正交试验设计方差分析

合集下载

(整理)正交试验结果的方差分析方法

(整理)正交试验结果的方差分析方法

正交试验结果的方差分析方法计算公式和项目试验指标的加和值=,试验指标的平均值与表4-13一样,第j列的(1) I j”水平所对应的试验指标的数值之和(2) II j——“ 2”水平所对应的试验指标的数值之和(3)……(4) k j——同一水平出现的次数。

等于试验的次数除以第j列的水平数.(5)I j/k j——“水平所对应的试验指标的平均”(6)II j/k j——“2”水平所对应的试验指标的平均值(7)……以上各项的计算方法,与“极差法”同,见4.1.7节(8)偏差平方和(4-1)(9) fj ——自由度.fj第j列的水平数-1.(10)Vj——方差.Vj =Sj/fj(4-2)(11)Ve——误差列的方差。

(4-3)(12)Fj——方差之比(4-4)(13)查F分布数值表(见附录6),做显著性检验。

显著性检验结果的具体表示方法与第3章相同。

(14)总的偏差平方和(4-5) (15)总的偏差平方和等于各列的偏差平方和之和。

即(4-6) 式中,m为正交表的列数。

若误差列由5个单列组成,则误差列的偏差平方和S e等于5个单列的偏差平方和之和,即:S e=S e1+S e2+S e3+S e4+S e5;也可用S e= S总-S’来计算,其中:S’为安排有因素或交互作用的各列的偏差平方和之和应引出的结论。

与极差法相比,方差分析方法可以多引出一个结论:各列对试验指标的影响是否显著,在什么水平上显著。

在数理统计上,这是一个很重要的问题。

显著性检验强调试验误差在分析每列对指标影响中所起的作用。

如果某列对指标的影响不显著,那么,讨论试验指标随它的变化趋势是毫无意义的。

因为在某列对指标的影响不显著时,即使从表中的数据可以看出该列水平变化时,对应的试验指标的数值也在以某种“规律”发生变化,但那很可能是由于实验误差所致,将它作为客观规律是不可靠的。

有了各列的显著性检验之后,最后应将影响不显著的交互作用列与原来的“误差列”合并起来,组成新的“误差列”,重新检验各列的显著性。

实验设计的方差分析与正交试验

实验设计的方差分析与正交试验

实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。

在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。

通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。

1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。

该方法通过比较不同组之间的方差来判断各组均值是否有差异。

步骤如下:(1)确定研究目的,选择合适的因变量和自变量。

(2)设计实验,确定各组的样本个数。

(3)进行实验,并收集数据。

(4)计算各组的平均值和总平均值。

(5)计算组内方差和组间方差。

(6)计算F值,通过计算F值来判断各组均值是否有显著差异。

2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。

这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。

步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。

(2)设计实验,确定各组的样本个数。

(3)进行实验,并收集数据。

(4)计算各组的平均值和总平均值。

(5)计算组内方差、组间方差和交互方差。

(6)计算F值,通过计算F值来判断各组均值是否有显著差异。

二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。

1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。

通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。

2. 正交试验设计的步骤(1)确定要研究的因素和水平。

正交试验的方差分析法

正交试验的方差分析法

C×D
B×D A×D
A
B A×B C A×C D A×D
C×D
B×D
B×C
A
B A×B C A×C D
E
D×E C×D C×E B×D B×E A×E A×B
B×C
(四) 列出试验方案
把正交表中安排原因旳各列(不包括欲考 察旳交互作用列)中旳每个数字依次换成该原 因旳实际水平,就得到一种正交试验方案。
上一张 下一张 主 页 退 出
此例不考察交互作用,可将品种(A)、 密度(B)和施氮量 (C)依次安排在L9(34)旳第1、 2、3列上,第4 列 为空列,见表2-4。
表11-4 表头设计
列号 1 2 3 4 因素 A B C 空
原因 数 2 3
4
L9(34)表头设计


1
2
3
4
A A B×C1
C 3 1(3) 2(5) 3(8) 2(5) 3(8) 1(3) 3(8) 1(3) 2(5)
上一张 下一张 主 页 退 出
第二节 正交试验资料旳方差分析
若各号试验处理都只有一种观察值,则称 之为单个观察值正交试验;
若各号试验处理都有两个或两个以上观察 值,则称之为有反复观察值正交试验。
上一张 下一张 主 页 退 出
A原因是氮肥施用量,设A1、A2、A3 3个水平 ; B原因是磷肥施用量,设B1、B2、B3 3个水平 ; C原因是钾肥施用量,设C1、C2、C3 3个水平。 这是一种3原因每个原因3水平旳试验 ,各原因旳 水平之间全部可能旳组合有27种。
上一张 下一张 主 页 退 出
假如进行全方面试验 ,能够分析各原因 旳效应 ,交互作用,也可选出最优水平组合。

