最新数学建模(数学模型)期末考试试题及答案详解

合集下载

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为,到达目的时刻为,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t)是一天内时刻变量,则f(t)(t)在[]是连续函数。

作辅助函数F(t)(t)(t),它也是连续的,则由f(a)=0(b)>0和g(a)>0(b)=0,可知F (a )<0, F(b)>0, 由介值定理知存在t0属于()使F(t0)=0, 即f(t0)(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分) 解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x (3分)记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =(k u ,k v )定义为决策。

《数学建模》期末试卷A

《数学建模》期末试卷A

《数学建模》期末试卷A一、填空题(每题2分,共20分)1、在数学建模中,我们将所要研究的问题________化。

2、在解决实际问题时,我们常常需要收集大量的数据,这些数据通常是不________的。

3、在建立数学模型时,我们通常需要对变量进行假设,这些假设通常是对________的描述。

4、在解决实际问题时,我们通常需要对多个因素进行________,以确定哪些因素对所要研究的问题有显著影响。

5、在建立数学模型时,我们通常需要对数据进行________,以发现数据之间的规律和关系。

6、在解决实际问题时,我们通常需要将复杂的问题________化,以方便我们更好地理解和解决它们。

7、在建立数学模型时,我们通常需要将实际问题________化,以将其转化为数学问题。

8、在解决实际问题时,我们通常需要考虑实际情况的________性,以避免我们的解决方案过于理想化。

9、在建立数学模型时,我们通常需要使用数学语言来________模型,以方便我们更好地描述和解决它。

10、在解决实际问题时,我们通常需要使用计算机来帮助我们进行________和计算。

二、选择题(每题3分,共30分)11、在下列选项中,不属于数学建模步骤的是()。

A.确定变量和参数B.建立模型C.进行实验D.验证模型12、在下列选项中,不属于数学建模方法的是()。

A.归纳法B.演绎法C.类比法D.反证法13、在下列选项中,不属于数学建模应用领域的是()。

A.物理学B.工程学C.经济学D.政治学14、在下列选项中,不属于数学建模语言的是()。

A.文字语言B.符号语言C.图形语言D.自然语言15、在下列选项中,不属于数学建模原则的是()。

A.简洁性原则B.一致性原则C.可行性原则D.可重复性原则16、在下列选项中,不属于数学建模步骤的是()。

A.对数据进行分析和处理B.对模型进行假设和定义C.对模型进行检验和修正D.对结果进行解释和应用17、在下列选项中,不属于数学建模应用领域的是()。

数学模型(专升本)期末考试答案

数学模型(专升本)期末考试答案

数学模型(专升本)期末考试答案1. (单选题) 说明某事物内部各组成部分所占比例应选____。

(本题2.0分)A、率B、构成比C、相对比D、标准差标准答案:B解析:得分: 22. (单选题) 两样本均数比较用t检验,其目的是检验( )(本题2.0分)A、两样本均数是否不同B、两总体均数是否不同C、两个总体均数是否相同D、两个样本均数是否相同标准答案:C解析:3. (单选题) 人该指标的数值,为推断这组人群该指标的总体均值μ与μ0之间的差别是否有显著性意义,若用t检验,则自由度应该是(本题2.0分)A、 5B、28C、29D、 4标准答案:C解析:4. (单选题) 正态分布曲线下,横轴上,从μ-1.96σ到μ+1.96σ的面积为(本题2.0分)A、95%B、49.5%C、99%D、97%标准答案:A解析:5. (单选题) 两样本均数间的差别的假设检验时,查t界值表的自由度为(本题2.0分)A、n-1B、(r-1)(c-1)C、n1+n2-2D、 1标准答案:C解析:6. (单选题) 最小二乘法是指各实测点到回归直线的( )(本题2.0分)A、垂直距离的平方和最小B、垂直距离最小C、纵向距离的平方和最小D、纵向距离最小标准答案:C解析:7. (单选题) 对含有两个随机变量的同一批资料,既作直线回归分析,又作直线相关分析。

令对相关系数检验的t值为tr,对回归系数检验的t值为tb,二者之间具有什么关系?( )(本题2.0分)A、tr>tbB、tr<tbC、tr= tbD、二者大小关系不能肯定标准答案:C解析:8. (单选题) 设配对资料的变量值为x1和x2,则配对资料的秩和检验( )(本题2.0分)A、分别按x1和x2从小到大编秩B、把x1和x2综合从小到大编秩C、把x1和x2综合按绝对值从小到大编秩D、把x1和x2的差数按绝对值从小到大编秩标准答案:D解析:9. (单选题) 四个样本率作比较,χ2>χ20.05,ν可认为( )(本题2.0分)A、各总体率不同或不全相同B、各总体率均不相同C、各样本率均不相同D、各样本率不同或不全相同标准答案:A解析:10. (单选题) 某学院抽样调查两个年级学生的乙型肝炎表面抗原,其中甲年级调查35人,阳性人数4人;乙年级调查40人,阳性人数8人。

数学建模期末试题及答案

数学建模期末试题及答案

数学建模期末试题及答案1. 题目描述这是一份数学建模期末试题,包含多个问题,旨在考察学生对数学建模的理解和应用能力。

以下是试题的具体描述及答案解析。

2. 问题一某城市的交通流量与时间呈周期性变化,根据历史数据,可以得到一个交通流量函数,如下所示:\[f(t) = 100 + 50\sin(\frac{2\pi}{24}t)\]其中,t表示时间(小时),f(t)表示交通流量。

