原子的位形卢瑟福模型
原子物理学第一、二章:卢瑟福模型、玻尔模型

第一章:原子的位形:卢斯福模型
第五节:行星模型的意义及困难 2.原子的同一性
任何元素的原子都是确定的,某一元素的所 有原子之间是无差别的,这种原子的同一性是 经典的行星模型无法理解的。
3.原子的再生性 一个原子在同外来粒子相互作用以后,这个 原子可以恢复到原来的状态,就象未曾发生过 任何事情一样。原子的这种再生性,是卢瑟福 模型所无法说明的.
Automic Physics 原子物理学
第二章:原子的量子态:玻尔模型
第一节 第二节 第三节 第四节 第五节 背景知识 玻尔模型 光 谱
夫兰克--赫兹实验 玻尔理论的推广
第二章:原子的量子态:玻尔模型
第一节:背景知识
卢瑟福模型把原子看成由带正电的原子核和围绕核运动的一 些电子组成,这个模型成功地解释了α粒子散射实验中粒子的 大角度散射现象
2
1
hv
e
c2
1
上式中的 h 就是著名的普朗克常量,其曲线与实验值 完全吻合,而这一公式是普朗克根据实验数据猜出来的。 由此公式当v->0和v->∞时分别都可得到与瑞利--金斯和 维恩公式相同的形式。
第二章:原子的量子态:玻尔模型
第一节:背景知识
此公式虽然符合实验事实但其在公布时仍没有理论根据,就在普朗克公式公 布当天,另一位物理学家鲁本斯将普朗克的结果与他的最新测量数据进行核对, 发现两者以惊人的精确性相符合。 第二天鲁本斯就把这一喜讯告诉了普朗克,从而使普朗克决心:“不惜一切 代价,找到一个理论解释。”
可是当我们准备进入原子内部作进一步的考察时,却发现已经 建立的物理规律无法解释原子的稳定性,同一性和再生性。 玻尔(N.Bohr)基于卢瑟福原子模型,原子光谱的实验规 律以及普朗克的量子化概念,于1913年提出了新的原子模型并 成功地建立了氢原子理论,解释了氢光谱的产生,玻尔理论还 可以准确地推出巴尔末公式,并能算出里德伯常数的理论值。 不过当玻尔理论应用于复杂一些的原子时,就与实验事实 产生了较大的出入。这说明玻尔理论还很粗略,直到1925年量 子力学建立以后,人们才建立了较为完善的原子结构理论。
最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

原子物理学课后答案(第四版)杨福家著高等教育出版社第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第七章:原子核物理概论第八章:超精细相互作用原子物理学——学习辅导书吕华平刘莉主编(7.3元定价)高等教育出版社第一章习题答案1-1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为410-rad.解:设碰撞以后α粒子的散射角为θ,碰撞参数b 与散射角的关系为2cot 2θa b =(式中Ee Z Z a 02214πε=)碰撞参数b 越小,则散射角θ越大。
也就是说,当α粒子和自由电子对头碰时,θ取得极大值。
此时粒子由于散射引起的动量变化如图所示,粒子的质量远大于自由电子的质量,则对头碰撞后粒子的速度近似不变,仍为,而电子的速度变为,则粒子的动量变化为v m p e 2=∆散射角为410*7.21836*422-=≈≈∆≈v m v m p p e αθ 即最大偏离角约为410-rad.1-2 (1)动能为5.00MeV 的α粒子被金核以︒90散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚为1.0um ,则入射α粒子束以大于︒90散射(称为背散射)的粒子是全部入射粒子的百分之几? 解:(1)碰撞参数与散射角关系为:2cot 2θa b =(式中Ee Z Z a 02214πε=)库伦散射因子为:Ee Z Z a 02214πε==fm MeV MeV fm 5.45579*2**44.1= 瞄准距离为: fm fm a b 8.2245cot *5.45*212cot 2===︒θ(2)根据碰撞参数与散射角的关系式2cot 2θa b =,可知当︒≥90θ时,)90()(︒≤b b θ,即对于每一个靶核,散射角大于︒90的入射粒子位于)90(︒<b b 的圆盘截面内,该截面面积为)90(2︒=b c πσ,则α粒子束以大于︒90散射的粒子数为:π2Nntb N =' 大于︒90散射的粒子数与全部入射粒子的比为526232210*4.98.22*142.3*10*0.1*19788.18*10*02.6--===='πρπtb M N ntb N N A 1—3 试问:4.5Mev 的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为Li 7核,则结果如何? 解:(1)由式4—2知α粒子与金核对心碰撞的最小距离为=m r Ee Z Z a 02214πε==fm MeV MeV fm 6.505.479*2**44.1=(2)若改为Li 7核,靶核的质量m '不再远大于入射粒子的质量m ,这时动能k E 要用质心系的能量c E ,由式3—10,3—11知,质心系的能量为:)(212mm mm m v m E u u c +''==式中 得k k k Li He Li k u c E E E A A A E m m m v m E 117747212=+=+≈+''==α粒子与Li 7核对心碰撞的最小距离为:=m r Ee Z Z a 02214πε==fm MeV MeV fm 0.37*5.411*3*2**44.1=1—4 (1)假定金核半径为7.0fm ,试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核的表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm 。