正交试验设计及其方差分析

正交试验设计及其方差分析

第三节正交试验设计及其方差分析在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果.1.正交试验设计的基本方法正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表.正交表是预先编制好的一种表格.比如表9-17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义:(1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2.列数↓L4 (23)↑↑行数水平数(2)L4(23)表的用法:做4次试验,最多可安排2水平的因素3个.最多能安排的因素数↓L4 (23)↑↑试验次数水平数(3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的.L4 (23)↑↑实际试验数理论上的试验数正交表的特点:(1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次.(2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,数字1,2间的搭配是均衡的.凡满足上述两性质的表都称为正交表(Orthogonal table).常用的正交表有L9(34),L8(27),L16(45)等,见附表.用正交表来安排试验的方法,就叫正交试验设计.一般正交表L p(n m)中,p=m(n-1)+1.下面通过实例来说明如何用正交表来安排试验.例9.7 提高某化工产品转化率的试验.某种化工产品的转化率可能与反应温度A,反应时间B,某两种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此考虑对A,B,C,D这4个因素进行试验.根据以往的经验,确定各个因素的3个不同水平,如表9-18所示.表9-18解本题是4因素3水平,选用正交表L9(34).把表头上各因素相应的水平任意给一个水平号.本例的水平编号就采用表9-18的形式;将各因素的诸水平所表示的实际状态或条件代入正交表中,得到9个试验方案,如表9-20所示.从表9-20看出,第一行是1号试验,其试验条件是:反应温度为60℃,反应时间为2.5小时,原料配比为 1.1∶1,真空度为500毫米汞柱,记作A1B1C1D1.依此类推,第9号试验条件是A3B3C2D1.由此可见,因素和水平可以任意排,但一经排定,试验条件也就完全确定.按正交试验表9-20安排试验,试验的结果依次记于试验方案右侧,见表9-21.2.试验结果的直观分析正交试验设计的直观分析就是要通过计算,将各因素、水平对试验结果指标的影响大小,通过极差分析,综合比较,以确定最优化试验方案的方法.有时也称为极差分析法.例9.7中试验结果转化率列在表9-21中,在9次试验中,以第9次试验的指标86为最高,其生产条件是A 3B 3C 2D 1.由于全面搭配试验有81种,现只做了9次.9次试验中最好的结果是否一定是全面搭配试验中最好的结果呢?还需进一步分析. (1) 极差计算在代表因素A 的表9-21的第1列中,将与水平“1”相对应的第1,2,3号3个试验结果相加,记作T 11,求得T 11=151.同样,将第1列中与水平“2”对应的第4,5,6号试验结果相加,记作T 21,求得T 21=183.一般地,定义T ij 为表9-21的第j 列中,与水平i 对应的各次试验结果之和(i =1,2,3; j =1,2,3,4).记T 为9次试验结果的总和,R j 为第j 列的3个T ij 中最大值与最小值之差,称为极差.显然T =31iji T=∑,j =1,2,3,4.此处T 11大致反映了A 1对试验结果的影响,T 21大致反映了A 2对试验结果的影响, T 31大致反映了A 3对试验结果的影响,T 12,T 22和T 32分别反映了B 1,B 2,B 3对试验结果的影响, T 13,T 23和T 33分别反映了C 1,C 2,C 3对试验结果的影响, T 14,T 24和T 34分别反映了D 1,D 2,D 3对试验结果的影响.R j 反映了第j 列因素的水平改变对试验结果的影响大小,R j 越大反映第j 列因素影响越大.上述结果列表9-22. 表9-22由极差大小顺序排出因素的主次顺序: 主→次B ;A 、D ;C这里,R j 值相近的两因素间用“、”号隔开,而R j 值相差较大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中控制好因素B ,即反应时间.其次是要考虑因素A 和D ,即要控制好反应温度和真空度.至于原料配比就不那么重要了.选择较好的因素水平搭配与所要求的指标有关.若要求指标越大越好,则应选取指标大的水平.反之,若希望指标越小越好,应选取指标小的水平.例9.7中,希望转化率越高越好,所以应在第1列选最大的T 31=185;即取水平A 3,同理可选B 3C 1D 3.故例9.7中较好的因素水平搭配是A 3B 3C 1D 3.例9.8 某试验被考察的因素有5个:A ,B ,C ,D ,E .每个因素有两个水平.选用正交表L 8(27),现分别把A ,B ,C ,D ,E 安排在表L 8(27)的第1,2,4,5,7列上,空出第3,6列仿例9.7做法,按方案试验.记下试验结果,进行极差计算,得表9-23. 表9-23试验目的要找出试验结果最小的工艺条件及因素影响的主次顺序.从表9-23的极差R j的大小顺序排出因素的主次顺序为 主 → 次A 、B ;D ;C 、E最优工艺条件为A 2B 1C 1D 2E 1.表9-23中因没有安排因素而空出了第3,6列.从理论上说,这两列的极差R j 应为0,但因存有随机误差,这两个空列的极差值实际上是相当小的.3.方差分析正交试验设计的极差分析简便易行,计算量小,也较直观,但极差分析精度较差,判断因素的作用时缺乏一个定量的标准.这些问题要用方差分析解决.设有一试验,使用正交表L p (n m ),试验的p 个结果为y 1,y 2,…,y p ,记T =1pi i y =∑, y =11p i i Ty p p ==∑,S T =21()pii yy =-∑为试验的p 个结果的总变差;S j =222111nn ij ij i i T T T r T r p r p ==⎛⎫-=- ⎪⎝⎭∑∑ 为第j 列上安排因素的变差平方和,其中r =p/n .可证明S T =1mij S=∑即总变差为各列变差平方和之和,且S T 的自由度为p -1,S j 的自由度为n -1.当正交表的所有列没被排满因素时,即有空列时,所有空列的S j 之和就是误差的变差平方和S e ,这时S e 的自由度f e 也为这些空列自由度之和.当正交表的所有列都排有因素时,即无空列时,取S j 中的最小值作为误差的变差平方和S e .从以上分析知,在使用正交表L p (n m )的正交试验方差分析中,对正交表所安排的因素选用的统计量为: F =1jeeS S n f -.当因素作用不显著时, F ~F (n -1,f e ),其中第j 列安排的是被检因素.在实际应用时,先求出各列的S j /(n -1)及S e /f e ,若某个S j /(n -1)比S e /f e 还小时,则这第j 列就可当作误差列并入S e 中去,这样使误差S e 的自由度增大,在作F 检验时会更灵敏,将所有可当作误差列的S j 全并入S e 后得新的误差变差平方和,记为S e Δ,其相应的自由度为f e Δ,这时选用统计量 F =1je eS S n f - ~F (n -1,f e Δ).例9.9 对例9.8的表9-23作方差分析.解 由表9-23的最后一行的极差值R j ,利用公式S j =2211n ij i T T r p=-∑,得表9-24.表9-24中第3,6列为空列,因此S e =S 3+S 6=1.250,其中f e =1+1=2,所以S e /f e =0.625,而第7列的S 7=0.125,S 7/f 7=0.1251=0.125比S e /f e 小,故将它并入误差. S e Δ=S e +S 7=1.375,f e Δ=3.整理成方差分析表9-25. ee由于F 0.05(1,3)=10.13, F 0.01(1,3)=34.12,故因素A ,B 作用高度显著,因素C 作用不显著,因素D作用显著,这与前面极差分析的结果是一致的.F检验法要求选取S e,且希望f e 要大,故在安排试验时,适当留出些空列会有好处的.前面的方差分析中,讨论因素A和B 的交互作用A×B.这类交互作用在正交试验设计中同样有表现,即一个因素A的水平对试验结果指标的影响同另一个因素B的水平选取有关.当试验考虑交互作用时,也可用前面讲的基本方法来处理.本章就不再介绍了.。

