高频电路分析与原理2-3

合集下载

正弦波振荡器实验报告(高频电路)

正弦波振荡器实验报告(高频电路)

高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:正弦波振荡器指导教师:一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二.实验内容V ,1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值p p并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。

三、实验步骤1、实验准备插装好正弦振荡器与晶体管混频模块,接通实验箱电源,此时模块上电源指示灯和运行指示灯闪亮。

用鼠标点击显示屏,选择“实验项目”中的“高频原理实验”,然后再选择“振荡器实验”中的“LC振荡器实验”,显示屏会显示出LC振荡器原理实验图。

说明:电路图中各可调元件的调整,其方法是:用鼠标点击要调整的原件,模块上对应的指示灯点亮,然后滑动鼠标上的滑轮,即可调整该元件的参数。

利用模块上编码器调整与鼠标调整其效果完全相同。

用编码器调整的方法是:按动编码器,选择要调整的元件,模块上对应的指示灯点亮,然后旋转编码器旋钮,即可调整其参数。

我们建议采用鼠标调整,因为长时间采用编码器调整,可能会造成编码器损坏。

本实验箱中,各模块可调元件的调整,其方法与此完全相同,后面不再说明。

2、LC振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即调2W3使晶振停振。

)(1)西勒振荡电路幅频特性测量用铆孔线将2P2与2P4相连,示波器接2TP5,频率计与2P5相连。

开关2K1拨至“p”(往下拨),此时振荡电路为西勒电路。

调整2W4使输出幅度最大。

(用鼠标点击2W4,且滑动鼠标滑轮来调整。

)调整2W2可调整变容管2D2的直流电压,从而改变变容管的电容,达到改变振荡器的振荡频率,变容官上电压最高时,变容管电容最小,此时输出频率最高。

高频电路原理与分析

高频电路原理与分析

.高频电路原理与分析期末复习资料陈皓编10级通信工程2012年12月1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0=10.7MH Z , C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。

如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻?解:(1)求L 和Q e(H )= 4.43μH(2)电阻并联前回路的总电导为47.1(μS)电阻并联后的总电导为94.2(μS)因故并接的电阻为2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。

12min ,22(1210)33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组160510t t C C C LC L C ππ∑-=+⎧⨯==⎪⨯+⎪⎨题2图3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少?解:(1)总的通频带为121212121232260109121082601091210260108101981253510260190.3175-1261605535()()10103149423435t t t t C C C C pF L mH π-----⨯+==⨯+=⨯-⨯⨯-=⨯==⨯⨯+⨯=≈103465210.51 5.928()40e z ef Q kH Q =-≈⨯= (2)每个回路允许最大的Q e 为103465210.5123.710e ef Q Q =-≈⨯=4.图示为一电容抽头的并联振荡回路。

谐振频率f 0=1MHz ,C 1=400 pf ,C 2=100 pF 求回路电感L 。

高频电路原理与分析第2章 高频电路基础

高频电路原理与分析第2章 高频电路基础

(2-11)
Yp
1 rC 1 (2-12) j C G jB Zp L L 这时可以看做一个纯电阻(电导)和LC的并联,当电纳B为0时,发生 谐振,此时的谐振频率为0,谐振时的阻抗为一纯电阻,R0 L .。 rC
16
第2章 高频电路基础
由:B 0 C
(2-10)
15
1
B0.1 99 9.95 B0.7
第2章 高频电路基础
(2)并联谐振电路
等效
图2-7并联谐振电路
▲阻抗特性
Zp ( r j L) / j C 1 r j L j C
L r

L/C 1 1 r j ( L 1 / C ) rC j C L L
1 2 2 0 1 jQ 1 0
第2章 高频电路基础
f 2Q 2Q 0 f0
叫广义失谐量
(2-6)
因此可以得到串联谐振电路的幅频特性和相频特性。
幅频特性为:
I r 1 | || | 2 I0 Zs 1
1 1 2Q 0
▲并联谐振回路的谐振特性
U G0 rC / L U 0 Y p rC / L j (C 1 / L) 1 1 L 1 j r C r 1 1 1 1 0 1 j 2Q 1 j 2Q f 1 j 1 jQ 0 f0 0
(3)由介质隔开的两导体即构成电容。 一个电容器的等 效电路却如图2 -3(a)所示。 理想电容器的阻抗1/(jωC), 如图2 — 3(b)虚线所示, 其中, f为工作频率, ω=2πf。当频 率大于SRF时,电容呈现出电感特性。

