层次分析法案例与步骤
层次分析法原理+案例操作全流程详解
![层次分析法原理+案例操作全流程详解](https://img.taocdn.com/s3/m/0b56e8112e60ddccda38376baf1ffc4ffe47e26b.png)
层次分析法1、作用层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。
该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,例如通过构建评价指标(景色、费用,居住,饮食、旅途)对候选旅游地(桂林、黄山,北戴河)量化评价,进行选择。
在专业版里面,SPSSPRO 健全对方案层的层次总排序,如不需层次总排序,请选择SPSSPRO-层次分析法(AHP 简化版)。
2、输入输出描述输入:根据提示进行指标或者方案两两对比。
输出:各方案的量化得分或者同一级的指标权重。
3、案例示例案例:通过构建评价指标(景色、费用,居住,饮食、旅途)对候选旅游地(桂林、黄山,北戴河)量化评价,进行选择。
4、案例操作Step1:选择层次分析法(AHP 专业版);Step2:选择构建决策模型;Step3:输入构建的评价指标;Step4:输入最终的方案;Step5:确认以进入下一步指标评分;Step6:输入指标之间两两比对的重要程度值;Step7:输入不同方案的对应评价值的重要程度评价。
5、输出结果分析输出结果 1:方案得分图表说明:计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序,基于指标层次单排序与方案层次总排序后,对于旅游地选择最好的方案为北戴河、其次为桂林。
结果分析:北戴河的量化得分为 1.435,高过第二桂林近一倍。
输出结果 2:层次决策模型图表说明:一般的层次分析法会将决策的目标、考虑的因素(决策准则)和决策对象按照他们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
SPSSPRO 仅展示了决策的目标、考虑的因素(决策准则)以及各个因子对应的权重值。
结果分析:由图可见,其中最重要的两个决定因素是旅游地的景色和费用,而饮食、居住情况则属于低权重。
输出结果 3:判断矩阵汇总结果图表说明:上表展示了层次分析法的权重计算结果,根据结果对各个指标的权重进行分析,通过展示了一致性检验结果,用于判断是否存在构建判断矩阵的逻辑问题。
层次分析法实例与步骤
![层次分析法实例与步骤](https://img.taocdn.com/s3/m/c4330fdab9f3f90f76c61b47.png)
n,…,2,1=I
) 1� k (
j
w
) k(
ji
p
��
)k (
i
w
或
0000.0 0052.0 0057.0 值权序排单
RC 6C 5C 3B
0000.0 0052.000.0 0005.0 0005.0 值权序排单
RC 2C 1C 1B
0000.0 6824.0 6824.0 9241.0 值权序排)总(单
1 1D
2D 1D 6C
1 5/1 2D
1 1D
2D 1D 5C
1 1D
2D 1D 4C
1 5/1 2D
1 1D
2D 1D 3C
1 3 2D
1 1D
2D 1D 2C
1 5 2D
1 1D
2D 1D 1C
1 3 6C
1 5C
6C 5C 3B
1 3 4C
1 3C
4C 3C 2B
1 1 2C
1 1C 2表
2C 1C 1B
数倒 8�6�4�2 9 7 5 3 1 度标性要重
。 �表下见值度标性要重�值赋 9-1 按度程性要重对�少多要重�要重个哪较比两两 素元个两中其�则准的阵矩断判对针�问询复反�家专�人写填向�是法方的取采多大 �有法方的阵矩断判写填。阵矩断判写填是的要重 。列一第和行一第的后其在列排次依素元个各的它于属隶� �角上左于位�素元个一第的 阵矩断判为作�则准作称被�素元的系关属隶下向有具个一每�是法方的阵矩断判造构 。阵矩断判造构地易容很能就构结次层阶递据根 值赋并阵矩断判造构 图意示构结次层阶递 )2D(铁地建 1图 )1D(路速高建 D 层施措 .2
RC 3B 2B 1B A
层次分析法步骤及案例分析
![层次分析法步骤及案例分析](https://img.taocdn.com/s3/m/52b678a90875f46527d3240c844769eae009a338.png)
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法步骤
![层次分析法步骤](https://img.taocdn.com/s3/m/b3961504763231126edb1161.png)
层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:●目标层(最高层):指问题的预定目标;●准则层(中间层):指影响目标实现的准则;●措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
