固体物理第2课常见晶格结构
固体物理(第2课)常见晶格结构
![固体物理(第2课)常见晶格结构](https://img.taocdn.com/s3/m/298bed024a7302768e99398e.png)
钙钛矿晶格结构(2)
C60分子晶体
C60是由60个碳原子构成的球形32面体,即由12个五边 形和20个六边形构成。其中五边形彼此不相连,只与六 边形相连。每个碳原子以sp2杂化轨道和相邻的3个碳原 子相连,剩余的p轨道在C60分子的外围和内腔形成键。
纤锌矿晶格结构(3-1)
纤锌矿晶格结构(3-2)
立方晶系中一些常用的晶向指数
说明:
晶向指数代表一族晶列,而不指某一特 定晶列。(示意图) 负晶向指数表示: u v w 。
等效晶向表示:<u v w> 六方晶系的表示方法。(示意图)
1.6.2 晶面与密勒指数
晶面:同一平面上的格点构成一个晶面。 晶格由无数互相平行且等距分布的晶面构成。 截距方程: x y z 1 a, b, c为截距 a b c 密勒指数:用以标志晶面的参数。
纤维锌矿是一种较少见的硫化锌的矿物形式,以法国化 学家Charles-Adolphe Wurtz的名字命名。 其晶体结构是六角形晶体系统的一员且包含有四面等位 的锌和硫原子形成ABABAB型结构。这种结构与 of 六方 碳或者六角的钻石的结构有很大程度的关联。 纤维锌矿单胞常数为: a = b = 3.81 Å = 381 pm c = 6.23 Å = 623 pm
Cu 1s22s22p63s23p63d104s1
1.5.2 立方晶系的复式格子
a) b) c) d) e) 氯化钠型结构(示意图) 氯化铯型结构(示意图) 金刚石结构(演示) (示意图) 闪锌矿结构(演示) (示意图) 钙钛矿结构: (示意图) f) C60结构 (示意图)
1.5.3 六方密积结构
淡黄色透明 闪锌矿(金刚 石光泽)...
固体物理课件-几种常见的晶体结构
![固体物理课件-几种常见的晶体结构](https://img.taocdn.com/s3/m/95a557f24793daef5ef7ba0d4a7302768e996f41.png)
如:金剛石、Mg、Zn 、 C60和NaCl等晶格都是複式晶格
1 2
3
1
1
4
41
2
1
32
4
4
1 2
1
3
1
4
4
4
3
1
3
4
4
4
1
3
1
4 14
4
2
1
1
2
2
1 2
三、倒格子
倒格子的定義:
ai b j 2ij
i, j=1, 2, 3
NaCl結構中的八面體位置
➢ CsCl結構 典型晶體:CsCl、CsBr、CsI
➢ 閃鋅礦結構 典型晶體:ZnS、CdS、GaAs、
-SiC
§1.2 晶格的週期性
一、晶格與空間點陣
1. 晶格:晶體中原子(或離子)排列的具體形式
2. 空間點陣
A
B
➢ 等同點系:晶格中所有與起始點在化學、物理和 幾何環境完全相同的點的集合
C:底心Bravais格子 F:面心Bravais格子 H: 六方Bravais格子
P
Triclinic
P
C
Monoclinic
P
C
I
F
Orthorhombic
R
Rhombohedral
P
I
Tetragonal
H
P
Hexagonal
I
F
Cubic
立方晶系的基矢
c
fcc:
a1
0
a2
b a3 a
c
固体物理学-宏观对称性和晶格分类
![固体物理学-宏观对称性和晶格分类](https://img.taocdn.com/s3/m/3deb46c103d8ce2f01662320.png)
ε xy ε yy
ε ε
xz yz
⎤ ⎥ ⎥
⎣⎢ε zx ε zy ε zz ⎥⎦
立方对称晶体:
⎡ε0 0 0 ⎤
ε
=
⎢ ⎢
0
ε0
0
⎥ ⎥
⎣⎢ 0 0 ε0 ⎥⎦
六方对称晶体:
⎡ε ⊥ 0 0 ⎤
ε
=
⎢ ⎢
0
ε⊥
0
⎥ ⎥
⎣⎢ 0 0 ε // ⎥⎦
11
晶体宏观对称性及其分类
• 宏观对称性 • 点群 • 空间群 • 晶体结构分类
群为一组“元素”的集合,G≡(E, A, B, C, …),且这些“元素”在定义 一定的“乘法法则”下(不等价于数学乘法),满足下列性质: 1. 闭合性--- 集合内任意两元素“乘积”仍为集合元素
A, B ∈ G, 则AB=C ∈ G 2. 单元性---存在单位元素E,使得所有元素A:
AE= A 3. 可逆性---任意元素A存在逆元素A-1 满足
4
立方对称(sc、bcc、fcc)操作
(a)
(b)
(c)
•沿图(a)立方轴转动π/2、 π、 3π/2,有3个立方轴,共9个对称操作。 •沿图(b)面对角线转动π,有6条面对角线,共6个对称操作。 •沿图(c)体对角线转动2π/3、 4π/3,有4个体对角线,共8个对称操作。 •不动为一个对称操作。 •以上共24个对称操作,以上操作再加上反演为新的对称操作。 •共48个对称操作。