高频电路原理与分析曾兴雯

高频电路原理与分析曾兴雯

1010 可见光
X射线 宇宙射线
1020Βιβλιοθήκη 1025f/Hz/m
3×103
3×10-2
3×10-7
(3 .8 ~ 7 .8 )×1 0-7
3×10-12 3×10-17
图 1 — 4 电磁波波谱
第1章 绪论
第1章 绪论
式中: c为光速, f 和λ分别为无线电波的频率和波长, 因此, 无线电波也可以认为是一种频率相对较低的电磁 波。 对频率或波长进行分段, 分别称为频段或波段。 不同频段信号的产生、放大和接收的方法不同, 传播的 能力和方式也不同, 因而它们的分析方法和应用范围也 不同。
由上面的例子可以总结出无线通信系统的基本组成, 从中也可看出高频电路的基本内容应该包括:
(1)高频振荡器 (2)放大器 (3)混频或变频 (4)调制与解调
第1章 绪论
1.1.2 无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下 一些类型: (1) 按照工作频段或传输手段分类, 有中波通信、 短波通信、 超短波通信、 微波通信和卫星通信等。 所 谓工作频率, 主要指发射与接收的射频(RF)频率。 射频实际上就是“高频”的广义语, 它是指适合无线电 发射和传播的频率。 无线通信的一个发展方向就是开 辟更高的频段。 (2) 按照通信方式来分类, 主要有(全)双工、 半 双工和单工方式。 (3) 按照调制方式的不同来划分, 有调幅、 调频、 调相以及混合调制等。
任何信号都具有一定的频率或波长。 我们这里所
讲的频率特性就是无线电信号的频率或波长。 电磁波
辐射的波谱很宽, 如图 1 — 4 所示。
无线电波只是一种波长比较长的电磁波, 占据的频 率范围很广。 在自由空间中, 波长与频率存在以下关系:

高频电路原理与分析 第六版第2章

高频电路原理与分析 第六版第2章

频率越高,电阻器的高频特性表现越明显。在实际使用 时,要尽量减小电阻器高频特性的影响,使之表现为纯电阻。
图 2-1 电阻的高频等效电路
2. 电容器 由介质隔开的两导体即构成电容。作为电路元件的电
容器一般只考虑其电容量值(标称值),在理论上也只按电容 量来处理。但实际上一个电容器的等效电路却如图2-2(a)所 示。其中,电阻RC为极间绝缘电阻,它是由于两导体间的 介质的非理想(非完全绝缘)所致,通常用损耗角δ或品质因 数QC来表示; 电感LC为分布电感或(和)极间电感,小容量电 容器的引线电感也是其重要组成部分。
趋肤效应是指当频率升高时,电流只集中在导体的表面, 导致有效导电面积减小,交流电阻可能远大于直流电阻,从而 使导体损耗增加,电路性能恶化。辐射效应是指信号泄漏到空 间中,这就使得信号源或要传输的信号能量不能全部输送到负 载上,产生能量损失和电磁干扰。辐射效应还会引起一些耦合 效应,使得高频电路的设计、制作、调试和测量等都非常困难。
第2章 高频电路基础与系统问题
2.1 高频电路中的元器件 2.2 高频电路中的组件 2.3 阻抗变换与阻抗匹配 2.4 电子噪声与接收灵敏度 2.5 非线性失真与动太范围 2.6 高频电路的电磁兼容 思考题与习题
由上一章的介绍可知,各种无线电设备都包含有处理高频信 号的功能电路,如高频放大器、振荡器、调制与解调器等。虽然 这些电路的工作原理和实际电路都有各自的特点,但是它们之间 也有一些共同之处。这些共同之处就是高频电路的基础,主要包 括高频电路的基本元器件和基本组件等。各种高频电路基本上是 由无源元件、有源器件和高频基本组件等组成的,而这些元器件 和基本组件绝大部分是相同的,它们与用于低频电路的基本元器 件没有本质上的差异,主要需要注意这些元器件在高频运用时的 特殊性,当然也有一些高频电路所特有的器件。在高频多个单元 电路中常用的两个重要功能是选频滤波与阻抗变换,振荡回路、 石英谐振器与集中选频滤波器等组件都具有这两个功能,高频变 压器、传输线变压器及阻抗匹配器则具有较好的阻抗变换能力。