【案例分析】市政工程项目进行决策:建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
《供应链管理》第五章案例:层次分析法在选择第三
![《供应链管理》第五章案例:层次分析法在选择第三](https://img.taocdn.com/s3/m/3b6311ae0875f46527d3240c844769eae109a368.png)
在供应链管理中,选择合适的第三方合作伙伴至关重要。本案例将介绍层次 分析法在第三方选择中的应用,以帮助您更好地理解这一决策方法。
案例介绍
首先,让我们来了解一下这个案例。在供应链管理中,第三方指的是外部公司或个体,为原公司提供从物流到运输 等各种服务。
第三方选择的重要性
选择合适的第三方合作伙伴是供应链管理中的关键决策之一。一个优秀的第三方可以提供高质量的服务,降低成本 并提高效率。
层次分析法的概念
层次分析法是一种多准则决策方法,旨在帮助决策者权衡不同因素并做出最 佳选择。它将决策问题划分为多个层次,并对每个层次进行评估和比较。
层次分析法的步骤
层次分析法是一种有效的决策方法,可以应用于供应链管理中的第三方选择。通过合理运用该方法,您可以做出明 智的决策,提升供应链运作效率和质量。
1
制定比较矩阵
2
对每个层次的准则和备选方案之间的相对重 要性进行配对比较,使用比较矩阵记录结果。
3
建立层次结构
将决策问题划分为准则、子准则和备选方案 Leabharlann 层次,建立层次结构。计算权重
根据比较矩阵计算每个层次的准则和备选方 案的权重。
使用层次分析法进行第三方选择的实例
识别需求
确定需要外部合作的具体需求和目 标,例如物流、分销等。
确定准则
制定评估的准则,如价格、服务质 量、可靠性等。
比较备选方案
使用层次分析法比较备选的第三方 合作伙伴,评估其在各个准则上的 表现。
优势和限制
优势
层次分析法能够帮助决策者全面考虑各种因素,提高决策的准确性和可靠性。
限制
层次分析法的实施需要大量的数据和专业知识,并且结果可能受主观因素的影响。
层次分析法经典案例
![层次分析法经典案例](https://img.taocdn.com/s3/m/843f5e7f590216fc700abb68a98271fe900eaf55.png)
层次分析法经典案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的多准则决策方法,被广泛应用于企业管理、工程项目评估、市场调研等领域。
本文将通过一个经典案例,介绍层次分析法的基本原理和应用过程。
一、案例背景某企业计划购买新设备,以提升生产效率和质量。
然而,在众多可选设备中,如何选择最适合企业发展的设备成为了业主面临的难题。
为了解决这一问题,业主决定应用层次分析法进行设备选择。
二、层次分析法基本原理层次分析法基于一个重要思想,即将复杂的决策问题拆解为具有层次结构的多个因素,并通过层次化的比较和综合分析,最终得出决策结果。
1. 构建层次结构首先,我们需要将决策问题划分为不同的层次,并构建层次结构。
在这个案例中,可以将设备选择问题划分为三个层次:目标层、准则层和备选方案层。
目标层代表企业的最终目标,即实现高效生产;准则层包括影响设备选择的各种准则,如设备价格、性能指标、售后服务等;备选方案层包括具体的设备选项。
2. 建立判断矩阵接下来,我们需要对不同层次的因素进行两两比较,建立判断矩阵。
通过专家主观判断,给出两个因素之间的相对重要性,采用1-9的尺度,其中1代表两者具有相同重要性,9代表一个因素相对于另一个因素极端重要。
比如,在准则层中,设备性能指标对设备价格的重要性为6。
3. 计算权重向量利用判断矩阵,我们可以计算出每个层次的权重向量。
通过对判断矩阵进行归一化处理,可获得各因素的权重。
权重向量表示了各因素对当前决策的贡献程度,可作为后续分析的依据。
例如,计算准则层中各因素的权重向量。
4. 一致性检验为了保证判断矩阵的合理性,我们需要进行一致性检验。
通过计算一致性指标和一致性比率,评估判断矩阵是否存在较大的一致性问题。
若一致性比率超过一定阈值,需要检查和修正判断矩阵。
5. 优先级排序最后,结合各层次的权重,我们可以进行优先级排序,得出对不同备选方案的排序结果。
根据排序结果,我们可以选择最合适的备选方案。
ahp层次分析法案例
![ahp层次分析法案例](https://img.taocdn.com/s3/m/5bb9a1693d1ec5da50e2524de518964bcf84d2a2.png)
ahp层次分析法案例AHP层次分析法是一种决策分析方法,适用于解决复杂的决策问题。
以下是一个AHP层次分析法的案例,用于决策一个公司在新市场中选择合适的产品。
某公司考虑进入新市场,希望选择一个适合的产品。
为了做出最佳决策,他们使用AHP层次分析法,按照以下步骤进行分析:1. 首先,确定决策层次结构。
公司将决策分为三个层次:目标层、准则层和备选方案层。
目标层是公司的终极目标,准则层是实现目标所需的因素,备选方案层是可以选择的不同产品。
2. 其次,制定判断矩阵。
为了做出决策,公司需要以对比方式,对准则和备选方案进行比较。