5
正四面体对称操作
•沿立方轴转动 π,有3个立方轴,共3个对称操作。 •沿图(c)体对角线转动2π/3、 4π/3,有4个体对角线,共8个对称操作。 •不动为一个对称操作。以上共12个对称操作。 •相对立方对称,少去的12个对称操作,即绕立方轴转π/2、3π/2以及绕 面对角线转动π,再加上中心反演为正四面体的对称操作。 •共24个对称操作。
固体物理 1.2_晶格的基本类型
![固体物理 1.2_晶格的基本类型](https://img.taocdn.com/s3/m/57d3c53c33d4b14e8424684c.png)
所属点群
四方 三角 六角 立方
简单四方 体心四方
三角
六角
简单立方 体心立方 面心立方
a=b c
a= b == 90º
a=b=c
a= b = 90º
C4、S4、C4h、D4 C4V、D2d、D4h
C3、S6、D3 C3V、D3d
a=b c
C6、C3h、C6h、D6、
a= b = 90º, =120º C6V、D3h、D6h
第 1 章 晶体结构
1.2 晶格的基本类型
立方体的对称操作
对称操作 对称操作数
不动
1
6个2度轴
6
总的对称操作数:
4个3度轴
8
24+24=48
3个4度轴
9
旋转反演
24
15
第 1 章 晶体结构
1.2 晶格的基本类型
正四面体的对称操作
对称操作 对称操作数
不动
1
3个2度轴
3
4个3度轴
8
总旋转操作数 1+3+8=12
第 1 章 晶体结构
1.2 晶格的基本类型
点阵(或晶体)中的对称元素:
(a)转动轴: 1、2、3、4、6
(b)转动反演: 4
(c)对称心:
i
(d)镜面:
m
一种点阵可以同时存在若干种对称元素。对称操作的一种特 定的组合方式叫做点群。点群在“群论”中有严格的定义 ,点群代表的是点阵或晶体的对称性,也就是点阵或晶体 能进行什么样的对称操作。
第 1 章 晶体结构
1.2 晶格的基本类型
对称操作通常包括两大类: 平移对称操作
点对称操作
第 1 章 晶体结构
固体物理知识总结PPT课件
![固体物理知识总结PPT课件](https://img.taocdn.com/s3/m/520f095524c52cc58bd63186bceb19e8b8f6ecfe.png)
三、常见晶体结构举例
致密度η(又称空间利用率)、配位数、密 堆积
1. 简单立方(sc) 配位数=6,惯用元胞包含格点数 = 1 惯用元胞包含格原子数 = 1
2. 面心立方(fcc) 配位数=12,惯用元胞包含格点数=4 惯用元胞包含格原子数 = 4
3.体心立方(bcc) 配位数=8,惯用元胞包含格点数=2 惯用元胞包含格原子数 = 2
1.决定散射的诸因素 (1)原子散射因子 (2)几何结构因子
2.衍射极大的条件(必要条件)
即当 k-k0=S=Gh 时,所有元胞间的
散射光均满足相位相同的加强条件,产生衍
射极大。
(反射球)
4.消光条件
第二章 晶体结合
一、原子的负电性
负电性=常数(电离能+亲和能)
电离能:让原子失去电子所必需消耗的能量
第四章 固体能带论 基本近似:绝热近似、单电子近似 一、固体电子的共有化和能带 二、布洛赫(Bloch)定理
1.布洛赫定理:表述及讨论 2. Bloch 定理的证明 3.布洛赫定理的一些重要推论 4.能态密度 三、近自由电子模型 1.索末菲(Sommerfeld)模型
(1)自由电子(半量子)模型
(2)自由电子费米(Femi)气模型 2.近自由电子模型
亲和能:处于基态的中性气态原子获得一个 电子所放出的能量
负电性大的原子,易于获得电子 负电性小的原子,易于失去电子 二、离子结合 三、共价结合 共价键的特性:饱和性、方向性 四、金属结合 五、范德瓦尔斯键结合 六、氢键结合
第三章 晶格振动
一、一维单原子晶格的振动
1. 物理模型 2.近似条件:近邻作用近似、简谐近似 3. 分析受力:牛顿方程 4. 定解条件―――玻恩-卡曼
固体物理学-晶格结构的分类
![固体物理学-晶格结构的分类](https://img.taocdn.com/s3/m/56589a559a6648d7c1c708a1284ac850ad0204eb.png)
注:四方也不可能有底心(或面心),假如有,则破坏了“点
阵点最少”的原则,还可画出只有一个点阵点的格子。
Solid State Physics
三角和六角晶系的关系
(1)围绕z 轴旋转一周,三角晶系晶体的横轴可以重合三次,六角晶系的横轴则重合六次
(2)三角晶系有两种格子,其中一种和六方格子相同(注意对称轴不同)