高频电路原理与分析(曾兴雯)课后习题答案

高频电路原理与分析(曾兴雯)课后习题答案

高频电路原理与分析第五版课后习题答案曾兴雯刘乃安陈健付卫红编[日期]NEUQ西安电子科技大学出版社第一章 绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。

答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。

发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。

低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。

接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。

由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。

1-2 无线通信为什么要用高频信号?“高频”信号指的是什么? 答:高频信号指的是适合天线发射、传播和接收的射频信号。

采用高频信号的原因主要是: (1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。

1-3 无线通信为什么要进行凋制?如何进行调制? 答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的音频放大器调制器激励放大输出功率放大载波振荡器天线开关高频放大混频器中频放大与滤波解调器音频放大器话筒本地振荡器扬声器变频器信号是高频信号,所以也提高了信道利用率,实现了信道复用。

调制方式有模拟调调制和数字调制。

在模拟调制中,用调制信号去控制高频载波的某个参数。

在调幅方式中,AM 普通调幅、抑制载波的双边带调幅(DSB )、单边带调幅(SSB )、残留单边带调幅(VSSB );在调频方式中,有调频(FM )和调相(PM )。

《高频电路原理与分析》实验报告

《高频电路原理与分析》实验报告

高频电路原理与分析
实验报告
专业电子信息科学与技术
班级20 级电子二班
学号
姓名
同组人
实验名称混频器实验、中频放大器实验
20xx年6 月8 日
目录
一、实验目的 (1)
二、原理说明 (1)
三、实验设备 (1)
四、实验内容 (2)
五、实验注意事项 (2)
六、实验心得及体会 (2)
一、实验目的
1.了解三极管混频器和集成混频器的基本工作原理,掌握用MC1496来实现混频的方法。

2.了解混频器的寄生干扰。

3.熟悉电子元器件和高频电子线路实验系统;
4.了解中频放大器的作用、要求及工作原理;
5.掌握中频放大器的测试方法。

二、实验设备
集成乘法器混频模块、集体三极管混频模块、LC振荡器与集体振荡器模块、试验箱、电源、中频放大器模块。

三、实验内容
1.中频频率观测
(1)晶体三极管混频器
当改变高频信号源频率时,输出中频5TP03波形变化为先增大后减小。

(2)集成乘法器混频器
当改变高频信号源的频率时,输出中频9TP04的波形变化为先增大后减小。

2中频放大器输入输出波形观察及放大倍数测量
调整7W02,使中放输出幅度最大且不失真,记下此时的幅度大小为4.52V,然后测量中放此时的输入幅度,即可计算出中放的电压放大倍数。

电压放大倍数计算得w=4.52/0.15=30.1。

实验图如下:。

高频电路原理与分析中的知识点

高频电路原理与分析中的知识点

高频电路原理与分析中的知识点
1功率放大器的任务是:供给负载足够大的信号功率,其主要性能指标是输出功率P1,效率n.
2放大器按晶体管集电极电流流通的时间分:甲类,乙类,丙类等工作状态,其中丙类工作状态效率最高,但这时晶体管的集电极电流波形失真严重。