原子物理学 课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。
1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。
难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。
2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。
第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。
第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。
第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。
第1章 原子的位形:卢瑟福模型

内容:
1、汤姆孙原子结构模型 2、原子的核式结构 3、卢瑟福散射理论 4、原子的组成和大小 5、卢瑟福核式结构的意义和困难
重点:原子的核式结构、卢瑟福散射理论
§1背景知识
一 电子的发现
图1汤姆逊正在进行实验
1897年,汤姆逊通 过阴极射线管的实验发 现了电子,并进一步测 出了电子的荷质比:e/m
纳米金属铜的超延展性
碳纳米管.它的密度是钢的 1/6,而强度却是钢的100倍
它具有表面效应、小尺寸效应和宏观量子隧道效应
面也称做几率,这就是d的物理意义。将卢瑟福散射公式代入并整
理得:
dn sin4 d
2
1 (
4 0
)2
(
Ze2 MV 2
)2 nNt
五、卢瑟福理论的实验验证
dn sin4 d
2
1 (
4 0
)2
(
Ze2 MV 2
)2 nNt
dn dn d d
从上式可以预言下列四种关系:
(1)在同一 粒子源和同一散射物的情况下
粒子受到散射时,它的出
( a) 侧视图 (b) 俯视图。R:放射源; 射方向与原入射方向之间的
F:散射箔; S:闪烁屏;B:金属匣
夹角叫做散射角。
实验结果:大多数散射角很小,约1/8000散射大于90°; 极个别的散射角等于180°。
这是我一生中从未有过的最难以置信的事件,它的难以置信好比你 对一张白纸射出一发15英寸的炮弹,结果却被顶了回来打在自己身 上-卢瑟福
困难:作用力F太小,不能发生大角散射。 解决方法:减少带正电部分的半径R,使作用力增大。
三 卢瑟福的核式模型
原子序数为Z的原子的中心,有一 个带正电荷的核(原子核),它所带的 正电量Ze ,它的体积极小但质量很 大,几乎等于整个原子的质量,正常 情况下核外有Z个电子围绕它运动。
原子物理学复习总结提纲

第一章 原子的位形:卢瑟福模型一、学习要点1、原子的质量和大小R ~10-10 m , N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2、原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论: 库仑散射理论公式:221212200cot cot cot 12422242C Z Z e Z Z e a b E m v θθθπεπε===⋅'⋅ 卢瑟福散射公式:222124401()4416sin sin 22Z Z e a d d dN N nAt ntN E A θθπεΩΩ'== 2sin d d πθθΩ=实验验证:1422sin ,,Z , ,2A dN t E n N d θρμ--'⎛⎫∝= ⎪Ω⎝⎭,μ靶原子的摩尔质量 微分散射面的物理意义、总截面 24()216sin 2a d d b db σθπθΩ==()022212244()114416sin 22Z Z e d a d E Sin σθσθθθπε⎛⎫≡== ⎪Ω⎝⎭ (5)原子核大小的估计: α粒子正入射(0180θ=)::2120Z Z 14m c e r a E πε=≡ ,m r ~10-15-10-14m第一章自测题1. 选择题(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中:A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍? A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-14 (6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少? A. 16 B.8 C.4 D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A .质子的速度与α粒子的相同;B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2. 填空题(1)α粒子大角散射的结果证明原子结构为 核式结构 .(2)爱因斯坦质能关系为 2E mc = .(3)1原子质量单位(u )= 931.5 MeV/c 2. (4) 24e πε= 1.44 fm.MeV. 3.计算题习题1-2、习题1-3、习题1-5、习题1-6.4.思考题1、什么叫α粒子散射?汤姆孙模型能否说明这种现象?小角度散射如何?大角度散射如何?2、什么是卢瑟福原子的核式模型?用原子的核式模型解释α粒子的大角散射现象。
原子的位形卢瑟福模型

原子物理学(2017)
作用时间估计:t
角动量定理得 Fmax t p
2R v
θ p
Δp
2Ze2 2 R 2 ( ) 代入Fmax值, 解得: p 4 R v 1
所以 tgθ值很小,所以近似有
Z tg 3 10 (rad ) E
原子物理学(2017)
第一节 背景知识——原子
当原子学说逐渐被人们接受以后,人们 又面临着新的问题:
原子有多大? 原子的内部有什么?