另外一种则为三角晶胞(菱面三角晶胞),通常也采用六角晶胞来进行描述,
称为R心六角晶胞
(3)六角格子中,部分属于六角晶系,部分属于三角晶系
Solid State Physics
“底心四方”
“面心四方”
Solid State Physics
单斜(P)
单斜(C)
晶胞类型: a b c
三斜(P)
固体物理
Solid State Physics
1.7 晶格结构的分类
Solid State Physics
晶胞的选取
晶格对称性
基矢的模=晶轴上的周期(晶格常数)
晶胞的基矢方向=晶轴方向
十四种布喇菲格子
格点分布特点
晶胞基矢的特征
七大晶系
റ
、、
റ
റ 为布喇菲原胞三个矢,
റ
՜
՜
、、 分别为 与 ՜
晶胞类型:a b c
90
90
90
在这些型式中,其对称性由高到低的排列顺序为:
立方﹥六方﹥三方﹥四方﹥正交﹥单斜﹥三斜
Solid State Physics
立方
a
a
a
三方
六方
四方
c
a
a a
固体物理第一章(2)
![固体物理第一章(2)](https://img.taocdn.com/s3/m/81bf4a1d4693daef5ff73d06.png)
例2解答:
c
b
0a (101)
c
b
0a (1-22)
c
b
0a (021)
c
b
a (2-10)
例3、在六角晶系中,晶面指数常用(hkml)表示, 它们代表一个晶面的基矢的截距分别为a1/h,a2/k, a3/m,在c轴上的截距为c/l。
证明(1)h+k=-m;
(2)求出O’A1A3、A1A3B3B1、A2B2B5A5和 A1A3A5四个面的面指数。
例1解答:
晶面族(123)截a1、a2和a3分别为1、2、3等份,ABC面是离原点O最近 的晶面,OA长度等于a1的长度,OB长度等于a2长度的1/2,OC长度等于a3 长度的1/3,所以只有A点是格点。若ABC面的指数为(234)的晶面族,则 A、B和C都不是格点。
例2、在简立方晶胞中,画出(101)、(021)、(1-22)和(2-10)晶面。
ra1 n ra1 cos a1, n d
sa2 n sa2 cos a2 , n d
ta3 n tas cos a3 , n d
由此得: c o sa 1 ,n:c o sa 2 ,n:c o sa 3 ,n1:1:1
r a 1 s a 2 ta 3
与上式相比较,有
cos
h1h2k1k2l1l2
h12k12l12 h22k22l22
指数简单的面是最重要的晶面,如(100)、(110)、(111)之类。 这些面指数低的晶面系,其面间距d 较大,原子层之间的结合力弱,晶 体往往在这些面劈裂,成为解理面,一般容易显露。如Ge、Si、金刚石 的解理面是(111)面,而III-V族化合物半导体的解离面是(110)面。
立方晶格的等效晶面
固体物理晶体结构2
![固体物理晶体结构2](https://img.taocdn.com/s3/m/1304f1c7856a561252d36f54.png)
• 金刚石结构
面心立方原胞内还有4 个原子,这4个原子分别 位于空间对角线的1/4处 碳四面体结构
碳原子杂化示意图察看
C 一种原子,二个位置。
金刚石结构是个复式格子,由两个面心立方子晶格 彼此沿其空间对角线位移1/4的长度套构而成的。
半导体材料:锗Ge, 硅Si. 与金刚石结构相同。
• 闪锌矿结构,硫化锌ZnS
Γ(r)=Γ(r+l1a1+l2a2+l3a3) l1 , l2 , l3 整数 a1,a2 ,a3 重复单元的边长矢量,周期
结晶学
晶体学中的布喇菲原胞,按对称特点来选取。基矢在晶轴方向, 固体物理学中选取的原胞,不是任意重复单元,基矢方向和晶 轴方向还是有一定的相对取向。 结晶学中的立方晶系,布喇菲原胞
• 所以,倒格矢Kh的长度为:
kh
2 d h1h2 h3
• 晶面族(h1 h2 h3)中离原点的距离为 dh h h 的晶面 方程:
1 2 3
x
kh kh
简立方(SC)
体心立方(BCC)
面心立方(FCC)
三种格子的固体物理学原胞 简立方: 只含有8×1/8=1个原子 原胞的基矢:
a1=ia a2=ja a3=ka
a
体心立方(Body Centered Cubic) 含有8×1/8+1=2个原子 固体物理学原胞只要 求含有1个原子。 a1=–(a/2)i+(a/2)j+(a/2)k =a/2(–i+j+k)
原胞
一维的复式格子 b a
a
A,B两种原子组成一无限的周期性点列。 A 原子组成一个子晶格 原胞
固体物理 晶体结构
![固体物理 晶体结构](https://img.taocdn.com/s3/m/ae8c1f78a417866fb84a8eab.png)
第一布里渊区:
以任一倒格点为原点, 共有八个最近邻,即八 个中垂面,围成一个八 面体,但其六个顶角却 被对应于六个次近邻倒 格点的中垂面所截。, 故其第一布里渊区是十 四面体。
例3 体心立方晶格第一布里渊区
倒格子:面心立方结构
第一布里渊区
以任一倒格点为原 点,考虑到离原点最近 的倒格点共有12个,即 作出相应的12个中垂面, 围成一个12面体,因次 近邻倒格点的中垂面并 不切割它,所以其第一 布里渊区的形状就是12 面体。
七个晶系与十四个布拉菲格子关系图
立方晶系
晶体的32种 宏观对称性 类型可以分 成七类,即 七个晶系。 其中每个晶 系包含若干 种点群,它 们具有某些 共同的对称 素。
简单立方 体心立方 面心立方 六角 简单四方 体心四方
六角晶系 四方晶系 三角晶系
三角
简单正交 底心正交 体心正交 面心正交 简单单斜 底心单斜 简单三斜
a1 a2 a3 a2 a1 , a3
三角晶系、四方晶系、六角晶系
三角晶系 三角
四方晶系 简单四方
四方晶系 体心四方
六角晶系 六角 a1 a 2 a 3
a1 a2 a3
120
90
a1 a2 a3
a1 a2 a3
90
C 1 2 3
O
a
1
a
2
OA' 晶向
B
[100]
A
OB' 晶向 [110]
晶向指数
晶向指数
某些晶向只是方向不同,而周期却是相同的,这类 晶向称为等效晶向,用<l1l2l3>表示。如立方晶格中的
固体物理(第2课)常见晶格结构.
![固体物理(第2课)常见晶格结构.](https://img.taocdn.com/s3/m/7c8e43981a37f111f0855b06.png)
氯化钠型结构
氯化钠型结构
复式面心立方结构:KCl、LiH、PbS
美国在短波红外成像方面投入了很大力量 ,研制了 PbS 短波红外探测器用于“响尾蛇”空空导弹之后 又成功 研制了用于“响尾蛇 ”导弹改进型的 PbSe短中波红外
探测器。此外 ,最早研制的截止波长在大气水汽吸收
峰 2.7 μm的 6 000元 PbS短波红外焦平面探测器,已成
密勒指数的求法:(示意图)
举例
– 求出晶面在坐标轴X、Y、Z上的相应截距p、q、r ;
– 取截距倒数h,k,l,(h、k、l为晶面指数或密勒指
数); – 将h、k、l化为没有公约数的整数比h:k:l= – 将h、k、l加圆括号(hkl),即为晶面指数。
说明:
以格点为原点,以基矢为坐标轴,建立坐标系。 晶面在基矢上的截距为(x,y,z),则其倒数连比 可化为互质的整数(hkl),称为该族晶面的密勒指 数。 实际工作中,常以晶胞(不是原胞)的基矢a,b,c 为坐标轴来建立坐标系,a,b,c不一定正交。 密勒指数既表示一族晶面,也表示单个晶面。
生长时,可在熔融硅中掺 入杂质来获得期望的电阻 “切克劳斯基法”生长单晶硅 率 。
直拉单晶硅
Silicon Ingots (400mm)
大单晶棒能切成薄的圆片(wafer)
在大多数CMOS技术中,圆片的 电阻率为0.05到0.1Ω•cm,厚度 约为500到1000微米。
chip
中科院半导体所研制成功 我国最重最长6英寸液封直 拉法砷化鎵单晶 中科院半导体所研制成功我 国最重最长4英寸液封直拉法 砷化鎵单晶
负密勒指数表示: h k l 等效晶面表示:{h k l}
。
在立方晶系中密勒指数和晶向指数相同的晶面、 晶列互相垂直。
固体物理(第2课)原胞和晶胞
![固体物理(第2课)原胞和晶胞](https://img.taocdn.com/s3/m/5cca1730a32d7375a41780f7.png)
晶胞中含 两个原子
a a i b aj c ak
Li、Na、K、Rb、Cs、Fe
a a1 2 (i j k ) a a 2 (i j k ) 2 a a 3 (i j k ) 2
纤维锌矿是一种较少见的硫化锌的矿物形式,以法国化 学家Charles-Adolphe Wurtz的名字命名。 其晶体结构是六角形晶体系统的一员且包含有四面等位 的锌和硫原子形成ABABAB型结构。这种结构与 of 六方 碳或者六角的钻石的结构有很大程度的关联。 纤维锌矿单胞常数为: a = b = 3.81 Å = 381 pm c = 6.23 Å = 623 pm
1.5 几种典型的晶体结构:
1.5.1 立方晶系的布喇菲晶胞
a) 简立方晶格(sc)(示意图)(演示) 原胞 晶胞 b) 体心立方晶格(bcc)(示意图) (演示1) (演 示2) 晶胞 原胞 体积 c) 面心立方晶格(fcc) (示意图) (演示1) (演 示2) 晶胞 原胞
1.5.2 立方晶系的复式格子
由于晶胞中含4个原子,因此晶胞 体积为a3,其中4个原子占据体积为 2
6
a
3
氯化铯型结构
氯化铯型结构
