小世界网络

合集下载

小世界网络

小世界网络

4.2 小世界网络4.2.1 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。

实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径)和聚类特性(较大的聚类系数)。

传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而随机网络具有小世界特性但却没有高聚类特性。

因此这两种传统的网络模型都不能很好的来表示实际的真实网络。

Watts和Strogatz建立的小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。

4.2.2 小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。

2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。

其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。

在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p 的值就可以控制从完全规则网络到完全随机网络的过渡。

相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angle=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angle);y=100*sin(angle);plot(x,y,'r.','Markersize',30);hold on;%生成最近邻耦合网络;A=zeros(N);disp(A);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1; endfor j=1:((i+K)-N) A(i,j)=1; endendif K<ifor j=i-K:i-1 A(i,j)=1;endelsefor j=1:i-1A(i,j)=1; endfor j=N-K+i:N A(i,j)=1; endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1); if pp<=pA(i,j)=0; A(j,i)=0;b=unidrnd(N); while i==bb=unidrnd(N); endA(i,b)=1; A(b,i)=1; endendendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1plot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hold on;endendendhold offaver_path=aver_pathlength(A);disp(aver_path);4.2.3小世界网络模型平均路径长度与聚类系数对于纯粹的规则网络,当其中连接数量接近饱和时,集聚系数很高,平均路径长度也十分短。

小世界网络和无标度网络

小世界网络和无标度网络

⼩世界⽹络和⽆标度⽹络锚点的重要性线性⽹络中锚点的识别可以有许多⽤途,例如在具有线性拓扑的社区宽带⽹络中,其中⼀个锚点可以作为因特⽹的⽹关,进⽽优化社区⽹络中的整体传输时间。

⽤于军事或者应急响应场景中时,可以通过将其中⼀个锚点作为中⼼节点来添加⼀些LL,从⽽能够创建具有⼩APL值的⽹络拓扑。

锚点的识别也有利于车间通信。

对于⼀个给定的图,最⼩化APL等价于最⼩化图的总路径长度。

锚点的固定⽐例位置始终为0.2N或者0.8N.基于启发式⽅法的确定性链路添加两种确定性链路添加策略,即最⼤CC差异(MaxCCD),和顺序确定性LL添加。

两个节点之间的接近中⼼性差异CCD定义为两个节点的CC值之间的差。

MaxCCD策略在具有最⼤CCD的节点对之间添加LL。

APL表⽰在整个⽹络上节点对之间的路径长度平均值。

AEL刻画了⽹络上平均每条链路的长度。

节点的BC值表⽰其在⽹络中的重要性。

节点的CC值刻画了该节点与其他节点的接近程度。

平均⽹络时延:(Average Network Delay,ANeD)度量了⼀组数据从源节点传播到⽬的节点所需的平均时间。

ANeD等于传播时延和传输时延之和。

顺序确定性L添加是另⼀种基于启发式的确定LL添加⽅法,它将正则线性⽹络转化为由k条LL构成的⼩世界⽹络。

基于⼩世界特征的平均流容量增强启发式算法ACES布雷斯悖论⼩世界⽹络中的路由路由可以被定义为将⽹络中的特定信息从源节点转发到⽬的节点的过程。

分布式路由算法⾃适应分布式路由算法前瞻式路由算法⼩世界⽹络中的容量⽹络容量定义为可以在单位时间内从⽹络的⼀部分传输到另⼀部分的信息量。

增加⽹络容量是提⾼底层⽹络整体性能的关键挑战之⼀。

可以通过两种变换⽅式将正则⽹络转为⼩世界⽹络:重连现有链路NL;添加新链路LL第五章⽆标度⽹络⾃然界中⼴泛存在的⽆标度⽹络遵循幂律度分布。

多种创建⽆标度⽹络的⽅法:通过偏好连接;通过基于适应度的模型;通过改变内在适应度;通过相似性和流⾏度的局部优化;使⽤度指数1;通过贪⼼的全局优化。

一百行写小世界网络和无标度网络

一百行写小世界网络和无标度网络

⼀百⾏写⼩世界⽹络和⽆标度⽹络 曾经觉得能写很长的代码就是厉害的表现,随着学习的深⼊,对于好的代码有了更加深刻的认识,⼀个好的代码应该: 1、可读性。

好的代码不仅能让机器读懂,更要让看代码的⼈读懂----合理布局,逻辑清晰。

2、充分发挥语⾔的优势,⽐如接下来的matlab矩阵化编程。

3、占⽤尽可能⼩的内存,运⾏尽量快,输出结果尽量容易处理。

并在此之间找到平衡。

需要说明的是,如果没有对复杂⽹络有基本的了解,下⾯的东西没有看下去的必要。

关于⼩世界⽹络和⽆标度⽹络,可以参考Watts DJ 和Strogatz SH的Collective dynamics of 'small-world' networks(NATURE)以及Barabasi AL和Albert R的 Emergence of scaling in random networks(SCIENCE)。

