x −7≠0解得11−√2574<x <11+√2574且x ≠−5+√534; 所以x 的取值范围是(11−√2574,−5+√534)∪(−5+√534,11+√2574). 故答案为:(11−√2574,−5+√534)∪(−5+√534,11+√2574). 14.为培养学生的综合素养,某校准备在高二年级开设A ,B ,C ,D ,E ,F 六门选修课程,学,校规定每个学生必须从这6门课程中选3门,且A ,B 两门课程至少要选1门,则学生甲共有 16 种不同的选法.解:第一类,从A ,B 两门课程选1门,再从C ,D ,E ,F 中选2门,共有C 21C 42=12种,第二类,从A ,B 两门课程选2门,再从C ,D ,E ,F 中选1门,共有C 22C 41=4种, 根据分类计数原理,可得共有12+4=16种, 故答案为:16.15.已知x 1,x 2是函数f (x )=2sin2x +cos2x ﹣m 在[0,π2]内的两个零点,则sin (x 1+x 2)=2√55. 解:x 1,x 2是函数f (x )=2sin2x +cos2x ﹣m 在[0,π2]内的两个零点,可得m =2sin2x 1+cos2x 1=2sin2x 2+cos2x 2, 即为2(sin2x 1﹣sin2x 2)=﹣cos2x 1+cos2x 2,即有4cos (x 1+x 2)sin (x 1﹣x 2)=﹣2sin (x 2+x 1)sin (x 2﹣x 1), 由x 1≠x 2,可得sin (x 1﹣x 2)≠0, 可得sin (x 2+x 1)=2cos (x 1+x 2), 由sin 2(x 2+x 1)+cos 2(x 1+x 2)=1, 可得sin (x 2+x 1)=±2√55,由x 1+x 2∈[0,π], 即有sin (x 2+x 1)=2√55.另解:由对称性可知√5=2sin (x 2+x 1)+cos (x 1+x 2), 由sin 2(x 2+x 1)+cos 2(x 1+x 2)=1, 由x 1+x 2∈[0,π], 即有sin (x 2+x 1)=2√55. 故答案为:2√55. 16.已知函数f (x )={2x ,0≤x ≤1lnx ,x >1,若存在实数x 1,x 2满足0≤x 1<x 2,且f (x 1)=f(x 2),则x 2﹣4x 1的最小值为 2﹣2ln 2 .解:作出f (x )的图象如图所示,因为f (x 1)=f (x 2),所以2x 1=lnx 2,即x 1=12lnx 2, 所以x 2﹣4x 1=x 2﹣2lnx 2,由图可知1<x 2≤e 2,令g (t )=t ﹣2lnt (1<t ≤e 2),则g ′(t )=1−2t =t−2t , 则函数g (t )在(1,2]上单调递减,在[2,e 2]上单调递增,所以g (t )min =g (2)=2﹣2ln 2, 故答案为:2﹣2ln 2.三、解答题(共70分)17.(12分)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3=9.数列{b n }满足a 1b 1+a 2b 2+⋅⋅⋅+a nb n=2n +1.(1)求{a n }和{b n }的通项公式;(2)设数列{b n }的前n 项和为T n ,求证:T n <163. 解:(1)设等差数列{a n }的公差为d ,由S 3=9,得3a 1+3d =9,又a 1=1,则d =2,所以a n =1+2(n ﹣1)=2n ﹣1; 当n =1时,有a 1b 1=3,得b 1=13,当n ≥2时,由a 1b 1+a 2b 2+⋯+a n−1b n−1+a nb n=2n +1得a 1b 1+a 2b 2+⋯+a n−1b n−1=2n ﹣1+1,两式相减得a nb n=2n +1﹣(2n ﹣1+1)=2n ﹣1,所以b n =a n 2n−1=2n−12n−1, 又b 1=13不满足上式,所以b n ={13,n =12n−12n−1,n ≥2;(2)证明:根据题意,T n =b 1+b 2+…+b n =13+32+522+⋯+2n−12n−1,所以12T n =16+322+⋯+2n−32n−1+2n−12n , 两式相减得12T n =53+222+223+⋯+22n−1−2n−12n =53+12(1−12n−2)1−12−2n−12n =83−2n+32n , 故T n =163−2n+32n−1<163.18.(12分)2021年,福建、河北、辽宁、江苏、湖北、湖南、广东、重庆8省市将迎来“3+1+2”新高考模式.“3”指的是:语文、数学、英语,统一高考;“1”指的是:物理和历史,考生从中选一科;“2”指的是:化学、生物、地理和政治,考生从四科中选两科.为了迎接新高考,某中学调查了高一年级1500名学生的选科倾向,随机抽取了100人,统计选考科目人数如表:选考物理 选考历史 总计 男生 40 50 女生 总计30(Ⅰ)补全2×2列联表,并根据表中数据判断是否有95%的把握认为“选考物理与性别有关”;(Ⅱ)将此样本的频率视为总体的概率,随机调查该校3名学生,设这3人中选考历史的人数为X ,求X 的分布列及数学期望.参考公式:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d .参考数据: P (K 2≥k 0) 0.100.050.0250.0100.0050.001k 02.7063.8415.0246.6357.87910.828解:(Ⅰ)根据题意补全列联表,如下:选考物理 选考历史 总计 男生 40 10 50 女生 30 20 50 总计7030100计算K 2=100×(40×20−30×10)250×50×70×30≈4.762>3.841,所以有95%的把握认为“选考物理与性别有关”;(Ⅱ)根据题意知,随机变量X 的可能取值为0,1,2,3,且X 服从二项分布, 由题意知,学生选考历史的概率为310,且X ~B (3,310),计算P(X=0)=C30•(710)3=3431000,P(X=1)=C31•310•(710)2=4411000,P(X=2)=C32•(310)2•710=1891000,P(X=3)=C33•(310)3=271000,所以X的分布列为:X0123P343100044110001891000271000计算数学期望为E(X)=3×310=910.19.(12分)如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=12CD=1,现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF 与平面ABCD垂直,M为ED的中点,如图2.(1)求证:AM∥平面BEC;(2)求证:BC⊥平面BDE;(3)求直线DC与平面BEC所成角的正弦值.证明:(1)取EC中点N,连结MN,BN,在△EDC中,M,N分别为ED、EC的中点,∴MN∥CD,且MN=12CD.由已知AB∥CD,AB=12CD,∴四边形ABMN为平行四边形.∴BN∥AM.又∵BN⊂平面BEC,且AM⊄平面BEC,∴AM ∥平面BEC .(2)在正方形ADEF 中,ED ⊥AD ,又∵平面ADEF ⊥平面ABCD ,且平面ADEF ∩平面ABCD =AD , ∴ED ⊥平面ABCD ,∴ED ⊥BC ,在直角梯形ABCD 中,AB =AD =1,CD =2,得BC =√2. 在△BCD 中,BD =BC =√2,CD =2,BD 2+BC 2=CD 2, ∴BC ⊥BD .∵ED ∩BD =D ,∴BC ⊥平面BDE .解:(3)作DH ⊥平面BEC 于点H ,连接CH ,则∠DCH 为CD 与平面BEC 所成角, 由(2)知,BC ⊥BE ,BC ⊥BD , ∴S △BCD =12×BD ×BC =12×√2×√2=1, 又∵ED ⊥平面ABCD ,V E−BCD =V D−BCE =13S △BCD ⋅DE =13.∴DH =√63,∴sin ∠DCH =DH CD =√632=√66.∴CD 与平面BEC 所成角的正弦值为√66.20.(12分)已知椭圆C :x 2a 2+y 2b 2=1的离心率为√63,其长轴的两个端点分别为A (﹣3,0),B (3,0).(1)求椭圆C 的标准方程;(2)点P 为椭圆上除A ,B 外的任意一点,直线AP 交直线x =4于点E ,点O 为坐标原点,过点O 且与直线BE 垂直的直线记为l ,直线BP 交y 轴于点M ,交直线l 于点N ,求N 点的轨迹方程,并探究△BMO 与△NMO 的面积之比是否为定值. 解:(1)由题意可得e =c a =√63,a =3,所以c =√6, 由椭圆的定义可得b 2=a 2﹣c 2=9﹣6=3,所以椭圆的标准方程为:x 29+y 23=1;(2)设P (x 0,y 0),(y 0≠0),则x 029+y 023=1,①直线AP 的方程为:y =y 0x 0+3(x +3),与x =4联立可得E (4,7y 0x 0+3),所以直线BE 的斜率k BE =7y 0x 0+34−3=7y 0x 0+3, 由题意可得直线l 的方程为:y =−x 0+37y 0x , 直线BP 的方程为:y =y 0x 0−3(x ﹣3),令x =0,则y =−3y 0x 0−3,即M (0,−3y 0x 0−3,), 联立{y =yx 0−3(x −3)y =−x 0+37y,解得7y 02+x 02−97y 0(x 0−3)x =3y 0x 0−3②, 又x 02=9﹣3y 02,由①②可得:x N =214,即N 的轨迹方程为x =214, 所以S △BMOS △NMO=12|OM|⋅|x B |12|OM|⋅|x N|=|x B ||x N |=3214=47,所以△BMO 与△NMO 的面积之比为定值4:7.21.(12分)已知函数f(x)=x 2−1−2axlnxx.(1)讨论函数f (x )的单调性;(2)若lnm −1m =lnn +1n ,求证:m ﹣n >2.(1)解:f (x )的定义域为(0,+∞),f′(x)=1+1x 2−2a x =x 2−2ax+1x 2.令g (x )=x 2﹣2ax +1,方程x 2﹣2ax +1=0的判别式Δ=4a 2﹣4=4(a +1)(a ﹣1), (i )当△≤0,即﹣1≤a ≤1时,g (x )=x 2﹣2ax +1≥0恒成立, 即对任意x ∈(0,+∞),f′(x)=g(x)x 2≥0, 所以f (x )在(0,+∞)上单调递增. (ii )当Δ>0,即a <﹣1或a >1.①当a <﹣1时,g (x )=x 2﹣2ax +1≥0恒成立,即对任意x ∈(0,+∞),f′(x)=g(x)x 2≥0, 所以f (x )在(0,+∞)上单调递增.②当a >1时,由x 2﹣2ax +1=0,解得α=a −√a 2−1,β=a +√a 2−1.所以当0<x <α时,g (x )>0;当α<x <β时,g (x )<0;当x >β时,g (x )>0, 所以在(0,a −√a 2−1)∪(a +√a 2−1,+∞)上,f '(x )>0, 在(a −√a 2−1,a +√a 2−1)上,f '(x )<0所以函数f (x )在(0,a −√a 2−1)和(a +√a 2−1,+∞)上单调递增; 在(a −2−1,a +√a 2−1)上单调递减.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,a −√a 2−1)和(a +√a 2−1,+∞)上单调递增,在(a −√a 2−1,a +√a 2−1)上单调递减. (2)证明: 由lnm −1m =lnn +1n ,可得lnm −lnn =1m +1n(m ,n >0), 得lnm ﹣lnn >0,因此m >n >0,因为lnm −lnn =1m +1n ⇒ln m n =m+n mn =mn +1m,令m n=t ,则t >1,lnt =t+1m, 所以m =t+1lnt,n =t+1tlnt ,所以m −n =t 2−1tlnt ,要证明m ﹣n >2,只需证t 2−1tlnt>2,(t =m n>1),即证:t −1t >2lnt(t >1),由(1)可知,a =1时,f(x)=x −1x −2lnx 在(0,+∞)上是增函数, 所以当t >1,f (t )>f (1),而f (1)=0,因此t −1t>2lnt(t >1)成立, 所以m ﹣n >2.选做题,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(10分)22.在直角坐标系xOy 中,直线l 的参数方程为{x =−2+tcosαy =tsinα(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ,直线l 与曲线C 交于不同的两点A ,B . (1)求曲线C 的参数方程;(2)若点P 为直线l 与x 轴的交点,求1|PA|+1|PB|的取值范围.解:(1)曲线C 的极坐标方程为ρ=2cos θ, 转换为直角坐标方程为:x 2+y 2﹣2x =0. 转换为参数方程为:{x =1+cosθy =sinθ(θ为参数),(2)把直线l 的参数方程为{x =−2+tcosαy =tsinα(t 为参数),代入x 2+y 2﹣2x =0,得到:t 2﹣6cos αt +8=0. 由已知得:△=36cos 2α﹣32>0, 故:cos 2α>89, 由于cos 2α≤1, 所以:cos 2α∈(89,1].设方程的两实数根为t 1和t 2,由参数的几何意义可得:|P A |+|PB |=|t 1+t 2|=6|cos α|, |P A ||PB |=|t 1•t 2|=8. 所以1|PA|2+1|PB|2=(|PA|+|PB|)2−2|PA||PB||PA|2|PB|2=9cos 2α−416,由于cos 2α∈(89,1], 故:9cos 2α−416∈(14,516],即:1|PA|+1|PB|=9cos 2α−416∈(14,516].23.已知函数f (x )=|x ﹣a |+2|x +1|(a ∈R ). (1)当a =4时,解不等式f (x )<8;(2)记关于x 的不等式f (x )≤2|x ﹣3|的解集为M ,若[﹣4,﹣1]⊆M ,求a 的取值范围. 解:(1)a =4时,f (x )=|x ﹣4|+2|x +1|, 若f (x )<8,不等式可转化为{2−3x <8,x <−16+x <8,−1≤x ≤43x −2<8,x >4,解得:﹣2<x <﹣1或﹣1≤x <2或x ∈∅, 综上,不等式的解集是(﹣2,2). (2)若[﹣4,﹣1]⊆M ,f (x )≤2|x ﹣3|,第 21 页 共 21 页 即当x ∈[﹣4,﹣1]时,|x ﹣a |+2|x +1|≤2|x ﹣3|恒成立, ∵在[﹣4,﹣1]上,x +1≤0,x ﹣3≤0,∴|x +1|=﹣x ﹣1,|x ﹣3|=3﹣x ,∴f (x )≤2|x ﹣3|等价于|x ﹣a |≤8,即﹣8≤x ﹣a ≤8, ∵当x ∈[﹣4,﹣1]时该不等式恒成立,∴{−1−a ≤8−4−a ≥−8,解得﹣9≤a ≤4.即a 的范围是[﹣9,4].。

