矩形的判定教案
矩形的判定定理教学设计(精选5篇)
矩形的判定定理教学设计(精选5篇)矩形的判定定理教学设计(精选5篇)作为一位杰出的教职工,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。
一份好的教学设计是什么样子的呢?下面是小编整理的矩形的判定定理教学设计(精选5篇),仅供参考,希望能够帮助到大家。
矩形的判定定理教学设计1一、说教材《矩形的判定》是人教版教科书《数学》八年级(下)第19章第二节的内容,本课为第2课时。
矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。
二、说目标1.知识与技能在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;规范推理的书写格式;应用矩形定义、判定等知识,解决简单的实际问题。
2.过程与方法通过矩形的判定定理猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。
3.情感、态度与价值观能积极参加数学学习活动,能体验数学活动充满着探索,培养逆向思维的能力、并从中获得成功的体验,充满对数学学习的好奇心和求知欲。
三、说重点难点1.重点:矩形的判定。
2.难点:矩形的判定及性质的综合应用。
判定定理都是以“定义”为基础推导出来的。
因此本节课要从复习矩形定义下手,得到矩形的判定方法,引出课题。
除了通过定义来判定一个四边形是矩形外,在探究判定定理时要让学生沿着这样的思路进行探究:矩形是在平行四边形的基础上添加有一个角是90度,那么还有别的添加方式吗?让学生探究:在平行四边形的边上添加条件是否可以可以成为矩形呢?同学么探究,发现在边上添加不出来条件使之成为矩形,那么学生自然会想到在对角线上添加条件。
这样就猜想出对角线相等的平行四边形是矩形。
然后同学们以组为单位对判定进行证明。
这样既培养了学生对问题的猜想又培养了学生分析问题、解决问题的能力,又培养了学生合作学习的精神。
初中数学矩形的判定教案
初中数学矩形的判定教案教学目标:1. 理解并掌握矩形的判定方法。
2. 能够应用矩形的定义、判定等知识,解决简单的证明题和计算题。
3. 培养学生的分析能力和逻辑思维能力。
教学重点:1. 矩形的判定方法。
2. 矩形的性质。
教学难点:1. 矩形的判定及性质的综合应用。
教学准备:1. 矩形的定义和性质的PPT。
2. 矩形的判定方法的PPT。
教学过程:一、导入(5分钟)1. 提问:什么叫做平行四边形?什么叫做矩形?2. 学生回答后,教师总结矩形的定义:矩形是一种特殊的平行四边形,它的四个角都是直角。
二、新课讲解(20分钟)1. 讲解矩形的性质:矩形的对边相等,对角相等,对角线互相平分。
2. 讲解矩形的判定方法:a. 对角线相等的平行四边形是矩形。
b. 有三个角是直角的四边形是矩形。
3. 通过PPT展示矩形的判定方法的例子,让学生理解并掌握判定方法。
三、例题讲解(15分钟)1. 出示例题,让学生独立思考并解答。
2. 讲解答案,并解释解题思路。
四、练习与巩固(10分钟)1. 让学生完成课后练习题,巩固矩形的判定方法。
2. 教师巡视课堂,解答学生的疑问。
五、小结与作业布置(5分钟)1. 总结本节课的主要内容,强调矩形的判定方法。
2. 布置作业:完成课后练习题,准备下一节课的讲解。
教学反思:本节课通过讲解矩形的定义、性质和判定方法,让学生掌握了矩形的基本知识。
在例题讲解环节,通过具体的题目,让学生理解并掌握了矩形的判定方法。
在练习环节,让学生通过自主练习,巩固了所学知识。
整体教学过程流畅,学生反应积极。
但在讲解矩形的性质时,可以更加详细地解释矩形的对角线互相平分的性质,让学生更好地理解矩形的性质。
下一节课,可以让学生通过自主探究,发现矩形的其他性质,提高学生的学习兴趣和主动性。
矩形的判定-人教版八年级数学下册教案
矩形的判定-人教版八年级数学下册教案教学目标1.了解矩形的定义和性质;2.掌握矩形的相关定理和判定方法;3.能够正确判断矩形的形状,并运用相关知识解决简单问题。
教学重点1.矩形的定义和性质;2.矩形判定的方法。
教学难点1.运用矩形的性质解决问题;2.综合运用多个定理对复杂问题进行判定。
教学过程1. 导入(5分钟)老师通过简短的视频或图片,引导学生思考矩形的定义和性质。
2. 讲授(20分钟)2.1 矩形的定义和性质老师向学生介绍矩形的定义和性质:矩形是一个四边形,其对角线相等且互相垂直。
矩形的性质:① 有4条直角边;② 对角线相等;③ 对边平行且相等。
2.2 矩形的判定老师向学生介绍矩形的判定方法:矩形的判定方法有以下几个:① 四边形的对角线相等且互相垂直;② 四边形的对边相等且对角线相等;③ 四边形中,连续两边相等且对角线相等。
2.3 矩形的相关定理老师向学生介绍矩形的相关定理:① 矩形的内角和为360度;② 矩形的面积公式为:S=ab,其中a和b分别为矩形的两个相邻边长。