之前,国庆期间曾经⽤了四百⾏代码(C语⾔)实现了,之后⼜⽤⼀到两百⾏代码写完了。

现在看这些代码,确实受制于C语⾔语法的限制,所以写出来⼗分冗杂,⽽且不易理解。

由于最近在学习matlab编程,所以尝试了⼀下,两个代码加起来竟然不到⼀百⾏。

⽽且没有使⽤matlabBGL之类的⼯具。

⽽且算法上由于语⾔变的更加⾃由,所以算法上也优化了不少(由后⾯的度分度图就可以看出来) 此外,虽然matlab基于JVM,但是只要算法设计的好,还是可以完爆之前的C语⾔,关于的博客中提到计算1000个节点需要35min,经过测试,这个matlab程序处理10000个节点的时间是38min,1000个节点是21.9s!新的程序时间复杂度O(N^2),N是节点数量(由于数据结构没有时间系统学习,时间复杂度可能说错了!)。

最后,matlab可以对矩阵进⾏稀疏化处理,⽽⽆标度⽹络正是⼀个极其稀疏的⽹络,所以,借助稀疏化操作,使得matlab也能操作较⼤的矩阵。

小世界网络(SWN)及其在经济管理领域的应用

小世界网络(SWN)及其在经济管理领域的应用

小世界网络(SWN)及其在经济管理领域的应用
小世界网络(SWN)及其在经济管理领域的应用
小世界网络(SWN)理论由物理、数学、行为科学和计算机科学等多学科交叉生成,用以说明世界上几乎任何两个人都可以通过中间人用较少的连接联系起来,其典型连接数为6-本文称之为"六度分离".SWN 理论一经使用,势必为经济管理领域带来全新思路,提供一种有效的技术工具,展现出广泛的适用性和广阔的发展前景.本文介绍有关SWN的由来、原理及其在经济管理领域的应用.
作者:田颖杰李南江可申作者单位:南京航空航天大学刊名:世界经济研究 PKU CSSCI英文刊名:WORLD ECONOMY STUDY 年,卷(期):2001 ""(6) 分类号:关键词:网络结构小世界网络随机网络特征路径长度集团化。

课题:WS小世界网络模型构造

课题:WS小世界网络模型构造

课题:WS小世界网络模型构造姓名赵训学号 2班级计算机实验班一、WS 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。

实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径) 和聚类特性(较大的聚类系数) 。

传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而ER 随机网络具有小世界特性但却没有高聚类特性。

因此这两种传统的网络模型都不能很好的来表示实际的真实网络。

Watts 和Strogatz建立的WS小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。

二、WS小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。

2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。

其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。

在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡,如图a所示。

图a相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('WS小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angle=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angle);y=100*sin(angle);plot(x,y,'r.','Markersize',30);hold on;%生成最近邻耦合网络;A=zeros(N);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1;endfor j=1:((i+K)-N)A(i,j)=1;endendif K<ifor j=i-K:i-1A(i,j)=1;endelsefor j=1:i-1A(i,j)=1;endfor j=N-K+i:NA(i,j)=1;endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1);if pp<=pA(i,j)=0;A(j,i)=0;b=unidrnd(N);while i==bb=unidrnd(N); endA(i,b)=1;A(b,i)=1;endendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1plot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hold on;endendendhold offaver_path=aver_pathlength(A);disp(aver_path);对应输出(取网络节点数N=16,K=2;p分别取0,0.1,1)。

浅谈小世界网络

浅谈小世界网络

浅谈小世界网络20世纪末,很多科学家发现研究过的自然、社会和技术网络中,大都具有这些特征:高度的集群性、不均衡的度分布以及中心节点结构。

这些特征的出现不是偶然的,为什么现实世界中的网络会具有这些特征呢?这是网络科学的主要问题,目前基本上已经通过建立网络的发展模型解决了。

其中有两类模型被深入地进行了研究,分别是小世界网络和无尺度网络,这里结合原始论文谈谈对小世界网络的认识。

1998年,邓肯·瓦特和斯托加茨在《自然》杂志上发表了关于小世界网络模型的论文Collectivedynamics of‘small-world’ n etworks,首次提出并从数学上定义了小世界概念,并预言它会在社会、自然、科学技术等领域具有重要的研究价值。

所谓小世界网络,就是相对于同等规模节点的随机网络,具有较短的平均路径长度和较大的聚类系数特征的网络模型。

以前,人们认为网络分为完全规则网和完全随机网,这两类网络具有各自的特征。

规则网具有较大的特征路径长度,聚类系数也较大,而随机网络具有较小的特征路径长度,但是聚类系数较小。

难道特征路径长度较大(小)一定伴随着较大(小)的聚类系数?另外,很多现实中的网络如电网,交通网络,脑神经网络,社交网络,食物链等都表现出小世界特性,即具有较小的特征路径长度。