请回答以下问题:a) 请解释一下该函数的含义。

b) 根据该函数,该城市的最大交通流量是多少?c) 在哪个时间段,该城市的交通流量较低?【解析】a) 该函数表示交通流量f(t)随时间t的变化规律。

通过观察函数,可以发现交通流量与时间的关系是周期性变化,每24小时一个周期。

函数中的sin函数表示交通流量在周期内的变化,振幅为50,即交通流量的最大值与最小值之差为50。

基准流量为100,表示在交通最不繁忙的时刻,流量为100辆。

b) 最大交通流量为基准流量100辆与振幅50辆之和,即150辆。

c) 交通流量较低的时间段为振幅为负值的时刻,即最小值出现的时间段。

3. 问题二某学校的图书馆借书规则如下:- 学生每次最多可以借5本书,每本书的借阅期限为30天。

- 学生可以在借阅期限结束后进行续借,每次续借可以延长借阅期限30天。

请回答以下问题:a) 一个学生在10天内连续借了3次书,分别是2本、3本和4本,请写出该学生在每次借书后的总借书数。

b) 如果一个学生借了5本书,每本都是在借阅期限后进行续借,借了10年,最后一次续借后,该学生一共续借了几次书?【解析】a) 总的借书数为每次借书的累加和。

学生第一次借2本,总共借书数为2本;第二次借3本,总共借书数为2 + 3 = 5本;第三次借4本,总共借书数为5 + 4 = 9本。

b) 学生每本书借阅期限为30天,10年为3650天,每次借书续借可以延长借阅期限30天。

因此,学生续借次数为10年÷30天= 121次。

数学建模期末答案

数学建模期末答案

《数学建模》期末考试A卷姓名:专业:学号:学习中心:成绩:一、判断题(每题3分,共15分)1、模型具有可转移性。

------------------------------(√)2、一个原型,为了不同的目的可以有多种不同的模型。

------(√)3、一个理想的数学模型需满足模型的适用性和模型的可靠性。

---------------------------------------------(√)4、力学中把质量、长度、时间的量纲作为基本量纲。

-------(√)5、数学模型是原型的复制品。

-------------------- (×)二、不定项选择题(每题3分,共15分)1、下列说法正确的有AC 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

2、建模能力包括ABCD 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力3、按照模型的应用领域分的模型有AE 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型4、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法5、一个理想的数学模型需满足AC 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性三、用框图说明数学建模的过程。

(10分)四、建模题(每题15分,共60分)1、四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同时着地?解:4条腿能同时着地(一)模型假设对椅子和地面都要作一些必要的假设:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

最新数学模型(数学建模)期末考试试题及答案 详解(1)

最新数学模型(数学建模)期末考试试题及答案 详解(1)

)t的变化情2、在§6.1捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度E 的减函数, 即)0,0(,>>-=b a bE a c ,请问如何达到最大经济效益?三、简答题(本题满分16分,每小题8分)1、在§9.3 随机存储策略中,请用图解法说明为什么s 是方程)()(0S I c x I +=的最小正根。

2、请结合自身特点谈一下如何培养数学建模的能力?四、(本题满分20分)某中学有三个年级共1000名学生,一年级有219人,二年级有316人,三年级有465人。

现要选20名校级优秀学生,请用下列办(1)按比例加惯例的方法;(2)Q 值法。

另外如果校级优秀学21个,重新进行分配,并按照席位分配的理想化准则分析分配结果。

五、(本题满分16分)大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个业岗位可供选择。

层次结构图如图,已知准则层对目标层的成对比较矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=12/15/1213/1531,方案层对准则层的成对比较矩阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1272/1147/14/111B,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=13/17/1313/17312,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=12/16/1214/16413B。

选择就业岗位收入发展声誉岗位1 岗位2 岗位3六、(本题满分16分)某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止(退保)。

保险公司需要对投保人的健康、疾病、死亡和退保的情况作出评估,从而制定合适的投保金额和理赔金额。

各种状态间相互转移的情况和概率如图。

试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?0.608/09学年 II 学期《数学模型》期末考试A 试卷解答16分,每小题8分) 1)得vt m m mr =++2)1(22πωπ, 。