晶胞和原胞
复式简立方结构:TlBr溴化铊、TlI(碘化钛)、 CuPd(钯铜)、AgMg、AlNi
返回
氯化钠型结构
氯化钠型结构
复式面心立方结构:KCl、LiH、PbS
返回
金刚石
金刚石和闪锌矿结构(1)
原胞 中含 一个 原子
ቤተ መጻሕፍቲ ባይዱ
Au、Ag、Cu、Al
返回
面心立方晶格中原胞的体积V
固体物理 第一章 晶体结构1-3
![固体物理 第一章 晶体结构1-3](https://img.taocdn.com/s3/m/8cc11e9f1eb91a37f0115c73.png)
表示为 {110 }
(111 ) 面等效晶面数分别为:4个
表示为 {111}
固体物理
固体物理学
45
固体物理
固体物理学
46
固体物理
固体物理学
可以证明:在立方晶系中,晶向指数为[hkl]的晶
列垂直于密勒指数为(hkl)的晶面。
例1:1.9 指出体心立方晶格(111) 面与(100) 面交线的晶向。
[001
],
[00
1
]
100
OB:共12个,表示为<110>
OC:共8个,表示为<111>,如右图
38
固体物理
固体物理学
二、晶面和晶面指数
晶面:在布拉伐格子中作一簇平行的平面,这些相互平
行、等间距的平面可以将所有的格点包括无遗。
—— 这些相互平行的
平 面称为晶体的晶面
固体物理
固体物理学
同一个格子,两组不同的晶面族
典型晶体:Be、Mg、Zn、Cd、Ti
配位数:12
8
固体物理
固体物理学
d. 面心立方晶格〔face-centered cubic, fcc〕
原子球排列为:ABC ABC ABC ……
面心立方晶格的典型单元
配位数:12
ABC面垂直于立方体的空间对角线。
典型晶体: Cu、Ag 、Au、Ca、Sr、Al、
晶格 —— 晶体中原子排列的具体形式。
1.元素晶体
一维
二维
二维正方堆积
二维密排堆积
2
固体物理学
固体物理
三维
a. 简单立方晶格
〔simple cubic, sc〕
✓ 原子球在一个平面
固体晶格结构讲义课堂PPT
![固体晶格结构讲义课堂PPT](https://img.taocdn.com/s3/m/a6e47e36cbaedd3383c4bb4cf7ec4afe04a1b1e6.png)
位矢R
r
R+r
13
1.3.2 简单晶 格 的 实 例
1. 简单立方晶格 2. 体心立方晶格 3.面心立方晶格
14
1.简单立方晶格的基矢
15
2. 体心立方晶格
具有体心立方晶格结构的金属:Li、
Na 、K、 Rb、 Cs、 Fe等,
16
3. 面心立方晶格
具有面心立方晶格结构的金属:Al
Cu等
17
(1)通过任一格点,可以作全同的晶面与一晶面平行,构成 一族平行晶面.
(2)所有的格点都在一族平行的晶面上而无遗漏;
(3)一族晶面平行且等距,各晶面上格点分布情况相同;
(4)晶格中有无限多族的平行晶面。
23
24
2. 密勒指数
表示晶面的方法,即方位: 在一个坐标系中用该平 面的法线方向的余弦;或表示出这平面在坐标轴上的 截距。即把晶面在坐标轴上的截距的倒数的比简约为互质的
[l1l2l3]
20
21
22
2、晶面-
。。。。。。。。。。。 。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。。。。。 。。。。。。。。。。。
晶面的特点:
19
晶向
每一族晶列的定义了一个方向,该取向为晶向;
同样一族晶面的特点也由取向决定,因此无论对于晶 列或晶面,只需标志其取向。
晶列指数 (晶列方向的表示方法)
任一格点 A的位矢Rl为 Rl =l1a1+l2a2+l3a3
a2
O a3
A
Rl a1
固体物理课件第二章_晶体的结构
![固体物理课件第二章_晶体的结构](https://img.taocdn.com/s3/m/a913ebce89eb172ded63b747.png)
Na+构成面心立方格子 Cl-也构成面心立方格子
(6) CsCl: 由两个简单立方子晶格彼此沿 立方体空间对角线位移1/2 的长度套构而成
(7) 闪锌矿结构
化合物半导体 —— 锑化铟、砷化镓、磷化铟 面心立方的嵌套
(8) 钙钛矿结构
钛酸钙(CaTiO3) 钛酸钡(BaTiO3) 锆酸铅(PbZrO3) 铌酸锂(LiNbO3) 钽酸锂(LiTaO3)等
面心立方格子:原点和12个近邻格点连线的垂 直平分面围成的正十二面体
体心立方格子:原点和8个近邻格点连线的垂直 平分面围成的正八面体,沿立方轴的6个次近 邻格点连线的垂直平分面割去八面体的六个角, 形成的14面体 —— 八个面是正六边形,六个面是正四边形
§1.2 晶列和晶面
思考: 金刚石为什么有固定的面? 这些面和晶格结构有什么关系?