山东省潍坊市高考数学一模理科试卷含答案解析

山东省潍坊市高考数学一模理科试卷含答案解析

山东省潍坊市高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,若复数是纯虚数,则a=()A.﹣1 B.1 C.﹣2 D.22.已知集合P={2,3,4,5,6},Q={3,5,7},若M=P∩Q,则M的子集个数为()A.5 B.4 C.3 D.23.在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若=, =,则=()A.+B.﹣+C.﹣D.﹣﹣4.已知函数f(x)=﹣x2+2,g(x)=log2|x|,则函数F(x)=f(x)•g(x)的大致图象为()A.B.C.D.5.已知双曲线的左、右焦点与虚轴的一个端点构成一个角为120°的三角形,则双曲线C的离心率为()A. B. C. D.6.已知p:函数f(x)=(x﹣a)2在(﹣∞,﹣1)上是减函数,恒成立,则¬p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知两条不同的直线m,n和两个不同的平面α,β,以下四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m⊥α,n∥β,且α∥β,则m⊥n;③若m∥α,n⊥β,且α⊥β,则m∥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确命题的个数是()A.4 B.3 C.2 D.18.设函数y=f(x)(x∈R)为偶函数,且∀x∈R,满足f(x﹣)=f(x+),当x∈[2,3]时,f (x)=x,则当x∈[﹣2,0]时,f(x)=()A.|x+4| B.|2﹣x| C.2+|x+1| D.3﹣|x+1|9.执行如图所示的程序框图,若输出的n=7,则输入的整数K的最大值是()A.18 B.50 C.78 D.30610.已知函数f(x)=ax+lnx﹣有三个不同的零点x1,x2,x3(其中x1<x2<x3),则(1﹣)2(1﹣)(1﹣)的值为()A.1﹣a B.a﹣1 C.﹣1 D.1二、填空题:本大题共5小题,每小题5分,共25分.11.观察式子,…,则可归纳出.12.已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=.13.如图,在边长为1的正方形OABC中任取一点,则该点落在阴影部分中的概率为.14.将编号为1,2,3,4的四个小球放入3个不同的盒子中,每个盒子里至少放1个,则恰有1个盒子放有2个连号小球的所有不同放法有种.(用数字作答)15.已知抛物线y2=2px的准线方程为x=﹣1焦点为F,A,B,C为该抛物线上不同的三点,成等差数列,且点B在x轴下方,若,则直线AC的方程为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=4sin(ωx﹣)•cosωx在x=处取得最值,其中ω∈(0,2).(1)求函数f(x)的最小正周期:(2)将函数f(x)的图象向左平移个单位,再将所得图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得到函数y=g(x)的图象.若α为锐角.g(α)=,求cosα17.如图所示的几何体中,四边形ABCD和四边形BCEF是全等的等腰梯形,且平面BCEF⊥平面ABCD,AB∥DC,CE∥BF,AD=BC,AB=2CD,∠ABC=∠CBF=60°,G为线段AB的中点(1)求证:AC⊥BF;(2)求二面角D﹣FG﹣B(钝角)的余弦值.18.已知正项数列{a n}的前n项和为S n,且a1=1,S n+1+S n=a,数列{b n}满足b n b n+1=3,且b1=1.(Ⅰ)求数列{a n},{b n}的通项公式;b4+…+a1b2n,求T n.(Ⅱ)记T n=a n b2+a n﹣119.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见表.规定:A、B、C三级为合格等级,D为不合格等级.百分制85以及以上70分到84分60分到69分60分以下等级 A B C D为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.(I)求n和频率分布直方图中的x,y的值;(Ⅱ)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;(Ⅲ)在选取的样本中,从A、C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.20.已知椭圆的离心率,过椭圆的左焦点F且倾斜角为30°的直线与圆x2+y2=b2相交所得弦的长度为1.(I)求椭圆E的方程;(Ⅱ)若动直线l交椭圆E于不同两点M(x1,y1),N(x2,y2),设=(bx1,ay1),=((bx2,ay2),O为坐标原点.当以线段PQ为直径的圆恰好过点O时,求证:△MON的面积为定值,并求出该定值.21.函数f(x)=(x﹣a)2(x+b)e x(a,b∈R).(1)当a=0,b=﹣3时.求函数f(x)的单调区间;(2)若x=a是f(x)的极大值点.(i)当a=0时,求b的取值范围;(ii)当a为定值时.设x1,x2,x3(其中x1<x2<x3))是f(x)的3个极值点,问:是否存在实数b,可找到实数x4,使得x4,x1,x2,x3成等差数列?若存在求出b的值及相应的x4,若不存在.说明理由.山东省潍坊市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,若复数是纯虚数,则a=()A.﹣1 B.1 C.﹣2 D.2【考点】复数代数形式的乘除运算.【专题】计算题;方程思想;数学模型法;数系的扩充和复数.【分析】利用复数代数形式的乘除运算化简,然后由实部等于0求得a值.【解答】解:∵ =是纯虚数,∴a=2.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知集合P={2,3,4,5,6},Q={3,5,7},若M=P∩Q,则M的子集个数为()A.5 B.4 C.3 D.2【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出P与Q的交集确定出M,即可求出M子集的个数.【解答】解:∵P={2,3,4,5,6},Q={3,5,7},∴M=P∩Q={3,5},则M的子集个数为22=4.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若=, =,则=()A.+B.﹣+C.﹣D.﹣﹣【考点】向量的线性运算性质及几何意义.【专题】对应思想;综合法;平面向量及应用.【分析】利用平面向量的线性运算的几何意义,使用表示出.【解答】解: =.∵AP=AB,BQ=BC,∴ ==, ==.∴=.故选:A.【点评】本题考查了平面向量线性运算的几何意义,属于基础题.4.已知函数f(x)=﹣x2+2,g(x)=log2|x|,则函数F(x)=f(x)•g(x)的大致图象为()A.B.C.D.【考点】函数的图象.【专题】应用题;数形结合;函数思想;定义法;函数的性质及应用.【分析】根据函数的奇偶性和函数值的变化趋势,即可判断.【解答】解:∵f(﹣x)=﹣x2+2=f(x),g(﹣x)=log2|x|=g(x),∴F(﹣x)=f(﹣x)g(﹣x)=f(x)g(x)=F(x),∴函数F(x)为偶函数,其图象关于y轴对称,∵当x→+∞时,f(x)→﹣∞,g(x)→+∞,∴当x→+∞时,F(x)→﹣∞,故选:B.【点评】本题考查了函数图象的识别,关键是判断函数的奇偶性和函数值的变化趋势,属于基础题.5.已知双曲线的左、右焦点与虚轴的一个端点构成一个角为120°的三角形,则双曲线C的离心率为()A. B. C. D.【考点】双曲线的简单性质.【专题】计算题;方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】根据题意,设虚轴的一个端点M(0,b),结合焦点F1、F2的坐标和∠F1MF2=120°,得到c=b,再用平方关系化简得c=a,根据离心率计算公式即可得到该双曲线的离心率.【解答】解:双曲线,可得虚轴的一个端点M(0,b),F1(﹣c,0),F2(﹣c,0),设∠F1MF2=120°,得c=b,平方得c2=3b2=3(c2﹣a2),可得3a2=2c2,即c=a,得离心率e==.故选:B.【点评】本题给出双曲线两个焦点对虚轴一端的张角为120度,求双曲线的离心率.着重考查了双曲线的标准方程和简单几何性质等知识,属于基础题.6.已知p:函数f(x)=(x﹣a)2在(﹣∞,﹣1)上是减函数,恒成立,则¬p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;函数的性质及应用;不等式的解法及应用;简易逻辑.【分析】对于命题p:利用二次函数的单调性可得:﹣1≤a,¬p:a<﹣1.对于命题q:由于x>0,利用基本不等式的性质可得: =x+≥2,即可得出结论.【解答】解:p:函数f(x)=(x﹣a)2在(﹣∞,﹣1)上是减函数,∴﹣1≤a,∴¬p:a<﹣1.q:∵x>0,∴ =x+≥=2,当且仅当x=1时取等号,∴a≤2.则¬p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的解法、函数的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7.已知两条不同的直线m,n和两个不同的平面α,β,以下四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m⊥α,n∥β,且α∥β,则m⊥n;③若m∥α,n⊥β,且α⊥β,则m∥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确命题的个数是()A.4 B.3 C.2 D.1【考点】空间中直线与平面之间的位置关系.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】在①中,m与n平行或异面;在②中,由直线与平面垂直的性质得m⊥n;在③中,m 与n相交、平行或异面;在④中,由面面垂直和线面垂直的性质得m⊥n.【解答】解:由两条不同的直线m,n和两个不同的平面α,β,知:在①中,若m∥α,n∥β,且α∥β,则m与n平行或异面,故①错误;在②中,若m⊥α,n∥β,且α∥β,则由直线与平面垂直的性质得m⊥n,故②正确;在③中,若m∥α,n⊥β,且α⊥β,则m与n相交、平行或异面,故③错误;在④中,若m⊥α,n⊥β,且α⊥β,则由面面垂直和线面垂直的性质得m⊥n,故④正确.故选:C.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.8.设函数y=f(x)(x∈R)为偶函数,且∀x∈R,满足f(x﹣)=f(x+),当x∈[2,3]时,f (x)=x,则当x∈[﹣2,0]时,f(x)=()A.|x+4| B.|2﹣x| C.2+|x+1| D.3﹣|x+1|【考点】函数奇偶性的性质.【专题】转化思想;转化法;函数的性质及应用.【分析】根据函数奇偶性条件推出函数是周期为2的周期函数根据函数周期性和对称性进行转化求解即可.【解答】解:∵∀x∈R,满足f(x﹣)=f(x+),∴∀x∈R,满足f(x+﹣)=f(x++),即f(x)=f(x+2),若x∈[0,1]时,则x+2∈[2,3],f(x)=f(x+2)=x+2,x∈[0,1],若x∈[﹣1,0],则﹣x∈[0,1],∵函数y=f(x)(x∈R)为偶函数,∴f(﹣x)=﹣x+2=f(x),即f(x)=﹣x+2,x∈[﹣1,0],若x∈[﹣2,﹣1],则x+2∈[0,1],则f(x)=f(x+2)=x+2+2=x+4,x∈[﹣2,﹣1],即f(x)=,故选:D.【点评】本题主要考查函数解析式的求解,根据函数奇偶性和周期性的关系进行转化是解决本题的关键.9.执行如图所示的程序框图,若输出的n=7,则输入的整数K的最大值是()A.18 B.50 C.78 D.306【考点】程序框图.【专题】计算题;图表型;算法和程序框图.【分析】模拟程序框图的运行过程,即可得出输入的整数K的最大值.【解答】解:模拟执行程序,可得n=1,S=0S=2,n=2不满足条件S≥K,S=6,n=3不满足条件S≥K,S=2,n=4不满足条件S≥K,S=18,n=5不满足条件S≥K,S=14,n=6不满足条件S≥K,S=78,n=7由题意,此时满足条件78≥K,退出循环,输出n的值为7.则输入的整数K的最大值是78.故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题目.10.已知函数f(x)=ax+lnx﹣有三个不同的零点x1,x2,x3(其中x1<x2<x3),则(1﹣)2(1﹣)(1﹣)的值为()A.1﹣a B.a﹣1 C.﹣1 D.1【考点】函数零点的判定定理.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】先分离参数得到a=﹣,令h(x)=﹣.求导后得其极值点,h (x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.再令a=﹣μ,转化为关于μ的方程后由根与系数关系得到μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,再结合μ=的图象可得到(1﹣)2(1﹣)(1﹣)的值.【解答】解:令f(x)=0,分离参数得a=﹣,令h(x)=﹣,由h′(x)==0,得x=1或x=e.当x∈(0,1)时,h′(x)<0;当x∈(1,e)时,h′(x)>0;当x∈(e,+∞)时,h′(x)<0.即h(x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.∴0<x1<1<x2<e<x3,a=﹣=﹣,令μ=,则a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,对于μ=,μ′=则当0<x<e时,μ′>0;当x>e时,μ′<0.而当x>e时,μ恒大于0.画其简图,不妨设μ1<μ2,则μ1=,μ2===μ3,∴(1﹣)2(1﹣)(1﹣)=(1﹣μ1)2(1﹣μ2)(1﹣μ3)=[(1﹣μ1)(1﹣μ2)]2=[1﹣(1﹣a)+(1﹣a)]2=1.故选:D.【点评】本题考察了利用函数研究函数单调性,极值等性质,训练了函数零点的判断方法,运用了分离变量法,换元法,函数构造法等数学转化思想方法,综合性强属于压轴题范畴.二、填空题:本大题共5小题,每小题5分,共25分.11.观察式子,…,则可归纳出(n≥1).【考点】归纳推理.【专题】阅读型.【分析】根据已知中,分析左边式子中的数与右边式了中的数之间的关系,由此可写出结果.【解答】解:根据题意,每个不等式的右边的分母是n+1.不等号右边的分子是2n+1,∴1+…+<(n≥1).故答案为:(n≥1).【点评】本题考查归纳推理.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).12.已知△ABC中,a,b,c分别为内角A,B,C的对边,且a•cosB+b•cosA=3c•cosC,则cosC=.【考点】正弦定理;余弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】利用余弦定理化简已知可得a2+b2﹣c2=,由余弦定理即可求得cosC的值.【解答】解:∵a•cosB+b•cosA=3c•cosC,∴利用余弦定理可得:a×+b×=3c×,整理可得:a2+b2﹣c2=,∴由余弦定理可得:cosC===.故答案为:.【点评】本题主要考查了余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.13.如图,在边长为1的正方形OABC中任取一点,则该点落在阴影部分中的概率为.【考点】几何概型.【专题】计算题;方程思想;综合法;概率与统计.【分析】根据题意,易得正方形OABC的面积,观察图形,由定积分公式计算阴影部分的面积,进而由几何概型公式计算可得答案.