正交试验方差分析

正交试验方差分析

1(50) 1(6.5) 1(2.0) 1 1 2 2 2(7.0) 2(2.4) 3(7.5) 3(2.8 2 3 1 3 2 3
2(55) 1
3(58) 1
8பைடு நூலகம்
9 K1j
3
3 15.76
2
3 25.18
1
2 22.65
3
1 20.74
10.9
8.95
T 65.58
K2j
K3j K1j2 K2j2 K3j2
n
对上式做如下变换
SST ( X ij X ) 2 ( X ij X i. X i. X ) 2
i 1 j 1 i 1 j 1
r
n
r
n
( X ij X i. ) ( X i. X ) 2 (X ij X i. )( X i. X )
各式的物理意义
X
所有数据的平均值称为总平均 值 第i个水平的数据平均值称为组平均值 随机误差,又称为组内离差平方和
X i.
SSE 表示每一个数据与其组平均值的离差平方和,反映了实验中的
SS A
表示组平均值与总的平均值得离差平方和,反映了由于因素不同水平引 起的差异又称为组间离差平方和
再稍做整理
X 总和 2 2 SST ( X ij X ) ( X ij ) N i 1 j 1 i 1 j 1 X 总和 校正项CF N
2 2 i 1 j 1 r n i 1 j 1 r n i 1 j 1
r
n
r
n
r
n
( X ij X i. ) ( X i. X ) 2
2 i 1 j 1 i 1 j 1

高级篇 第二章 正交试验设计及统计分析-方差分析

高级篇 第二章 正交试验设计及统计分析-方差分析

0.415
(2)显著性检验
根据以上计算,进行显著性检验,列出方差分析表,结果见表10-24
变异来源
A B C△ 误差e 误差e△ 总和
平方和 45.40 6.49 0.31 0.83 1.14 53.03
自由度 2 2 2 2 4
表10-24 方差分析表
均方 F值
Fa
22.70 79.6 F0.05(2,4) =6.94
油温℃A 1 1 2 2 3 3 4 4
1.8 4.5 9.8 6.8 3.24 20.25 96.04 46.24
表10-27 试验方案及结果分析
含水量%B 油炸时间s C
1
1
空列 1
2Hale Waihona Puke 2211
2
2
2
1
1
2
1
2
1
2
1
2
2
2 11.4
1 10.2
1 12.1
11.5
12.7
10.8
空列 1 2 2 1 2 1 1 2
3.24 11.4 F0.01(2,4)=18.0
0.16
0.41
0.285
显著水平 ** *
因素A高度显著,因素B显著,因素C不显著。 因素主次顺序A-B-C。
(3)优化工艺条件的确定
本试验指标越大越好。对因素A、B分析,确定优 水平为A3、B1;因素C的水平改变对试验结果几乎无影
响,从经济角度考虑,选C1。优水平组合为A3B1C1。 即温度为58℃,pH值为6.5,加酶量为2.0%。
K2k2 SST=QT CT

Kmk2 SSk
Q

j
1 r

正交试验设计(方差分析)

正交试验设计(方差分析)