他们使用一个判断矩阵,将每个准则和备选方案两两对比,来确定它们的重要性或优劣。
假设公司选择了三个准则:市场需求、竞争力和技术实施。
他们对每个准则进行两两对比,并使用1-9的标度,表示相对重要性。
例如,市场需求对竞争力的重要性可能被评价为5,而竞争力对技术实施的重要性可能被评价为3。
3. 确定权重向量。
根据判断矩阵,公司计算每个准则的权重。
通过对矩阵的每一列进行平均化,可以计算出每个准则的权重向量。
例如,如果市场需求对竞争力的重要性为5,竞争力对技术实施的重要性为3,则市场需求的权重为5/(5+3)=0.625,竞争力的权重为3/(5+3)=0.375。
4. 计算一致性检查。
公司通过计算一致性指标(CI)和一致性比率(CR)来确定判断矩阵的一致性。
如果CI小于0.10,且CR小于0.10,则认为判断矩阵是一致的。
5. 最后,比较备选方案。
根据判断矩阵和准则的权重,公司可以计算每个备选方案的总权重。
备选方案的总权重越高,表示其相对于其他备选方案的优势越大。
根据AHP层次分析法,公司能够比较不同产品在新市场中的优势,并根据准则的权重,做出最佳选择。
通过AHP层次分析法的应用,公司能够对于复杂的决策问题进行系统化、结构化的分析,以更有根据地做出决策,提高决策的准确性和可靠性。
同时,该方法还能帮助公司更好地理解和分析决策过程中的关键因素和限制条件,以及它们之间的相互关系,从而更好地促进决策的质量和效益。
层次分析法及其案例分析
![层次分析法及其案例分析](https://img.taocdn.com/s3/m/bd8758574b7302768e9951e79b89680203d86b9a.png)
2 层次分析法应用实例
5、计算各项指标结构的权值(归一化特征向量) 按照上述第四小点中说明,可将特征值的归一化特征向量作为权重。 计算最大特征向量除高数中讲到的数学方法外,有一个较为简便的方法,即 “求和法" (1)按照纵列求和
A
B1 B2 B3 B4 B5 求和
B1
1 5 0.33333 0.33333 0.142857 6.809524
2、建立层次结构图
为了简化计算步骤,本文在供应商决策分析时,只做关键指标的分析,具体的层 次结构如下图:
目标层(A) 指标层(B) 方案层(C)
合格的供应商
价格指标 质量指标 交货指标 服务指标 硬件资质
供应商1
供应商2
2 层次分析法应用实例
3、建立判断矩阵
(1)建立B层次与A层次的矩阵关系 A、首先对各项指标进行打分( B1: B2,即价格指标、质量指标、交货指标、服 务指标、硬件资质)
B、进行一致性检测,以确保打分时不出现前后的逻辑错误
(1)计算上述矩阵的最大特征值= 5.08
(2)计算一致性指标: CI= - n =0.08/4=0.02( n=5,矩阵的阶 n -1
数),原则上比n越大,说明不一致性越严重
(3)查询随机性一致性指标: RI
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
11
1.51
当n=5时,RI=1.12 (4)计算一致性比率:CR=CI/RI=0.02/1.12=0.01785<0.1,一致性成立。 一般认为当CR< 0.1时,认为矩阵的不一致程度在容许范围之内,可用其归一化特 征向量作为权向量,否则要重新构造成对比较矩阵。
层次分析法分析(AHP)及实例教程
![层次分析法分析(AHP)及实例教程](https://img.taocdn.com/s3/m/f2bb4f93a48da0116c175f0e7cd184254b351b8f.png)
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。
层次分析法具体应用及实例
![层次分析法具体应用及实例](https://img.taocdn.com/s3/m/65bff99a4431b90d6d85c734.png)
层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。
层次分析法具体案例
![层次分析法具体案例](https://img.taocdn.com/s3/m/ad7d42cbccbff121dc3683ce.png)
条理阐发法实例与步调之五兆芳芳创作结合一个具体例子,说明条理阐发法的根本步调和要点.【案例阐发】公道采办电脑决策:条理阐发法问题提出良多的电脑小白需要对采办哪个品牌的电脑进行决策,可选择的计划是采办戴尔公司生产的笔记本(简称采办戴尔)或采办联想公司生产的笔记本(简称采办联想).除了考虑主板来源外,还要考虑CPU性能、显卡方法等因素,便是多准则决策问题,考虑运用条理阐发法解决.1. 成立递阶条理结构【案例阐发】公道采办电脑决策:成立递阶条理结构在采办哪个品牌的电脑决策问题中,良多电脑小白希望通过选择不合的电脑品牌使性价比最高,即决策目标是“公道采办电脑使性价比最高”.为了实现这一目标,需要考虑的主要准则有三个,即主板来源,CPU性能,显卡方法.但问题绝不这么复杂.