数学模型试题及答案解析

数学模型试题及答案解析

数学模型试题及答案解析一、单项选择题(每题3分,共30分)1. 以下哪个不是数学模型的特征?A. 抽象性B. 精确性C. 可验证性D. 复杂性答案:D2. 数学模型的建立通常不包括以下哪个步骤?A. 定义问题B. 收集数据C. 建立假设D. 验证结果答案:D3. 在数学建模中,以下哪个不是模型分析的方法?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:D4. 数学模型的验证不包括以下哪项?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:D5. 在数学建模中,以下哪个不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D6. 以下哪个是数学模型的典型应用领域?A. 经济学B. 物理学C. 生物学D. 所有以上答案:D7. 数学模型的建立过程中,以下哪个步骤是不必要的?A. 问题定义B. 假设建立C. 模型求解D. 模型展示答案:D8. 数学模型的分析中,以下哪个不是常用的工具?A. 微分方程B. 线性代数C. 概率论D. 量子力学答案:D9. 在数学建模中,以下哪个不是模型的评估标准?A. 准确性B. 可解释性C. 简洁性D. 复杂性答案:D10. 数学模型的建立过程中,以下哪个步骤是至关重要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:A二、多项选择题(每题5分,共20分)11. 数学模型的建立过程中,以下哪些步骤是必要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:ABCD12. 数学模型的类型包括以下哪些?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:ABCD13. 数学模型的分析方法包括以下哪些?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:ABCD14. 数学模型的验证包括以下哪些?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:ABC三、填空题(每题4分,共20分)15. 数学模型的建立通常包括定义问题、______、建立假设和模型求解四个步骤。

数学建模期末考试试题

数学建模期末考试试题

数学建模期末考试试题# 数学建模期末考试试题## 第一部分:选择题### 题目1在数学建模中,以下哪个选项不是模型的组成部分?A) 假设B) 目标C) 约束条件D) 计算工具### 题目2以下哪个是线性规划问题的一个特征?A) 目标函数和约束条件都是非线性的B) 目标函数和约束条件都是线性的C) 目标函数是线性的,约束条件是非线性的D) 目标函数是非线性的,约束条件是线性的### 题目3在数学建模中,敏感性分析的主要目的是什么?A) 确定模型的最优解B) 评估模型参数变化对结果的影响C) 简化模型结构D) 确定模型的稳定性## 第二部分:简答题简述数学建模中模型的校验过程。

### 题目2解释什么是多目标优化问题,并给出一个实际应用的例子。

### 题目3在进行数学建模时,为什么需要对模型进行敏感性分析?请说明其重要性。

## 第三部分:应用题### 题目1假设你被要求为一家工厂设计一个生产调度模型。

工厂有三种产品A、B和C,每种产品都需要经过三个不同的生产阶段:加工、装配和包装。

每个阶段的机器数量有限,且每种产品在每个阶段所需的时间不同。

请建立一个线性规划模型来最大化工厂的日利润。

### 题目2考虑一个城市交通流量的优化问题。

城市有多个交叉路口,每个交叉路口在不同时间段的交通流量是不同的。

如何建立一个数学模型来预测交通流量,并提出减少交通拥堵的策略?### 题目3一个公司想要评估其产品在市场上的竞争力。

公司有多个产品,每个产品都有不同的成本和利润率。

同时,公司需要考虑市场需求和竞争对手的情况。

请为该公司设计一个多目标优化模型,以确定最优的产品组合和市场策略。

## 第四部分:论文题选择一个你感兴趣的实际问题,建立一个数学模型来解决这个问题。

请详细描述你的建模过程,包括问题的定义、模型的假设、模型的建立、求解方法以及模型的验证。

### 题目2在数学建模中,模型的可解释性是一个重要的考虑因素。

请讨论模型可解释性的重要性,并给出一个例子来说明你的观点。

《数学建模》期末考试试卷一与参考答案

《数学建模》期末考试试卷一与参考答案

《数学建模》期末考试试卷 班级 姓名 学号一、(15分)以色列的某社区联盟,其农业生产受农田面积和灌溉配水量的限制,其资料如表1所示,适合该地区种植的农作物有甜菜、棉花和栗子,其每英亩的期望净收益、用水量及可种植的最大面积如表2所示。

表1 农田面积和灌溉配水量 表2 农作物期望净收益、用水量试问,该社区联盟应如何安排这三种农作物的生产,方使总的收益最大?建立线性规划问题的数学模型并写出用LINGO 求解的程序。

二、(15分)用单纯形方法求解线性规划问题。

⎪⎩⎪⎨⎧≥≥≥≤++≤++++=000242126042..61314S max 321321321321x x x x x x x x x t s x x x ;;三、(15分)上海红星建筑构配件厂是红星集团属下之制造建材设备的专业厂家。

其主要产品有4种,分别用代号A 、B 、C 、D 表示,生产A 、B 、C 、D 四种产品主要经过冲压、成形、装配和喷漆四个阶段。

根据工艺要求及成本核算,单位产品所需要的加工时间、利润以及可供使用的总工时如下表所示:在现有资源的条件下如何安排生产,可获得利润最大?现设置上述问题的决策变量如下:1234,,,x x x x 分别表示A 、B 、C 、D 型产品的日产量,则可建立线性规划模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+++≤+++≤+++≤++++++=0,,,300048462000552424005284480..81169max 432143214321432143214321x x x x x x x x x x x x x x x x x x x x t s x x x x z 利用LINGO10.0软件进行求解,得求解结果如下:Global optimal solution found at iteration: 4Objective value: 4450.000 Variable Value Reduced Cost X1 400.0000 0.000000 X2 0.000000 0.5000000 X3 70.00000 0.000000 X4 10.00000 0.000000 Row Slack or Surplus Dual Price 1 4450.000 1.000000 2 0.000000 2.500000 3 610.0000 0.000000 4 0.000000 0.5000000 5 0.000000 0.7500000(1)指出问题的最优解并给出原应用问题的答案;(2)写出线性规划问题的对偶线性规划问题,并指出对偶问题的最优解;(3)灵敏度分析结果如下:Ranges in which the basis is unchanged: Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase Decrease X1 9.000000 0.5000000 0.1666667 X2 6.000000 0.5000000 INFINITY X3 11.00000 0.3333333 1.000000 X4 8.000000 1.000000 1.000000 Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 480.0000 20.00000 80.000003 2400.000 INFINITY 610.00004 2000.000 400.0000 20.000005 3000.000 40.00000 280.0000对灵敏度分析结果进行分析 四、(15分)(1)叙述层次分析法的步骤。