【解答】解:根据题意,正方形OABC的面积为1×1=1,由函数y=x与y=围成阴影部分的面积为∫01(﹣x)dx=(﹣)|01=,由于y=x2与y=互为反函数,所以阴影部分的面积为,则正方形OABC中任取一点P,点P取自阴影部分的概率为.故答案为:.【点评】本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.14.将编号为1,2,3,4的四个小球放入3个不同的盒子中,每个盒子里至少放1个,则恰有1个盒子放有2个连号小球的所有不同放法有18种.(用数字作答)【考点】计数原理的应用.【专题】计算题;转化思想;数学模型法;排列组合.【分析】先把4个小球分为(2,1,1)一组,其中2个连号小球的种类有(1,2),(2,3),(3,4)为一组,再全排列即可,【解答】解:先把4个小球分为(2,1,1)一组,其中2个连号小球的种类有(1,2),(2,3),(3,4)为一组,分组后分配到三个不同的盒子里,共有C31A33=18种,故答案为:18.【点评】本题考查了分步计数原理,关键是分组分配,属于基础题.15.已知抛物线y2=2px的准线方程为x=﹣1焦点为F,A,B,C为该抛物线上不同的三点,成等差数列,且点B在x轴下方,若,则直线AC的方程为2x﹣y﹣1=0.【考点】抛物线的简单性质.【专题】方程思想;转化思想;转化法;圆锥曲线的定义、性质与方程.【分析】根据抛物线的准线方程求出p,设A,B,C的坐标,根据成等差数列,且点B在x轴下方,若,求出x1+x3=2,x2=1,然后求出直线AC的斜率和A,C的中点坐标,进行求解即可.【解答】解:抛物线的准线方程是x=﹣=﹣1,∴p=2,即抛物线方程为y2=4x,F(1,0)设A(x1,y1),B(x2,y2),C(x3,y3),∵||,||,||成等差数列,∴||+||=2||,即x1+1+x3+12(x2+1),即x1+x3=2x2,∵,∴(x1﹣1+x2﹣1+x3﹣1,y1+y2+y3)=0,∴x1+x2+x3=3,y1+y2+y3=0,则x1+x3=2,x2=1,由y22=4x2=4,则y2=﹣2或2(舍),则y1+y3=2,则AC的中点坐标为(,),即(1,1),AC的斜率k=====2,则直线AC的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0,故答案为:2x﹣y﹣1=0【点评】本题主要考查直线和抛物线的位置关系,根据条件求出直线AB的斜率和AB的中点坐标是解决本题的关键.综合性较强,难度较大.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=4sin(ωx﹣)•cosωx在x=处取得最值,其中ω∈(0,2).(1)求函数f(x)的最小正周期:(2)将函数f(x)的图象向左平移个单位,再将所得图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得到函数y=g(x)的图象.若α为锐角.g(α)=,求cosα【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】函数思想;数形结合法;三角函数的图像与性质.【分析】(1)化简可得f(x)=2sin(2ωx﹣)﹣,由函数的最值可得ω,再由周期公式可得;(2)由函数图象变换可得g(x)=2sin(x﹣)﹣,可得sin(α﹣)=,进而可得cos(α﹣)=,整体代入cosα=cos[(α﹣)+]=cos(α﹣)﹣sin(α﹣)计算可得.【解答】解:(1)化简可得f(x)=4sin(ωx﹣)•cosωx=4(sinωx﹣sinωx)cosωx=2sinωxcosωx﹣2cos2ωx=sin2ωx﹣cos2ωx﹣=2sin(2ωx﹣)﹣,∵函数f(x)在x=处取得最值,∴2ω×﹣=kπ+,解得ω=2k+,k∈Z,又∵ω∈(0,2),∴ω=,∴f(x)=2sin(3x﹣)﹣,∴最小正周期T=;(2)将函数f(x)的图象向左平移个单位得到y=2sin[3(x+)﹣]﹣=2sin(3x﹣)﹣的图象,再将所得图象上各点的横坐标伸长为原来的3倍,纵坐标不变,得到函数y=g(x)=2sin(x﹣)﹣的图象.∵α为锐角,g(α)=2sin(α﹣)﹣=,∴sin(α﹣)=,∴cos(α﹣)==,∴cosα=cos[(α﹣)+]=cos(α﹣)﹣sin(α﹣)=﹣=【点评】本题考查三角函数图象和解析式,涉及三角函数图象变换,属中档题.17.如图所示的几何体中,四边形ABCD和四边形BCEF是全等的等腰梯形,且平面BCEF⊥平面ABCD,AB∥DC,CE∥BF,AD=BC,AB=2CD,∠ABC=∠CBF=60°,G为线段AB的中点(1)求证:AC⊥BF;(2)求二面角D﹣FG﹣B(钝角)的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【专题】转化思想;向量法;空间位置关系与距离;空间角.【分析】(1)根据线面垂直的性质定理证明AC⊥平面BCEF即可.(2)建立空间直角坐标系,求出对应平面的法向量,利用向量法进行求解即可.【解答】解:(1)连接CF,∵四边形ABCD和四边形BCEF是全等的等腰梯形,AB∥DC,CE∥BF,AD=BC,AB=2CD,∠ABC=∠CBF=60°,G为线段AB的中点,∴DG∥BC,AC⊥CB,同理CF⊥BC,∵平面BCEF⊥平面ABCD,AC⊥BC,∴AC⊥平面BCEF,∵BF⊂平面BCEF,∴AC⊥BF;(2)由(1)知CF⊥平面ABCD,∴建立以C为坐标原点,以CA,CB,CF分别为x,y,z轴的空间直角坐标系如图:∵AD=BC,AB=2CD,∠ABC=∠CBF=60°,∴设BC=1,则AB=2,AC=CF=,则A(,0,0),B(0,1,0),F(0,0,),G(,,0),则=(﹣,﹣,),==(0,1,0),=(,﹣,0),设平面DFG的一个法向量为=(x,y,z),则,则y=0,令x=2,则z=1,即为=(2,0,1),设平面FGB的一个法向量为=(x,y,z),则,即,令x=1,则y=,z=1,即为=(1,,1),则cos<,>====,∵二面角D﹣FG﹣B是钝二面角,∴二面角(钝角)的余弦值为﹣.【点评】本题主要考查空间直线垂直的判断以及二面角的求解,根据线面垂直的性质定理以及建立坐标系,利用向量法求二面角是解决本题的关键.18.已知正项数列{a n}的前n项和为S n,且a1=1,S n+1+S n=a,数列{b n}满足b n b n+1=3,且b1=1.(Ⅰ)求数列{a n},{b n}的通项公式;b4+…+a1b2n,求T n.(Ⅱ)记T n=a n b2+a n﹣1【考点】数列的求和;数列递推式.【专题】方程思想;转化思想;等差数列与等比数列.【分析】(I)正项数列{a n}的前n项和为S n,且a1=1,S n+1+S n=a,利用递推关系及其等差数列的通项公式即可得出.数列{b n}满足b n b n+1=3,且b1=1.可得b n b n+1=3n,b2=3.利用递推关系可得:b n+2=3b n.可得数列{b n}的奇数项与偶数项分别成等比数列,公比为3.即可得出.(II)利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)正项数列{a n}的前n项和为S n,且a1=1,S n+1+S n=a,∴当n≥2时,S n+S n=,相减可得:a n+1+a n=a﹣,﹣1∴a n+1﹣a n=1,∴数列{a n}是等差数列,首项为1,公差为1.∴a n=1+(n﹣1)=n.∵数列{b n}满足b n b n+1=3,且b1=1.∴b n b n+1=3n,b2=3.∴==3,∴b n+2=3b n.∴数列{b n}的奇数项与偶数项分别成等比数列,公比为3.∴b2k=3k﹣1,b2k=3k.﹣1∴b n=(k∈N*).b4+…+a1b2n=3n+(n﹣1)×32+(n﹣2)×33+…+3n.(II)T n=a n b2+a n﹣13T n=32n+(n﹣1)33+…+2×3n+3n+1,∴﹣2T n=3n﹣32﹣33﹣…﹣3n﹣3n+1=3n﹣=3n﹣,∴T n=﹣.【点评】本题考查了递推关系、等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.19.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见表.规定:A、B、C三级为合格等级,D为不合格等级.百分制85以及以上70分到84分60分到69分60分以下等级 A B C D为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.(I)求n和频率分布直方图中的x,y的值;(Ⅱ)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;(Ⅲ)在选取的样本中,从A、C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【专题】计算题;转化思想;综合法;概率与统计.【分析】(Ⅰ)由题意知,先求出样本容量,由此能求出n和频率分布直方图中的x,y的值.(Ⅱ)成绩是合格等级人数为45人,从而得到从该校学生中任选1人,成绩是合格等级的概率为,由此能求出至少有1人成绩是合格等级的概率.(Ⅲ)由题意知C等级的学生人数为9人,A等级的人数为3人,ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量ξ的分布列及数学期望.【解答】解:(Ⅰ)由题意知,样本容量n=,x==0.004,y==0.018,(Ⅱ)成绩是合格等级人数为:(1﹣0.1)×50=45人,抽取的50人中成绩是合格等级的频率为,故从该校学生中任选1人,成绩是合格等级的概率为,设在该校高一学生中任选3人,至少有1人成绩是合格等级的事件为A,则P(A)=1﹣=.(Ⅲ)由题意知C等级的学生人数为0.18×50=9人,A等级的人数为3人,故ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ 0 1 2 3PEξ==.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.20.已知椭圆的离心率,过椭圆的左焦点F且倾斜角为30°的直线与圆x2+y2=b2相交所得弦的长度为1.(I)求椭圆E的方程;(Ⅱ)若动直线l交椭圆E于不同两点M(x1,y1),N(x2,y2),设=(bx1,ay1),=((bx2,ay2),O为坐标原点.当以线段PQ为直径的圆恰好过点O时,求证:△MON的面积为定值,并求出该定值.【考点】椭圆的简单性质.【专题】转化思想;分析法;圆锥曲线的定义、性质与方程.【分析】(I)运用离心率公式和直线与圆相交的弦长公式,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)讨论直线MN的斜率存在和不存在,以线段PQ为直径的圆恰好过点O,可得⊥,运用向量的数量积为0,联立直线方程和椭圆方程,运用韦达定理,化简整理,由三角形的面积公式,计算即可得到定值.【解答】解:(I)由题意可得e==,过椭圆的左焦点F(﹣c,0)且倾斜角为30°的直线方程为:y=(x+c),由直线与圆x2+y2=b2相交所得弦的长度为1,可得2=2=1,又a2﹣b2=c2,解方程可得a=2,b=1,c=,即有椭圆的方程为+y2=1;(Ⅱ)证明:(1)当MN的斜率不存在时,x1=x2,y1=﹣y2,以线段PQ为直径的圆恰好过点O,可得⊥,即有•=0,即有b2x1x2+a2y1y2=0,即有x1x2+4y1y2=0,即x12﹣4y12=0,又(x1,y1)在椭圆上,x12+4y12=4,可得x12=2,|y1|=,S△OMN=|x1|•|y1﹣y2|=••=1;(2)当MN的斜率存在,设MN的方程为y=kx+t,代入椭圆方程(1+4k2)x2+8ktx+4t2﹣4=0,△=64k2t2﹣4(1+4k2)(4t2﹣4)=4k2﹣t2+1>0,x1+x2=﹣,x1x2=,又•=0,即有x1x2+4y1y2=0,y1=kx1+t,y2=kx2+t,(1+k2)x1x2+4kt(x1+x2)+4t2=0,代入整理,可得2t2=1+4k2,即有|MN|=•=•=•,又O到直线的距离为d=,S△OMN=d•|MN|=|t|•=|t|•=1.故△MON的面积为定值1.【点评】本题考查椭圆的方程的求法,注意运用离心率公式和直线与圆相交的弦长公式,考查三角形的面积的求法,注意讨论直线的斜率是否存在,联立直线方程和椭圆方程,运用韦达定理和点到直线的距离公式,考查化简整理的运算能力,属于中档题.21.函数f(x)=(x﹣a)2(x+b)e x(a,b∈R).(1)当a=0,b=﹣3时.求函数f(x)的单调区间;(2)若x=a是f(x)的极大值点.(i)当a=0时,求b的取值范围;(ii)当a为定值时.设x1,x2,x3(其中x1<x2<x3))是f(x)的3个极值点,问:是否存在实数b,可找到实数x4,使得x4,x1,x2,x3成等差数列?若存在求出b的值及相应的x4,若不存在.说明理由.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【专题】综合题;压轴题;函数思想;综合法;导数的概念及应用.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)(i)函数g(x)=x2+(b+3)x+2b,结合x=a是f(x)的一个极大值点,我们分析函数g (x)=x2+(b+3)x+2b的两个零点与0的关系,即可确定b的取值范围;(ii)由函数f(x)=(x﹣a)2(x+b)e x,我们易求出f'(x)的解析式,由(I)可得x1、a、x2是f(x)的三个极值点,求出x1,x2,分别讨论x1、a、x2是x1,x2,x3,x4的某种排列构造等差数列时其中三项,即可得到结论.【解答】解:(1)a=0,b=﹣3时:f(x)=x2(x﹣3)2e x,f′(x)=e x x(x﹣3)(x﹣2)(+3),令f′(x)>0,解得:x<﹣3或0<x<2或x>3,令f′(x)<0,解得:﹣3<x<0或2<x<3,∴f(x)在(﹣∞,﹣3),(0,2),(3,+∞)递增,在(﹣3,0),(2,3)递减;(2)(i)解:a=0时,f(x)=x2(x+b)e x,∴f'(x)=[x2(x+b)]′e x+x2(x+b)(e x)′=e x x[x2+(b+3)x+2b],令g(x)=x2+(b+3)x+2b,∵△=(b+3)2﹣8b=(b﹣1)2+8>0,∴设x1<x2是g(x)=0的两个根,①当x1=0或x2=0时,则x=0不是极值点,不合题意;②当x1≠0且x2≠0时,由于x=0是f(x)的极大值点,故x1<0<x2.∴g(0)<0,即2b<0,∴b<0.(ii)解:f'(x)=e x(x﹣a)[x2+(3﹣a+b)x+2b﹣ab﹣a],令g(x)=x2+(3﹣a+b)x+2b﹣ab﹣a,则△=(3﹣a+b)2﹣4(2b﹣ab﹣a)=(a+b﹣1)2+8>0,于是,假设x1,x2是g(x)=0的两个实根,且x1<x2.由(i)可知,必有x1<a<x2,且x1、a、x2是f(x)的三个极值点,则x1=,x2=,假设存在b及x4满足题意,①当x1,a,x2等差时,即x2﹣a=a﹣x1时,则x4=2x2﹣a或x4=2x1﹣a,于是2a=x1+x2=a﹣b﹣3,即b=﹣a﹣3.此时x4=2x2﹣a=a﹣b﹣3+﹣a=a+2或x4=2x1﹣a=a﹣b﹣3﹣﹣a=a﹣2,②当x2﹣a≠a﹣x1时,则x2﹣a=2(a﹣x1)或(a﹣x1)=2(x2﹣a)若x2﹣a=2(a﹣x1),则x4=,于是3a=2x1+x2=,即=﹣3(a+b+3).两边平方得(a+b﹣1)2+9(a+b﹣1)+17=0,∵a+b+3<0,于是a+b﹣1=此时b=﹣a﹣,此时x4===﹣b﹣3=a+.②若(a﹣x1)=2(x2﹣a),则x4=,于是3a=2x2+x1=,即=3(a+b+3)两边平方得(a+b﹣1)2+9(a+b﹣1)+17=0,∵a+b+3>0,于是a+b﹣1=,此时b=﹣a﹣,此时x4=═﹣b﹣3=a+,综上所述,存在b满足题意,当b=﹣a﹣3时,x4=a±2,b=﹣a﹣时,x4=a+,b=﹣a﹣时,x4=a+.【点评】本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识.。