A 罗拉加压 10×11×10 (原工艺) 11×12×10 13×14×13
B 后区牵伸 1.80 (原工艺) 1.67 1.50 6 8 10
C 后区隔距 (原工艺)
返回
首先要选择一个合适的正交表,选 L9 (34 ) 来制定试验 方案. 其次,将A、B、C三个因素随机地填在表的三列上, 如A、B、C依次放在1,2,3列,第4列为空列,这个过 程叫表头设计.
A1 1、 2、 3、 4、
A2 5、 6 7、
A3 8、 9
各水平所在的试 验号
各水平所在试验 号的试验数据
1.5、1.3、-0.2
2.6、1.4、-0.3
2.8、 0.4、 0
在因素A每个水平的三次试验中,因素B、C三个水平 都分别各出现一次,因此,可以理解为因素A有三个水平, 每个水平重复做三次试验,按照单因子方差分析:
第4 列 1 2 3
因素A第1 水平3次 试验结果yi 重复测定 y1 值 y2 y3
单因素 4 2 1 2 3 y4 5 2 2 3 1 y5 因素A第2 试验数 1 (y1 y2 ... y9 ) SS 6 = ( y1 y22 y3 ) (y4 3y5 y6 ) (y7 y8 2y9 ) (修正项) 水平 3次重 1 y6 据资料 3 9 复测定值 7 1 3 1 3 2 y7 T 格式 = (K K K ) 8 3 2 1 3 y8


同理可选出因素B和因素C的最好条件分别为B3、C1。 于是通过 “算一算”得到一个较优的水平组合A1 B3C1.称为 “算一算” 的好条件. 比较“直接看”的好条件A2B3C1与 “算一算”的好条 件A1 B3C1,除了因素A的水平不同外,其它两个因素所取 的好条件是一致的。又因为第一列的极差与误差列的极差 接近,认为因素A对条干不匀率的影响不显著,为方便操作 选取原工艺A1.最后确定最优工艺为A1B3C1.

5-2正交试验设计(方差分析)

5-2正交试验设计(方差分析)
衡量试验条件好坏的特性(可以是质量特性 也 可以是产量特性或其它)称为指标,用 y表示。 由于y是一个随机变量,因此可以假定它 有如下的结构式:y=μ+ε 其中μ是一个依赖于试验条件的常量,随 试验条件的变化而改变,ε是一个随机变量, 常假定它服从正态分布N(0,σ2)。
正交表
选择部分条件进行试验,再通过数据分析来 寻找好的条件,这便是试验设计问题。通过 少量的试验获得较多的信息,达到试验的目 的:发现那些因子对试验结果确有影响,因 子的什么水平组合是最好的。
第五章 正交试验设计
一、试验设计的基本概念与正交表
多因素试验遇到的最大困难是试验次数太 多,若十个因素对产品质量有影响,每个因素 取两个不同状态进行比较,有210=1024、 如 果每个因素取三个不同状态310=59049个不同 的试验条件
在多因素试验中,有人采用“单因素轮换 法”,但是这种方法不一定能找到好的条件 譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上好 的条件是A2B2。 B1 B2 B3 A1 50 56 62 A2 56 70 60 A3 54 60 58
利用正交表进行试验设计的方法就是正交试 验设计。
表 4 .1 试验号 1 2 3 4 5 6 7 8 9 列号 1 1 1 1 2 2 2 3 3 3
L 9 (3 ) 2 1 2 3 1 2 3 1 2 3 3 1 2 3 2 3 1 3 1 2 4 1 2 3 3 1 2 2 3 1
4
“L”表示正交表,“9”是行数,在试验中表示试 验的条件数,“4”是列数,在试验中表示可以安排 的因子的最多个数,“3”是表的主体只有三个不同 数字,在试验中表示每一因子可以取的水平数。
二、无交互作用的正交设计与数据分析

第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析

第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析
e e B
σ = ˆ
t 0 .975
132 / 4 = 5.74 , 。 ( 4 ) = 2 . 7764
μ 3⋅2
的0.95的置信区间是:
68 ± 2.7764 × 5.74 / 1.8 = 68 ± 11.9 = (56.1,79.9)
贡献率分析
当试验指标不服从正态分布时, 进行方差分析的依据就不充分,此 时可以通过比较个因素的“贡献率” 衡量因素作用的大小。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
ˆ ˆ μ = y = 50 , a3 = T13 − y = 61 − 50 = 11 ,
ˆ c 2 = T32 − y = 57 − 50 = 7 ,
•A3C2 水平组合下指标均值的无偏估计可以取为: ˆ ˆ ˆ ˆ μ 3⋅2 = μ + a3 + c 2 = 50+11+7=68。
区间估计
… Continue
因子水平表 因子 A:反应温度(℃) B:反应时间(分) C:加碱量(%) 水平 一 80 90 5 二 85 120 6 三 90 150 7
试验计划与试验结果
试验号 1 2 3 4 5 6 7 8 9 因子 反应温度 ℃ (1)80 (1)80 (1)80 (2)85 (2)85 (2)85 (3)90 (3)90 (3)90 反应时间 分 (1) 90 (2)120 (3)150 (1) 90 (2)120 (3)150 (1) 90 (2)120 (3)150 加碱量 试验结果 y % 转化率(%) (1)5 31 (2)6 54 (3)7 38 (2)6 53 (3)7 49 (1)5 42 (3)7 57 (1)5 62 (2)6 64