根据周期性:
f e
k k
ikx
fk e
k
ik ( x na )
f k eikx f k eik( x na)
k k
e
ik na
1
m 0,1,2,
k na k Rn 2m
2 k h Gh a
k=b的波传过一个晶格长度,相位改变2π
晶面:所有结点可以看成分布在一系列相互平 行等距的平面族上,每个平面族称为一个晶面 晶面用法向或晶面指数标志
例:同一个格子,两组不同的晶面族
晶面的性质: –晶格中一族的晶面不仅平行,并且等距 –一族晶面必包含了所有格点 –三个基矢末端的格点必分别落在该族的不 同晶面上(有理指数定理)
晶面(米勒)指数:晶面把基矢 a1 , a2 , a3 分别
固体物理学第一章 晶体的结构(2)
![固体物理学第一章 晶体的结构(2)](https://img.taocdn.com/s3/m/fdd93e3e0b4c2e3f572763cb.png)
(d)
x1x1
例3.正六角柱 * 不动 * 绕上下面心连线转2π /6,2π /3, π , 4π /3, 5π /3 * 绕对棱中点连线转π /2 (3个) * 绕对面中心连线转π /2 (3个) 12转动,再加中心反演,共24个对称操作 分析对称性一一列出对称操作很麻烦,为简 便,不列对称操作,而列出对称素。 一个物体的旋转轴或旋转-反演轴统称该物体的对称素。 *旋转轴:一个物体绕某一转轴旋转2π /n 及其整数倍后复原,该轴 称物体的n重旋转轴,记作n。 *旋转反演轴:物体旋转2π /n ,再作中心反演的联合操作及联合 操
对于周期函数,在数学上可以进行付里叶展开(变换)。对 于晶格周期函数进行展开,就可以引入倒格子的概念。 在固体物理中,倒格子是一个极其重要的概念,一个新概念, 也是一个比较抽象的概念。对应波矢空间,或状态空间。空间矢量 量纲 [长度]-1。 倒格子概念的用途:X-ray衍射分析 晶格振动:原子运动状态的描写
群的例子:所有整数相对其加法运算构成一个群(整数群)。 封闭性:所有整数相加仍然为一整数。 单位元:整数 “0”。 结合律:整数相乘满足结合律 逆元存在:整数和其相对应的“负整数”。这里的群元为无穷多个,乘法呢?)
思考题:所有非零的实数是否相对于数的乘法运算构成一个群呢?
* 对称操作群的说明(回答为什么对称操作构成一个群?): “乘法规则”为连续操作。并满足四个条件: 1.单位元素就是不动; 2.逆群元存在; 3.结合律为操作的先后次序。 4.对称操作存在封闭性。 所以对称操作可以组成群。 (应讨论晶体满足什么条件对称操作形成封闭的群)
n
作的整数倍后不变, 这个轴称物体的n重旋转反演轴,记 操作过程中保持不 变的点、线、面
* 2 代表线旋转π ,再作中心反演,如图 A' A 实际存在一个镜面,这个对称素一般称 O 镜面,用m表示,即 2 = m. 3.对称操作群(Group) 一个物体的全部对称操作的集合称对称操作群. A'' * 群的定义:它是一个数学“元素”集合,数学“元素”(群元)之
固体物理二章知识点总结
![固体物理二章知识点总结](https://img.taocdn.com/s3/m/81e75869abea998fcc22bcd126fff705cc175cd7.png)
固体物理二章知识点总结固体物理第二章是关于晶体结构的内容,围绕着晶体的结晶结构、晶体点阵和基本晶胞的概念来展开讨论。
晶体是由周期性排列的原子或分子组成的,具有高度有序的结构,其结晶结构决定了晶体的性质和行为。
在这一章中,我们将从晶体的基本概念出发,逐步展开对晶体结构的探讨。
晶体的结晶结构是指晶体中原子或分子的排列方式和规律。
晶体的结晶结构包括晶体点阵和晶体的基本晶胞。
晶体点阵描述了晶体原子或分子的周期性排列方式,而晶体的基本晶胞则是由最小的重复单元构成,可以描述晶体的整体结构。
在这一部分,我们将介绍常见的晶体点阵和基本晶胞的类型以及它们之间的关系。
晶体点阵包括简单立方晶体、体心立方晶体和面心立方晶体等多种类型。
这些不同类型的晶体点阵具有不同的原子或分子排列方式和周期性,从而导致了晶体具有不同的性质和行为。
而晶体的基本晶胞则由部分晶胞和全部晶胞构成,它们决定了晶体的整体结构和周期性。
在这一章中,我们将深入探讨不同类型的晶体点阵和基本晶胞的性质和特点,并对它们进行详细的介绍和比较。
此外,我们还将介绍晶体缺陷和晶体生长的原理。
晶体缺陷是指晶体中存在的一些不规则排列的原子或分子,这些缺陷对晶体的性质和行为有着重要的影响。