2022年黑龙江省哈尔滨市高考理科数学一模试卷及答案解析

2022年黑龙江省哈尔滨市高考理科数学一模试卷及答案解析

2022年黑龙江省哈尔滨市高考理科数学一模试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡的非答题区域均无效。

3、非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合M ={x |(x ﹣a )(x ﹣3)=0},N ={x |(x ﹣4)(x ﹣1)=0},则下列说法一定正确的是( )A .若M ∪N ={1,3,4},则M ∩N =∅B .若M ∪N ={1,3,4},则M ∩N ≠∅C .若M ∩N =∅,则M ∪N 有4个元素D .若M ∩N ≠∅,则M ∪N ={1,3,4}2.(5分)设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是( ) A .若m ⊥α,n ⊂β,m ⊥n ,则α⊥β B .若m ∥α,m ∥n ,则n ∥αC .若m ∥n ,n ⊥β,m ⊂α,则α⊥βD .若α⊥β,α∩β=m ,n ⊥m ,则n ⊥β3.(5分)使“a <b ”成立的必要不充分条件是“( )” A .∀x >0,a ≤b +xB .∃x ≥0,a +x <bC .∀x ≥0,a <b +xD .∃x >0,a +x ≤b4.(5分)已知a >0,且a 2﹣b +4=0,则2a+3ba+b( )A .有最大值176B .有最大值145C .有最小值176D .有最小值1455.(5分)古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆锥,得到的截面是圆;把平面再渐渐倾斜得到的截面是椭圆.若用面积为144的矩形ABCD 截某圆锥得到椭圆τ,且τ与矩形ABCD 的四边相切.设椭圆τ在平面直角坐标系中的方程为x 2a 2+y 2b 2=1(a >b >0),下列选项中满足题意的方程为( ) A .x 281+y 216=1 B .x 265+y 281=1C .x 2100+y 264=1D .x 264+y 2100=16.(5分)已知函数f (x )=2sin x +cos x 满足f(x 0)=3√55(x 0∈(0,π2)),则tan x 0=( ) A .2B .112C .12D .2117.(5分)在数列{a n }中,a 1=1,n (n +1)(a n +1﹣a n )=1(n ∈N *),则a 21=( ) A .2120B .1920C .4121D .40218.(5分)已知平面向量a →,b →满足|a →−2b →|=√19,|a →|=3,若cos <a →,b →>=14,则|b →|=( )A .1B .2C .54D .529.(5分)已知球O 为正三棱柱ABC ﹣A 1B 1C 1的外接球,正三棱柱ABC ﹣A 1B 1C 1的底面边长为1,高为3,则球O 的表面积是( ) A .4πB .31π3C .16π3D .31π1210.(5分)已知f (x )=3sin (2x +φ)(φ∈R )既不是奇函数也不是偶函数,若y =f (x +m )的图像关于原点对称,y =f (x +n )的图像关于y 轴对称,则|m |+|n |的最小值为( ) A .πB .π2C .π4D .π811.(5分)已知EF 是圆C :x 2+y 2﹣2x ﹣4y +3=0的一条弦,且CE ⊥CF ,P 是EF 的中点,当弦EF 在圆C 上运动时,直线l :x ﹣y ﹣3=0上存在两点A ,B ,使得∠APB ≥π2恒成立,则线段AB 长度的最小值是( ) A .3√2+1 B .4√2+2 C .4√3+1 D .4√3+212.(5分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点、左焦点、上顶点分别为A ,F ,B ,若坐标原点O 关于直线BF 的对称点恰好在直线AB 上,则椭圆C 的离心率e ∈( ) A .(0,14)B .(14,12)C .(12,34)D .(34,1)二、填空题:本题共4小题,每小题5分,共20分. 13.(5分)复数2+i 2i−1的共轭复数是 .14.(5分)在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E 在棱AA 1上,AE =3A 1E ,点G 是棱CD 的中点,点F 满足BF →=14BB 1→,则直线EF 与直线D 1G 所成角的余弦值为 . 15.(5分)已知点P (﹣1,0)在直线l :ax +y ﹣a +2=0(a ∈R )上的射影为M ,点N (0,3),则线段MN 长度的最小值为 .16.(5分)以原点为对称中心的椭圆C 1,C 2焦点分别在x 轴,y 轴,离心率分别为e 1,e 2,直线l 交C 1,C 2所得的弦中点分别为M (x 1,y 1),N (x 2,y 2),若x 1x 2=2y 1y 2≠0,2e 12﹣e 22=1,则直线l 的斜率为 .三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.17.(10分)在平面直角坐标系xOy 中,直线l 的参数方程为{x =−1+tcosαy =tsinα(t 为参数,α为直线的倾斜角),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=√85−3cos2θ.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)已知点P (﹣1,0),直线l 与曲线C 交于A 、B 两点,与y 轴交于M 点,若|P A |,|PM |,|PB |成等比数列,求直线l 的普通方程.18.(12分)在①(2b ﹣c )cos A =a cos C ,②(sin A +sin B )(a ﹣b )=c (sin C ﹣sin B ),③tanA +tanB +tanC =√3tanBtanC ,这三个条件中任选一个,补充在下面的横线上,并加以解答.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,若____. (1)求A ;(2)若点M 在线段AC 上,∠ABM =∠CBM ,BM =53√7,且cosB =17,求c . 19.(12分)2021年“远大美乐杯”四川男子篮球联赛在绵阳进行,大赛分为常规赛和季后赛两种.常规赛分两个阶段进行,每个阶段采用循环赛,分主场和客场比赛,积分排名前8的球队进入季后赛.季后赛的总决赛采用五场三胜制(“五场三胜制”是指在五场比赛中先胜三场者获得比赛胜利,胜者成为本赛季的总冠军).假设下面是宜宾队在常规赛42场比赛中的比赛结果记录表:阶段比赛场数 主场场数获胜场数 主场获胜场数第一阶段 22 11 14 8 第二阶段2010148(1)根据表中信息,是否有85%的把握认为宜宾队在常规赛的“胜负”与“主客场”有关?(2)假设宜宾队与某队在季后赛的总决赛中相遇,且每场比赛结果相互独立,并假设宜宾队除第五场比赛获胜的概率为12外,其他场次比赛获胜的概率等于其在常规赛42场比赛中获胜的频率.记X 为宜宾队在总决赛中获胜的场数. (ⅰ)求X 的分布列;(ⅱ)求宜宾队获得本赛季的总冠军的概率.附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).P (K 2≥k )0.250 0.150 0.100 k1.3232.0722.70620.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑.如图,在阳马P ﹣ABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,CB =CP ,E 为棱PC 的中点,F 为棱PB 上一点,FP <FB ,连接DB ,DE ,DF ,EF . (Ⅰ)求证:DE ⊥平面PBC ;(Ⅱ)若EF ⊥PB ,连接BE ,判断四面体DBEF 是否为鳖臑、若是,写出其每个面的直角;若不是,写出其不是直角三角形的面;(Ⅲ)延长FE ,BC 交于点G ,连接DG ,若二面角F ﹣DG ﹣B 的大小为π3,求PF PB.21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)长轴长为4,P 在C 上运动,F 1,F 2为C 的两个焦点,且cos ∠F 1PF 2的最小值为12.(1)求C 的方程;(2)已知过点M (0,m )(﹣b <m <b )的动直线l 交C 于两点A ,B ,线段AB 的中点为N ,若OA →⋅OB →−OM →⋅ON →为定值,试求m 的值. 22.(12分)已知函数f (x )=ax ﹣(a +1)lnx −1x . (1)讨论函数f (x )的单调性;(2)当a =0时,f (x )≥mxe x −1x +x +1恒成立,求m 的取值范围.2022年黑龙江省哈尔滨市高考理科数学一模试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合M={x|(x﹣a)(x﹣3)=0},N={x|(x﹣4)(x﹣1)=0},则下列说法一定正确的是()A.若M∪N={1,3,4},则M∩N=∅B.若M∪N={1,3,4},则M∩N≠∅C.若M∩N=∅,则M∪N有4个元素D.若M∩N≠∅,则M∪N={1,3,4}【解答】解:当a≠3时,M={x|(x﹣a)(x﹣3)=0}={a,3},当a=3时,M={3},N={x|(x﹣4)(x﹣1)=0}={1,4},若M∪N={1,3,4},则a=3或a=1或a=4,M∩N可能为空集,也可能不为空集,A,B错误;若M∩N=∅,则a≠1,a≠4,但可能a=3,M∪N可能有4个元素,也可能有3个元素,C错误;若M∩N≠∅,则a=1或a=4,M∪N={1,3,4},D正确.故选:D.2.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m⊥α,n⊂β,m⊥n,则α⊥βB.若m∥α,m∥n,则n∥αC.若m∥n,n⊥β,m⊂α,则α⊥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β【解答】解:m,n是两条不同的直线,α,β是两个不同的平面,对于A,若m⊥α,n⊂β,m⊥n,则α与β平行或相交,故A错误;对于B,若m∥α,m∥n,则n∥α或n⊂α,故B错误;对于C,若m∥n,n⊥β,m⊂α,则m⊥β,由面面垂直的判定定理得α⊥β,故C正确;对于D ,若α⊥β,α∩β=m ,n ⊥m ,则n 与相交、平行或n ⊂β,故D 错误. 故选:C .3.(5分)使“a <b ”成立的必要不充分条件是“( )” A .∀x >0,a ≤b +xB .∃x ≥0,a +x <bC .∀x ≥0,a <b +xD .∃x >0,a +x ≤b【解答】解:A 选项,(b +x )∈(b ,+∞),故a ≤b , 即A 选项命题等价于a ≤b ;故A 正确, B 选项,(a +x )∈[a ,+∞),故b >a , 即B 选项命题等价于a <b ;故B 错误, C 选项,(b +x )∈[b ,+∞),故a <b , 即C 选项命题等价于a <b ;故C 错误, D 选项,(a +x )∈(a ,+∞),故a <b , 即D 选项命题等价于a <b ,故D 错误. 故选:A .4.(5分)已知a >0,且a 2﹣b +4=0,则2a+3b a+b( )A .有最大值176B .有最大值145C .有最小值176D .有最小值145【解答】解:由a 2﹣b +4=0,得b =a 2+4,则a +b =a 2+a +4,即a a+b=a a 2+a+4,又a >0,所以2a+3b a+b=3−aa+b =3−a a 2+a+4=3−1a+4a+1≥31√a⋅4a+1=3−15=145, 当且仅当a =4a ,即a =2,b =8时等号成立,所以2a+3b a+b有最小值145,无最大值,故选:D .5.(5分)古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆锥,得到的截面是圆;把平面再渐渐倾斜得到的截面是椭圆.若用面积为144的矩形ABCD 截某圆锥得到椭圆τ,且τ与矩形ABCD 的四边相切.设椭圆τ在平面直角坐标系中的方程为x 2a 2+y 2b 2=1(a >b >0),下列选项中满足题意的方程为( ) A .x 281+y 216=1 B .x 265+y 281=1C .x 2100+y 264=1 D .x 264+y 2100=1【解答】解:∵用面积为144的矩形ABCD 截某圆锥得到椭圆τ,且τ与矩形ABCD 的四边相切,∴4ab =144,即ab =36,对于A ,a =9,b =4,满足a >b >0且ab =36,故A 正确, 对于B ,a =√65,b =9,不满足a >b >0,故B 错误, 对于C ,a =10,b =8,不满足ab =36,故C 错误, 对于D ,a =8,b =10,不满足a >b >0,故D 错误. 故选:A .6.(5分)已知函数f (x )=2sin x +cos x 满足f(x 0)=3√55(x 0∈(0,π2)),则tan x 0=( ) A .2B .112C .12D .211【解答】解:由题意知,f (x 0)=2sin x 0+cos x 0=3√55, 因为sin 2x 0+cos 2x 0=1,所以sin 2x 0+(3√55−2sinx 0)2=1, 化简可得5sin 2x 012√5sin x 0+45=0,解得sin x 0=25√5或√5,当sin x 0=25√5时,cos x 0=3√55−2sin x 0=115√5;当sin x 0=2√5时,cos x 0=3√55−2sin x 0=−√55<0(舍), 所以sin x 0=25√5,cos x 0=115√5, 所以tan x 0=sinx 0cosx 0=211. 故选:D .7.(5分)在数列{a n }中,a 1=1,n (n +1)(a n +1﹣a n )=1(n ∈N *),则a 21=( ) A .2120B .1920C .4121D .4021【解答】解:由题意得,a n +1﹣a n =1n(n+1)=1n −1n+1,所以a 21=a 21﹣a 20+a 20﹣a 19+•+(a 2﹣a 1)+a 1=120−121+119−120+•+1−12+1=2−121=4121. 故选:C .8.(5分)已知平面向量a →,b →满足|a →−2b →|=√19,|a →|=3,若cos <a →,b →>=14,则|b →|=( ) A .1B .2C .54D .52【解答】解:∵|a →−2b →|=√19,|a →|=3,若cos <a →,b →>=14, ∴a →2−4a →•b →+4b →2=9﹣4×3|b →|×14+4|b →|2=19, 解得:|b →|=2或|b →|=−54(舍去), 故选:B .9.(5分)已知球O 为正三棱柱ABC ﹣A 1B 1C 1的外接球,正三棱柱ABC ﹣A 1B 1C 1的底面边长为1,高为3,则球O 的表面积是( ) A .4πB .31π3C .16π3D .31π12【解答】解:设正三棱柱ABC ﹣A 1B 1C 1的高为h ,底面边长为a ,设球O 的半径为R , 则三棱柱底面三角形的外接圆半径r 满足2r =asin π3,解得r =√33a , 由题意可知,a =1,h =3,所以R 2=(√33a)2+(12ℎ)2=a 23+ℎ24=13+94=3112,则球O 的表面积为S =4πR 2=31π3. 故选:B .10.(5分)已知f (x )=3sin (2x +φ)(φ∈R )既不是奇函数也不是偶函数,若y =f (x +m )的图像关于原点对称,y =f (x +n )的图像关于y 轴对称,则|m |+|n |的最小值为( ) A .πB .π2C .π4D .π8【解答】解:可设φ0 满足“φ0∈(0,π2)∪(π2,π)且φ=2t π+φ0,t ∈Z “ 则f (x )=3sin (2x +φ0).注意到五点法的最左段端点是(−φ02,0),而T 2=π2,T 4=π4, 故有|m|=min(|−φ02|,|π−φ02|)=min(φ02,π−φ02);|n|=|−φ02+π4|=|π−2φ0|4, 当φ0∈(0,π2) 时,|m|=φ02;|n|=π−2φ04, 此时|m|+|n|=π4,当φ0∈(π2,π) 时.此时|m|=π−φ02;|n|=2φ0−π4故选:C .11.(5分)已知EF 是圆C :x 2+y 2﹣2x ﹣4y +3=0的一条弦,且CE ⊥CF ,P 是EF 的中点,当弦EF 在圆C 上运动时,直线l :x ﹣y ﹣3=0上存在两点A ,B ,使得∠APB ≥π2恒成立,则线段AB 长度的最小值是( ) A .3√2+1B .4√2+2C .4√3+1D .4√3+2【解答】解:由题可知:圆C :x 2+y 2﹣2x ﹣4y +3=0,即(x ﹣1)2+(y ﹣2)2=2,圆心C (1,2),半径r =√2,又CE ⊥CF ,P 是EF 的中点,所以CP =12EF =1,所以点P 的轨迹方程(x ﹣1)2+(y ﹣2)2=1,圆心为点C (1,2),半径为R =1,若直线l :x ﹣y ﹣3=0上存在两点A ,B ,使得∠APB ≥π2恒成立,则以AB 为直径的圆要包括圆(x ﹣1)2+(y ﹣2)2=1,点C (1,2),到直线l 的距离为d =√12+(−1)2=2√2,所以AB 长度的最小值为2(d +1)=4√2+2, 故选:B . 12.(5分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点、左焦点、上顶点分别为A ,F ,B ,若坐标原点O 关于直线BF 的对称点恰好在直线AB 上,则椭圆C 的离心率e ∈( ) A .(0,14)B .(14,12)C .