Watt采用一种随机重连边的方法,以探求位于规则网和随机网的中间地带。

如图:规则网有N个节点,每个节点与K个最近邻节点相连(K是偶数)。

上图的规则网有20个节点,每个节点与相邻的4个节点互联。

然后,对每条边进行以概率P进行随机重连(0<=P<=1)。

P=0时对应规则网,P=1时对应完全随机网,通过调整P的值可以得到位于两种网络中间的网络模型,然后探究其特征。

通过实验并统计网络呈现出的特征,得到下图(归一化处理后)。

可见,在P较小时(P<0.01),特征路径长度急剧下降,而聚类系数几乎没有变化。

这样,我们发现这些网络具有较短的特征路径长度和较大的聚类系数,我们称其为“小世界网络”。

网络科学中的复杂网络模型

网络科学中的复杂网络模型

网络科学中的复杂网络模型网络科学是一个快速发展的领域,涉及到许多重要的应用和领域,包括社交网络、生物网络、交通网络、金融网络等等。

这些网络在不同的领域和场景下都有其独特的特点和规律,而其中一个重要的方面就是复杂网络模型。

复杂网络模型是一个包含了许多不同类型节点和边的网络,它们可以呈现出高度动态和非线性的特性,在一定程度上可以反映真实世界的复杂性。

这种网络的特点往往会影响到网络的结构、动态行为和演化轨迹等方面的研究。

因此,我们对复杂网络模型的研究具有重要的理论和实践意义。

在这篇文章中,我们将深入探讨网络科学中常用的复杂网络模型,包括小世界网络、无标度网络、随机网络和人为网络等。

1、小世界网络小世界网络是基于熟人和陌生人社交网络的研究产生的,其特点是节点之间的链接比较紧密,但节点之间的距离又相当短。

实际上,我们在现实世界中所处的社交网络,可以类比为小世界网络。

在小世界网络中,每个节点与相邻节点之间的链接形成了一个固定的结构,而节点之间的链接可以通过随机连接来实现,从而形成了一种与真实世界相似的混合网络模型。

小世界网络在现实生活中得到了广泛的应用,如社交网络、电力网络、交通网络等等。

2、无标度网络在许多复杂系统中,节点之间的连接并不是随机的。

这些系统中的节点往往具有极为不平衡的度分布,即存在少数节点度较高,但绝大部分节点度较低的现象。

这种网络模型被称为无标度网络。

无标度网络在许多生物、社会和技术系统中得到了广泛的应用,如人脑神经网络、因特网、科学合作网络等。

研究人员认为,这种网络模型能够表达一种底层的组织结构,这种结构决定了网络的分布规律和演化规律。

3、随机网络随机网络是一种基于随机规律产生的网络结构,节点之间的连接是随机产生的。

这种网络模型通常不包括任何固定的结构或规则,而是依靠节点之间的随机链接来完成网络的组成。

随机网络广泛应用于电子商务、物流、通信和交通系统等领域。

这种网络模型的特点是节点和链接的随机性,因此能够表达系统中的不确定性和不稳定性。

人类大脑网络拓扑结构研究

人类大脑网络拓扑结构研究

人类大脑网络拓扑结构研究人类大脑是世界上最复杂、最神秘的器官之一,它包含数以亿计的神经元和连接它们的突触。

在过去几十年里,科学家们一直致力于研究人类大脑的网络拓扑结构。

通过这些研究,我们可以更好地理解大脑是如何工作的,同时也为解决一些与大脑疾病相关的问题提供了新的线索。

首先,人类大脑的网络拓扑结构是基于神经元之间的连接方式来定义的。

这些连接形成了一个复杂的网络,决定了信息在大脑中的传播路径。

在过去的研究中,科学家们利用各种先进的技术,如功能磁共振成像(fMRI)、弥散张量成像(DTI)等,来探索人类大脑的网络拓扑结构。

研究表明,人类大脑的网络拓扑结构是小世界网络。

小世界网络是一种介于完全随机网络和完全规则网络之间的中间状态。

这种网络结构具有特定的特征,即高度聚合性和短路径长度。

高度聚合性意味着大脑中的神经元更有可能与彼此直接连接,而不是通过较长的路径间接连接。

短路径长度表示在大脑网络中,通过相对较少的跳数就能够实现信息传播。

研究还发现,人类大脑的网络拓扑结构具有高度的鲁棒性和灵活性。

鲁棒性是指网络在遭受一定程度的破坏或攻击时仍能保持其功能的能力。

大脑的网络结构具有冗余连接和多路径传输的特点,这使得它能够有效地应对各种外界干扰和损伤。

而灵活性则体现在网络能够根据不同的需求和任务进行自适应调整,以实现更高效的信息传递和处理。

同时,人类大脑的网络拓扑结构还与认知功能密切相关。

研究表明,不同认知功能之间存在着不同的网络拓扑结构。

例如,语言处理和视觉感知等功能在大脑网络中的连接方式和特征不同。

这些研究结果为我们理解人类的认知过程和脑机制提供了重要线索。

除了上述发现,近年来,人类大脑网络拓扑结构的研究还涉及到一些新的领域,如脑连接组学和功能网络重构。

脑连接组学是一门研究大脑网络连接特征的学科,它可以通过测量大脑图像数据中的连接性和拓扑结构来推断大脑的功能和认知过程。

功能网络重构则是利用图论和复杂网络理论的方法,通过分析大脑图像数据中的功能连接来重构大脑的网络拓扑结构。

组合逻辑电路的小世界网络模型

组合逻辑电路的小世界网络模型

2006年 7月