原子是最小的粒子吗?....
在学习这门课的时候;一部分问题的谜 底会逐渐揭开,现在我们来粗略地估计一 下原子的大小。
第一章:原子的位形:卢斯福模型
原子物理学(2017)
(2)
第一章:原子的位形:卢斯福模型
原子物理学(2017)
Z 综合(1),(2)两式知 10 E
4
如果以能量为5MeV的α粒子轰击金箔(Z=79), 最大偏转角为
max 15.8 10 (rad ) 0.09
4
0
即在上述两种情形下,α 粒子散射角都很小,故 Tomson模型不成立
第一章:原子的位形:卢瑟福模型
第一节 背景知识
第二节 卢瑟福模型的提出 第三节 卢斯福散射公式 第四节 卢斯福公式的实验验证 第五节 行星模型的意义及困难
原子物理学(2017)
第一节 背景知识——原子
1803年道尔顿提出了他的原子学说,他认 为: 1.一定质量的某种元素,由极大数目的该元 素的原子所构成; 2.每种元素的原子,都具有相同的质量,不 同元素的原子,质量也不相同; 3.两种可以化合的元素,它们的原子可能按 几种不同的比率化合成几种化合物的分子。
原子物理学各章节小结(1-4).

2
)
14
rm 3.07 10 m
上一页 下一页
目录
结束
玻尔氢原子理论小结
1、氢原子光谱的实验规律
1 1 RH ( 2 2 ) T ( m ) T ( n) m n m 1, 2, 3 n m 1, m 2, RH 1.0967758 107 m 1
总共有:2l+1个
上一页
下一页
目录
结束
6、夫兰克-赫兹实验
结果表明:原子体系的内部能量是量
子化的,原子能级确实存在。
上一页
下一页
目录
结束
例题:1、试计算一次电离的He+的第一玻尔轨道半 径,电离电势,第一激发电势和赖曼系第一条谱线 波长。
解:当不考虑原子核的运动时,由玻尔理论有 Z=2 ◆(1)第一玻尔轨道半径:
b ctg
2
Ze 2 2
代入数值,可得
b 64.8 fm
上一页
下一页
目录
结束
1.5 一个5MeV的α粒子射向金原子核,瞄准距离 b=260fm,试求散射角θ。
Mv 2 b ) 2 解:由公式 ctg 4 0 ( 2 2 Ze
1 5 1.6 1019 106 15 ctg 260 10 2 9 109 79 (1.6 1019 )2
原子物理学各章节小结
原子位形小结 玻尔氢原子理论小结
量子力学初步小结
碱金属原子光谱小结
塞曼效应小结
上一页
下一页
目录
结束
原子位形小结
一、原子的质量和大小 原子的线度 r 为10
《原子物理学》部分习题解答(杨福家)

gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2
1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c
近代物理作业计算题解答

第一章原子的位形 卢瑟福模型1-2(1)动能为M eV .005的α粒子被金核以o90散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚m μ1.0,则入射α粒子束以大于o90散射(称为背散射)的粒子数是全部入射粒子的百分之几?(金的79Z =,g 197M =,3cm g 18.88ρ= )解:(1)依2θcotg 2a b = (式中 K0221E 4ππe Z Z a =)α粒子的2Z 1=,金的原子序数Z 2=79(m)1022.752cot455.001.44792θcot E 4ππe 2Z 21b 15o K 022-⨯=⨯==答:散射角为90º所对所对应的瞄准距离为22.8fm.(2) 依: 2θcotg 2a b =可知当 o 90θ≥时,)b(90)b(θo ≤ 所以α粒子束以大于90°散射的粒子数是全部入射粒子的百分数为:2b t πMρN b nt πN N A 2./==%109.4(22.8fm)3.142m 101.0mol 197g cm 18.88g mol 106.0232613123-----⨯=⨯⨯⨯⨯⋅⋅⨯⨯=方法二、依: d ΩNnt σdN c /= d θsin θ2πd Ω⋅=2sin16sin 242θθθπd nta N dN ⋅=、2sin 16sin 2422/θθθπππd nta N N⋅=⎰因为M N M N V N n A A moi A ρρ===; )2(sin 22sin 2)2(22cos 2sin 2sin θθθθθθθd d d ==⎰⎰=⋅=ππππθθπρθθθπ232422/2sin )2(sin 242sin 16sin 2d M a t N d nta N N A%104.9)90sin 145sin 1(45222/-⨯=-=o o A M a t N N N πρ答:α粒子束以大于90°散射的粒子数是全部入射粒子的百分之3104.9-⨯。