数学建模期末考试题

数学建模期末考试题

数学建模期末考试题一、问题描述在一个小镇的公园里,有一座长方形的人工湖。

公园管理部门决定在湖中放养一些鱼类,以增添公园的景色。

为了控制鱼类数量,他们规定每年只能往湖中放入固定数量的鱼。

经过多年观察,他们发现湖中鱼的数量会受到湖水面积、水质状况、放养数量等多个因素的影响。

为了合理控制鱼的数量,公园管理部门希望建立一个数学模型,以预测鱼类的增长情况。

二、模型建立为了建立数学模型,我们首先需要确定鱼类的增长规律。

经过调查研究,我们了解到鱼类的繁殖主要受到以下因素的影响:1. 湖水面积:湖水面积越大,提供的生存空间越多,鱼类的数量也会相应增加。

2. 水质状况:水质好的湖泊中容易提供充足的食物供应,鱼类的繁殖能力较强,数量相对较多。

3. 放养数量:每年放养的鱼类数量对于鱼类的繁殖能力和数量也有一定影响。

基于以上因素,我们可以建立如下的数学模型:设湖中鱼的数量为 N,湖水面积为 A,水质状况为 W,放养数量为F。

经过分析,我们可以得到以下数学关系式:1. N = k1 * A * W * F其中 k1 为系数,表示湖水面积、水质状况和放养数量对鱼类数量的综合影响。

2. N' = k2 * N其中N' 表示鱼类数量的变化率,k2 为系数,表示鱼类繁殖的能力。

三、模型求解为了求解模型,我们需要确定 k1 和 k2 的数值,并进行模型的仿真计算。

1. 确定 k1 和 k2 的数值为了确定 k1 和 k2 的数值,我们需要收集公园中多个湖泊鱼类数量的数据,并进行统计分析。

通过分析数据,在与放养数量、湖水面积和水质状况相关的变化范围内,确定 k1 和 k2 的合理取值。

同时,也需要注意数据的实际情况和合理性,避免出现过拟合或欠拟合的情况。

2. 进行模型的仿真计算在确定了 k1 和 k2 的数值之后,我们可以进行模型的仿真计算,预测未来鱼类的数量变化情况。

首先,我们需要确定初始条件,包括湖水面积、水质状况和放养数量等。

最新数学模型(数学建模)期末试卷及答案详解()

最新数学模型(数学建模)期末试卷及答案详解()

数学建模(数学模型)期末考试卷专业 级《数学模型与数学软件》考核命题卷(含答题卷)(编号1)闭卷)一、综合题(15分)为了研究同类车的刹车距离d (司机想刹车到车停下来所行驶的距离)与刹车时的车速v 之间存在什么样的函数关系,通过多组同条件实验测得一组数据如下表:(车速与距离都是多次实验的平均车速和平均距离)车速 (km/h) 29.3 44.0 58.7 62.2 73.3 88.0 102.7 110.2 117.3 刹车距离(m ) 39.0 76.6 126.2 135.8 187.8 261.4 347.1 388.9444.8 1.(6分)请简述数学建模一般步骤的基本方法。

2.(2分)为了研究刹车距离与车速的关系,需要做哪些资料数据的搜集?3.(7分)请给出合理的假设,建立合适的模型,来研究)(v fd 。

(注:模型不需要求解)二、综合题(16分)在研究存储模型中,设某产品日需求量为常数r ,每次生产为瞬间完成,每次生产的准备费为1c ,并与生产量无关, 每单位时间每件产品贮存费为2c 。

现需要制定最优的生产计划(即最佳的生产周期T 和每周期生产量Q 的确定)。

1.(6分)请简述数学建模的基本方法。

2.(10分)请在合适的假设下,建立不允许缺货的最优生产计划模型。

三、综合题(18分)研究奶制品深加工问题中,有80桶牛奶,共680小时的可利用工作时间,至多能加工80公斤A1产品,其他对于下列关系:1.(12化。

(注:不要求求解结果) 2.(6分)以此题为例,简述线性规划三个特征。

四、综合题(16分)研究治愈即免疫的传染病模型,设每个病人每天有效接触为a ,日治愈率为b ,初始状态下病人数和健康人数占总人数的比值分别为00,s i1(6分)做合适的假设,并建立传染病的SIR 模型;2(10分)写出利用ODE45函数求解此模型的MATLAB 程序代码。

获利44元/千克获利32元/千克五、综合题(20分)研究层次分析法模型,如下图:目标层准则层方案层如果现在已经得到五个准则的成对比较矩阵为:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1135/13/11125/13/13/12/117/14/1557123342/11A 1.(8分)阐述层次分析法的基本步骤;2.(8分)使用和法演算A 矩阵的最大特征值,并求这五个准则对目标层的权向量; 3.(4分)求A 矩阵的一致性指标CI 和CR ,已知12.1)5(=RI 。