电 机 与 控 制 学 报 ELE CT R IC M ACH INE S AND CONT RO L
Vo l 10 N o 4 Ju ly 2006
组合逻辑电路的小世界网络模型王哈力,摘 Nhomakorabea单
薏,
王希凤
( 哈尔滨理工大学 电气与电子工 程学院 , 黑龙江 哈尔滨 150040)
要 : 针对可编程逻辑器件中组合逻辑电路的优化设计问题, 依据复杂网络理论中小世界模型
收稿日期 : 2006- 02- 13; 修订日期 : 2006 - 05- 23
络背后, 是否隐藏着某种无形的组织原理, 近年来, 借助计算机这个强大的工具, 人们对网络的认识发 生了巨大的变化, 复杂网络的研究正在蓬勃发展 , 众 多学科的研究者从不同角度审视着复杂网络现象。 如神经系统可以看作大量神经细胞通过神经纤维相 互连接形成的网络 ; 计算机网络可以看作是自主工 作的计算机通过通信介质如光缆、 双绞线、 同轴电缆 等相互连接形成的网络。尤其 是 1998 年 W atts 和 Strogatz在 N ature 杂志上发表文章, 提出网络模型的
中图分类号 : TP393 文献标识码 : A 文章编号 : 1007- 449X ( 2006) 04- 0370- 05
The sm all world net work m odel of combinational logic circuits
W ANG H a l,i SHAN Y ,i W ANG X i feng
[ 2 - 3] [ 1]
, 本文根据复杂网
络的小世界理论, 分析了可编程逻辑器件的组合逻 辑电路拓扑特性, 针对小世界模型分簇的基本特征, 给出优化设计电路的方法。

网络拓扑知识:小世界网络拓扑的特征与应用

网络拓扑知识:小世界网络拓扑的特征与应用

网络拓扑知识:小世界网络拓扑的特征与应用网络拓扑是指网络中不同节点之间连接的形式和方式。

小世界网络,又称“六度分隔理论”,是指在一个网络中,任意两个节点之间的距离不到几个步骤,这种网络结构是由多个密集连接在一起的“群集”和少量连接距离较远的“枢纽”节点组成的。

小世界网络拓扑的特征是,这种网络具有密集连接和随机连接两种属性。

密集连接的节点形成群集,枢纽节点则连接不同的群集,从而形成了一个具有高效率和短路径的网络。

小世界网络的应用十分广泛。

在社交网络中,小世界网络的结构可以解释为“六度分隔理论”,即人际之间的关系网相当密切。

在社交网络中,小世界网络的结构可以用来描述人们之间的联系,这样在社交媒体营销中,可以利用这种结构,通过社交网络快速地传达信息和推广产品。

在科学研究领域,小世界网络被广泛应用于描述生物、神经元和蛋白质等巨大的复杂系统之间的联系。

例如在生物网络中,小世界网络可以被应用于描述基因表达及其蛋白质之间的关系;在神经网络中,小世界网络可被利用于描述神经元之间的连接方式,以及神经网络的特性等。

此外,在电力网络、航空网络等大型系统中也可以应用小世界网络的拓扑结构,如在电力网络中,小世界网络可以用来预测电力系统的失效和优化电力传输;在航空网络中,小世界网络可以用来优化航班调度和预测航班延误等。

小世界网络拓扑的发现已经成为了我们更好地理解网络结构的基础。

在当前信息时代,如何从这种拓扑结构中挖掘更多有价值的信息,是一个值得继续探讨的问题。

在小世界网络中,节点间的关系一直在变化,这使得这种网络具有较好的鲁棒性和动态特性。

与其他网络拓扑相比,小世界网络在不同的应用领域具有更好的适应性,因而在未来的研究中,它将发挥着重要的作用。

(完整版)小世界网络简介及及MATLAB建模

(完整版)小世界网络简介及及MATLAB建模

小世界网络MATLAB建模1.简介小世界网络存在于数学、物理学和社会学中,是一种数学图的模型。

在这种图中大部份的结点不与彼此邻接,但大部份结点可以通过任一其它节点经少数几步就可以产生联系。

若将一个小世界网络中的点代表一个人,而联机代表人与人之间是相互认识的,则这小世界网络可以反映陌生人通过彼此共同认识的人而起来产生联系关系的小世界现象。

在日常生活中,有时你会发现,某些你觉得与你隔得很“遥远”的人,其实与你“很近”。

小世界网络就是对这种现象的数学描述。

用数学中图论的语言来说,小世界网络就是一个由大量顶点构成的图,其中任意两点之间的平均路径长度比顶点数量小得多。

除了社会人际网络以外,小世界网络的例子在生物学、物理学、计算机科学等领域也有出现。

许多经验中的图可以用小世界网络来作为模型。

因特网、公路交通网、神经网络都呈现小世界网络的特征。

小世界网络最早是由邓肯·瓦茨(Duncan Watts)和斯蒂文·斯特罗加茨(Steven Strogatz)在1998年引进的,将高聚合系数和低平均路径长度作为特征,提出了一种新的网络模型,一般就称作瓦茨-斯特罗加茨模型(WS模型),这也是最典型的小世界网络的模型。

由于WS小世界模型构造算法中的随机化过程有可能破坏网络的连通性,纽曼(Newman)和瓦茨(Watts)提出了NW小世界网络模型,该模型是通过用“随机化加边”模式来取代WS小世界网络模型构造中的“随机化重连”。