通过深入思考,还认为还必须考虑本工场自产、代工场提供、主频的大小、焦点数、独立式显卡、集成式显卡等因素(准则),从相互关系上阐发,这些因素隶属于主要准则,因此放在下一条理考虑,并且分属于不合准则.假定本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些计划.按照题中所述,本问题有两个解决计划,即采办戴尔或采办联想,这两个因素作为措施层元素放在递阶条理结构的最下层.很明显,这两个计划于所有准则都相关.将各个条理的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来.同时,为了便利前面的定量暗示,一般从上到下用A、B、C、D...代表不合条理,同一条理从左到右用1、2、3、4...代表不合因素.这样组成的递阶条理结构如下图.目标层A准则层B本工场自产(C1) 代工场提供(C2)主频的大小(C3)焦点数(C4)独立式显卡(C5)集成式显卡(C6)准则层C 措施层D2. 机关判断矩阵并赋值【案例阐发】公道采办电脑决策:机关判断矩阵并填写表2 判断矩阵表3. 条理单排序(计较权向量)与查验【案例阐发】公道采办电脑决策:计较权向量及查验 上例计较所得的权向量及查验结果见下:都是可以接受的.4. 条理总排序与查验【案例阐发】公道采办电脑决策:条理总排序及查验上例条理总排序及查验结果见下:,认为判断矩阵的整体一致性是可以接受的5. 结果阐发通过对排序结果的阐发,得出最后的决策计划.【案例阐发】公道采办电脑决策:结果阐发从计划层总排序的结果看,采办联想(D2)的权重(0.6592)远远大于采办戴尔(D1)的权重(0.3408),因此,最终的决策计划是采办联想.按照条理排序进程阐发决策思路.对于准则层B的3个因子,主板来源(B1)的权重最低(0.1429),cpu(B2)和显卡(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重cpu和显卡.对于不看重的主板,其影响的两个因子本工场(C1)、代工场(C2)单排序权重都是采办戴尔远远大于采办联想,对于比较看重的cpu和显卡,其影响的四个因子中有三个因子的单排序权重都是采办联想远远大于采办戴尔,由此可以推出,采办联想计划由于cpu和显卡较为突出,权重也会相对突出.从准则层C总排序结果也可以看出,主频数(C3)、独立显卡(C5)是权重值较大的,而如果单独考虑这两个因素,计划排序都是采办联想远远大于采办戴尔.由此我们可以阐发出决策思路,即决策比较看重的是cpu和显卡,不太看重主板,因此对于具体因子,主频数和独立显卡成为主要考虑因素,对于这两个因素,都是采办联想计划更佳,由此,最终的计划选择采办联想也就顺理成章了.。
层次分析法具体应用及实例
![层次分析法具体应用及实例](https://img.taocdn.com/s3/m/fd832e585a8102d277a22f54.png)
层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。
层次分析法的基本步骤和要点
![层次分析法的基本步骤和要点](https://img.taocdn.com/s3/m/77977948998fcc22bdd10d52.png)
层次分析法的基本步骤和要点层次分析法的基本步骤和要点结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:●目标层(最高层):指问题的预定目标;●准则层(中间层):指影响目标实现的准则;page2措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
层次分析法具体案例
![层次分析法具体案例](https://img.taocdn.com/s3/m/f6c49fb3f5335a8103d220c5.png)
层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】合理购买电脑决策:层次分析法问题提出很多的电脑小白需要对购买哪个品牌的电脑进行决策,可选择的方案是购买戴尔公司生产的笔记本(简称购买戴尔)或购买联想公司生产的笔记本(简称购买联想)。
除了考虑主板来源外,还要考虑CPU性能、显卡方式等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构【案例分析】合理购买电脑决策:建立递阶层次结构在购买哪个品牌的电脑决策问题中,很多电脑小白希望通过选择不同的电脑品牌使性价比最高,即决策目标是“合理购买电脑使性价比最高”。
为了实现这一目标,需要考虑的主要准则有三个,即主板来源,CPU性能,显卡方式。
但问题绝不这么简单。