数学模型期末考试试题及答案

数学模型期末考试试题及答案

数学模型期末考试试题及答案一、选择题(每题5分,共25分)1. 以下哪个选项不属于数学模型的分类?A. 确定性模型B. 随机性模型C. 动态模型D. 实验模型答案:D2. 在线性规划中,目标函数的系数矩阵称为?A. 约束矩阵B. 目标矩阵C. 价值系数矩阵D. 转置矩阵答案:C3. 在微分方程模型中,描述物体运动的微分方程是?A. 牛顿第二定律B. 柯西-黎曼方程C. 热传导方程D. 波动方程答案:A4. 以下哪个模型属于连续模型?A. 马尔可夫链B. 确定性人口模型C. 蒙特卡洛模拟D. 非线性规划答案:B5. 在排队论中,以下哪个参数表示服务强度?A. λB. μC. ρD. K答案:C二、填空题(每题5分,共25分)6. 在线性规划中,若目标函数为max z = cx,其中c为价值系数向量,x为决策变量向量,则目标函数的矩阵表示为______。

答案:c^T x7. 在微分方程模型中,描述物体运动的微分方程为m a = F,其中m为物体的质量,a为加速度,F为作用力。

若已知m =2kg,a = 4m/s^2,则作用力F =______。

答案:8N8. 在排队论中,若顾客到达率为λ,服务率为μ,则服务强度ρ =______。

答案:λ/μ9. 在马尔可夫链模型中,状态转移矩阵P的元素P_ij表示从状态i转移到状态j的概率,则状态转移矩阵P满足______。

答案:P_ij ≥ 0 且Σ(P_ij) = 110. 在非线性规划问题中,若目标函数为f(x),约束条件为g_i(x) ≤ 0 (i = 1, 2, ..., m),则该问题可以表示为______。

答案:min f(x) s.t. g_i(x) ≤ 0 (i = 1, 2, ..., m)三、解答题(每题25分,共75分)11. 设某工厂生产甲、乙两种产品,甲产品每件利润为2元,乙产品每件利润为3元。

工厂生产甲产品需要1小时,乙产品需要2小时。

(完整版)数学建模期末试卷A及答案

(完整版)数学建模期末试卷A及答案

用。
且阻滞作用随人口数量增加而变大,从而人口增长率 r(x) 是人口数量 x(t) 的的减函数。
假设 r(x) 为 x(t) 的线性函数:
The shortest way to do many things is
r(x) r sx (r 0, s 0)

其中, r 称为人口的固有增长率,表示人口很少时(理论上是 x 0 )的增长率。
在每个生产周期T 内,开始一段时间( 0 t T0 ) 边生产边销售,后一段时间(T0 t T )只销售不 生产,存贮量 q(t) 的变化如图所示。设每次生产开工
费为 c1 ,每件产品单位时间的存贮费为 c2 ,以总费用最小为准则确定最优周 期T ,并讨论 r k 和 r k 的情况。
c(T )
某家具厂生产桌子和椅子两种家具,桌子售价 50 元/个,椅子销售价格 30 元/个,生 产桌子和椅子要求需要木工和油漆工两种工种。生产一个桌子需要木工 4 小时,油漆工 2 小时。生产一个椅子需要木工 3 小时,油漆工 1 小时。该厂每个月可用木工工时为 120 小 时,油漆工工时为 50 小时。问该厂如何组织生产才能使每月的销售收入最大?(建立模型 不计算)(10’)
s r 当 x xm 时人口不再增长,即增长率 r(xm ) 0 ,代入有 xm ,从而有
根据 Malthus 人口模型,有
r(x)
r1
x xm

dx r(1 x )x
dt
xm
x(0) x0
4.(25 分)已知 8 个城市 v0,v1,…,v7 之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间.
(1)设你处在城市 v0,那么从 v0 到其他各城市,应选择什么路径使所需 的时间最短? (1) v0 到其它各点的最短路如下图:

(完整版)数学建模试卷(附答案)

(完整版)数学建模试卷(附答案)

2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。

二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。

(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。

(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。

随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。

后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。

谁料,DDT 同样杀死澳洲瓢虫。

结果,介壳虫增加起来,澳洲瓢虫反倒减少了。

试建立数学模型解释这个现象。

3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

建模数学试题及答案

建模数学试题及答案

建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。

数学建模期末试卷

数学建模期末试卷

数学建模期末试卷第一部分:理论知识运用(800字)在数学建模中,理论知识是基础和核心。

本部分试题旨在考察你对数学建模相关理论的理解和应用能力。

问题一:线性回归模型给定一组数据集,其中包含自变量x和因变量y的取值。

请用线性回归模型拟合数据,得到最优拟合直线,并解释拟合效果和参数含义。

解答一:线性回归模型是一种用于建立自变量和因变量之间关系的数学模型。

它假设自变量和因变量之间存在线性关系,并通过最小二乘法求解出最优拟合直线。

最优拟合直线可以通过参数方程y = β0 +β1x表示,其中β0表示截距,β1表示斜率。

通过最优拟合直线,我们可以预测因变量y的值,并评估拟合效果。

问题二:时间序列模型某公司过去5年的销售额数据如下:2015年:1000万元,2016年:1200万元,2017年:1300万元,2018年:1500万元,2019年:1700万元。