在考虑网络特征的时候,使用两个特征来衡量网络:特征路径长度和聚合系数。

特征路径长度(characteristic path length):在网络中,任选两个节点,连同这两个节点的最少边数,定义为这两个节点的路径长度,网络中所有节点对的路径长度的平均值,定义为网络的特征路径长度。

这是网络的全局特征。

聚合系数(clustering coefficient):假设某个节点有k个边,则这k条边连接的节点之间最多可能存在的边的个数为k(k-1)/2,用实际存在的边数除以最多可能存在的边数得到的分数值,定义为这个节点的聚合系数。

小世界网络

小世界网络
图 5 WS 小世界网络的集聚系数和特征路径长度
NW 模型:Newman 在 WS 小世界模型的基础上,通过捷径额外链接建构了另一种小世界模型,称为 NW 小世界模型[15]。其构建方法为:在规则网络的基础上,按确定平均连接度个数,添加随机选择的点(随机网络),不再拆开规则网络的连接。实际上,NW 小世界模型是规则网络和随机网络的叠加(见图6)。
第二章 小世界网络的特性
Watts和Strogatz的开创性文章引发了研究小世界网络和Watts-Strogatz(WS)模型特性的热潮。通过进一步研究Newman和Watts对WS模型的作了改进,其中边被加入随机选取的两点之间,但却不从规则网中移除。这一模型比原始Watts-Strogatz模型容易分析,因为它不会形成孤立的群集,但是在原始模型中有可能发生。对于足够小的p和大N,这一模型等价于WS模型。接下来我们将总结关于小世界网络的主要特性。
首先,网络的现象涵盖极其广泛,因此,对网络的研究极具意义。其次,复杂网络的研究,在大量网络现象的基础上抽象出两种复杂网络:一种即小世界网络,另一种即无标度网络。这两种网络都同时具有两个基本特征:高平均集聚程度、小的最短路径。对这两种网络的研究,有利于人们理解现实世界中的网络现象。
科学家在研究复杂网络的过程中,通过在规则网络的基础上,断开其中某些顶点的链接,然后导入随机链接其中若干顶点的方法,结果构造出来的网络立刻就具有了小世界的特性。
对于规则环状网格和随机网络之间添加随机再连接的过程,没有改变图中的顶点数或者边数。N 个顶点的环,每个顶点通过随机的边连接到它的 k 个最近的邻居。我们选择一个顶点和它的边,以顺时针方向连接它和它最近的邻居,然后以概率 p 重新连接这条边到一个环上随机选择的顶点,不允许重复,否则我们不动这条边。我们通过沿着环顺时针移动来重复这个过程,在轮流的过程中每个点都要考虑到直到一圈结束。接着再考虑顺时针连接它们第二近邻顶点的边。沿着这个循环操作并且在每一圈以后逐步向远距离的邻居行进,直到原始网格中的每一条边都被考虑过(见图4)。

聚类系数对小世界交通网络搜索路径的影响

聚类系数对小世界交通网络搜索路径的影响

聚类系数对小世界交通网络搜索路径的影响聚类系数是网络科学中的一个重要指标,用来衡量网络中节点之间相互连接紧密程度的指标,也被称为节点的集聚程度。

在交通网络中,聚类系数可以用来衡量交通网络中节点之间的密集程度,从而影响到交通网络的搜索路径。

下面将从聚类系数的定义、小世界网络的特点和聚类系数对小世界交通网络搜索路径的影响三个方面进行探讨。

首先,聚类系数是网络中节点之间相互连接紧密程度的指标。

聚类系数越高,节点之间的相互连接就越紧密,意味着网络中的节点之间越容易形成一个群组,交通网络中同样如此。

例如,在城市中,一个居民区中的道路相互连接紧密,形成了一个小地区,这个小地区的居民之间的交通比较频繁,很少会跨越到其他区域。

所以,在交通网络中,聚类系数可以用来衡量交通网络中节点之间的密集程度,从而影响到交通网络的搜索路径。

其次,小世界网络是一种介于规则网络和随机网络之间的网络模型,具有局部紧密和全局短距离两个特点。

在小世界交通网络中,每个节点都与它相邻的节点紧密相连,并且具有高聚类系数。

但是,节点之间的全局距离比较短,意味着节点之间非常容易相连。

这种特性使得小世界交通网络具有高效的搜索路径,同时又可以保持较强的局部联系。

例如,在城市道路交通中,交通路线可以基本保持单向行驶,节省了交通时间,而同时它们又能够相互交错穿插,使得道路交通更加高效,形成了一个具有高效搜索特性的小世界网络。

最后,聚类系数对小世界交通网络搜索路径具有重要影响。

当交通网络中的聚类系数越高,交通网络的搜索路径也越复杂,搜索路径的长度也相应地增加。

当交通网络中的聚类系数越低,局部联系较弱,但全局距离较近,搜索路径也可以更加高效。

因此,适当的聚类系数可以在小世界交通网络中形成更加高效的搜索路径,从而提高交通的效率与可持续性。

综上所述,聚类系数是一种重要的指标,它可以用来衡量交通网络中节点之间的密集程度,从而影响到交通网络的搜索路径。

小世界网络具有高效的搜索路径,聚类系数对小世界交通网络搜索路径具有重要影响,因此在交通规划中,需要根据实际情况制定合理的聚类系数,以达到高效的交通运行和可持续发展。