(12,34)D .(34,1)【解答】解:由题可得BF 是∠ABO 的角平分线,则由角平分线性质可得√a 2+b 2b=a−c c,代入b ²=a ²﹣c ²,可得2a 2−c 2a 2−c 2=a 2−2ac+c 2c 2,即2−e 21−e 2=1−2e+e 2e 2,整理得2e ³﹣2e ²﹣2e +1=0,令f (x )=2x ³﹣2x ²﹣2x +1,0<x <1,则f '(x )=6x ²﹣4x ﹣2=2(x ﹣1)(3x +1), 所以f (x )在(0,1)上单调递减,因为f (14)=1332>0,f (12)=14−12−1+1=−14<0,由函数零点存在性定理可知e ∈(14,12),故选:B .二、填空题:本题共4小题,每小题5分,共20分. 13.(5分)复数2+i 2i−1的共轭复数是 i . 【解答】解:∵2+i2i−1=(2+i)(−2i−1)(1−2i)(1+2i)=−5i 5=−i ,∴复数2+i2i−1的共轭复数是i .故答案为:i .14.(5分)在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E 在棱AA 1上,AE =3A 1E ,点G是棱CD 的中点,点F 满足BF →=14BB 1→,则直线EF 与直线D 1G 所成角的余弦值为 45.【解答】解:分别取AB ,BB 1中点M ,N ,连接A 1M ,A 1N ,MN ,如图:所以在正方体ABCD ﹣A 1B 1C 1D 1中,A 1M ∥D 1G ,因为AE =3A 1E ,点F 满足BF →=14BB 1→,所以A 1E =BF =NF =12,又因为AA 1∥BB 1,所以四边形A 1EFN 为平行四边形,所以EF ∥A 1N , ∴A 1M =A 1N =√22+12,MN =√12+12,在△A 1MN 中,cos ∠MA 1N =A 1M 2+A 1N 2−MN 22×A 1M×A 1N =2×√5×√5=45,直线EF 与直线D 1G 所成角的余弦值为45.故答案为:45.15.(5分)已知点P (﹣1,0)在直线l :ax +y ﹣a +2=0(a ∈R )上的射影为M ,点N (0,3),则线段MN 长度的最小值为 4−√2 . 【解答】解:直线l :ax +y ﹣a +2=0(a ∈R ), 即(x ﹣1)a +y +2=0,令x ﹣1=0,且y +2=0, 得x =1,y =﹣2,所以直线l 恒过定点Q (1,﹣2),由于点P (﹣1,0)在直线l 上的射影为M ,即∠PMQ =90°, 所以点M 在以PQ 为直径的圆上,该圆的圆心为PQ 的中点C (0,﹣1),且半径为√2, 由点N 到圆心C 的距离为NC =4, 所以线段MN 的最小值为NC ﹣r =4−√2, 故答案为:4−√2.16.(5分)以原点为对称中心的椭圆C 1,C 2焦点分别在x 轴,y 轴,离心率分别为e 1,e 2,直线l 交C 1,C 2所得的弦中点分别为M (x 1,y 1),N (x 2,y 2),若x 1x 2=2y 1y 2≠0,2e 12﹣e 22=1,则直线l 的斜率为 ±1 . 【解答】解:设椭圆C 1:x 2a 12+y 2b 12=1,C 2:y 2a 22+x 2b 22=1,再设直线l 交C 1于A 、B ,直线l 交C 2于C 、D , M (x 1,y 1),N (x 2,y 2)分别为AB ,CD 的中点, x 1=x A +x B2,y 1=y A +y B 2, 分别把A 、B ,C 代入两曲线方程,利用{ x A 2a 12+y A 2b 12=1x B 2a 12+y B 2b 12=1,作差法可得y 1x 1⋅k AB =−b 12a 12=e 12−1, 同理C 、D 代入两曲线方程,通过作差法可得:y 2x 2⋅k CD =−a 22b 22=1e 22−1,设k AB =k CD =k , ∴y 1y 2x 1x 2⋅k 2=e 12−1e 22−1,∵2e 12﹣e 22=1,∴e 22=2e 12−1, 又x 1x 2=2y 1y 2≠0,∴y 1y 2x 1x 2=12,得12k 2=e 12−1e 22−1=e 12−12(e 12−1)=12.可得k =±1. 故答案为:±1.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.17.(10分)在平面直角坐标系xOy 中,直线l 的参数方程为{x =−1+tcosαy =tsinα(t 为参数,α为直线的倾斜角),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=√85−3cos2θ.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)已知点P (﹣1,0),直线l 与曲线C 交于A 、B 两点,与y 轴交于M 点,若|P A |,|PM |,|PB |成等比数列,求直线l 的普通方程.【解答】解:(I )∵曲线C 的极坐标方程为ρ=√85−3cos2θ, ∴ρ2=85−3(cos 2θ−sin 2θ)①,∵{x =ρcosθy =ρsinθx 2+y 2=ρ2②,∴联立①②可得,x 24+y 2=1.(II )把直线l 的参数方程{x =−1+tcosαy =tsinα代入x 24+y 2=1 可得,(1+3sin 2α)t 2﹣2cos αt﹣3=0,由韦达定理可得,t 1t 2=−31+3sin 2α,点M 对应的参数为x M =﹣1+t 3cos α=0, 所以t 3=1cosα,∵|P A |,|PM |,|PB |成等比数列, ∴|P A |•|PB |=|PM |2,即|−31+3sin 2α|=|1cosα|2,化简整理可得,2sin 2α=cos 2α, ∴tan 2α=12,即直线l 的斜率为±√22,故直线l 的方程为x −√2y +1=0 或x +√2y +1=0.18.(12分)在①(2b ﹣c )cos A =a cos C ,②(sin A +sin B )(a ﹣b )=c (sin C ﹣sin B ),③tanA +tanB +tanC =√3tanBtanC ,这三个条件中任选一个,补充在下面的横线上,并加以解答.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,若____. (1)求A ;(2)若点M 在线段AC 上,∠ABM =∠CBM ,BM =53√7,且cosB =17,求c .【解答】解:(1)若选①:因为(2b ﹣c )cos A =a cos C ,由正弦定理得(2sin B ﹣sin C )cos A =sin A cos C ,即2sin B cos A =sin C cos A +sin A cos C , 所以2sin B cos A =sin B , 因为0<B <π, 所以sin B ≠0, 可得cos A =12,因为0<A <π,故A =π3.若选②:∵(sin A +sin B )(a ﹣b )=c (sin C ﹣sin B ), ∴由正弦定理可得:(a +b )(a ﹣b )=c (c ﹣b ), 即:b 2+c 2﹣a 2=bc , 由余弦定理得cos A =12, ∵A ∈(0,π), ∴A =π3.选择条件③,tan A +tan B +tan C =√3tan B tan C , 因为tan A =﹣tan (B +C )=−tanB+tanC1−tanBtanC , 所以﹣tan A +tan A tan B tan C =tan B +tan C , 即tan A +tan B +tan C =tan A tan B tan C , 所以tan A tan B tan C =√3tan B tan C , 因为tan B tan C ≠0,所以tan A =√3, 因为A ∈(0,π),所以A =π3. (2)因为cosB =17,可得1﹣2sin 2B 2=17,可得sinB 2=√217,cos B 2=2√77, 在△ABM 中,sin ∠AMB =sin (π3+∠ABM )=√32×2√77+12×√217=3√2114,由正弦定理可得csin∠AMB=5√73√32,可得c =5.19.(12分)2021年“远大美乐杯”四川男子篮球联赛在绵阳进行,大赛分为常规赛和季后赛两种.常规赛分两个阶段进行,每个阶段采用循环赛,分主场和客场比赛,积分排名前8的球队进入季后赛.季后赛的总决赛采用五场三胜制(“五场三胜制”是指在五场比赛中先胜三场者获得比赛胜利,胜者成为本赛季的总冠军).假设下面是宜宾队在常规赛42场比赛中的比赛结果记录表:阶段 比赛场数 主场场数获胜场数 主场获胜场数第一阶段 22 11 14 8 第二阶段2010148(1)根据表中信息,是否有85%的把握认为宜宾队在常规赛的“胜负”与“主客场”有关?(2)假设宜宾队与某队在季后赛的总决赛中相遇,且每场比赛结果相互独立,并假设宜宾队除第五场比赛获胜的概率为12外,其他场次比赛获胜的概率等于其在常规赛42场比赛中获胜的频率.记X 为宜宾队在总决赛中获胜的场数. (ⅰ)求X 的分布列;(ⅱ)求宜宾队获得本赛季的总冠军的概率.附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).P (K 2≥k )0.250 0.150 0.100 k1.3232.0722.706【解答】解:(1)由题意的列联表:主场 客场 合计 胜利 16 12 28 失败 5 9 14 合计212142∵K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=42(16×9−5×12)221×21×14×28=127≈1.714≤2.072,∴没有85%的把握认为宜宾队在常规赛的“胜负”与“主客场”之间有关. (2)(ⅰ)由题意:宜宾队在常规赛中获胜的概率为:2842=23,X 的可能取值为0,1,2,3,且P(X =0)=C 33(1−23)3=127, P(X =1)=C 31⋅23⋅(1−23)2⋅(1−23)=227, P(X =2)=C 42⋅(23)2⋅(1−23)2⋅(1−12)=427,P(X =3)=C 33⋅(23)3+C 32⋅(23)2⋅(1−23)⋅23+C 42⋅(23)2⋅(1−23)2⋅12=2027,故X 的分布列为:X 0123P1272274272027(ⅱ)甲队获得本赛季的总冠军的概率为:C 33⋅(23)3+C 32⋅(23)2⋅(1−23)⋅23+C 42⋅(23)2⋅(1−23)2⋅12=2027. 20.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑.如图,在阳马P ﹣ABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,CB =CP ,E 为棱PC 的中点,F 为棱PB 上一点,FP <FB ,连接DB ,DE ,DF ,EF . (Ⅰ)求证:DE ⊥平面PBC ;(Ⅱ)若EF ⊥PB ,连接BE ,判断四面体DBEF 是否为鳖臑、若是,写出其每个面的直角;若不是,写出其不是直角三角形的面;(Ⅲ)延长FE ,BC 交于点G ,连接DG ,若二面角F ﹣DG ﹣B 的大小为π3,求PF PB.【解答】解:(Ⅰ)证明:因为PD ⊥底面ABCD ,所以PD ⊥BC , 由地面ABCD 为长方形,有BC ⊥CD , 而PD ∩CD =D ,所以BC ⊥平面PCD . 而DE ⊂平面PCD ,所以BC ⊥DE ,又PD =CD ,点E 是PC 的中点,所以DE ⊥PC . 而PC ∩BC =C , 所以DE ⊥平面PBC ;(Ⅱ)由(Ⅰ)可知,而PB ⊂平面PBC ,所以PB ⊥DE . 又PB ⊥EF ,DE ∩EF =E ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体DBEF 的四个面都是直角三角形, 即四面体DBEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB . (Ⅲ)由题意可知,以D 为坐标原点,射线DA ,射线DC ,射线DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,设PD =DC =2,则CB =CP =2√2, 由题意可知,二面角F ﹣DG ﹣B 即为平面DEF 与平面ABCD 所成的角,则D (0,0,0),B(2√2,2,0),C (0,2,0),P (0,0,2),E (0,1,1),设F (x ,y ,z ),PF →=λPB →,则(x ,y ,z −2)=λ(2√2,2,−2),所以{x =2√2λy =2λz =−2λ+2,即F(2√2λ,2λ,−2λ+2),则DE →=(0,1,1),DF →=(2√2λ,2λ,−2λ+2), 设平面FDG的法向量n 2→=(x 1,y 1,z 1),则{DE →⋅n 2→=0DF →⋅n 2→=0,即{0+y 1+z 1=02√2λx 1+2λy 1+(−2λ+2)z 1=0,令z 1=√2λ,则{x 1=2λ−1y 1=−√2λz 1=√2λ,所以n 1→=(2λ−1,−√2λ,√2λ),又平面BDG 的法向量为n 1→=(0,0,1), 因此,cos <n 1→,n 2→>=√2λ1×√(2λ−1)2+(−√2λ)2+(√2λ)2=12,整理得2λ28λ2−4λ+1=14,解得λ=14,所以PF PB=14.21.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)长轴长为4,P 在C 上运动,F 1,F 2为C 的两个焦点,且cos ∠F 1PF 2的最小值为12. (1)求C 的方程;(2)已知过点M (0,m )(﹣b <m <b )的动直线l 交C 于两点A ,B ,线段AB 的中点为N ,若OA →⋅OB →−OM →⋅ON →为定值,试求m 的值. 【解答】解:(1)由题意得a =2, 设|PF 1|,|PF 2|长分别为p ,q .则cosθ=p 2+q 2−4c 22pq =(p+q)2−4c 2−2pq 2pq =2b 2−pq pq =2b 2pq −1≥2b 2(p+q 2)2−1=2b 2a 2−1, (当且仅当p =q 时取等号) 从而2b 2a 2−1=12,得b 2a 2=34,∴a 2=4,b 2=3,则椭圆的标准方程为x 24+y 23=1.(2)①若直线l 的斜率不存在,易得OA →⋅OB →−OM →⋅ON →=−3; 若直线l 的斜率存在,设其方程为y =kx +m ,联立{y =kx +mx 24+y 23=1,得(4k 2+3)x 2+8kmx +4m 2﹣12=0,易知Δ>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则N(x 1+x 22,y 1+y 22), 且x 1+x 2=−8km4k 2+3,x 1x 2=4m 2−124k 2+3,OA →⋅OB →=OM →⋅ON →=x 1x 2+y 1y 2−m ⋅y 1+y 22=x 1x 2+(kx 1+m)(kx 2+m)−m2(kx 1+m +kx 2+m) =(k 2+1)x 1x 2+km 2(x 1+x 2)=(k 2+1)4m 2−124k 2+3+km 2⋅−8km4k 2+3=−12k 2+4m 2−124k 2+3=−3(4k 2+3)+4m 2−34k 2+3=−3+4m 2−34k 2+3,要使上式为常数,必须且只需4m 2﹣3=0,即m =±√32∈(−√3,√3). 此时OA →⋅OB →−OM →⋅ON →=−3为定值,符合题意.综上可知,当m =±√32时,能使得若OA →⋅OB →−OM →⋅ON →=−3. 22.(12分)已知函数f (x )=ax ﹣(a +1)lnx −1x . (1)讨论函数f (x )的单调性;(2)当a =0时,f (x )≥mxe x −1x +x +1恒成立,求m 的取值范围. 【解答】解:(1)因为f (x )=ax ﹣(a +1)lnx −1x, 所以f ′(x )=a −a+1x +1x 2=ax 2−(a+1)x+1x 2=(ax−1)(x−1)x 2, 当a =0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 当a <0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,当0<a <1时,f (x )在(0,1)上单调递增,在(1,1a)上单调递减,在(1a,+∞)上单调递增,当a =1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(0,1a)上单调递增,在(1a,1)上单调递减,在(1,+∞)上单调递增,综上所述,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 当0<a <1时,f (x )在(0,1)上单调递增,在(1,1a)上单调递减,在(1a,+∞)上单调递增,当a =1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(0,1a)上单调递增,在(1a,1)上单调递减,在(1,+∞)上单调递增.(2)当a =0时,由f (x )≥mxe x −1x+x +1恒成立, 可得lnx +x +1≤﹣mxe x 恒成立, 即ln (xe x )+1≤﹣mxe x 恒成立,令xe x =t >0,则lnt +1≤﹣mt (t >0)恒成立, 即lnt+1t≤−m (t >0)恒成立,令g (t )=lnt+1t (t >0), 则g ′(t )=−lntt 2=0,得t =1, 所以函数g (t )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以g (t )max =g (1)=1, 所以﹣m ≥1,即m ≤﹣1,所以m 的取值范围为(﹣∞,﹣1].。