采用LC谐振网络作为负载,可以克服工作在丙类状态的失真,但谐振网络同频带较窄,所以丙类谐振功率放大器适用于窄带高频信号的功率放大。

3谐振功率放大器中,根据晶体管工作是否进入饱和区将其分为:欠压,临界,过压三种工作状态。

欠压状态:输出电压Ucm比较小Ucemi n>Uces,晶体管工作不会进入饱和区电流波形为尖顶余弦脉冲,放大器输出功率小,管耗大,效率低。

过压状态:输出电压幅值Ucm过大使Ucemi n﹤Uces ic为中间凹陷的余弦脉冲,放大器输出功率大,管耗小效率高。

临界状态:Ucm比较大,在wt=0时使晶体管工作刚好不进入饱和临界状态,ic电流波形为尖顶的余弦脉冲,但顶端变化平缓,输出功率大管耗小效率高。

4高频小信号放大器:
A 功用:放大各种无线电设备中的高频小信号,以便做进一步的变换和处理。

B 分类:按频带宽带分,1、窄带放大器,有并联谐振回路、耦合回路作选频电路。

2、宽带放大器:这种放大器一般采用无选频作用的负载电路,应用最广的是高频变压器和传输线变压器。

按有源器件分,1以分立元件为主的高频变压器。

2以集成电路为主的集中选频放大器:它具有增益高、性能稳定、调整简单等优点。

C 对高频小信号放大器的主要要求:a增益要高,也就是放大量要大;b频率选择性要好;c工作稳定可靠;d放大器内部噪声要小。

高频电路原理与分析课后习题答案

高频电路原理与分析课后习题答案

1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。

答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。

发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。

低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。

接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。

由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。

1-2 无线通信为什么要用高频信号?“高频”信号指的是什么?答: 高频信号指的是适合天线发射、传播和接收的射频信号。

采用高频信号的原因主要是: (1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。

1-3 无线通信为什么要进行凋制?如何进行调制?答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的信号是高频信号,所以也提高了信道利用率,实现了信道复用。

调制方式有模拟调调制和数字调制。

在模拟调制中,用调制信号去控制高频载波的某个参数。

在调幅方式中,AM 普通调幅、抑制载波的双边带调幅(DSB )、单边带调幅(SSB )、残留单边带调幅(VSSB );在调频方式中,有调频(FM )和调相(PM )。

在数字调制中,一般有频率键控(FSK )、幅度键控(ASK )、相位键控(PSK )等调制方法。

1-4 无线电信号的频段或波段是如何划分的?各个频段的传 播特性和应用情况如何?2-1对于收音机的中频放大器,其中心频率f0=465 kHz .B0.707=8kHz ,回路电容C=200 PF ,试计算回路电感和 QL 值。

2、高频电路基础

2、高频电路基础

Z
P

L
C
r j ( L
1 ) C

R0 1 jQ 2
0

感性 容性
R0 Z P 1 j
阻抗—频率特性: 辐角—频率特性:
称为广义失谐量
ZP
R0 1 2
Z arctan
( f ) 通频带(又称3dB通频带,或半功率点通频带) 定义:阻抗幅频特性下降为谐振值(中心频率处)的 时对应的频率范围,用B0.707表示。
解: ( 1) 0
L 1
0 2 C
( 2) B
f0 QL
QL
f 0 465 58 B 8
3 3
(3) R0 Q00 L 100 2 465 10 0.586 10 171.22K
R0 // R QL0 L 58 2 465 103 0.586 103 99.25K
R
1 C 1C 2 解: 0 107 rad / s 回路总电容: C 1000pF 固有角频率:
放大器所需带宽要求?
解: ( 3)
f 0 10MH Z QL 20 B 0.5 MH Z
QL R0 // R1 0 L
放 大 器
R0
R1
R0//R1
R0 // R1 QL0 L 6.37 K
R1 7.97 K
(2)串联谐振回路(自学)
作业:
第一版:P59 2-1 2-2 第二版:P67 2-2 2-3
R0 Q0 L 0
R0 // R QL L 0
R 237 .66 K
2-3 图示为波段内调谐用的并联振荡回路,可变电容C的变化范围为12~ 260pF,Ct为微调电容,要求此回路的调谐范围为535~1605kHz,求回路电 感L和Ct的值,并要求C的最大和最小值与波段的最低和最高频率对应。