正交设计与方差分析

正交设计与方差分析
适用范围
正交设计适用于多因素、多水平的试验安排,而方差分析 适用于检验数据间的差异和因素显著性。
04
正交设计与方差分析的实例
正交设计实例
实验设计
正交设计是一种实验设计方法, 通过选择合适的正交表,安排多 因素多水平的实验,以最小实验 次数获得尽可能多的信息。
特点
正交设计具有均衡分散、整齐可 比的特点,能够快速有效地找到 最优方案。
THANKS
感谢观看
复合正交设计
适用于多个因素,每个因素有多个水平的实验。
混合水平正交设计
适用于某些因素水平较多,而其他因素水平较少 的实验。
02
方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计分析方法,用于比较两 个或多个组之间的平均值差异是否显著。它通过分析数据 的变异来源,将总变异分解为组间变异和组内变异,从而 评估不同组之间的差异是否具有统计意义。
适用范围有限
正交设计主要适用于多因素、多水平的实验设计,对于其他类型 的实验可能不太适用。
对实验条件要求较高
正交设计要求实验条件相同,对于实验条件不易控制的情况可能不 太适用。
对实验结果分析要求较高
正交设计需要对实验结果进行复杂的统计分析,对于数据分析能力 要求较高。
正交设计与方差分析的发展趋势
多元化
正交设计与方差分析在未来的应用前景
科学研究
正交设计与方差分析在科学研究领域的应用将会越来越广泛,特别是在生物、化学、物理 等领域。
工业生产
工业生产中需要进行大量的实验研究和数据分析,正交设计与方差分析可以为工业生产提 供有效的实验设计和数据分析方法。
数据分析
正交设计与方差分析作为一种统计分析方法,在数据分析领域的应用将会越来越广泛。

正交试验设计2正交试验数据方差分析和贡献率分析

正交试验设计2正交试验数据方差分析和贡献率分析

正交试验设计2正交试验数据方差分析和贡献率分析正交试验设计是一种实验设计方法,通过选择适当的试验水平组合和设置统计模型,以减少试验阶段的试验次数和工作量,提高试验的效率和准确性。

正交设计通过对变量进行排列组合,使各变量的效应独立出现并减少副效应的影响,从而使实验结果更加可靠。

正交设计数据分析方法方差分析(ANOVA)是一种统计方法,用于测试在不同因素水平下的平均值是否相等。

在正交试验中,方差分析可以用于测试各个因子对试验结果的影响是否显著。

方差分析通常包括总体均值检验、各因子的效应检验以及误差项的检验。

通过方差分析可以确定哪些因子对试验结果的影响是显著的,进而确定最佳的试验条件。

贡献率分析是一种用于确定各个因子对试验结果的贡献程度的方法。

贡献率分析可以通过计算各个因子的均方根(RMS)值来确定各个因子的贡献程度。

贡献率可以用来排除一些不显著的因子,从而进一步优化试验条件。

1.节省试验次数和工作量:由于正交设计能够减少变量之间的相关性,可以通过较少的试验次数得到可靠的结果。

2.减少误差项:正交设计通过考虑副效应的影响,减少了试验误差的可能性,提高了数据的可靠性。

3.确定关键因素:正交设计通过方差分析和贡献率分析,可以确定对试验结果有着显著影响的关键因素,从而进行进一步优化。

4.灵活性:正交设计可以根据实验需求进行灵活的调整和改变,以适应多样的试验条件和目标。

总结正交试验设计是一种有效的实验设计方法,可用于减少试验次数和工作量,提高试验效率和准确性。

方差分析和贡献率分析是对正交设计数据进行进一步分析和总结的重要工具,可以帮助确定关键因素和优化试验条件。

正交试验设计能够在实验设计的早期阶段对各个因子进行全面考虑,从而为实验结果的有效性和可靠性打下基础。

正交试验设计中的方差分析

正交试验设计中的方差分析
方差分析(ANOVA)是一种统计技术, 用于比较三个或更多组数据的平均值 是否存在显著差异。
目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分

适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。

正交试验设计中的方差分析

正交试验设计中的方差分析
个水平,每个水平做p次试验,则n=mp。
那么正交试验的方差分析可以从以下几步进行:
1.计算差方和(离差平方和): 包括以下几部分:
1)各因素差方和:
正交试验都是多因素多水平的试验,因此有必要对各因素的 差方和进行计算。 各因素差方和等于它的各水平均值k1A,k2A,…,kmA之间偏差平 方和。 以因素A为例,它在正交表中的某列,用xij表示A在第i个水 平的第j次试验结果,则;
即:fA×B=fA×fB 试验误差的自由度fe=fT-f因 。
3.计算平均差方和(均方): 在计算各因素的差方和时,按照前面的讲述,它是各水平的 偏差方的和,其大小与水平数有关,故此还不能确切的反映 各因素的情况。为了消除水平数的影响,可以计算其平均差 方和:
因素的平均差方和=因素差方和 =Q因 因素的自由度 f因
试验误差的差方和是所有试验结果在不同水平下的指标值与该 水平下的均值之间的差的平方和。它是由随机误差引起的,故 叫误差的差方和。
Qe QT ( QA QB QN )
2.计算自由度:
试验的总自由度: fT n 1
各因素自由度: f因 m 1
如果有交互作用,则交互作用的自由度为两因素自由度之积:
一.几个数据处理中常用的数理统计名词:
首先对几个数理统计名词进行回顾
1. 平均值 x
就是所有数据的和除以数据的个数。
x
1 n
n i 1
xi
1 n
x1
x2
xn
总体平均值:
1 n
n
xi
i 1
n
总体:数理统计学中指的是研究对象的某一特性值的全体; 样本:从总体中随机抽出的一组测量值。
2.极差 R: 就是一组数据中的最大值减去最小值得到的差值。 3.差方和Q: 测量值对平均值的偏差的平方和,就叫~。也叫离差平方和。

正交试验设计(方差分析)

正交试验设计(方差分析)
第1列的极差较小,说明因素A的水平变动时,指标变动 较小,说明因素A对指标影响较小;
而第4列是空列,极差为0.34,这是由随机误差产生的,又 因为因素A的极差0.36与空列的极差0.34接近,所以可粗略 地认为因素A对指标影响不显著
由此可以根据极差的大小顺序排出因素的主次:


B、C、A
由因素的主次可以看出后区牵伸(因素B)对指标影响 最主要,其次是后区隔距(因素C),罗拉加压影响最小.
C
1.6 3.9 4.0 0.53 1.30 1.33 0.80
误差列
各数据说明
2.9
其中:
3.8 2.8 0.97 1.27 0.93 0.34
K ( j) i
为第j列的第i水 平数据之和
k( j) i 为其平均值
R( j)
为第j列的极差
9
T xi i 1
=9.5
返回
2. 分据知,第2列和第3列的极差较大, 这反映了当因素B、C的水平波动时,指标波动较大,说明因 素B、C对指标影响较大;
上一张 下一张 主 页 退 出
6.5.1 正交试验结果的方差分析
方差分析基本思想是将数据的总变异分解成因 素引起的变异和误差引起的变异两部分,构造F统 计量,作F检验,即可判断因素作用是否显著。
正交试验结果的方差分 析思想、步骤同前!!
方差分析的基本步骤与格式
设: 用正交表Ln(rm)来安排试验 试验结果为yi(i=1,2,…n)
方差分析时,在进行表头设计时一般要求留有空列,即误差 列
误差的离差平方和为所有空列所对应离差平方和之和 :
SSe SS空列
(2)计算自由度
第6讲(5)
正交试验设计 (方差分析)

利用SPSS进行方差分析以及正交试验设计

利用SPSS进行方差分析以及正交试验设计

利用SPSS进行方差分析以及正交试验设计方差分析是一种常见的统计方法,用于比较两个或多个组之间的差异。

正交试验设计是一种实验设计方法,能够同时考虑多个因素对结果的影响。

本文将利用SPSS进行方差分析和正交试验设计的步骤介绍,并讨论如何解读分析结果。

首先,我们将介绍方差分析的步骤。

方差分析的基本思想是比较组间和组内的变异程度。

假设我们有一个因变量和一个自变量,自变量有两个或多个水平。

下面是方差分析的步骤:1.导入数据:将数据导入SPSS软件,并确保每个变量都已正确标记。

2.选择统计分析:点击SPSS菜单栏上的"分析",然后选择"方差",再选择"单因素"。

3.设置因变量和自变量:在弹出的对话框中,将需要进行方差分析的因变量拖放到因素列表框中,然后将自变量也拖放到因素列表框中。

4.点击"设定"按钮:点击"设定"按钮,设置方差分析的参数,例如是否需要进行正态性检验、多重比较等。

然后点击"确定"。

5.查看结果:SPSS将输出方差分析的结果,包括各组之间的F值、p值等统计指标。

可以根据p值判断各组之间是否存在显著差异。

接下来,我们将介绍正交试验设计的步骤。

正交试验设计是一种多因素独立变量的实验设计方法,可以在较小的实验次数内获得较高的信息量。

下面是正交试验设计的步骤:1.设计矩阵:根据研究目的和独立变量的水平,构建正交试验的设计矩阵。

2.导入数据:将设计矩阵导入SPSS软件,并将每个变量的水平标注为自变量。

3.选择统计分析:点击SPSS菜单栏上的"分析",然后选择"一般线性模型",再选择"多元方差分析"。

4.设置因变量和自变量:在弹出的对话框中,将因变量拖放到因子列表框中,然后将自变量也拖放到因子列表框中。

5.点击"设定"按钮:点击"设定"按钮,设置正交试验设计的参数,例如交互作用是否显著、多重比较等。

正交设计试验资料的方差分析

正交设计试验资料的方差分析

数据整理
将收集到的数据整理成 表格形式,便于后续分 析。
数据筛选
对异常值进行筛选和处 理,确保数据质量。
正交设计试验资料的方差分析过程
确定试验因素和水平
明确试验因素和各因素的水平, 为后续分析提供基础。
计算各因素的效应值
根据试验结果,计算各因素的效 应值。
计算误差平方和
根据效应值和水平,计算误差平 方和。
跨学科融合
标准化与规范化
结合其他学科的理论和方法,拓展正交设 计试验的应用领域,推动多学科交叉融合 发展。
制定和完善正交设计试验的标准和规范, 提高试验的可靠性和可比性。
正交设计试验资料方差分析的实际应用价值
科学研究
在科学研究领域,正交设计 试验资料方差分析可用于探 索和验证科学假设,揭示现 象背后的机制和规律。
正交试验设计的基本原理
1 2
正交性原理
正交试验设计基于正交性原理,即每个因素在试 验中出现的次数相同,且各次出现的概率相等。
均匀分散原理
正交试验设计通过均匀分散原理,确保每个水平 在试验中都有均衡的分布,从而减少结果的偏差。
3
代表性原理
正交试验设计通过代表性原理,选取具有代表性 的样本点进行试验,以反映整体情况。
正交设计试验资料的方差 分析
• 正交设计试验概述 • 方差分析基础 • 正交设计试验资料的方差分析方法 • 实例分析 • 总结与展望
01
正交设计试验概述
正交试验设计的基本概念
正交试验设计是一种统计技术,用于 在多因素、多水平条件下进行试验, 以最小化试验次数,同时最大化信息 收集。
它利用正交表来安排试验,确保每个 因素的每个水平都被等可能地选取, 从而得到全面而均衡的试验结果。