晶体生长则是指晶体通过物质的沉积和积累形成有序结构的过程,它是晶体的产生和发展的基本原理。
在这一章中,我们将对晶体缺陷和晶体生长的机制和规律进行详细的阐述和分析。
总的来说,固体物理第二章是关于晶体结构的内容,围绕着晶体的结晶结构、晶体点阵和基本晶胞的概念展开讨论,同时还包括晶体缺陷和晶体生长的原理。
这些知识点对于理解固体物质的结构和性质,以及相关材料的性能和应用有着重要的意义。
在今后的学习和研究中,我们需要深入掌握这些知识点,并不断拓展和深化自己的理解,以便更好地应用和发展固体物理的相关理论和方法。
固体物理第二章第二节 2晶格 (2)
![固体物理第二章第二节 2晶格 (2)](https://img.taocdn.com/s3/m/d719e614c5da50e2524d7f5f.png)
简单晶格 四、 原胞(primitive cell) 1. 原胞的概念
复式晶格
原胞是晶体中体积最小的周期性重复单元, 整个晶格可看成是由无限多个原胞无间隙地紧 密排列而成,或者说将原胞平移一切可能的格 矢量便可得到整个晶格。
对于三维晶格,在晶格中取一个格点为顶 点,以三个不共面的方向上的周期为边长形成 的平行六面体作为重复单元,这个平行六面体 沿三个不同的方向进行周期性平移,就可以充 满整个晶格,形成晶体,这个平行六面体即为 原胞,代表原胞三个边的矢量称为原胞的基本 平移矢量,简称基矢。
定义2 布拉维点阵是由在空间排列和取向完全等同 的一系列分立的格点在空间作无限的规则排列 所构成的点阵。格点可以看作排列在一系列平 行等距的直线族和平面族上,这样点阵构成网 格,称为晶格或格子。因此,布拉维点阵也称 为布拉维格子。 几点说明: 1).由定义可知,构成布拉维格子的所有格点 是完全等价的,所有的格点周围环境相同。常 以此为判据来判断某一格子是否为布拉维格子。
a a1 j k 2 a a2 i k 2 a a3 i j 2
ak
a1
aj
a2 a3
ai
平均每个单胞包含4个格点。
原胞的体积
1 3 Ω a1 a2 a3 a 4
V 4
(c)体心立方(body-centered cubic,简称:bcc)
V 2
2
复式格子(complex crystal lattice) (a)金刚石结构(diamond,简称:DIA)
c
c
金刚石结构是由两个面心立方子晶格沿体对角线位 移1/4的长度套构而成,其单胞为面心立方。由面心立 方单胞的中心到顶角引8条连线,在互不相邻的4条连 线的中点各加一个原子就得到了金刚石晶格结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业:2
1. 试问面心立方晶格中,哪些晶向上原子的线密度 最大?
2. 试证明在立方晶系中, 晶面(a,b,c)与晶向[a,b,c]互 相垂直。
3. 求立方晶系中(121)晶面的面间距。
4. 在简单立方晶格中试求密勒指数为(111)和 (121)的晶面之间的夹角。(晶面与晶向,矢量计 算法则)
cos a b
(100面)
(111面)
返回
金刚石和闪锌矿结构(3)
原胞示意图
返回
金刚石和闪锌矿结构(4)
晶格常数:硅 0.543nm, 锗 0.566nm
向。对于简约格矢量,即n,m,l为互质数。 R na mb lc
其晶向记为[nml].
2) 晶向指数:用以标志晶列方向的参数。
3) 晶向指数的求法: (示意图)(常见晶向指数)
立方晶系中一些常用的晶向指数
说明:
❖ 晶向指数代表一族晶列,而不指某一特 定晶列。(示意图)
❖ 负晶向指数表示: u v w。
❖ 实际工作中,常以晶胞(不是原胞)的基矢a,b,c 为坐标轴来建立坐标系,a,b,c不一定正交。
❖ 密勒指数既表示一族晶面,也表示单个晶面。
❖ 负密勒指数表示: h k l 。
❖ 等效晶面表示:{h k l} ❖ 在立方晶系中密勒指数和晶向指数相同的晶面、
晶列互相垂直。
举例:
z
2a
4a
x
6a y
纤维锌矿是一种较少见的硫化锌的矿物形式,以法国化 学家Charles-Adolphe Wurtz的名字命名。 其晶体结构是六角形晶体系统的一员且包含有四面等位 的锌和硫原子形成ABABAB型结构。这种结构与 of 六方 碳或者六角的钻石的结构有很大程度的关联。 纤维锌矿单胞常数为: a = b = 3.81 Å = 381 pm c = 6.23 Å = 623 pm
(a) bcc晶格
(b) fcc晶格
2. 说明金钢石、闪锌矿晶胞和原胞中原子的数量?