请根据给定数据,建立时间序列模型,并预测2020年的销售额。

解答二:时间序列模型是一种用于分析和预测时间序列数据的数学模型。

通过观察历史数据的变化趋势和周期性,我们可以建立合适的时间序列模型。

对于给定数据,我们可以使用移动平均法或指数平滑法进行预测。

根据过去5年的销售额数据,可以看出销售额呈上升趋势,因此我们可以使用指数平滑法进行预测。

根据指数平滑法的公式,我们可以得到2020年的销售额预测值。

问题三:优化模型某工厂生产两种产品A、B,产品A每件利润为10元,产品B每件利润为20元。

工厂的生产能力有限,每天生产产品A最多100件,产品B最多80件。

产品A和B的生产时间分别为2小时和3小时。

请问工厂每天应该生产多少件产品A和产品B,以使总利润最大化?解答三:该问题可以建立一个线性规划模型来求解。

设产品A的生产量为x,产品B的生产量为y。

由于生产能力有限,我们可以得到以下约束条件:x≤100,y≤80。

另外,由于产品A和产品B的生产时间分别为2小时和3小时,所以我们还有时间的约束条件:2x+3y≤24。

数学建模期末考试

数学建模期末考试

一、简述题1.简述数学建模的一般方法。

答:数学建模的方法一般可分为两类:一类是机理分析方法,一类是测试分析方法。

一.机理分析是根据对现实对象特性的认识,分析其因果关系,找出反应内部机理的规律,建立的模型常有明确的物理或现实意义。

1.比例分析法:建立变量之间函数关系的最基本最常用的方法。

2.代数方法:求解离散问题(离散的数据、符号、图形)的主要方法3.逻辑方法是数学理论研究的重要方法,对付社会学和经济学等领域的实际问题,它在对策和决策等学科中得到广泛应用。

4.常微分方程:解决两个变量之间的变化规律,关键是建立“瞬间变化率”的表达方式。

5.偏微分方程:解决应变量与以上自变量之间的变化规律。

机理分析法建模的具体步骤大致如下:1.实际问题通过抽象、简化、假设,确定变量、参数;2.建立数学模型并数学、数值地求解、确定参数;3.用实际问题的实测数据等来检验该数学模型;4.符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。

二.测试分析方法:将研究对象视为一个黑箱系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。

测试分析方法也叫做系统辨识。

1.回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,……,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2.时序分析法:处理的动态的相关数据,又称为过程统计方法。

2.谈谈你对数学建模的认识,你认为数学建模要经过哪些关键过程。

答:数学模型是对实际问题的一种数学表达,具体一点地说它是关于部分现实世界为某种目的的一个抽象的简化的数学结构。

而准确的说数学模型是对于一个特定对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式、算法、表达式、图等等。

而数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。

大学数学模型试题及答案

大学数学模型试题及答案

大学数学模型试题及答案一、选择题(每题4分,共20分)1. 以下哪个选项是线性方程的解?A. x = 2B. x = 3C. x = 4D. x = 5答案:A2. 函数f(x) = 2x + 3在x = 1处的导数是:A. 1B. 2C. 3D. 4答案:B3. 以下哪个选项是二阶线性微分方程?A. y'' - 2y' + y = 0B. y'' + y' = 0C. y'' - y = 0D. y'' + 2y' + y = 0答案:A4. 积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A5. 以下哪个选项是正态分布的概率密度函数?A. f(x) = 1/√(2πσ^2) * e^(-(x-μ)^2/2σ^2)B. f(x) = 1/√(2π) * e^(-x^2/2)C. f(x) = 1/(σ√(2π)) * e^(-(x-μ)^2/2σ^2)D. f(x) = 1/(2πσ) * e^(-(x-μ)^2/2σ^2)答案:C二、填空题(每题4分,共20分)1. 如果一个函数是奇函数,那么它的图象关于______对称。

答案:原点2. 函数y = x^3 - 3x + 2的极值点是______。

答案:13. 微分方程dy/dx = y + x的通解是______。

答案:y = Ce^(-x) + x4. 圆的面积公式是______。

答案:πr^25. 矩阵A = [1 2; 3 4]的行列式是______。

答案:-2三、解答题(每题15分,共30分)1. 证明函数f(x) = x^3 - 6x^2 + 9x + 15在区间[1,3]上是单调递增的。

答案:首先计算f(x)的导数f'(x) = 3x^2 - 12x + 9。

然后找出导数的零点,解方程3x^2 - 12x + 9 = 0,得到x = 1和x = 3。

最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)

最新数学建模(数学模型)期末考试题(试卷)及答案详解(附答案)

