备战中考数学复习《平行四边形》专项综合练习含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.

(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.

(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.

(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.

【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=

.理由见解析.

【解析】

试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12

AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;

(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;

试题解析:解:(1)AC=AD+AB .

理由如下:如图1中,

在四边形ABCD 中,∠D+∠B=180°,∠B=90°,

∴∠D=90°,

∵∠DAB=120°,AC 平分∠DAB ,

∴∠DAC=∠BAC=60°,

∵∠B=90°,

∴AB=1

2

AC,同理AD=

1

2

AC.

∴AC=AD+AB.

(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,

∵∠BAC=60°,

∴△AEC为等边三角形,

∴AC=AE=CE,

∵∠D+∠ABC=180°,∠DAB=120°,

∴∠DCB=60°,

∴∠DCA=∠BCE,

∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,

∴∠D=∠CBE,∵CA=CE,

∴△DAC≌△BEC,

∴AD=BE,

∴AC=AD+AB.

(3)结论:AD+AB=2AC.理由如下:

过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,

∴DCB=90°,

∵∠ACE=90°,

∴∠DCA=∠BCE,

又∵AC平分∠DAB,

∴∠CAB=45°,

∴∠E=45°.

∴AC=CE.

又∵∠D+∠ABC=180°,∠D=∠CBE,

∴△CDA ≌△CBE ,

∴AD=BE ,

∴AD+AB=AE .

在Rt △ACE 中,∠CAB=45°,

∴AE =245AC AC cos ︒= ∴2AD AB AC +=.

2.在△ABC 中,AB=BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由

(3)若|CF ﹣AE|=2,EF=23,当△POF 为等腰三角形时,请直接写出线段OP 的长.

【答案】(1)OF =OE ;(2)OF ⊥EK ,OF=OE ,理由见解析;(3)OP 的长为62-或233

. 【解析】

【分析】(1)如图1中,延长EO 交CF 于K ,证明△AOE ≌△COK ,从而可得OE=OK ,再根据直角三角形斜边中线等于斜边一半即可得OF=OE ;

(2)如图2中,延长EO 交CF 于K ,由已知证明△ABE ≌△BCF ,△AOE ≌△COK ,继而可证得△EFK 是等腰直角三角形,由等腰直角三角形的性质即可得OF ⊥EK ,OF=OE ; (3)分点P 在AO 上与CO 上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO 交CF 于K ,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt△EFK中,tan∠3

∴∠FEK=30°,∠EKF=60°,

∴EK=2FK=4,OF=1

2

EK=2,

∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,

在Rt△PHF中,PH=1

2

PF=1,3OH=23

∴()2

2

12362

+-=

相关文档
最新文档