3. 简要说明PbS 和InSb的晶格结构以及它们的应用 范围 。
1.6 晶向指数和晶面指数
1.6.1 晶向及其标志
1) 晶列:通过晶格中任意两个格点连一条直线, 该直线称为晶列。
2) 晶向:相互平行的一族晶列的共同方向称为晶
1 六方密堆积(演示)(示意图) 基元由两个原子构成。配位数12
2 纤维锌矿(六方ZnS)型结构 (示意图) 可以看成是S原子和Zn原子构成的六方密集子晶格沿 六方轴的c方向移动3c/8套构而成。 可以看成是4 个简单六方晶格的嵌套而成,每个原胞 内包含两对离子。 Ⅲ族元素的氮化物,如BN、AlN、GaN、InN。
ab
氯化钠型结构
氯化钠型结构
复式面心立方结构:KCl、LiH、PbS
返回
氯化铯型结构
氯化铯型结构
晶胞和原胞
复式简立方结构:TlBr溴化铊、TlI(碘化钛)、 CuPd(钯铜)、AgMg、AlNi
返回
金钢石结构 1
金刚石 3
返回
金钢石结构 2
返回
金刚石和闪锌矿结构(1)
金刚石结构
闪锌矿结构
– 求出晶面在坐标轴X、Y、Z上的相应截距p、q、r ; – 取截距倒数h,k,l,(h、k、l为晶面指数或密勒指
数); – 将h、k、l化为没有公约数的整数比h:k:l= – 将h、k、l加圆括号(hkl),即为晶面指数。
说明:
❖ 以格点为原点,以基矢为坐标轴,建立坐标系。 晶面在基矢上的截距为(x,y,z),则其倒数连比 可化为互质的整数(hkl),称为该族晶面的密勒指 数。
Cu 1s22s22p63s23p63d104s1
1.5.2 立方晶系的复式格子
a) 氯化钠型结构(示意图) b) 氯化铯型结构(示意图) c) 金刚石结构(演示) (示意图) d) 闪锌矿结构(演示) (示意图) e) 钙钛矿结构: (示意图) f)六方密积结构
(326)
晶面间距的计算
❖低指数的晶面晶面间距较大,高指数的则较小。晶 面间距越大,该面上原子排列愈密集,否则越疏。
注意点:
❖ 本节的晶向、晶面及其指数主要针对布喇 菲格子而言。
❖ 如以原胞基矢为坐标轴建立坐标系,则晶 向指数和晶面指数的通式一般为[l1 l2 l3]、 (h1 h2 h3)。
❖ 密勒指数简单的晶面也是比较重要的晶面。
❖ 等效晶向表示:<u v w>
❖ 六方晶系的表示方法。(示意图)
1.6.2 晶面与密勒指数
❖ 晶面:同一平面上的格点构成一个晶面。 ❖ 晶格由无数互相平行且等距分布的晶面构成。 ❖ 截距方程:
x y z 1 a,b, c为截距 abc
❖ 密勒指数:用以标志晶面的参数。 ❖ 密勒指数的求法:(示意图) ❖ 举例
1.4.4 致密度
致密度η(堆积因子)晶胞中所有原子体积之和 与晶胞体积之比。
晶胞中原子体积之和
晶胞体积
1.5 几种典型的晶体结构:
❖ 1.5.1 立方晶系的布喇菲晶胞
a) 简立方晶格(sc) b) 体心立方晶格(bcc) Li、Na、K、Rb、Cs、Fe c) 面心立方晶格(fcc) Fe、Au、Ag、Cu、Al
闪锌矿结构又称为立方硫化锌
金刚石和闪锌矿结构(2)
复式面心立方结构:两个面心立方的布喇菲晶格沿对 角线平移1/4长度套构而成,但原子价键取向不同。 Si、Ge、GaAs、InP、InSb(用途?)
InSb 探测器阵列 320×240制冷 目前11所和211所已做 出来。
金刚石和闪锌矿结构(2)
许多其他化合物可以同样有纤维锌矿的结构,包括AgI、 ZnO、CdS、CdSe、α-SiC、GaN、AlN,以及其它半导 体。在大多数这种化合物中,纤维锌矿并不是受人喜爱 的大块晶体的形式,但是这种结构可以在某些非晶体形 式的材料中受到喜爱。
作业:1
1. 假设原子为刚性小球,则其堆积为下列晶格时原 子自身体积与其占据的空间体积之比为多少?
1.4 密堆积和配位数
1.4.1 密堆积
–结合能最低。 –紧密方式排列。
配位数:原子周围最近邻的原子数。
1.4.2 密堆积结构
–1 六方密堆积 –2立方密堆积:面心立方
1.4.3 最大配位数
–相同原子组成:最大配位数12。 –不同原子组成:最大配位数小于12。 –根据对称性:配位数12,8,6,4,3,2。