原子物理学杨福家1-6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第一章习题1、2解速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)(2)(3)作运算:(2)×sinθ±(3)×cosθ,得(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)若记,可将(6)式改写为(7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0若 sinθ=0, 则θ=0(极小)(8)(2)若cos(θ+2φ)=0 ,则θ=90º-2φ(9)将(9)式代入(7)式,有由此可得θ≈10-4弧度(极大)此题得证。
(1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值.,其他值从书中参考列表中找.解:(1)依和金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=×104kg/m3依:注意到:即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
卢瑟福模型的提出 卢瑟福散射公式

如上图,我们假设α 粒子以速度 V 射来,且在原 子附近度过的整个时间内均受到 Fmax 的作用,那么会
产生多大角度的散射呢?
解: 由角动量定理得 Fmax • t p
其中t 2R 表示α粒子在原子附近度过的时间.
v
p
1
4
•
2Ze2 R2
• ( 2R ) v
tg p 2Ze2 / 4r 3105 Z
第一章:原子的位形:卢斯福模型
第一节 背景知识 第二节 卢斯福模型的提出 第三节 卢斯福散射公式 第四节 卢斯福公式的实验验证 第五节 行星模型的意义及困难
第一章:原子的位形:卢斯福模型
第一节 背景知识 第二节 卢斯福模型的提出 第三节 卢斯福散射公式 第四节 卢斯福公式的实验验证 第五节 行星模型的意义及困难
第一节 背景知识
P1 P2
1. 阴极射线从阴极C发出后通过狭缝AB成一狭窄的射线, 2. 再穿过两片平行的金属板D、E之间的空间, 3. 最后到达右端带有标尺的荧光屏上, 4. 加电场E后,射线由P1点偏到P2,可知阴极射线带有负电。
第一节 背景知识
1)设电子的电量为e,电场强度为E,则电子都受到向下 的电场力为Fe=eE。 2)设磁场方向为向外垂直于纸面的方向,可使电子受 到磁力的作用,而向上偏转,磁场强度为H,电子通过 磁场时的速度为v,则电子所受向上的磁力为Fm=evH。 3)调整电场或磁场的强度,使两力的大小相等,方向 相反,电子束将不会偏转,即eE = evH,可得電子的 速率為v=E/H。
汤姆孙1856年出生于英格兰的曼彻斯特附近,苏格兰人家庭。 1884年他成为卡文迪许物理学教授,即卡文迪许实验室主任。受 到詹姆斯·克拉克·麦克斯韦工作的影响和X射线的发现,他推导出 阴极射线存在于带负电的粒子,他称之为“微粒”,这种微粒现 在认识为电子。电子曾经被约翰斯东·斯通尼提出过,作为电化 学中电荷的单位,但是汤姆孙认识到电子也是亚原子粒子,这一 点是第一次被发现。1897年他的发现为人所知,并在科学圈内引 起了轰动,并最终于1906年被授予诺贝尔物理学奖。
原子物理第一章

由此可见,粒子越靠近原子内部,所受到的斥力就越大,
这一点和汤姆孙模型截然相反。
§1.3 卢瑟福散射公式
一、库仑散射公式
推导库仑散射公式的基本假设: 1、只发生单次碰撞; 2、只有库仑相互作用;
3、核外电子的作用可以忽略;
4、靶核静止。 库仑散射公式的推导过程(参见书P15-17)。
式中, a b cot 2 2 a为库仑散射因子,b为瞄准距离,也称碰撞参数即 入射粒子与固定散射体无相互作用情况下的最小直线 作用距离。θ为散射角。
d
dN'
1
Z Z e
四、卢瑟福散射公式的实验验证
1 Z 1 Z 2 e d dN' N nAt ntN 由上述公式可以得到以下关系 4 4 E 4 0 sin 4 16 A sin 4 2 2 dN ' sin 常数 1、同一α粒子源和同一散射体, 2 2、同一α粒子源和同一材料的散射体,在同一散射角,dN ' t 3、同一散射体,同一散射角, dN' E 2 常数 2 dN ' Z 4、同一α粒子源和同一散射角,对同一nt值, a d