小世界网络

小世界网络

系数和更低的平均路径长度。
小世界网络的平均路径长度受制于导入的随机性,但是其他属性如聚 类系数受制于起始网络的拓扑。
8
5.2 小世界网络属性 来自与重联概率对于小概率p,随机性上升非常快,然后当p接近100%时就平缓下 来。接近一半熵的增加发生在1%和10%之间。
对于足够大的重联概率p,熵随着p呈对数地增长。
19
5.5 分析
小世界网络是可扩展的、高度聚类的、相对稀疏的。
20
Thanks
13
5.2 世界网络属性
小世界中的紧度 紧度随着密度的增加而增加,到达某一点,然后向下再向上,随之网 络开始更像k-规则网络而非小世界网络。向下再向上之后,重新变的 规律性,紧度再次提高直到接近100%峰值为止。
14
5.2 世界网络属性
小世界中的紧度 随机网络在密度接近100%之前没有规律性;小世界网络具有大量与 密度无关的规则性——随着密度的增加规则性对平均紧度的影响会增 加。在大约50%左右到达“临界点”,这就导致小世界行为更像k-规 则网络而非随机网络。这种规则性在决定紧度时成为最重要的因素。 一般来讲,超过20%密度,聚类倾向于增加平均紧度,而随机性倾向 于减少平均紧度。
变的更加随机化了,并且它的平均路径长度接近随机网络,但是小世 界的平均路径长度决不会小于同等随机网络的。 快速减少平均路径长度及具有较大的聚类系数是小世界网络的独特特 点。小世界的路径长度随着重联概率的增加而收缩,达到p=100%为
极限。
11
5.2 小世界网络属性
小世界网络的路径长度
5.2 小世界网络属性
12
小世界网络的聚类系数 聚类随着熵的增加而减少,因为聚类是一种结构(有序),而重联 链路是一种随机性(无序)。增大重联概率就增大了无序,也就降 低了聚类。熵与k-规则网络的最初顺序相反。 保持重联概率不变而让密度变化。聚类系数会随着密度的提高而 缓慢提高,因为提高密度会使网络更加接近完全网络(完全网络 的聚类系数是1.0)。聚类系数随着密度接近100%而渐近1.0。

小世界效应

小世界效应

大量的实证研究表明,许多真实网络都具有小世界效应,有的甚至具有所谓的超小世界效应,小世界网络模型正是模拟了真实网络的这一特点。

1998年Watts和Strogatz提出了一种小世界网络模型(WS)的构造方法:对规则网络中每一个节点的所有连边,以一定的概率P断开一个端点,然后重新连接到其他任意一节点上,如图2.1。

当重连概率P=0时,网络是一个规则网络;P=1时形成的网络为完全随机网络;当0<P<1时,形成的网络为小世界网络。

小世界网络是介于完全规则网络和完全随机网络之间的网络,既具有与规则网络类似的类聚特性,又具有与随机网络类似的较小的平均路径长度,即同时具有大的簇团系数和小的平均最短距离。

对WSd"世界网络统计特性模拟研究的结果如图2.3所示,当P=0等于零时,即对于规则网络来说,簇团系数C(P)和最短距离,(p)都较大,当P=l时,即对于随机网络来说,系统的簇团系数和最短距离都较小,而存在一个很大的P的区域,系统同时具有大的簇团系数和较小的最短距离,此即是世界效应。

WS小世界网络的构造,P=0时,是一规则网络,P=1时是完全随机网络,0<P<1时,是一小世界网络,同时具有固定连边和长程随机连边。

随着对网络研究的深入,人们发现真实网络在许多性质上与随机网络仍然有比较大的差别。

在现实世界中很多网络并不能抽象成为规则网络,也不能抽象成为随机网络,而是一种介于规则网络和随机网络之间的一种网络。

这些网络存在我们称之为“小世界效应”的特性。

对于“小世界效应’’的研究可以追溯到1967年。

在那一年,著名的心理学家Mil掣锄在HaⅣard大学做过一个简单的实验。

这个实验的过程可以进行如下简述:Mil孕锄随机的将一些信件分发给内布拉斯加少}I(Nebraska)的一些实验参与者,这些信件的送往的目的地是马萨诸塞州(Massachusetts)的首府波士顿(Boston)(之所以这么选择,是因为Mil留am认为这两个地方相距甚远)。