高频电路原理与应用第2章选频网络

高频电路原理与应用第2章选频网络

3
优化方法
使用优化方法来改善选频网络的性能,以提高电路的选择精度和信号质量。
选频网络的实验与应用案例
实验设计和测量方法
介绍选频网络实验的设计和测量方法,以验证电 路的性能和应用的可行性。
应用案例
展示选频网络在实际应用中的案例,如电视机、 无线电和雷达等。
2 音频处理和放大
选频网络常用于音频处理 和音频放大系统中,以选 择特定频率的声音。
3 高频信传输
选频网络在高频信号传输 系统中用于选择特定频率 的信号进行传输。
选频网络的性能分析和优化
1
带宽和增益分析
对选频网络的带宽和增益进行分析,以确保所选择的频率范围和信号增益符合要 求。
2
噪声和失真分析
分析选频网络的噪声和失真,确保在传输和处理过程中不会引入额外的干扰或失 真。
常见的选频网络电路
LC选频网络
LC选频网络使用电感器和电容器 来选择特定频率的信号。
RC选频网络
RC选频网络使用电阻和电容器 来选择特定频率的信号。
滤波器和共振器
滤波器和共振器是常见的选频网 络电路,用于消除不需要的频率 或增强特定频率。
选频网络的应用
1 无线通信系统
选频网络在无线通信系统 中用于选择特定频率的信 号进行传输。
高频电路原理与应用第2 章选频网络
本章将介绍选频网络在高频电路中的重要性和应用。探讨不同类型的选频网 络,以及如何进行设计和优化。
选频网络的概述
作用
选频网络用于在高频电路中选择特定频率的信号。
组成部分
选频网络由基本元件,如电容器和电感器,以及其他辅助元件组成。
基本原理和设计
选频网络的设计涉及基本元件和参数的选择,以及特定应用的设计方法。

高频电子线路第3章高频谐振放大器

高频电子线路第3章高频谐振放大器
机电路中,如下图。
Ec
Cn
L1
L2
. Uo

V1 .
V2
Uc

(b)
2021/8/7
③ 失配法:从输入导纳Yi的关系式可以看出,要降低Yre 对输入端的影响,可以通过增加负载导纳来实现。但这意味着 负载和晶体管的输出导纳不匹配,因此这种方法称为失配法。
下图的共发—共基电路可以用失配法解释:V2的输入导纳很 大,意味着V1的负载导纳很大。
2021/8/7
5. 多级谐振放大器 多级单调谐放大器:假设有n个单回路调谐放大器级联,
且各级电压放大倍数分别为K01、K02、…、K0n,多级单 调谐放大器的谐振频率相同,均为信号的中心频率。
总电压放大倍数:K0 K01K02 K0n
单回路频率特性: 1 12
总谐振特性: n 1 2 n /2
总带宽:B B1 21/n 1,B1为单回路带宽
总矩形系数:K0.1
2021/8/7
22/n 1 21/ n 1
多级双调谐放大器:设有n 级双调谐放大器级联,均工作在临
界耦合状态。假设各级电压放大倍数分别为K01、K02、…、K0n, 多级单调谐放大器谐振频率相同, 均为信号的中心频率。
电压总增益:K0 K01K02......K0n
双极晶体管和场效应管:低于几百瓦; 电子管:高于几百瓦。 转换效率:高频功放实质上是将电源直流功率转换成高频功率 的过程。转换效率就是反映直流功率转换成高频功率的效率。 最高可达80%。
2021/8/7
工作状态:为了提高转换效率,高频功率放大器大多工作在 C(丙)类状态。
A(甲)类:ηmax=50%,放大器一直处于导通状态。 B(乙)类:ηmax=78.5%,放大器有一半时间处于导通状态。 C(丙)类:ηmax>78.50%,放大器有一少半时间处于导通状态。