3. 拓展(15分钟)老师出示几个图形,让学生根据判定方法判断它们是否为矩形,并运用相关定理计算它们的面积。
4. 练习(20分钟)老师出示一些练习题,让学生在回顾前面的知识后进行自主练习。
5. 总结(5分钟)老师对本节课的内容进行总结,并强调学生需要牢记矩形的定义和性质,掌握矩形的判定方法、相关定理,并能够在解题中正确运用。
教学反思本节课中,老师通过简单易懂的方式向学生讲解了矩形的定义、性质、判定方法和相关定理,注重运用示例和练习来加深学生的理解和掌握程度。
在教学中,老师应该更加注重提高学生的自主学习能力,在拓展和练习环节中,能够通过举一反三的方式,引导学生去发现更多规律,增强学生的思维能力。
同时,也应该注意根据学生的学习情况,及时进行巩固和拓展,使学生在轻松愉悦的学习氛围中,掌握本节课所学的内容。
初中数学《矩形》教案(精选11篇)
初中数学《矩形》教案初中数学《矩形》教案(精选11篇)作为一名教师,就有可能用到教案,借助教案可以更好地组织教学活动。
那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的初中数学《矩形》教案,希望对大家有所帮助。
初中数学《矩形》教案篇1一、教学目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力二、重点、难点1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.三、例题的意图分析本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.四、课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)五、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2 (补充)已知ABCD的对角线AC、BD相交于点O,△AOB 是等边三角形,AB=4 cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形ABCD是平行四边形,∴ AO= AC,BO= BD.∵ AO=BO,∴ AC=BD.∴ ABCD是矩形(对角线相等的平行四边形是矩形).在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴ BC= (cm).例3 (补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.证明:∵ 四边形ABCD是平行四边形,∴ AD∥BC.∴ ∠DAB+∠ABC=180°.又 AE平分∠DAB,BG平分∠ABC ,∴ ∠EAB+∠ABG= ×180°=90°.∴ ∠AFB=90°.同理可证∠AED=∠BGC=∠CHD=90°.∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).六、随堂练习1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD 到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.七、课后练习1.工人师傅做铝合金窗框分下面三个步骤进行:⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵ 摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数初中数学《矩形》教案篇2教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件.2.提高对矩形的性质和判别在实际生活中的应用能力.过程与方法目标:1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.情感与态度目标:1、在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2、通过对矩形的探索学习,体会它的内在美和应用美.教学重点:矩形的性质和常用判别方法的理解和掌握.教学难点:矩形的性质和常用判别方法的综合应用.教学方法:分析启发法教具准备:像框,平行四边形框架教具,多媒体课件.教学过程设计:一. 情境导入:演示平行四边形活动框架,引入课题.二.讲授新课:1. 归纳矩形的定义:问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)结论:有一个内角是直角的平行四边形是矩形.八年级数学上册教案2.探究矩形的性质:(1). 