m
F
2
内部:
rm 1010 m
2Z Au e2 r 3 F 3 2 4 0 R R 2 e 1.44 fm MeV 4 0
我们考虑使粒子散射最强的情况:粒子檫原子表面而过,受力
如上所示。设力作用距离为原子直径。在此范围内,力的大小和方 向不变且 。根据上述分析,因 ,故 ,
b ~ b db
dθ
~ d
θ θ-dθ b b+db
设:能量(动能)E为的粒子以瞄为准距离b向原子核运动, 速度的大小不变(方向有变化),金箔面积为A,厚度为t。 环的面积为 ,则粒子打在该环上的几率为
第一章 卢瑟福模型

电子的经典半径
把电子看做小圆球,根据经典理论 (电子的电势能等于电子的静能)
mec 2
e2
4 0re
re
1
40
e2 E
E mec2 0.51Mev
re ~ 2.81015 m 2.8 fm
电子的电荷和质量
电子电荷(charge): e 1.602176487(40) 1019C
电荷是量子化的.
mass energy equation :E mc 2 me 0.510998910(13)MeV / c2 m p 938.272013(23)MeV / c2
1MeV 106 eV 1eV 1.602176487(40) 1019C 1V
1.602176487(40) 1019 J
The Nobel Prize in Physics 1923
for his work on the elementary charge of electricity and on the photoelectric effect
R. Millikan (1868-1953)
e = F/NA
放电管(discharge tube)
2 4 0 L
2
1 Z1Z2e2 cos
4 0 mvb
2
b
1
4 0
Z1Z2e2
mv 2 sin
cos
2
2
a 1 Z1Z2e2
4 0 E
E 1 mv 2 2
b a cot
22
考虑靶核的反冲,作修正
质心系中的散射角 c
E
质心系的能量Ec
EC
1 2
m
v
2
原子结构模型-PPT

D、 能量低得电子在离核近得区域运动
练习
3、 有下列四种轨道:①2s、②2p、③3p、
④4d,其中能量最高得就是 ( D )
A、 2s B、 2p C、 3p D、 4d
➢电子层与形状相同得原子轨道得能量相等, 如2px、2py、2pz轨道得能量相等。
4、电子得自旋
原子核外电子还有一种称为“自旋”得 运动。在同一原子轨道里,原子核外电子 得自旋有两种不同得状态,通常用向上箭 头“↑”与向下得箭头“↓”来表示这两 种不同得自旋状态。
总 结:
对多电子原子而言,核外电子得运动特征就是:
实际上,原子很稳定,有一定大小,并没有发生这种 电子同原子核碰撞得情况。这又怎样解释呢?
人类认识原子得历史
波 尔 原 子 模 型
1913年,玻尔建立了核外电子分层排布 得原子结构模型
德谟克利特:朴素原子观 道尔顿:原子学说
1803
汤姆生:“葡萄干布丁” 模型 1903
卢瑟福: 原子结构得核式模型 1911
P能级得原子轨道
z
z
z
y
y
y
x
x
x
P得原子轨道就是哑铃(或纺锤)
形
每个P能级有_____3__个轨道,它们互相垂直,
分别以___P__x、___P_y__、___P_z___为符号
这三个轨道得能量相等。 P原子轨道得平均半径也随能层序数增大而__增__大_
d 能 级 得 原 子 轨 道
d能级得原子轨道有5个、
量子力学研究表明,处于同一电子层得原子 核外电子,所具有得能量也可能不相同,电子云得 形状可能不完全相同,因此,对同一个电子层,还 可分为若干个能级。
n=1时,有1个s能级
1 卢瑟福模型

第一章:原子的位形:卢瑟福模型
第二节:卢瑟福模型的提出
汤姆逊提出原子的布丁(pudding)模型,认为正电荷均匀分布 在半径为R 的原子球体内,电子像布丁镶嵌在其中,如下图
第一章:原子的位形:卢瑟福模型
第二节:卢瑟福模型的提出 α 粒子散射实验观察到: 被散射的粒子大部分分布在小角度区域, 但是大约有1/8000的粒子散射角 θ>90度,甚 至达到180度,发生背反射。α粒子发生这么大 角度的散射,说明它受到的力很大。 汤姆逊模型是否可以提供如此大的力?我 们来看一看这两个模型对应的力场模型
第一章:原子的位形:卢瑟福模型
第一节:背景知识
当原子学说逐渐被人们接受以后,人们 又面临着新的问题:
原子有多大? 原子的内部有什么?