高频电子线路_第3章.ppt

高频电子线路_第3章.ppt

C
1 1( ) Ucm 2 0 ( ) VCC
1 2
g1( )
其中 Ucm
VCC
为集电极电压利用系数
g1( )=
1( ) 0 ( )
Ic1m IC0
为波形系数
值越小,g1( )越大,放大器的效率也越高。
在 1时,可看不同工作状态下放大器的效率分别为: 甲类工作状态 180 , g1( ) 1,C =50% 乙类工作状态 90 , g1( ) 1.57,C =78.5% 丙类工作状态 60 , g1( ) 1.8,C =90%
若VCC、VBB、Vim参变量不变,则放大器的工作状态就由负 载电阻Re决定。此时放大器的电流、输出电压、功率、效 率等随Re而变化的特性,叫做放大器的负载特性(曲线)。
1、欠压、临界和过压工作状态
——根据集电极电流是否进入饱和区
绿线:欠压状态——未进入饱和状态的工作 状态。
为尖顶余弦脉冲。
蓝线:临界状态——刚好不进入饱和状态 的工作状态。
ic gc VBB Uim cost UBE(on)
余弦电流脉冲的主要参量
iC

max
,如c 图
当 t c 时,iC 0
cos UBE(on) VBB
Uim
ic gcUim cost cos
而当t 0时,ic iC max
iCmax gcUim 1 cos
iC
iC max
直流分量只能通过回路电感线圈去路,其直流电阻较小,对
直流也可看成短路。
集电极电流流经谐振回路时,只有基波电流才产生压降,
因而LC谐振回路两端输出不失真的高频信号电压。若回路谐振 电阻为Re,则
uc Ic1m Re cost Ucm cost,

高频电路详解

高频电路详解

第一章 高频电路基本常识 第一部分为何要学习高频电路的知识电子电路可以分为模拟电路与数字电路,而模拟电路又可以分类为低频率电路与高频电路。

一般的电子技术人员,首先尝试设计或制作的,大多以数位电路或低频率电路为主,此较少从高频电路开始的。

其主要原因是,高频电路较难去理解,往往所制作出的电路无法如预期的设计目标动作。

但是,如果忽略了高频电路的基本常识,也可能使所设计出的数位电路或低频率电路不能成为最适当,甚至於可能会造成动作的不稳定。

相反地,如果能够熟悉高频电路,也可以提高数位电路或低频率电路的设计水准。

近些年,无论是数位电路或以直流为主的测试仪器电路,对於处理系要求高速化,结果也使得高频电路的基本常识相当重要。

低频率电路与高频电路的区别为了了解高频电路的特征,在此,对低频率电路与高频电路作一此较。

如下图1所示的为低频率电路与高频电路的此较。

图(a )为低频率电路,图(b)为高频电路。

首先,说明信号的流通。

由於在低频率电路的信号其波长较长,一般可以忽略时间因素。

因此,振荡器的输出端舆放大器的输入端可视为同一信号。

也即是,在低频率电路中的信号流通如箭头的方向所示,成为闭回路,此也称的为集中常数的考虑方法。

而在高频电路中,由於波长较短,不可以忽略时间的要素。

在同一时间的振荡器输出端,中途的电缆线上,放大器的输入端的信号就非同一信号,也就是说信号像电波一样传输着,这种考虑电路问题的方法称为分布常数。

一般地,在集中常数电路中的低频电路中,对於电缆线的限制较少,可以使用一般的隔离线,重视杂讯兴频率特性。

而在分布常数电路中的高频电路中,为了不使信号发生传送路径上的失真,使用同轴电缆线,重视特性阻抗。

在放大器的输出端所连接的负载如下:图1-(a )低频电路图1-(b )高频电路图(a)低频率电路为定电压驱动……即使负载阻抗有变化,输出电压也一定,放大器的输出阻抗Zo 舆负载的阻抗ZL 的关系为Zo<ZL 。