正交试验设计结果的方差分析

正交试验设计结果的方差分析

n
T xi i 1
②各因素引起的离差平方和
• 第j列所引起的离差平方和 :
S j
1 r
(
m p1
K
2 pj
)
T2 n
k
ST S j Se j 1
③交互作用的离差平方和
• 若交互作用只占有一列,则其离差平方和就等于 所列离差平方和之和,
第6章 正交试验设计结果的方差分析
正交试验设计结果的方差分析法
• 能估计误差的大小 • 能精确地估计各因素的试验结果影响的重要程度
6.1 方差分析的基本步骤
• 正交试验多因素的方差分析,其基本思想是先计算出各因素 和误差的离差平方和,然后求出自由度、均方、F值,最后进 行F检验。
• 如果用正交表Ln(mk)来安排试验,则因素的水平数为m,正交 表的列数为k,总试验次数为n,试验结果为xi(i=1~n)。
– 若m = 2, fA×B=fj – 若m = 3, fA×B= 2fj= fA +fB ④误差的自由度:
fe=空白列自由度之和
(3)计算均方

以A因素为例
:VA
SA fA
以A×B为例 :
VAB
S AB f AB
误差的均方:
Ve
Se fe
注意:
• 若某因素或交互作用的均方≤Ve,则应将它们归入误差列 • 计算新的误差、均方
(6)列方差分析表
6.2 二水平正交试验的方差分析
• 正交表中任一列对应的离差平方和:
例6-1
6.2.2 三水平正交试验的方差分析
• m=3,所以任一列的离差平方和:
例6-3 注意: ➢ 交互作用的方差分析 ➢ 有交互作用时,优方案的确定
6.3 混合水平正交试验的方差分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
表2.实验方案及实验结果的直观分析
列号 实验号
1 A wH2SO4 (%) 1 B mCuSO4· 5H2O(g) 1 C mZn (g) 1 空白列 2 10min内H2的 产率 32.62
2
3 4
2
3 1
1
1 2
2
3 3
1
3 1
40.40
41.07 34.97
5
6 7 8 9
2
3 1 2 3
此,因素水平变化所引起的波动,即因素A的偏差平方和SA应为:
SA=∑(yi-y总)2= (34.74-39.08)2+(38.71-39.08)2+(43.78-39.08)2
=123.37 上述计算结果我们可以通过S总=SA+ Se式来检验SA和 Se 计算正确与否。
(4)自由度和平均偏差平方和的计算 为了消除个数不同对实验指标所产生的影响,
S总 ( yi y总 )2
i 1
n
由表3知:
y总=1/9(32.62+34.97+36.62+40.40+…+44.53)=39.08
则:S总=(32.62-39.08)2+(34.97-39.08)2+…+(44.5339.08)2=151.08 S总反映了实验数据总的波动情况,如果硫酸质量分

i 1
i
即除以(n-1),就得到平均偏差平方和。
平均偏差平方和 nS 1
为什么不除以n而要除以(n-1)呢?这是因为n个 数(y1, y2, y3, ……yn)之间并非彼此毫无关系,它们满 足的关系是: 1 n y yi n i 1 即n个数之和的均值为一定值,因此,n个数中 只有(n-1)个可“自由”变动,所以,求平均偏差平 方和时除以(n-1),数学上将这个(n-1)称为S的自由 度。
4.因素的显著性判断 设因素A的F比为FA:
当FA >F0. 01 (n1, n2 )时,说明该因素水平的改变
对实验结果有很显著的影响,记作**。
当FA >F0. 05 (n1, n2 )时,说明该因素水平的改变
对实验结果有显著的影响,记作*。 当FA >F0. 10 (n1, n2 )时,说明该因素水平的改变 对实验结果有一定的影响,记作O。
114.09 117.25 120.34 38.03 39.08 40.11 2.08
C mZn (g)
122.77 115.23 113.68 40.92 38.41 37.89 3.03
空白列
10min内H2的 产率
119.9 117.56 114.22 39.96 39.18 38.07 1.89
为了弥补直观分析方法的不足,可采用方差分析 方法对实验结果进行计算分析。所谓方差分析就是将 因素水平(或交互作用)的变化引起的实验结果间的差 异与误差的波动所引起的实验结果间的差异区分开来 的一种数学方法。 方差分析的中心要点是:把实验数据总的波动分 解成两部分,一部分反映因素水平变化引起的波动, 另一部分反映实验误差引起的波动。即把数据总的偏 差平方和(S总)分解为因素的偏差平方和(SA、SB、SC ……)与误差的偏差平方和(Se),并计算它们的平均偏 差平方和(也称均方和,或均方),然后进行检验,最 后得出方差分析表。
二.方差分析中的一些基本概念
1.偏差平方和
方差分析的关键是对偏差平方和的分解,因此,
充分理解这一概念是至关重要的。
所谓偏差平方和是指一组数据中,各个数(y1, y2, y3……yn)与它们的算术平均数y之差的平方和。用符号 S来表示。即:
1 1 y ( y1 y2 ...... yn ) yi n n i 1
若以S1表示A1水平下实验误差所引起的波动,其值应 为:S1=(32.62-34.74)2+(34.97-34.74)2+(36.62-34.74)2 =8.0870。同理可以求出A2 、A3水平下实验误差所引 起的波动,其值分别为S2=7.8389,S3=11.7875 则,A因素的各个水平下总的偏差平方和应为: Se= S1+ S2+ S3=8.0870+7.8389+11.7875=27.71 (2) S总的计算 总的偏差平方和S总是指全部实验数据中,每个数据(yi) 与总平均值(y总)之差的平方和,即:
应采用平均偏差平方和,其计算公式为:
因素A的平均偏差平方和=SA/fA 误差的平均偏差平方和=Se/fe 式中SA、Se分别代表因素A和误差的偏差平方和 fA=A因素的水平数-1,它代表SA的自由度
fe=f总-fA,它代表Se的自由度
f总=总的实验次数-1,它代表S总的自由度
在本例中f总=9-1=8,fA=3-1=2, fe=8-2=6
F比 = S
f因素
误差
f 误差
为了判断F比值的大小所表明的物理意义(即F比值多大 时,可以认为实验结果的差异主要是由因素水平的 改变所引起的;其值多小时,可以认为实验结果的 差异主要是由实验误差所引起的),这就需要有一个 标准来衡量F比值,此标准就是根据统计数学原理编 制的F分布表,F分布表列出了各种自由度情况下F比 的临界值。
数水平的改变对实验指标不发生影响,而且实验中
也没有误差产生的话,那么全部实验数据理应都一
样,即S总应等于零,但情况并非如此。
(3) S wH2SO4 (SA)的计算 对于因素A来讲,当它取一水平时,3次实验(即1、4、7实验)结 果的均值(y)应为: y1=1/3(y1+y4+y7)=1/3(32.62+34.93+36.62)=34.74 y1代表了3次一水平实验对H2产率的影响。同理: y2=1/3(y2+y5+y8)=38.71 y3=1/3(y3+y6+y9)=43.78 y2、y3分别代表了3次二水平和三水平实验对H2产率的影响。因