原子是最小的粒子吗?....
在学习这门课的时候;一部分问题的谜 底会逐渐揭开,现在我们来粗略地估计一 下原子的大小。
第一章:原子的位形:卢瑟福模型
第一节:背景知识 假设某固体元素的原子是球状的,半径为r 米,原子之间是紧密地堆积在一起的。若该 元素的原子量为A,那么1mol该原子的质量 为A,若这种原子的质量密度为 ( g / cm3 ), 那么A克原子的总体积为 A / (cm3 ) ,一个 4 3 4 原子占的有体积为 r ,即 r 3 * N A A / 3 3 所以原子的半径 r 3 3 A / 4N A,依此可以算 出不同原子的半径,如下表所示:
阴极射线管
第一章:原子的位形:卢瑟福模型
第一节:背景知识 1897年汤姆逊从如 _ 右图放电管中的阴极射 线发现了带负电的电子, E 并测得了e/m比。1910年 密立根用油滴做实验发 + B 现了电子的电量值为 e =1.602×10-19(c) 从而电子质量是 me=9.109×10-31kg=0.511MeV/c2 =5.487×10-4u 原子是由电子和原子核组成的,这是卢瑟福在1911年提出的原子 模型。
原子物理学第1章 原子的位形:卢瑟福模型

在汤姆逊(Thomson)发现电子之后 对于原子中正 发现电子之后,对于原子中正 在汤姆逊 发现电子之后 负电荷的分布他提出了一个在当时看来较为合理的模 即原子中带正电部分均匀分布在原子体内,电子镶嵌 型.即原子中带正电部分均匀分布在原子体内 电子镶嵌 即原子中带正电部分均匀分布在原子体内 在其中,人们称之为"葡萄干面包模型 葡萄干面包模型".为了检验汤姆 在其中,人们称之为 葡萄干面包模型 为了检验汤姆 模型是否正确,卢瑟福 逊(Thomson)模型是否正确 卢瑟福 模型是否正确 卢瑟福(Rutherford)于 于 1911年设计了 粒子散射实验 实验中观察到大多数粒 年设计了α粒子散射实验 年设计了 粒子散射实验,实验中观察到大多数粒 子穿过金箔后发生约一度的偏转.但有少数 但有少数α粒子偏转 子穿过金箔后发生约一度的偏转 但有少数 粒子偏转 角度很大,超过 度以上,甚至达到 角度很大 超过90度以上 甚至达到180度.对于 粒子发 度 对于α粒子发 超过 度以上 甚至达到 对于 生大角度散射的事实,无法用汤姆逊 无法用汤姆逊(Thomoson)模型 生大角度散射的事实 无法用汤姆逊 模型 加以解释.除非原子中正电荷集中在很小的体积内时 除非原子中正电荷集中在很小的体积内时, 加以解释 除非原子中正电荷集中在很小的体积内时, 排斥力才会大到使α粒子发生大角度散射 在此基础上, 粒子发生大角度散射,在此基础上 排斥力才会大到使 粒子发生大角度散射 在此基础上 卢瑟福(Rutherford)提出了原子的核式模型 提出了原子的核式模型. 卢瑟福 提出了原子的核式模型
α粒子:放射性元素发射出的高速带 电粒子,其速度约为光速的十分之一, 带+2e的电荷,质量约为4Mpp。 散射:一个运动粒子受到另一个粒子 的作用而改变原来的运动方向的现象。 粒子受到散射时,它的出射方向与原 ( a) 侧视图 (b) 俯视图。R:放射源; 入射方向之间的夹角叫做散射角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
散射公式的推导
库伦力为中心力(此为离心力),角动量守恒 r r r d ˆr v e ˆ , v r r mv L, v vr e dt
即
初始状态: L bmv0
d mr const L dt
2
(b-1) (b-2)
2
r Z1Z 2e L dv ˆ 2 e 联立(a),(b-1) 2 r 4 0 r r d
m v m v
1 2 1 '2 1 2 2 '2 2 m v m v meve m (v v ) meve 2 2 2 me ' ve , 因为 me~mα/7300, v v v m m
' v(v v ) v 2v = e ve2 m 2 m p v e 所以 ~ 104 p v m
第一章:原子的位形:卢瑟福模型
第一节 背景知识
第二节 卢瑟福模型的提出 第三节 卢斯福散射公式 第四节 卢斯福公式的实验验证 第五节 行星模型的意义及困难
原子物理学(2017)
第一节 背景知识——原子
1803年道尔顿提出了他的原子学说,他认 为: 1.一定质量的某种元素,由极大数目的该元 素的原子所构成; 2.每种元素的原子,都具有相同的质量,不 同元素的原子,质量也不相同; 3.两种可以化合的元素,它们的原子可能按 几种不同的比率化合成几种化合物的分子。
原子物理学(2017)
第一节 背景知识——原子
当原子学说逐渐被人们接受以后,人们 又面临着新的问题:
原子有多大? 原子的内部有什么?