通过深入思考,还认为还必须考虑本工厂自产、代工厂提供、主频的大小、核心数、独立式显卡、集成式显卡等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即购买戴尔或购买联想,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层C图1 递阶层次结构示意图2. 构造判断矩阵并赋值【案例分析】合理购买电脑决策:构造判断矩阵并填写表2 判断矩阵表3. 层次单排序(计算权向量)与检验【案例分析】合理购买电脑决策:计算权向量及检验上例计算所得的权向量及检验结果见下:表4 层次计算权向量及检验结果表4. 层次总排序与检验【案例分析】合理购买电脑决策:层次总排序及检验上例层次总排序及检验结果见下:表5 C层次总排序(CR = 0.0000)表表6 D层次总排序(CR = 0.0000)5. 结果分析通过对排序结果的分析,得出最后的决策方案。
层次分析法经典案例
![层次分析法经典案例](https://img.taocdn.com/s3/m/b4972e1843323968011c928e.png)
层次分析法经典案例篇一:层次分析法步骤层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
案例分析市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:? 目标层(最高层):指问题的预定目标;? 准则层(中间层):指影响目标实现的准则;? 措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递page1阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
层次分析法案例与步骤
![层次分析法案例与步骤](https://img.taocdn.com/s3/m/f42c3a37ce2f0066f4332218.png)
层次分析法实例与步骤下面结合一个具体例子,说明层次分析法的基本步骤和要点.【案例】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决.1。
建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构.AHP要求的递阶层次结构一般由以下三个层次组成:●目标层(最高层):指问题的预定目标;●准则层(中间层):指影响目标实现的准则;●措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层).明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
【案例分析】市政工程项目进行决策:建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层次分析法实例与步骤下面结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:●目标层(最高层):指问题的预定目标;●准则层(中间层):指影响目标实现的准则;●措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
【案例分析】市政工程项目进行决策:建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层C措施层D图1 递阶层次结构示意图2. 构造判断矩阵并赋值根据递阶层次结构就能很容易地构造判断矩阵。
构造判断矩阵的方法是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。
重要的是填写判断矩阵。
填写判断矩阵的方法有:大多采取的方法是:向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值(重要性标度值见下表)。
Array设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下性质:(1) a ij〉0(2) a ji=1/ a ji(3) a ii=1根据上面性质,判断矩阵具有对称性,因此在填写时,通常先填写a ii=1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
在特殊情况下,判断矩阵可以具有传递性,即满足等式:a ij*a jk=a ik当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。
【案例分析】市政工程项目建设决策:构造判断矩阵并请专家填写接前例,征求专家意见,填写后的判断矩阵如下:表2 判断矩阵表3. 层次单排序(计算权向量)与检验对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。
层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。
计算权向量有特征根法、和法、根法、幂法等,这里简要介绍和法。
和法的原理是,对于一致性判断矩阵,每一列归一化后就是相应的权重。
对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n 个列向量求取算术平均值作为最后的权重。
具体的公式是:∑∑===nj nk kliji a a n W 111 需要注意的是,在层层排序中,要对判断矩阵进行一致性检验。