1 n 1 n X xi yi C n i 1 n i 1 X y C
于是
S ( xi x)2 [( yi C ) ( y C )]2 ( yi y)2
i 1 i 1 i 1
n
n
n
3. F比与F分布表 (1) F比
F比是指因素水平的改变引起的平均偏差平方和与误 S因素 差的平均偏差平方和的比值。即: (2) F分布表及其查阅方法
当实验所测得的n个数(y1, y2, y3, ……yn)数值较 大时,为了简化计算,可将每一个原始数据yi(i=1, 2, 3……n)都减去同一个常数C,这并不影响偏差平方 和的计算结果,但计算的工作量却简化了许多。
上述推论可通过以下简单换算予以证明。 若令Xi=yi-C (i=1, 2, ……n)
但是,极差值仅仅反映了各因素影响实验指标的主次 关系,它不能告诉我们各个因素对实验指标影响的程 度。也就是说,它既不能指明这些因素中哪个是影响 实验指标的关键因素,也不能提供一个标准,用来考 察、判断各个因素的作用是否显著。
第二:就因素A而言(因素B、C也类同),其中k1、k2、 k3值之间的差异是如何产生的?是由于A因素水平不 同引起的呢?还是由于实验误差所造成的呢?还是 两者综合作用的结果?从直观分析角度是无法说清 楚的。 正是由于直观分析存在着上述的缺点,所以需 要采用方差分析的方法来弥补上述的不足。 1.单因素实验的方差分析 为了便于讨论,我们仍以实验室制取H2的因素 之一------A因素(硫酸的质量分数)为例,来说明单个 因素的实验数据的方差分析方法。
2 ( y y ) i i 1 n
n

S
为了计算方便,上式可简化为一种更常见的形式:
S yi 2 yi y y yi 2 ny 2
2 2 i 1 n i 1 i 1 i 1 n n n n
若令:
G yi
i 1
CT
ቤተ መጻሕፍቲ ባይዱ
G2 n
n

S yi 2 CT
方差分析是把实验数据总的波动(即数据的总的偏差平方 和S总)分解成两部分:一部分反映因素水平变化引起的波动 (即因素的偏差平方和),对本例而言仅为S wH2SO4;另一部分 反映实验误差引起的波动(即误差的偏差平方和Se)。即: (1) Se的计算
表3.实验结果分析 参与wH2SO4某一水平的实验编号 A1(20%) 1 4 7 A2 (25%) 2 5 8 平均值y A3 (30%) 3 6 9 10minH2产率 A1(20%) 32.62 34.97 36.62 34.74 A2 (25%) 40.40 36.53 39.19 38.71 A3 (30%) 41.07 45.75 44.53 43.78
三.正交试验设计的方差分析 现以实验室制取H2为例,来说明正交设计的方 差分析的基本方法。若该实验所考察的因素、水平 如表1和表2所示。
表1. 因素水平
因素 水平 一 二 A wH2SO4 (%) 20 25 B mCuSO4· 5H2O(g) 0.4 0.5 C mZn (g) 4 5

30
0.6
2
2 3 3 3
1
2 2 3 1
3
2 3 2 1
36.53
45.75 36.62 39.19 44.53
列号 实验号
K1 K2 K3 k1 k2 k3 R
A wH2SO4 (%)
104.21 116.12 131.35 34.78 38.70 43.78 9.05
B mCuSO4· 5H2O(g)
正交试验设计的方差分析
一.方差分析的意义
前面我们介绍了正交设计方案及其结果的直 观分析,该方法简单明了,通俗易懂,计算工作 量少,便于普及和推广。但直观分析方法不能把 实验中由于实验条件的改变而引起的数据波动同 实验误差引起的数据波动区分开来,也就是说, 不能区分因素各水平所对应的实验结果间的差异, 究竟是由于因素水平不同引起的,还是由于实验 误差引起的。
相关文档
最新文档