复杂网络的特性与应用研究

复杂网络的特性与应用研究

复杂网络的特性与应用研究复杂网络是指由大量节点和边组成的非线性网络。

在复杂网络中,节点之间相互连接形成了复杂的拓扑结构,这种结构使得网络的行为表现出多样性和非线性,产生了许多有趣的特性。

本文将介绍一些复杂网络的特性和应用研究。

一、小世界网络小世界网络是指在网络中,节点之间的连接呈现出高度的局部聚集性和短路径的全局连通性。

这种结构是由于存在一些“枢纽节点”,这些节点具有极高的度数,连接了大量的节点。

小世界网络在现实世界中广泛存在,例如社交网络、互联网等。

小世界网络的特点是具有高度的效率和鲁棒性。

在网络中引入大量的短程边可以加速信息传播的速度,而且在攻击或随机故障的情况下,小世界网络仍然可以维持连通性和稳定性。

二、无标度网络无标度网络是指节点的度分布呈现出幂律分布的网络。

换句话说,少数节点具有极高的度数,而绝大多数节点的度数较低。

无标度网络可以模拟许多现实世界中的现象,如互联网中的超链接结构、社交网络中的社区结构等。

无标度网络的特点是具有高度的鲁棒性和易受攻击性。

因为少数的高度连接节点对于整个网络的连通性至关重要,所以在攻击或随机故障的情况下,无标度网络的稳定性会受到很大的影响。

三、复杂网络的应用研究复杂网络的应用研究具有广泛的领域,包括社交网络、生物网络、金融网络、交通运输网络等。

在社交网络中,复杂网络可以用来研究人际关系的网络结构和信息传播的机制。

在生物网络中,复杂网络可以应用于研究基因相互作用网络、蛋白质相互作用网络等生物信息学问题。

在金融网络中,复杂网络可以用于分析金融市场的稳定性和研究风险管理策略。

在交通运输网络中,复杂网络可以应用于交通拥堵的模拟和路网优化问题等。

总之,复杂网络是现代科学研究中不可缺少的工具之一。

通过对其特性和应用研究的深入探索,我们可以更好地理解和应对现实中面临的各种问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 6 NW 小世界网络随机化重连构造算法
在 NW 模型中由于基础的规则网络的连接始终没有变化,是一种有序的连接关系,而随机连接构成的随机网络,构成一种无序的连接关系。它们的合理叠加描述了客观世界具有的这种有序和无序的混杂特征。而且由于 NW 模型中没有键断开,很好的解决了WS 模型中出现孤立点的问题。
本文为了使人们更好地了解小世界网络模型,在简单介绍小世界网络的研究背景的前提下对小世界网络结构理论由规则网络,随机网络逐步发展到小世界网络的过程做了简要的阐述。本文还介绍了小世界网络的平均路径长度,群集系数和度的分布,并且对于小世界网络在Internet,舆论方面的应用做了一些初步的介绍。
关键词:复杂网络 小世界网络 流言传播 Internet小世界网络
Abstract
In recent years, the academic research on complex networks is ascendant. In particular, two international pioneeringresearchestriggeranupsurge of considerableworkon complex networks.In1998,Wattsand Strogatzpublishedtheir original articlein the journalnamedNATURE. The small world network modelwasintroducedin this article.
1.2.1 规则网络
规则模型就像一个规则可循的晶格点阵,模型中各点的连接相同。最简单的规则模型是完全有序的一维点阵。如果将一维点阵中各个点的 K 个邻居连接起来,很明显各个点的邻居又互为邻居体现集团化特征,对点阵采用循环边界条件则会形成环(如图2)。
图 2 规则网络
1.2.2 随机网络
随机网络理论由匈牙利数学家 Erdos 和 Renyi 提出,称为 ER 模型[12],其定义为:在由 N 个顶点、N(N-1)/2 条边构成的图中,随机连接 g 条边形成一随机网络,由这样的N 个节点、g 条边组成的网络构成一个概率空间,每一个网络出现的概率相等。后来有人又提出二项式模型[13,14],模型中节点数目 N 固定不变,任意节点对之间以概率 p 连接形成网络,这样整个网络中边的数目是一个随机变量。ER 随机图的节点度服从泊松分布,它具有较小的特征路径长度和较小的聚集系数。
图 3 随机网络
1.2.3 小世界网络
WS 模型:1998 年,Watts 和 Strogatz 在规则网络和随机网络的基础上提出了著名的 WS 小世界网络[12]。本质上说,WS 小世界模型是在一维规则网格中引入一定随机性的网络结构,其构建方法是:在平均连接度为 k 的一维规则网络中,按顺序浏览每一个连接,并以概率 p 将连接断开,把连接的一端移到另一个随机选取的位置。虽然一些连接伸展到较远的地方,由于 p 很小,模型仍然大致维持规则结构,这些较长的连接称为捷径。
首先,网络的现象涵盖极其广泛,因此,对网络的研究极具意义。其次,复杂网络的研究,在大量网络现象的基础上抽象出两种复杂网络:一种即小世界网络,另一种即无标度网络。这两种网络都同时具有两个基本特征:高平均集聚程度、小的最短路径。对这两种网络的研究,有利于人们理解现实世界中的网络现象。
科学家在研究复杂网络的过程中,通过在规则网络的基础上,断开其中某些顶点的链接,然后导入随机链接其中若干顶点的方法,结果构造出来的网络立刻就具有了小世界的特性。
对于规则环状网格和随机网络之间添加随机再连接的过程,没有改变图中的顶点数或者边数。N 个顶点的环,每个顶点通过随机的边连接到它的 k 个最近的邻居。我们选择一个顶点和它的边,以顺时针方向连接它和它最近的邻居,然后以概率 p 重新连接这条边到一个环上随机选择的顶点,不允许重复,否则我们不动这条边。我们通过沿着环顺时针移动来重复这个过程,在轮流的过程中每个点都要考虑到直到一圈结束。接着再考虑顺时针连接它们第二近邻顶点的边。沿着这个循环操作并且在每一圈以后逐步向远距离的邻居行进,直到原始网格中的每一条边都被考虑过(见图4)。