原子是最小的粒子吗?....
在学习这门课的时候;一部分问题的谜 底会逐渐揭开,现在我们来粗略地估计一 下原子的大小。
第一章:原子的位形:卢斯福模型
原子物理学(2017)
第一章:原子的位形:卢斯福模型
原子物理学(2017)
原子物理学(2017)
散射公式的推导
如上图所示 Z2e的库仑场中运动,t时刻 r r ,α粒子在原子核 位矢为 r 速度为 v 牛顿第二定律可得:
r Z1Z 2e dv ˆ m e 2 r 4 0 r dt
2
原子物理学(2017)
(a)
第一章:原子的位形:卢斯福模型
Z1Z 2e2 2v0 sin g2cos 2 4 0 mv0b 2
(g)
即,
Z1Z 2e2 a 1 2 b ctg , a , E mv 2 2 4 0 E 2
证毕
第一章:原子的位形:卢斯福模型
原子物理学(2017)
散射角度分布
b values: ±0.1, ±2, ±4,…, ±100
原子物理学(2017)
卢瑟福α离子散射实验
α离子:带两个正电荷的氦核,
4 2
He2
金(aurum)
实验装置如上图所示。放射源 R 中发出一细束α 粒子, 直射到金属箔上以后,由于各α 粒子所受金属箔中原子 的作用不同,所以沿着不同的方向散射。荧光屏S及放 大镜M可以沿着以F为中心的圆弧移动。当S和M对准某一 方向上,通过F而在这个方向散射的α 粒子就射到S上而 产生闪光,用放大镜M观察闪光,就能记录下单位时间 内在这个方向散射的α 粒子数。从而可以研究α 粒子通 过金属箔后按不同的散射角θ 的分布情况。
Rutherford公式推导:
首先,我们来看看只有一个靶原子核时的情形。由库 仑散射公式,我们知道,随着瞄准距离b的增加,散射角 θ 减小,可见瞄准距离在b→b+db之间的粒子,必然被 散射到θ →θ -dθ 之间的空心圆锥体之中.
原子物理学(2017)
第三节 卢瑟福散射公式
上图所示环的面积 d 为 2
第一章:原子的位形:卢斯福模型
原子物理学(2017)
作用时间估计:t
角动量定理得 Fmax t p
2R v
θ p
Δp
2Ze2 2 R 2 ( ) 代入Fmax值, 解得: p 4 R v 1
所以 tgθ值很小,所以近似有
Z tg 3 10 (rad ) E
(2)
第一章:原子的位形:卢斯福模型
原子物理学(2017)
Z 综合(1),(2)两式知 10 E
4
如果以能量为5MeV的α粒子轰击金箔(Z=79), 最大偏转角为
max 15.8 10 (rad ) 0.09
4
0
即在上述两种情形下,α 粒子散射角都很小,故 Tomson模型不成立
5
(1)
上式中E单位为MeV,R取值 0.1nm。
第一章:原子的位形:卢斯福模型
原子物理学(2017)
上面的计算我们没有考虑核外电子的影响。 α 离子带正电荷,电子为负电荷,两者相互吸 引,我们考虑极限情况:α 粒子与电子发生正 碰时,可以近似看作弹性碰撞 ,动量与动能均守 ' 恒 m v m v me ve e e
v0
(d)
且根据机械能守恒:| v f || v0 |
r r ˆu v f v0 2v0 sin e 几何关系: 2
(e)
ˆ cos( ) ˆ ˆu i e j sin( ) 2 2 2 2
ˆ sin i
ˆ j cos 2 2
第一章:原子的位形:卢斯福模型
第一章:原子的位形:卢斯福模型原子物理学(2017)卢瑟福模型的提出_定量描述
α 粒子散射实验观察到: 被散射的粒子大部分分布在小角度区域, 但是大约有1/8000的粒子散射角 θ>90度,甚 至达到180度,发生背反射。α粒子发生这么大 角度的散射,说明它受到的力很大。 定性描述: 卢瑟福:原子 中正电荷集中 在很小的体积 内。