数学建模(数学模型)期末考试卷及答案详解第一部分 基本理论和应用1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率.2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测, 得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大?4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效?6. (15分)设),(~2σμN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值,2nS 为样本二阶中心矩,2S 为样本方差,问下列统计量:(1)22σnnS ,(2)1/--n S X n μ,(3)212)(σμ∑=-ni iX各服从什么分布?7. (10分)一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布.8. (10分)设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算.9. (10分)某商品的每包重量2~(200,)X N σ.若要求{195205}0.98P X <<≥,则需要把σ控制在什么范围内.10. (15分)设系统L 由两个相互独立的子系统12,L L 联接而成,联接的方式分别为串联,并联和备用(当系统1L 损坏时,系统2L 开始工作),如图7.1所示.1L 和2L 的寿命为X 和Y ,分别有密度(0,)()()x X p x e I x αα-+∞=和(0,)()()y Y p y e I y ββ-+∞=,其中0,0αβ>>且αβ≠.请就这三种联接方式分别写出系统L 的寿命Z 的密度.答案第一部分 基本理论和应用 1、计算题(满分10分)设电路供电网内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关是相互独立的,利用中心极限定理计算同时开着的灯数在6900与7100之间的概率. 解:设同时开着的灯数为X ,(10000,0.7)Xb ……………2分(0,1)N (近似) ……………3分 {69007100}210.971P X ≤≤=Φ-= …………5分 2、计算题(满分10分)设某种电子元件的使用寿命服从正态分布) ,(2σμN ,现随机抽取了10个元件进行检测,得到样本均值(h)1500=x ,样本标准差(h)14=S . 求总体均值μ的置信概率为99%的置信区间. 解: T =(1)X t n - 0.005{(1)}0.99P T t n <-= ………4分0.0050.005{(1)(1)}0.99P X n X X n -<<+-= ………………4分 所求为(1485.61,1514.39) …………2分3、计算题(满分10分)从正态总体)6 ,4.3(~2N X 中抽取容量为n 的样本,如果要求样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量n 至少应取多大? 解:(0,1)X N ………………3分{1.4 5.4}21P X P <<=<=Φ- ……………4分解210.95Φ-≥ 得34.6n ≥ n 至少取35 ……………3分4、计算题(满分10分) 设总体X 的概率密度为:⎩⎨⎧<<+=其他,,0,10,)1();(x x x f θθθ )1(->θn X X X ,,,21 是来自总体X 的简单随机样本,求参数θ的矩估计量和极大似然估计量.解: 1101()(2E X dx θθθθ++==+⎰+1)x ……………3分 解12X θθ+=+,得θ的矩估计量为211X X -- ……………2分 1()1()ni i L x θθθ=+∏n=() 1ln ln 1ln nii L n x θθ==+∑()+ ……………2分令1ln ln 01ni i d L nx d θθ==+=+∑ 得θ的极大似然估计量为11ln nii nX=--∑ …………3分5.(15分)设总体X 服从区间[0,θ]上的均匀分布,θ>0未知,12,,,n X X X 是来自X的样本,(1)求θ的矩估计和极大似然估计;(2)上述两个估计量是否为无偏估计量,若不是请修正为无偏估计量;(3)试问(2)中的两个无偏估计量哪一个更有效? 解:(1)2EX θ=,令2X θ=,得θ的矩估计量1ˆ2X θ=; ……………5分 似然函数为:()12121,0,,,(,,,;)0n n n x x x L x x x θθθ⎧<<⎪=⎨⎪⎩,其它其为θ的单调递减函数,因此θ的极大似然估计为{}212()ˆmax ,,,n n X X X X θ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1数学模型(数学建模)期末考试试卷(A 卷)2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、(满分12分) 一人摆渡希望用一条船将一只狼,一只羊,一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。

该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。

(1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3)写出该问题的状态转移率。

(3分) (4) 利用图解法给出渡河方案. (3分)解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分)(2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)}(6分)(3) s k+1 = s k + (-1) k d k (9分)(4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。

或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。

(12分)1、 二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就2下面两种假设,建立一个举重能力和体重之间关系的模型: (1) 假设肌肉的强度和其横截面的面积成比例。

6分(2) 假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。

6分解:设体重w (千克)与举重成绩y (千克) (1) 由于肌肉强度(I)与其横截面积(S)成比例,所以 y ∝I ∝S设h 为个人身高,又横截面积正比于身高的平方,则S ∝ h2再体重正比于身高的三次方,则w ∝ h 3(6分) (2)( 12分)三、(满分14分) 某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。

这些课程的编号、名称、学分、所属类别和先修课要求如下表所示。

那么,毕业时学生最少可以学习这些课程中哪些课程?记i=1,2,…,9表示9门课程的编号。

设i 表示第i 门课程选修,i 表示第i 门课程不选, 建立数学规划模型 (1) 写出问题的目标函数(4分)(2) 每人至少学习过两门数学课、三门运筹学课和两门计算机课,如何表示此约束条件? (5分)(3) 某些课程有先修课要求, 如何表示此约束条件? (5分)解(1) 91min i i Z x ==∑ (4分)(2) 123452x x x x x ++++≥3356893x x x x x ++++≥ (9分)46792x x x x +++≥(3) 2313,x x x x ≤≤47x x ≤5152,x x x x ≤≤67x x ≤9192,x x x x ≤≤85x x ≤ (14分)四、(满分10分) 雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的量纲[μ]=11L MT -- 1,用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=11L MT -- [g ]=LM 0T -2,其中L ,M ,T 是基本量纲. (3分) 量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1) (7分) 由量纲PI 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. (10分)五、(满分12分)设某种群t 时刻的数量为()x t ,初始数量为0x ,(1) 写出种群数量的指数增长模型并求解;(2) 设容许的资源环境最大数量为N , 写出种群数量的阻滞增长模型(logistic), 并4 求其平衡点.解 (1) x rx = (3分)0()rx x t x e = (6分)(2) ()(1)xx t rx N=- (9分)(1)0,xrx N-= 平衡点为0x = 和x N = (12分)六、(满分10分)设在一个岛屿上栖居着食肉爬行动物和哺乳动物,又长着茂盛的植物。