曾兴雯《高频电路原理与分析》第6版 课后答案

曾兴雯《高频电路原理与分析》第6版  课后答案

绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。

答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。

发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。

低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。

接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。

由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。

1-2 无线通信为什么要用高频信号?“高频”信号指的是什么?高频信号指的是适合天线发射、传播和接收的射频信号。

采用高频信号的原因主要是:(1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。

1-3 无线通信为什么要进行凋制?如何进行调制?答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的信号是高频信号,所以也提高了信道利用率,实现了信道复用。

调制方式有模拟调调制和数字调制。

在模拟调制中,用调制信号去控制高频载波的某个参数。

在调幅方式中,AM普通调幅、抑制载波的双边带调幅(DSB)、单边带调幅(SSB)、残留单边带调幅(VSSB);在调频方式中,有调频(FM)和调相(PM)。

在数字调制中,一般有频率键控(FSK)、幅度键控(ASK)、相位键控(PSK)等调制方法。

1-4 无线电信号的频段或波段是如何划分的?各个频段的传播特性和应用情况如何?答: 无线电信号的频段或波段的划分和各个频段的传播特性和应用情况如下表第二章 高频电路基础2-1对于收音机的中频放大器,其中心频率f 0=465 kHz.B 0.707=8kHz,回路电容C=200pF,试计算回路电感和 Q L 值。

高频电路分析与原理

高频电路分析与原理
高频电路分析与原理
高频电路是无线通信和射频技术中的重要组成部分。本演示将介绍高频电路 的基本原理、分析方法、主要特点以及应用领域等内容。
高频电路的定义
高频电路是指工作频率在几百千赫至几百兆赫的电子电路,用于处理和传输 高频信号。
高频电路的基本原理
1
阻抗匹配
保证信号在电路中的最大功率传输。
2
反射与功率分配
分析电路中的反射现象,设计合适的功率分配网络。
3
谐振与频率选择
利用谐振器和滤波器实现频率选择和信号放大。
高频电路的分析方法
通过建立等效模型、使用网络参数和稳态分析等方法,对高频电路的特性进 行分析和优化。
高频电路的主要特点
传输线效应
电缆和导线发生纵波和横波传输,影响信号 的传输延迟和幅度。
非线性特性
分析电路的稳定性,进行优化以防止震荡 和不稳定现象。
设计高效率功率放大器以实现信号的最大 增益和能量传输。
高频电路常见问题及解决方法
1
干扰与抗干扰设计
分析和解决高频电路中常见的干扰问题,提高系统抗干扰能力。
2
温度与热管理
高频电路工作时会产生热量,需要进行有效的散热设计和温度控制。
3
保密性与安全性
防止信号泄露和非法入侵,确保高频电路的保密性与安全性。
比低频电路更容易受到非线性效应的影响, 需要特殊处理。
射频功率损耗
高频信号在电路中会发生各种损耗产生电磁辐射干扰,需要采取屏 蔽和滤波措施。
高频电路的应用领域
无线通信
用于手机、卫星通信等无线通信系统的基带和 射频电路。
雷达系统
用于飞机、车辆和导航系统中的信号处理和控 制电路。
医学影像
高频射频电路在核磁共振、超声成像等医学影 像设备中起关键作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