1.假定只发生单次散射。散射现象只有当α 粒子与原子 核距离相近时,才会有明显的作用,所以发生散射的机 会很少(0.01%); 2.假定粒子与原子核之间只有库仑力相互作用(比较万 有引力); 3.忽略核外电子的作用,由于核外电子的质量很小, 散射的影响极小(汤姆孙模型中已经进行过估算) 4.假定原子核静止。这是为了简化计算。
阿伏伽 德 罗 ( A m e d o e A v o 一 g a d r o , 17 7 6~ 1 8 5 6 ) 是意 大利物理 学 家, 1881年 , 他 在一篇重要 的论文中提 出 : “气态物质的体积和组成气 态物 质的简单分 子或复合 分 子的 数 目之间存在着 非 常简单的关 系. 把 它们 联系 起来 的第 一个 、 甚 至是 唯一容 许的 假说 是 , 在 相 同的体积中 , 所有 气体的 数 目相 等 · … … ”
原子物理学(2017)
2 d a2 ( ) , a Z1Z 2e d 16sin 4 4 0 E 2
第一节 背景知识——质子、中子
中子:不带电荷,具有质量 mn=1.674927471(21)e(-27)kg
质子的电荷数值与电子相同,但极性相反。 mp=1.674927471(21)e(-27)kg
原子物理学(2017)
第二节 卢瑟福模型的提出_汤姆孙模型的定性描述
• 存在电子 如何分布(结构)?
第一章:原子的位形:卢斯福模型
原子物理学(2017)
Review
α 粒子散射实验否定了汤姆逊的原子模型, 根据实验结果,据此实验 卢瑟福1911年提出 了原子的核式模型。 原子中心有一个极小的原子核,它集中了全 部的正电荷和几乎所有的质量,所有电子都分 布在它的周围. 如何定量分析? 。。。。。。
即
r Z1Z 2e2 ˆr dv d e 4 0 L
(c)
第一章:原子的位形:卢斯福模型
原子物理学(2017)
散射公式的推导
对上式积分(由初态到末态): 2 vf Z Z e r 1 2 ˆr d dv v0 0 4 0 L e vf r r r 对左式 dv v f v0
第一节 背景知识——原子
A Z
X
1mol X元素的质量为A克; 数目为NA
不同原子的半径
r 3 3 A / 4N A
第一章:原子的位形:卢斯福模型
原子物理学(2017)
第一节 背景知识——电子
电子是在1897年由剑桥大学卡文迪许实验室的约瑟 夫· 约翰· 汤姆森在研究阴极射线时发现的。
1897,汤姆孙阴极射线实验:
汤姆孙的“西瓜”模型 原子中带正电部分均匀分布在原
子体内,电子镶嵌在其中,人们称 之为"葡萄干面包模型". 同时该模型还进一步假定,电 子分布在分离的同心环上,每个 环上的电子容量都不相同,电子 在各自的平衡位置附近做微振动。 因而可以发出不同频率的光,而 且各层电子绕球心转动时也会发 光。这对于解释当时已有的实验 结果、元素的周期性以及原子的 线光谱,似乎是成功的。
(1)
2
原子物理学(2017)
第三节 卢瑟福散射公式
dθ 对应的空心圆锥体的立体角为
(2)式代入(1)式可得:
2
2 (r sin ) rd d 2 sin d 2 r
d a d /16sin
定义微分散射截面:
(2)
4
2
(3)
微分截面:入射粒子散射到θ方向单位立体角内每个原子的 有效散射截面。
定量描述 。。。
第一章:原子的位形:卢斯福模型
原子物理学(2017)
汤姆孙模型的定量描述
汤姆孙均匀电荷模型,电场力: (高斯定律) 电量:Ze+ 半径:R
(2e)( Ze) r (r 3 4 0 R
1
R) R)
1
4 0
(2e)( Ze) (r 2 r
当r=R(掠射)时,入射α 粒子受力最大,设为 Fmax ,我 们来看看此条件下α 粒子的最大偏转角是多少?