爬行动物以哺乳动物为食,哺乳动物又依赖植物生存,假设食肉爬行动物和哺乳动物独自生存时服从Logistic 变化规律,植物独自生存时其数量增长服从指数增长规律。

现有研究发现,当哺乳动物吃食植物后,植物能释放某些化学物质对吃食的哺乳动物产生一定的毒害作用。

通过适当的假设,建立这三者间的关系模型.解:设植物、哺乳动物和食肉爬行动物的数量分别为x 1(t), x 2(t), x 3(t)假设单位数量的植物所释放的化学物质对吃食植物后的哺乳动物的毒害作用率为k , (3分)11112222221323333323()[()]()x x r x x x x r k x x K xx x r x K λλμλ⎧⎪=-⎪⎪=--+--⎨⎪⎪=--+⎪⎩(10分)七、(满分15分))经过一番打探及亲身体验,你准备从三种车型(记为a,b,c)中选出一种购买,选择的标准主要有价格,耗油量大小,舒适程度和外表美观。

经反复思考比较,构造了它们之间的成对比较矩阵已知其最大特征值近似为4.1983.另外,下列矩阵分别是三种车型关于价格、耗油量、舒适度、及你对它们外表的喜欢程度的成对比较阵:13781/31551/71/5131/81/51/31A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1351/3141/51/41C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦3舒适度411/535171/31/71C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦外表11/51/251721/71C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2耗油量11231/2121/31/21C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦价格5其中矩阵1234,,,C C C C 的元素是分别是a,b,c 三种车型对于四种标准的优越性的比较尺度.假定这些成对比较阵(包括A )都通过了一致性检验,且已知1234,,,C C C C 的最大特征值与对应的归一化特征向量(见下表):(1) 根据上述矩阵将四项标准在你心目中的比重由重到轻的顺序排出(5分);(2) 分别确定哪种车最便宜、最省油、最舒适、最漂亮(5分); (3) 确定你对这三种车型的喜欢程度(用百分比表示)(5分);解: 记4个准则价格,耗油量大小,舒适程度和外表美观分别为C1,C2,C3,C4,则12:3C C =即12C C 比的影响稍强 23:5C C =即23C C 比的影响强 34:3C C =即34C C 比的影响稍强所以四项标准在心目中的比重由重到轻的顺序为:价格、耗油量大小、适合程序、外观美观 (5分) (2)考虑比较阵C1122a =表明车型a 的价格优越性高于车型b ,即车型a 比车型b 便宜232a =表明车型b 的价格优越性高于车型c ,即车型b 比车型c便宜所以最便宜的车型为a. (7分)同理可得最省油的车型为b ; (8分) 最舒适的车型为a ; (9分) 最漂亮的车型为b 。

(10分) (3)车型a 的组合权重 (0.5820,0.2786,0.0899,0.0495)·(0.5396,0.1056,0.6267,0.1884)T =0.41 车型b 的组合权重 (0.5820,0.2786,0.0899,0.0495)·(0.2970,0.7445,0.2797,0.7306)T =0.44 车型c 的组合权重 (0.5820,0.2786,0.0899,0.0495)·(0.1634,0.1499,0.0936,0.0810)T =0.156(13分)车型a ,b ,c 的喜欢程度分别为41%,44%,15% (15分)八、(满分15分)A,B,C 三个厂家都生产某产品, 2009年它们在某地区的市场占有率2009年分别为: A 厂家:40%, B 厂家:40%, C 厂家: 20%。

已知在每年各个厂家之间的市场占有率转移的基本情况是:A 厂家的客户有60%继续用该厂家的产品,20%转为B 厂家,20%转为C 厂家;B 厂家的客户有80%继续用该厂家的产品,10%转为A 厂家,10%转为C 厂家;C 厂家的客户有50%继续用该厂家的产品,10%转为A 厂家,40%转为B 厂家。

(1)预测2010年哪个厂家的市场占有率最大。

(6分)(2)经过很长时间以后,哪个厂家的市场占有率最大?(6分) 解:状态转移概率矩阵为:0.60.20.20.10.80.10.10.40.5P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ (2分) (0)(0.4,0.4,0.2)a = (4分)0.60.20.2(1)(0)(0.4,0.4,0.2)0.10.80.1(0.30.480.22)0.10.40.5a a P ⎡⎤⎢⎥===⎢⎥⎢⎥⎣⎦ (6分)2010年B 厂家市场占有率最大 。

(8分) (2)设稳态概率123(,,)w w w w =,则,wp w =1231230.60.20.2(,,)0.10.80.1(,,)0.10.40.5w w w w w w ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(10分) 又因为1231w w w ++= (12分)联立解得(0.2,0.6,0.2)w = (14分) B 厂家市场占有率最大. (15分)。

相关文档
最新文档