2022年安徽省淮南市高考理科数学一模试卷及答案解析

2022年安徽省淮南市高考理科数学一模试卷及答案解析

2022年安徽省淮南市高考理科数学一模试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A ={x |x >2或x <﹣4},B ={x |x <a },若A ∪B =R ,则a 的取值范围为( ) A .[﹣4,+∞)B .(﹣4,+∞)C .[2,+∞)D .(2,+∞)2.(5分)设复数z 满足(1﹣i )z =1+i ,则|z |=( ) A .12B .1C .√2D .23.(5分)已知命题p :“x >2且y >3”是“x +y >5”的充要条件;命题q :∃x 0∈R ,曲线f (x )=x 3﹣x 在点(x 0,f (x 0))处的切线斜率为﹣1,则下列命题为真命题的是( ) A .¬(p ∨q )B .p ∨(¬q )C .p ∧qD .(¬p )∧q4.(5分)已知函数f(x)=cosx −2cos 2(π4−x2),则下列说法正确的是( ) A .y =f(x −π4)−1为奇函数 B .y =f(x +π4)−1为奇函数 C .y =f(x −π4)+1为偶函数D .y =f(x +π4)+1为偶函数5.(5分)为了贯彻落实中央新疆工作座谈会和全国对口支援新疆工作会议精神,促进边疆少数民族地区教育事业发展,我市教育系统选派了三位男教师和两位女教师支援新疆,这五名教师被分派到三个不同地方对口支援,每位教师只去一个地方,其中两位女教师分派到同一个地方,则不同的分派方法有( ) A .18种B .36种C .68种D .84种6.(5分)已知O 为坐标原点,抛物线y =14x 2的焦点为F ,点M 在抛物线上,且|MF |=3,则|OM |=( ) A .1B .√3C .2√3D .37.(5分)函数f (x )=(x ﹣1)cos πx 的部分图象大致为( )A .B .C .D .8.(5分)我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x ,x ∈[120,144)12x 2−200x +80000,x ∈[144,500],当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .4009.(5分)若直线l :(m ﹣1)x +(2m ﹣1)y =0与曲线C :y =√4−(x −2)2+2有公共点,则实数m 的范围是( ) A .[35,1)B .[35,1]C .[12,34]D .[12,34)10.(5分)已知双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1、F 2,且|F 1F 2|=2,若P 是该双曲线右支上一点,且满足|PF 1|=3|PF 2|,则△PF 1F 2面积的最大值是( ) A .34B .1C .43D .5311.(5分)已知函数f(x)=2sin(2x +π6)−m ,x ∈[0,7π6]有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则m (x 1+2x 2+x 3)的范围为( ) A .[5π6,5π3] B .[5π6,5π3) C .[5π3,10π3] D .[5π3,10π3) 12.(5分)设a =15ln 13,b =14ln 14,c =13ln 15,则( ) A .a >c >bB .c >b >aC .b >a >cD .a >b >c二、填空题:本大题共4小题,每小题5分,满分20分. 13.(5分)(1﹣2x 2)(1+x )4的展开式中x 3的系数为 .14.(5分)已知a →=(x ,y),b →=(x −1,9)(x >0,y >0),若a →∥b →,则x +y 的最小值为 . 15.(5分)设等比数列{a n }的前n 项和为S n ,若a 2a 10=2a 42,且S 4﹣S 12=λS 8,则λ= . 16.(5分)已知函数f (x )满足:当x ≤1时,f (2+x )=f (﹣2+x );当x ∈(﹣3,1]时,f(x)=|x+1|﹣2;当x>1时,f(x)=log a(x﹣1)(a>0且a≠1).若函数f(x)的图象上关于原点对称的点至少有3对,有如下四个命题:①f(x)的值域为R;②f(x)为周期函数;③实数a的取值范围为(2,+∞);④f(x)在区间[﹣5,﹣3]上单调递减.其中所有真命题的序号是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在四边形ABCD中,已知BC=CD=12AB=1,AB→⋅BC→=−1,∠BCD=2π3.(1)求四边形ABCD的面积;(2)求sin∠D的值.18.(12分)为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,某市建立了公共自行车服务系统,为了鼓励市民租用公共自行车出行,同时希望市民尽快还车,方便更多的市民使用,公共自行车按每次的租用时间进行缴费,具体缴费标准如下:①租用时间不超过1小时,免费;②超出一小时后每小时1元(不足一小时按一小时计算),一天24小时最高收费10元.某日甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5,0.4;租用时间为小时以上且不超过2小时的概率分别是0.2,0.4.(1)求甲比乙付费多的概率;(2)设甲、乙两人付费之和为随机变量ξ,求ξ的分布列和数学期望.19.(12分)已知数列{a n}满足a1a2⋯a n=2﹣2a n,n∈N*.(1)证明:数列{11−a n}是等差数列,并求数列{a n}的通项公式;(2)记T n =a 1a 2⋯a n ,n ∈N *,S n =T 12+T 22+⋯T n 2.证明:当n ∈N *时,14S n >a n+1−23.20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P(2,√2)在椭圆C 上,且满足PF 1→⋅PF 2→=PF 2→2. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 2且斜率不为零的直线l 交椭圆C 于不同的两点A ,B ,则在x 轴上是否存在定点M ,使得MO 平分∠AMB ?若存在,求出M 点坐标;若不存在,请说明理由.21.(12分)已知函数f(x)=lnxx−1. (1)讨论函数f (x )的单调性;(2)已知λ>0,若存在x ∈(1,+∞)时,不等式λx 2﹣λx ≥(e λx ﹣1)lnx 成立,求λ的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =t 2y =2t (t 为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为2cos θ﹣sin θ=4ρ.(1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求以AB 为直径的圆的极坐标方程. [选修4-5:不等式选讲]23.已知函数f(x)=|2x +√m|−|2x −1|的最小值为﹣2. (1)求m 的值; (2)若实数a ,b 满足1a 2+2+1b 2+1=m ,求a 2+b 2的最小值.2022年安徽省淮南市高考理科数学一模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A ={x |x >2或x <﹣4},B ={x |x <a },若A ∪B =R ,则a 的取值范围为( ) A .[﹣4,+∞)B .(﹣4,+∞)C .[2,+∞)D .(2,+∞)【解答】解:∵集合A ={x |x >2或x <﹣4},B ={x |x <a },A ∪B =R , ∴a >2,∴a 的取值范围是(2,+∞). 故选:D .2.(5分)设复数z 满足(1﹣i )z =1+i ,则|z |=( ) A .12B .1C .√2D .2【解答】解:∵复数z 满足(1﹣i )z =1+i , ∴z =1+i1−i, ∴|z |=|1+i||1−i|=√2√2=1, 故选:B .3.(5分)已知命题p :“x >2且y >3”是“x +y >5”的充要条件;命题q :∃x 0∈R ,曲线f (x )=x 3﹣x 在点(x 0,f (x 0))处的切线斜率为﹣1,则下列命题为真命题的是( ) A .¬(p ∨q )B .p ∨(¬q )C .p ∧qD .(¬p )∧q【解答】解:对于p ,当x >2且y >3时,可得出x +y >5,充分性成立,当x +y >5时,不能得出x >2且y >3,必要性不成立,是充分不必要条件,p 为假命题; 对于q ,∵f (x )=x 3﹣x ,∴f '(x )=3x 2﹣1,由曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率为1, 得f '(x 0)=3x 02﹣1=﹣1, ∴x 0=0,即∃x 0∈R ,曲线f (x )=x 3﹣x 在点(x 0,f (x 0))处的切线斜率为﹣1,q 为真命题; 所以(¬p )∧q 为真命题,故选:D .4.(5分)已知函数f(x)=cosx −2cos 2(π4−x2),则下列说法正确的是( ) A .y =f(x −π4)−1为奇函数 B .y =f(x +π4)−1为奇函数 C .y =f(x −π4)+1为偶函数D .y =f(x +π4)+1为偶函数【解答】解:∵f(x)=cosx −2cos 2(π4−x 2) =cos x ﹣1﹣cos (π2−x )=cos x ﹣1﹣sin x=﹣(sin x ﹣cos x )﹣1=−√2sin(x −π4)−1,∴f (x −π4)﹣1=−√2sin(x −π2)−2=√2cosx −2,为偶函数,故A 错误; f (x −π4)+1=−√2sin(x −π2)=√2cosx ,为偶函数,故C 正确; f (x +π4)﹣1=−√2sinx −2,为非奇非偶函数,故B 错误; f (x +π4)+1=−√2sinx ,为非奇非偶函数,故D 错误. 故选:C .5.(5分)为了贯彻落实中央新疆工作座谈会和全国对口支援新疆工作会议精神,促进边疆少数民族地区教育事业发展,我市教育系统选派了三位男教师和两位女教师支援新疆,这五名教师被分派到三个不同地方对口支援,每位教师只去一个地方,其中两位女教师分派到同一个地方,则不同的分派方法有( ) A .18种B .36种C .68种D .84种【解答】解:根据题意,分派方案可分为两种情况:若两位女教师分配到同一个地方,且该地方没有男老师,则有:C 32×A 33=18 种方法; 若两位女教师分配到同一个地方,且该地方有一位男老师,则有:C 31×A 33=18 种方法;故一共有:36种分派方法 故选:B .6.(5分)已知O 为坐标原点,抛物线y =14x 2的焦点为F ,点M 在抛物线上,且|MF |=3,则|OM |=( ) A .1B .√3C .2√3D .3【解答】解:抛物线y =14x 2的焦点为F (0,1),准线方程为y =﹣1,由抛物线的定义可得|MF |=y M +1=3, 解得y M =2, 则x M 2=8,所以|OM |=√x M 2+y M 2=√8+4=2√3, 故选:C .7.(5分)函数f (x )=(x ﹣1)cos πx 的部分图象大致为( )A .B .C .D .【解答】解:f (0)=﹣1<0,排除D ,由f (x )=0,得x =1或cos πx =0,得πx =k π+π2,得x =k +12,k ∈Z , 当k =0时,x =12,当k =﹣1时,x =−12,k =1时,x =32, 即x 轴右侧零点分别为12,1,32,当12<x <1时,f (x )>0,排除C ,当1<x <32时,f (x )<0,且0<x ﹣1<12,此时−12<f (x )<0,不可能小于f (0)=﹣1,即排除A , 故选:B .8.(5分)我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x ,x ∈[120,144)12x 2−200x +80000,x ∈[144,500],当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .400【解答】解:由题意可得二氧化碳每吨的平均处理成本为S ={13x 2−80x +5040,x ∈[120,144)12x −200+80000x ,x ∈[144,500], 当x ∈[120,144)时,S =13x 2﹣80x +5040=13(x ﹣120)2+240,当x =12时,S 取得最小值240,当x ∈[144,500]时,S =12x +80000x −200≥2√12x ⋅80000x−200=200, 当且仅当12x =80000x,即x =400时取得等号,此时S 取得最小值200. 综上可得,当每月处理量为400吨时,每吨的平均处理成本的最低为200元. 故选:D .9.(5分)若直线l :(m ﹣1)x +(2m ﹣1)y =0与曲线C :y =√4−(x −2)2+2有公共点,则实数m 的范围是( ) A .[35,1)B .[35,1]C .[12,34]D .[12,34)【解答】解:直线方程即m (x +2y )﹣(x +y )=0,联立直线方程{x +2y =0x +y =0可得直线过定点(0,0),曲线C 的方程即 (x ﹣2)2+(y ﹣2)2=4(y ≥2),表示圆心为(2,2),半径为2的上半圆,当m =12时,直线l 为y 轴,与曲线C 显然有公共点, 当m ≠12时,直线l 的斜率为1−m 2m−1,易知当直线过点A (4,2)时斜率最小,如图所示,所以1−m2m−1≥k OA =12,解得12≤m ≤34,综上,实数m 的范围是[12,34],故选:C .10.(5分)已知双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1、F 2,且|F 1F 2|=2,若P 是该双曲线右支上一点,且满足|PF 1|=3|PF 2|,则△PF 1F 2面积的最大值是( ) A .34B .1C .43D .53【解答】解:由题意可得2c =|F 1F 2|=2, 由双曲线的定义可得,|PF 1|﹣|PF 2|=2a , 由|PF 1|=2|PF 2|,可得|PF 2|=a ,|PF 1|=3a , 过F 2作AF 2⊥PF 1,垂足为A , 设|AP |=x ,|AF 1|=3a ﹣x ,由勾股定理可得|AF 2|=√a 2−x 2=√4−(3a −x)2,解得x =5a 2−23a ,即有△PF 1F 2面积为S =12|AF 2|•|PF 1|=12×(3a )•√a 2−(5a 2−23a)2 =√−4a 4+5a 2−1=√−4(a 2−58)+916≤34, 当且仅当a 2=58时取等号.则△PF 1F 2面积的最大值是34.