j1
C0
rq
rq jLq
jLq
1
Cq
1
Cq
j1
C0
Ze
jX e
j 1
C0
1 1
q2
2 02 2
感性区 容性区
容性区
晶体谐振器的特点:
(1)晶体的谐振频率fq和f0非常稳定。 (2)晶体谐振器有非常高的品质因数。 (3)晶体谐振器的接入系数很小。 (4)晶体在工作频率附近阻抗变化率大,有 很高的并联谐振阻抗。
阻的关系为:
R
QL0
L
QL
0C
回路的通频带为:
B0.7
f0 QL
抽头并联振荡回路
U p
UT
U=pUT
谐振时: R=p2R0 接入系数p 是指与外电路相连的那部分电抗与本回路参与分 压的同性质总电抗之比,也可以用电压比来表示。
接入系数p
-----与外电路相连的那部分电抗与本回路参与分 压的同性质总电抗之比。
rq
(125 000~ 250 000)
1 fq
2π LqCq
f0 fq
1 Cq C0
由于C0>>Cq,晶体谐振器的并联谐振频率f0与串 联谐振频率fq相差很小,此时:
f0Βιβλιοθήκη fq 1 1 2Cq C0
接入系数p p≈Cq/C0
►加入负载电容后,接入系数为:p≈Cq/(C0+CL)
阻抗特性
Ze
2.2 高频电路中的组件
1、高频振荡回路 2、高频变压器和传输线变压器 3、石英晶体谐振器 4、集中滤波器 5、高频衰减器
2.2.3 石英晶体谐振器
1. 物理特性
压电效应 当晶体 受外力作用而变形 时,其表面会产生 正负电荷。
反压电效应 当晶体两面加电 压时,晶体会发生机械形变。
2.2.3 石英晶体谐振器
3、晶体谐振器的应用
串联谐振频率fq
1 fq
2π LqCq
并联谐振频率f0
f0 fq
1 Cq C0
感性区
容性区
容性区
感性区
容性区
容性区
晶体振荡器
1、并联型晶体振荡器
2.串联型晶体振荡器
晶体窄带滤波器
感性区 容性区
容性区
►两个谐振频率之间的宽度决定了石英晶体滤波 器的带宽。
(a) 滤波器电路
► 当外加电信号的频率在晶体固有谐振频率附近 时,会发生谐振现象。
► 谐振频率与晶片的厚度成反比。 ► 既可以在基频(或基音)上谐振,也可以在高次
谐频(或泛音)上谐振。 ► 通常是利用3、5、7等奇次谐频。
2. 等效电路及阻抗特性
品质因数
Qq
q Lq
rq
串联谐振频率fq 并联谐振频率f0
1 fq
并联谐振回路
谐振时:
IR=I
感性
IL=QI
容性
Ic=QI
R0
L Cr
Q0L
Q 0C
谐振频率
当Q>>1时, 0 1
LC
品质因数(空载)
Q 0L 1 r 0Cr
通频带
B0.7
2Δf
f0 Q
感性
容性
如果在并联谐振回路上并联电阻R1,则并联后回路两
端的总电阻: R = R1∥R0,总的回路有载品质因数与总电
(a) 电感抽头
p=( L1 + M ) / L
若可忽略M,则 p= L1 / L
L1
(b) 电容抽头
1
p U C2 C1
UT
1
C1 C2
C1C2
C1 C2
绪论
第二章 高频电路基础与系统问题
主要内容
2.1 高频电路中的元器件 2.2 高频电路中的组件 2.3 阻抗变换与阻抗匹配 2.4 电子噪声与接收灵敏度 2.5 非线性失真与动态范围 2.6 高频电路的电磁兼容
2π LqCq
f0 2π
1
Lq
C0Cq C 0C q

1 LqCq
1 Cq C0
fq
1 Cq C0
国产B45型1 MHz中等精度晶体的等效参数
1 fq
2π LqCq
f0 fq
1 Cq C0
Lq=4.00 H rq=100~200 Ω
Cq=0.0063 pF C0=2~3 pF
Qq
q Lq
(b) 衰减特性
2.2.4 集中滤波器
► 陶瓷滤波器 ► 声表面波滤波器
1、 陶瓷滤波器
► 陶瓷谐振器的等效电路和晶体谐振器相同。
感性区
容性区
容性区
► 串并联频率间隔较大,通频带比晶体谐振器宽。 ► 品质因数较晶体小得多(约为数百),选择性稍差。 ► 陶瓷材料相对较为便宜。
◆ 谐振子数目越多,滤波器性能越好。 ◆ 高频陶瓷滤波器的工作频率范围约为几兆赫兹 至一百兆赫兹。
► 晶体滤波器通常用作窄带滤波器。 ► 陶瓷滤波器通常用作带通滤波器。

2.2.5
高频衰减器可以用于调整信号传输通路上的信 号电平,分为高频固定衰减器和高频可变(调)衰减 器两种。通常都用电阻性网络、开关电路或PIN二 极管等实现。
V
V
W
V
W
W
相关文档
最新文档