在特殊情况下,判断矩阵可以具有传递性和一致性。
一般情况下,并不要求判断矩阵严格满足这一性质。
但从人类认识规律看,一个正确的判断矩阵重要性排序是有一定逻辑规律的,例如若A 比B 重要,B 又比C 重要,则从逻辑上讲,A 应该比C 明显重要,若两两比较时出现A 比C 重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。
因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。
只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。
一致性检验的步骤如下。
第一步,计算一致性指标C.I.(consistency index )1..max --=n nI C λ第二步,查表确定相应的平均随机一致性指标R.I.(random index )据判断矩阵不同阶数查下表,得到平均随机一致性指标R.I.。
例如,对于5阶的判断矩阵,查表得到R.I.=1.12第三步,计算一致性比例C.R.(consistency ratio )并进行判断......I R I C R C = 当C.R.<0.1时,认为判断矩阵的一致性是可以接受的,C.R.>0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。
【案例分析】市政工程项目建设决策:计算权向量及检验上例计算所得的权向量及检验结果见下:表4 层次计算权向量及检验结果表4. 层次总排序与检验总排序是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。
这一权重的计算采用从上而下的方法,逐层合成。
很明显,第二层的单排序结果就是总排序结果。
假定已经算出第k-1层m 个元素相对于总目标的权重w (k-1)=(w 1(k-1),w 2(k-1),…,w m (k-1))T ,第k 层n 个元素对于上一层(第k 层)第j 个元素的单排序权重是p j (k)=(p 1j (k),p 2j (k),…,p nj (k))T ,其中不受j 支配的元素的权重为零。
令P (k)=(p 1(k),p 2(k),…,p n (k)),表示第k 层元素对第k-1层个元素的排序,则第k 层元素对于总目标的总排序为:w (k)=(w 1(k),w 2(k),…,w n (k))T = p (k) w(k-1) 或 ∑=-=m j j ij i k k (k)w pw 1)1()( I=1,2,…,n同样,也需要对总排序结果进行一致性检验。
假定已经算出针对第k-1层第j 个元素为准则的C.I.j (k)、R.I.j (k)和C.R.j (k), j=1,2,…,m,则第k 层的综合检验指标C.I.j (k)=(C.I.1(k) ,C.I.2(k) ,…, C.I.m (k))w (k-1)R.I.j (k)=(R.I.1(k) ,R.I.2(k) ,…, R.I.m (k))w (k-1) )()()(......k k k I R I C R C 当C.R.(k)<0.1时,认为判断矩阵的整体一致性是可以接受的。
【案例分析】市政工程项目建设决策:层次总排序及检验上例层次总排序及检验结果见下:表5 C 层次总排序(CR = 0.0000)表C1 C2 C3 C4 C5 C60.0714 0.0714 0.3214 0.1071 0.3214 0.1071表6 D 层次总排序(CR = 0.0000)D1 D20.3408 0.6592可以看出,总排序的C.R.<0.1,认为判断矩阵的整体一致性是可以接受的5. 结果分析通过对排序结果的分析,得出最后的决策方案。
【案例分析】市政工程项目建设决策:结果分析从方案层总排序的结果看,建地铁(D2)的权重(0.6592)远远大于建高速路(D1)的权重(0.3408),因此,最终的决策方案是建地铁。
根据层次排序过程分析决策思路。
对于准则层B 的3个因子,直接经济效益(B1)的权重最低(0.1429),社会效益(B2)和环境效益(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重社会效益和环境效益。
对于不看重的经济效益,其影响的两个因子直接经济效益(C1)、间接带动效益(C2)单排序权重都是建高速路远远大于建地铁,对于比较看重的社会效益和环境效益,其影响的四个因子中有三个因子的单排序权重都是建地铁远远大于建高速路,由此可以推出,建地铁方案由于社会效益和环境效益较为突出,权重也会相对突出。
从准则层C 总排序结果也可以看出,方便日常出行(C3)、减少环境污染(C5)是权重值较大的,而如果单独考虑这两个因素,方案排序都是建地铁远远大于建高速路。
由此我们可以分析出决策思路,即决策比较看重的是社会效益和环境效益,不太看重经济效益,因此对于具体因子,方便日常出行和减少环境污染成为主要考虑因素,对于这两个因素,都是建地铁方案更佳,由此,最终的方案选择建地铁也就顺理成章了。