故选:A .11.(5分)已知函数f(x)=2sin(2x +π6)−m ,x ∈[0,7π6]有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则m (x 1+2x 2+x 3)的范围为( )A .[5π6,5π3] B .[5π6,5π3) C .[5π3,10π3] D .[5π3,10π3) 【解答】解:令z =2x +π6, 当x ∈[0,7π6]时,z ∈[π6,5π2],y =sinz ,(z ∈[π6,5π2])的图象如图所示,由对称性可知z 1+z 2=π,z 2+z 3=3π, 所以z 1+2z 2+z 3=4π, 又∵z 1+2z 2+z 3=2x 1+π6+4x 2+π3+2x 3+π6=2(x 1+2x 2+x 3)+2π3, ∴x 1+2x 2+x 3=5π3, 由图象可知,m 2∈[0,1),所以m ∈[0,2),所以m(x 1+2x 2+x 3)∈[0,10π3), 故选:D .12.(5分)设a =15ln 13,b =14ln 14,c =13ln 15,则( ) A .a >c >bB .c >b >aC .b >a >cD .a >b >c【解答】解:根据题意,可设f (x )=(14+x )ln (14﹣x ),x ∈[﹣1,1], 则f ′(x )=ln (14﹣x )−14+x 14−x =ln (14﹣x )−x−14+2814−x =ln (14﹣x )+1−2814−x, 因为x ∈[﹣1,1]时,ln (14﹣x )+1≥ln 13+1>3,且2814−x<3,所以f ′(x )>0,所以f (x )=(14+x )ln (14﹣x )x ∈[﹣1,1]上单调递增, 所以f (﹣1)<f (0)<f (1), 即13ln 15<14ln 14<15ln 13,即c <b <a , 所以a >b >c . 故选:D .二、填空题:本大题共4小题,每小题5分,满分20分. 13.(5分)(1﹣2x 2)(1+x )4的展开式中x 3的系数为 ﹣4 .【解答】解:(1﹣2x 2)(1+x )4的展开式中x 3的系数为C 43−2C 41=4﹣8=﹣4,故答案为:﹣4.14.(5分)已知a →=(x ,y),b →=(x −1,9)(x >0,y >0),若a →∥b →,则x +y 的最小值为 16 . 【解答】解:已知a →=(x ,y),b →=(x −1,9)(x >0,y >0), 由a →∥b →, 得9x =y (x ﹣1), 即1x +9y=1,则x +y =(1x+9y)(x +y )=10+yx+9x y ≥10+2√y x ×9xy =16,当且仅当y x =9x y,即y =12,x =4时取等号, 故答案为:16.15.(5分)设等比数列{a n }的前n 项和为S n ,若a 2a 10=2a 42,且S 4﹣S 12=λS 8,则λ= ﹣2 .【解答】解:设等比数列{a n }的公比为q (q ≠0), 由a 2a 10=(a 6)2=2a 42,得(a 4q 2)2=2a 42,即q 4=2,又S 4﹣S 12=﹣(a 5+a 6+•+a 12)=﹣q 4(a 1+a 2+•+a 8)=λS 8,得λ=﹣q 4=﹣2. 故答案为:﹣2.16.(5分)已知函数f (x )满足:当x ≤1时,f (2+x )=f (﹣2+x );当x ∈(﹣3,1]时,f (x )=|x +1|﹣2;当x >1时,f (x )=log a (x ﹣1)(a >0且a ≠1).若函数f (x )的图象上关于原点对称的点至少有3对,有如下四个命题:①f (x )的值域为R ; ②f (x )为周期函数;③实数a 的取值范围为(2,+∞); ④f (x )在区间[﹣5,﹣3]上单调递减. 其中所有真命题的序号是 ①③ .【解答】解:根据题意,依次分析4个命题:对于①,当x>1时,f(x)=log a(x﹣1)(a>0,且a≠1),这部分函数的值域为R,则f(x)的值域为R,①正确;对于②,当x>1时,f(x)=log a(x﹣1),不具有周期性,f(x)不是周期函数,②错误;对于③,当x∈(﹣3,1]时,f(x)=|x+1|﹣2,且当x≤1时,f(x﹣4)=f(x),作出函数f(x)在(﹣∞,0]上的部分图象关于原点对称的图象,如图所示,若函数f(x)的图象上关于原点对称的点至少有3对,即函数f(x)=log a(x﹣1)的图象与所作的图象至少有三个交点,必有{a>1log a(5−1)<2,解得a>2,a的取值范围为(2,+∞),③正确;对于④,当x≤1时,f(2+x)=f(﹣2+x),则f(x+4)=f(x),x∈[﹣5,﹣3],则x+4∈[﹣1,1],f(x)=f(x+4)=|x+4+1|﹣2=|x+5|﹣2=x+3,f(x)在区间[﹣5,﹣3]上单调递增,④错误;其中正确的是①③;故答案为:①③.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在四边形ABCD中,已知BC=CD=12AB=1,AB→⋅BC→=−1,∠BCD=2π3.(1)求四边形ABCD的面积;(2)求sin∠D的值.【解答】解:(1)∵BC =1,AB =2,∴AB →⋅BC →=−2×1×cos∠ABC =−1,∴cos∠ABC =12, ∵∠ABC ∈(0,π),∴∠ABC =π3, ∴AC 2=AB 2+BC 2﹣2AB ⋅BC ⋅cos ∠ABC =3,∴AC =√3,∴BC 2+AC 2=AB 2,∴∠ACB =π2,∴∠ACD =π6, ∴sin∠ACD =12,∴四边形ABCD 的面积S =S △ABC +S △ACD =12AC ⋅BC +12AC ⋅CD ⋅sin∠ACD =√32+√34=3√34; (2)在△ACD 中,AD 2=AC 2+DC 2﹣2AC ⋅DC ⋅cos ∠ACD =1, ∴AD =1,∴sinD =AC AD ⋅sin∠ACD =√32.18.(12分)为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,某市建立了公共自行车服务系统,为了鼓励市民租用公共自行车出行,同时希望市民尽快还车,方便更多的市民使用,公共自行车按每次的租用时间进行缴费,具体缴费标准如下:①租用时间不超过1小时,免费;②超出一小时后每小时1元(不足一小时按一小时计算),一天24小时最高收费10元.某日甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5,0.4;租用时间为小时以上且不超过2小时的概率分别是0.2,0.4. (1)求甲比乙付费多的概率;(2)设甲、乙两人付费之和为随机变量ξ,求ξ的分布列和数学期望.【解答】解:(1)根据题意,记“甲付费为0元、1元、2元、”为事件A 1,A 2,A 3, 它们彼此互斥,且p (A 1)=0.5,p (A 2)=0.2,p (A 3)=0.3,同理,记“⼄付费为0元、1元、2元”为事件B 1,B 2,B 3, 它们彼此互斥,且p (B 1)=0.4,p (B 2)=0.4,p (B 3)=0.2,由题知,事件A 1,A 2,A 3与事件B 1,B 2,B 3相互独⼄记甲⼄⼄付费多为事件M , 则有:M =A 2B 1+A 3B 1+A 3B 2,可得:P (M )=P (A 2)P (B 1)+P (A 3)P (B 1)+P (A 3)P (B 2)=0.2×0.4+0.3×0.4+0.3×0.4=0.32,故甲⼄⼄付费多的概率为:0.32.(2)由题知,ξ的可能取值为:0,1,2,3,4, 则有:P (ξ=0)=0.5×0.4=0.2, P (ξ=1)=0.5×0.4+0.2×0.4=0.28, P (ξ=2)=0.5×0.2+0.3×0.4+0.2×0.4=0.3, P (ξ=3)=0.2×0.2+0.3×0.4=0.16, P (ξ=4)=0.3×0.2=0.06, 所以ξ的分布列为:ξ 0 1 2 3 4 P0.20.280.30.160.06故ξ的数学期望:E (ξ)=0×0.2+1×0.28+2×0.3+3×0.16+4×0.06=1.6. 19.(12分)已知数列{a n }满足a 1a 2⋯a n =2﹣2a n ,n ∈N *.(1)证明:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =a 1a 2⋯a n ,n ∈N *,S n =T 12+T 22+⋯T n 2.证明:当n ∈N *时,14S n >a n+1−23.【解答】证明:(1)当n =1时,a 1=2﹣2a 1,a 1=23,当n ≥2时,a 1a 2⋯a n =2﹣2a n ;a 1a 2⋯a n ﹣1=2﹣2a n ﹣1,相除得a n =1−an 1−a n−1(n ≥2);整理为:11−a n−1=a n 1−a n=11−a n−1(n ≥2),即11−a n−11−a n−1=1(n ≥2),∴{11−a n}是以3为首项,公差为1的等差数列; 所以11−a n=3+(n −1)=n +2,故a n =n+1n+2(n ∈N ∗). 证明:(2)由(1)得11−a n=n +2,整理为:a n =n+1n+2(n ∈N ∗); 由条件得T n =a 1a 2⋯a n =2n+2,∴T n 2=4(n+2)2>4(n+2)(n+3)=4(1n+2−1n+3),∴S n =T 12+T 22+⋯T n 2>4(13−14+⋯+1n+2−1n+3)=4(1−1n+3−23),∴14S n >n+2n+3−23=a n+1−23,所以,当n ∈N *时,14S n >a n+1−23. 20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P(2,√2)在椭圆C 上,且满足PF 1→⋅PF 2→=PF 2→2. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 2且斜率不为零的直线l 交椭圆C 于不同的两点A ,B ,则在x 轴上是否存在定点M ,使得MO 平分∠AMB ?若存在,求出M 点坐标;若不存在,请说明理由.【解答】解:(1)PF 1→⋅PF 2→=PF 2→2,PF 2→⋅(PF 1→−PF 2→)=0,PF 2→⋅F 1F 2→=0,PF 2→⊥F 1F 2→, 又点P(2,√2)在椭圆C 上,∴F 1(﹣2,0),F 2(2,0), 且由椭圆定义, 得2a =|PF 1|+|PF 2|=√(−2−2)2+(0−√2)2+√(2−2)2+(0−√2)2=4√2a =2√2,b 2=a 2﹣4=4, 则椭圆C 的标准方程为x 28+y 24=1;(2)假设存在定点M 满足要求,因为直线l 斜率不为零 所以设直线l :x =my +2,M (x 0,0),A (x 1,y 1),B (x 2,y 2) 把直线l 的方程x =my +2(m ∈R )代入椭圆方程x 28+y 24=1,整理得(m 2+2)y 2+4my﹣4=0, ∴y 1+y 2=−4m m 2+2;y 1y 2=−4m 2+2,∵MO平分∠AMB,∴k MA+k MB=0,即y1x1−x0+y2x2−x0=0,∴y1my1+2−x0+y2my2+2−x0=0,整理得:2my1y2+(2﹣x0)(y1+y2)=0,∴2m(−4m2+2)+(2−x0)(−4mm2+2)=0,∴m(4﹣x0)=0,由于m∈R,∴x0=4,所以存在M(4,0)满足要求.21.(12分)已知函数f(x)=lnxx−1.(1)讨论函数f(x)的单调性;(2)已知λ>0,若存在x∈(1,+∞)时,不等式λx2﹣λx≥(eλx﹣1)lnx成立,求λ的取值范围.【解答】解:(1)y=f(x)的定义域为(0,1)∪(1,+∞)因为f(x)=lnxx−1,所以f′(x)=1−1x−lnx(x−1)2.令g(x)=1−1x−lnx,则g′(x)=1−xx2,所以函数y=g(x)在区间(0,1)单增;在区间(1,+∞)单减.又因为g(1)=0,所以当x∈(0,1)∪(1,+∞)时g(x)<0,f'(x)<0所以函数y=f(x)在区间(0,1),(1,+∞)上均单调递减;(2)∵λx2﹣λx≥(eλx﹣1)lnx∴(x﹣1)lneλx≥(eλx﹣1)lnx当λ>0,x>1时x﹣1>0,所求不等式可化为lneλxeλx−1≥lnxx−1,即f(eλx)≥f(x),∵λ>0易知eλx∈(1,+∞),由(1)知,y=f(x)在(1,+∞)单调递减,故只需eλx≤x在(1,+∞)上能成立.两边同取自然对数,得λx≤lnx,即λ≤lnxx在(1,+∞)上能成立.令φ(x)=lnxx(x>1),则φ′(x)=1−lnxx2,当x∈(1.e)时,φ'(x)>0,函数y=φ(x)单调递增,当x∈(e,+∞)时,φ'(x)<0,函数y=φ(x)单调递减,∴φ(x)max=φ(e)=1 e,所以λ≤1e,又λ>0,故λ的取值范围是(0,1e].(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =t 2y =2t (t 为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为2cos θ﹣sin θ=4ρ.(1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求以AB 为直径的圆的极坐标方程. 【解答】解:(1)由{x =t 2y =2t (t 为参数),得{x =t 2y 2=t (t 为参数),消去t 得曲线C 的普通方程为y 2=4x . (2)由2cosθ−sinθ=4ρ,得2x ﹣y =4, 联立{y 2=4x2x −y =4得A (1,﹣2),B (4,4),所以AB 中点坐标为(52,1),|AB|=√45,故以AB 为直径的圆的直角坐标方程为(x −52)2+(y −1)2=454, 即x 2+y 2﹣5x ﹣2y ﹣4=0, 将x =ρcos θ,y =ρsin θ,代入得ρ2﹣5ρcos x ﹣2ρsin θ﹣4=0. [选修4-5:不等式选讲]23.已知函数f(x)=|2x +√m|−|2x −1|的最小值为﹣2. (1)求m 的值; (2)若实数a ,b 满足1a 2+2+1b 2+1=m ,求a 2+b 2的最小值.【解答】解:(1)∵||2x +√m|−|2x −1||≤|2x +√m −(2x −1)|=√m +1, 故−√m −1≤|2x +√m|−|2x −1|≤√m +1,∴−√m −1=−2,∴m =1. (2)由(1)可知1a 2+2+1b 2+1=1,所以a 2+b 2=(a 2+2)+(b 2+1)−3=[(a 2+2)+(b 2+1)]⋅(1a 2+2+1b 2+1)−3=(2+a 2+2b 2+1+b 2+1a 2+2)−3≥4−3=1,1 a2+2=1b2+1=12,即a=0,b=±1时等号成立,故a2+b2的最小值为1.当且仅当。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