随机网络的形象化描述是,假设总数为 N 的群体,平均每人有 K 个邻居(即每个点平均与 K 个点相连,K 称为网络配位数),与每个邻居的连接都称为一个键或边,这里的连接都是双向对称的,网络中共有 NK/2 个键。于是选取 N 个点,随机连接其中一些点形成 NK/2 条边代表他们之间的联系,就构成了一个随机网络(见图3)。
My thesis introduces the process of the development of the structure theory of Small-World Network, from the regular network, random network to Small-Word Network, under the promise of the researching background of Small-Work Network. In order to make people understand the model of the small world network better, the average path length, clustering coefficient and degree distribution are also introduced in my thesis. Besides, I made some preliminary introduction about the application of Small-Word Network in Internet and public consensus.
数学家和物理学家在考虑网络的时候,往往只关心节点之间有没有边相连,
图1
至于节点到底在什么位置,边是长还是短,是弯曲还是平直,有没有相交等等都是他们不在意的.在这里,我们把网络不依赖于节点的具体位置和边的具体形态就能表现出来的性质叫做网络的拓扑性质,相应的结构叫做网络的拓扑结构.那么,什么样的拓扑结构比较适用于描述真实的系统呢?两百多年来,对这个问题的研究经历了三个阶段.在最初的一百多年里,科学家们认为真实系统各因素之间的关系可以用一些规则的结构表示,例如二维平面上的欧几里德格网,它看起来像是格子体恤衫上的花纹;又如最近邻环网,它总是会让你想到一群手牵着手、围着篝火跳圆圈舞的姑娘.到了20世纪50年代末,数学家们想出了一种新的构造网络的方法,在这种方法下,两个节点之间连边与否不再是确定的事情,而是根据一个概率决定.数学家把这样生成的网络叫做随机网络,它在接下来的40年里一直被很多科学家认为是描述真实系统最适宜的网络.直到最近几年,由于计算机数据处理和运算能力的飞速发展,科学家们发现大量的真实网络既不是规则网络,也不是随机网络,而是具有与前两者皆不同的统计特征的网络.这样的一些网络被科学家们叫做复杂网络(complex net-works),对于它们的研究标志着第三阶段的到来.
1.2 小世界网络结构理论发展
1929 年,匈牙利作家 F.Karinthy 最早提出了“小世界现象”的论断。他认为,在地球上的任何两个人都可以平均通过一条由六位联系人组成的链条而联系起来。而后,在1967 年,美国哈佛大学社会心理学教授 Stanley Milgram 通过设计一个连锁信件实验,提出了著名的“六度分离”假说,即“小世界现象”。这体现了一个似乎很普遍的规律:在如今的信息化时代,人们之间的关系已经完全社会化,任何两位素不相识的人都可能通过“六度空间”产生必然联系或关联。这一现象表明,在看似庞大的网络中各要素之间的间隔实际上是非常“近”的,大家在世界上通过一步一步的社会相识寻找到目标的这个短链子理论普遍存在于各种社会、经济网络中,科学家们把这种现象称为小世界效应(Small-world effect)。为了用网络图来解释“六度分离”的小世界效应,,Watts 和 Strogatz在对规则网络和随机网络理论研究的基础上,于 1998 年提出了著名的 WS 小世界网络(SWN)。在此过程中小世界网络经历了如下的发展过程:
ii第一章小世界网络模型的建立11小世界网络的研究背景111复杂网络112研究复杂网络的意义12小世界网络结构理论发展121规则网络122随机网络123小世界网络第二章小世界网络的特性21平均路径长度22聚集系数23度分布第三章小世界网络的应用1031internet小世界网络的研究10311internet的小世界特性10312运用internet的小世界特性改善网络信息交流1132流言传播的小世界网络的研究11321流言传播的小世界网络特性11322流言传播的小世界网络的实际应用12第四章结束语13参考文献15南京师范大学泰州学院应用物理系第一章小世界网络模型的建立11小世界网络的研究背景111复杂网络自然界中存在的大量复杂系统都可以通过形形色色的网络加以描述
图 5 WS 小世界网络的集聚系数和特征路径长度
NW 模型:Newman 在 WS 小世界模型的基础上,通过捷径额外链接建构了另一种小世界模型,称为 NW 小世界模型[15]。其构建方法为:在规则网络的基础上,按确定平均连接度个数,添加随机选择的点(随机网络),不再拆开规则网络的连接。实际上,NW 小世界模型是规则网络和随机网络的叠加(见图6)。
总的来说复杂网络是研究复杂系统的一种方法和途径,按照研究对象来分可以分为生物网络、科技网络和社会网络,它们具有很多的共同特点和特性,其中小世界特性[1,6]和无标度特性[7,8]尤其突出。
1.1.2研究复杂网络的意义
复杂网络的研究,为我们提供了一种复杂性研究的新视角、新方法,并且提供了一种比较的视野。可以在复杂网络研究的旗帜下,对各种复杂网络进行比较、研究和综合概括。
Keywords:complex network Small world network Rumors spread small world network in Internet
相关文档
最新文档