门头沟区高三综合练习(一)数学(理) .4一、选择题(本大题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 设全集U = {}0,1,2,3,4,5,集合{1,3},{3,5}A B ==,则U ()C A B =A .{0,4}B .{1,5}C .{2,0,4}D .{2,0,5}2. 复数z 满足23zi i=-,复数z 对应的点在复平面的 A .第一象限 B .第二象限 C .第三象限 D. 第四象限3.对于函数()sin (,,)f x a x bx c a b R c Z =++∈∈,计算(1)f 和(1)f -,所得出的正确结果一定不可能是A .4和6B .3和1C .2和4D .1和24. 抛物线28y x =焦点F 到双曲线22:13y C x -=的一条渐近线的距离是 A .1 B .2 C .3 D 35. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第五天走的路程为 A. 48里 B. 24里 C. 12里 D. 6里//,90AB CD DAB ∠=,且6.在直角梯形ABCD 中,222,AB CD AD P ===是BC 的中点,则PD PA ⋅为A .94 B .3 C .2 D .52DCP7. 已知函数)sin()(ϕω+=x A x f )||,0,0(πϕω<>>A 的部分图像如图所示,则“2m ≥”是“函数()f x m ≤对[0,8]x ∈恒成立”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件8.某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标。

分值权重表如下: 总分 技术 商务 报价 100%50%10%40%技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的。

报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分。

若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分。

在某次招标中,若基准价为1000(万元)。

甲、乙两公司综合得分如下表: 公司 技术 商务 报价甲 80分 90分 A 甲分 乙70分100分A 乙分甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是 A .73,75.4 B .73,80 C .74.6,76 D .74.6 ,75.4二、填空题(本大题共6小题,每小题5分,满分30分. ) 9. 261()x x-的展开式中6x 的系数是 。

10.某高中校高一、高二、高三三个年级人数分别为300,300,400通过分层抽样从中抽取40人进行问卷调查,现在从答卷中随机抽取一张,恰好是高三学生的答卷的概率是 。

11.直线cos 3(sin3x t t y t ππ⎧=⎪⎪⎨⎪=⎪⎩为参数)截圆:4cos C ρθ=所得的弦长为 。

12.某程序框图如图所示,则输出的结果S 是 。

13.椭圆2222:1(0)x y C a b a b+=>>上的点P 若满足12PF PF ⊥,12,F F 为椭圆的两个焦点,称这样的点P 为椭圆的“焦垂点”。

椭圆22142x y +=有 个“焦垂点”;请你写出椭圆2222:1(0)x y C a b a b+=>>上有4个“焦垂点”时所满足的条件 。

14.已知函数22ln ()(31)(21)x x a f x x a a a x a ⎧≥=⎨--++-+<⎩,若存在正实数b 使得 ()()g x f x b =-有四个不同的零点,则正实数a 的取值范围 。

三、解答题:(本大题共6小题,满分80分.) 15. (本小题满分13分) 在ABC ∆中,B =120o ,2,AB =,A ∠的角平分线3AD =,(1)求ADB ∠的大小; (2)求AC 的长。

16.(本小题满分13分)第24届冬奥会将在北京举行。

为了推动我国冰雪运动的发展,京西某D区兴建了“腾越”冰雪运动基地。

在来“腾越”参加冰雪运动的人员中随机抽查100员运动员,他们的身份分布如下:注:将上表中的频率视为概率(1)求来“腾越”参加冰雪运动的人员中,小学生的概率;(2) 若将上表中的频率视为概率,X 表示来“腾越”参加运动的3人中是大学生的人数,求X 的分布列及期EX 。

17.(本小题满分13分)在四棱锥P ABCD -中,0//,2224,60,AB CD AB CD BC AD DAB AE BE====∠==PAD ∆为正三角形,且PAD ABCD ⊥平面平面,平面PEC PAD l =平面。

(1)求证://l EC ;(2)求二面角P EC D --的余弦值;(3)是否存在线段PC (端点,P C 除外)上一点M ,使得DE AM ⊥, 若存在,指出点M 的位置,若不存在,请明理由。

18. (本题满分13分)已知椭圆2222:1(0)x y C a b a b +=>>,三点123313(1,),(,(1,)2222P P P ---中恰有二点在椭圆C 上,且离心率为12e =。

(1)求椭圆C 的方程;(2)设P 为椭圆C 上任一点,12,A A 为椭圆C 的左右顶点,M 为2PA 中点,求证:直线2PA 与直线OM 它们的斜率之积为定值;(3)若椭圆C 的右焦点为F ,过(4,0)B 的直线l 与椭圆C 交于,D E , 求证:直线FD 与直线FE 关于直线1x =对称。

19.(本题满分14分)已知()2x be a f x x +=+在(1,(1))f --处的切线方程为11y x e=++。

(1)求()y f x =的解析式; (2)设1()(2)2)2x h x x e x x =+->-+(,求()h x 零点的个数; (3)求证:()y f x =在(2,)-+∞上单调递增。

20.(本题满分14分)已知数列{}n a 满足*111,,nn n a a a p n N +=-=∈。

(1)若1p =,写出4a 的所有值;(2)若数列{}n a 是递增数列,且123,2,3a a a 成等差数列,求p 的值; (3)若12p =,且21{}n a -是递增数列,2{}n a 是递减数列,求数列{}n a 的通项公式。

门头沟区高三综合练习(一) 数学(理)评分标准.4一、选择题(本大题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)二、填空题(本大题共6小题,每小题5分,满分30分. )三、解答题:(本大题共6小题,满分80分.) 15. (本小题满分13分) 在ABC ∆中,B =120o,AB =,A ∠的角平分线AD =(1)求ADB ∠的大小; (2)求AC 的长。

解:(1)在ABD ∆中,由正弦定理得:0sin 452sin 2sin 3AB AD ADB ADB ADB=⇒∠=⇒∠=∠ (5)分 (2)由(1)得:001530BAD BAC ∠=⇒∠=,030,BCA AB BC ∠=⇒==10分由余弦定理得:AC ==13分C16.(本小题满分13分))第24届冬奥会将在北京举行。

为了推动我国冰雪运动的发展,京西某区兴建了“腾越”冰雪运动基地。

在来“腾越”参加冰雪运动的人员中随机抽查100员运动员,他们的身份分布如下:注:将上表中的频率视为概率(1)求来“腾越”参加冰雪运动的人员中,小学生的概率;(2) 若将上表中的频率视为概率,X 表示来“腾越”参加运动的3人中是大学生的人数,求X 的分布列及期EX 。

解:(1)设来“腾越”参加冰雪运动的人员中小学生为事件B , 则2()5P B =………………………………………………………………………………5在分 (2)X 可取0,1,2,3,………………………………………………6分,0132332323334641448(0)(),(1)()(),512555125141211(2)()(),(3)()551255125P X P X P X P X C C C C ============…………………10分35EX =…………………………………………………………………………13分注:求期望求对,就给满分。

17.(本小题满分13分)在四棱锥P ABCD -中,//,2224,60,AB CD AB CD BC AD DAB AE BE====∠==PAD ∆为正三角形,且PAD ABCD ⊥平面平面,平面PECPAD l =平面。

(1)求证://l EC ;(2)求二面角P EC D --的余弦值;(3)是否存在线段PC (端点,P C 除外)上一点M ,使得DE AM ⊥, 若存在,指出点M 的位置,若不存在,请明理由。

解:(1)由题意可知,//CDAE CDAE =⎧⎨⎩,四边形AECD 为平行四边形,…2分////EC AD EC PAD EC PAD AD PAD ⎧⎪⊄⇒⎨⎪⊂⎩平面平面平面,又PAD PEC l =平面平面, 可得://l EC ,……………………………………………………6分 (2)方法一:设O 是AD 中点,PAD ∆为正三角形,则PO AD ⊥,PAD ABCD ⊥平面平面,PO ABCD ⊥,………………………………………………………………8分又2AD AE ==,060DAB ∠=,所以,ADE ∆为正三角形,OE AD ⊥建立如图所示坐标系,则(P E C -,设平面PEC 法向量 为1(,,)n x y z =,(2,3,3),(0,3,PC PE =--=由120,0PC n PE n ⋅=⋅=得:1(0,1,1)n =, 平面EDC 的法向量2(0,0,1)n =,12cos ,2n n <>==, 所以,二面角P EC D --的余弦值为2……10分 方法二:设O 是AD 中点,PAD ∆为正三角形,则PO AD ⊥,PAD ABCD ⊥平面平面,PO ABCD ⊥,又2AD AE ==,所以,ADE ∆为正三角形,OE AD ⊥ OE EC ⊥,则OEP ∠为二面角P EC D --的平面角,………………8分而PO OE =,得,4OEP π∠=,二面角P EC D --的余弦值为2…10分 (3)不存在,若,DE AM DE AC ⊥⊥又,则DE PA ⊥,又DE PO ⊥, 则DE PAO DE AD ⊥⇒⊥,与3ADE π∠=矛盾,故线段PC (端点,P C 除外)上不存在点M ,使得DE AM ⊥………………………13分18. (本题满分13分)已知椭圆2222:1(0)x y C a b a b +=>>,三点123313(1,),(,(1,)2222P P P ---中恰有二点在椭圆C 上,且离心率为12e =。

相关文档
最新文档