问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)结论:矩形的四个角都是直角.(2). 探索矩形对角线的性质:让学生进行如下操作后,思考以下问题:(幻灯片展示)在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.①. 随着∠α的变化,两条对角线的长度分别是怎样变化的?②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生操作,思考、交流、归纳.)结论:矩形的两条对角线相等.(3). 议一议:(展示问题,引导学生讨论解决.)①. 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.②. 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(4). 归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.例解:(性质的运用,渗透矩形对角线的“化归”功能.)如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4厘米.求BD与AD的长.(引导学生分析、解答.)探索矩形的判别条件:(由修理桌子引出)(1). 想一想:(学生讨论、交流、共同学习)对角线相等的平行四边形是怎样的四边形?为什么?结论:对角线相等的平行四边形是矩形.(理由可由师生共同分析,然后用幻灯片展示完整过程.)(2). 归纳矩形的判别方法:(引导学生归纳)有一个内角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.三.课堂练习:(出示P98随堂练习题,学生思考、解答.)四.新课小结:通过本节课的学习,你有什么收获?(师生共同从知识与思想方法两方面小结.)五.作业设计:P99习题4.6第1、2、3题.课后反思:在平行四边形及菱形的教学后。
八年级数学下册《矩形的判定》教案、教学设计
3.各小组展示讨论成果,全班分享讨论。
4.教师点评各小组的讨论情况,针对存在的问题进行指导和解答。
(四)课堂练习
在课堂练习环节,我将设计以下练习题:
1.基础题:判断哪些图形是矩形,哪些不是,并说明理由。
2.提高题:运用矩形性质解决实际问题,如计算矩形面积、周长等。
-设想评价:课堂问答关注学生的即时理解和反应;小组讨论评价学生的合作能力和交流技巧;课后作业则侧重于学生的独立思考和问题解决能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将通过以下方式激发学生的学习兴趣,为新知的学习做好铺垫。
1.利用生活实例引入:向学生展示一些生活中常见的矩形物品,如书本、电视、门等,引导学生观察它们的共同特征,为新课的学习提供直观的感知。
2.提出问题:为什么这些物品的形状都是矩形?矩形具有哪些特殊的性质?通过问题引导学生思考,激发他们的好奇心。
3.回顾已学知识:让学生回顾平行四边形、菱形、正方形的性质及判定方法,为新课矩形的判定做好知识准备。
(二)讲授新知
在讲授新知环节,我将按照以下步骤进行:
1.介绍矩形的定义:四边形中对边相等且四个帮助的品质,使其在合作学习中,体验到共同成长的快乐。
4.引导学生树立正确的价值观,认识到学习数学不仅是提高自身素质的需要,更是为国家、为社会作贡献的重要途径。
二、学情分析
八年级学生在学习《矩形的判定》这一章节时,已具备了一定的几何基础,掌握了平行四边形、菱形、正方形的性质及判定方法。在此基础上,学生对矩形的认识处于初步阶段,需要进一步引导和拓展。此外,学生在解决几何问题时,逐渐形成了自己的思维方式和方法,但逻辑推理能力、问题分析能力仍有待提高。针对这些情况,教学过程中应注重以下几点:
矩形的判定教学设计
矩形的判定教学设计第一篇:矩形的判定教学设计《矩形的判定》教学设计一、教学目标知识与技能目标⑴、理解并掌握矩形的判定方法。
⑵、使学生能应用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。
过程与方法目标经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法。
情感态度价值观目标培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要。
二、教学重点与难点重点:矩形的判定的内容。
难点:矩形判定定理的证明以及灵活应用。
三、教学手段方法:多媒体直观演示与几何论证相结合,由易到难、层层深入的探究式教学方法进行教学。
四、教学过程设计问题与情境师生互动行为设计意图课前热身1、怎样的四边形是平行四边形?2、平行四边形有哪些性质?3、如何判定一个四边形是平行四边形?有几种判定方法?温故知新 ?1、矩形的定义是什么? ? ? ?2、矩形具有平行四边形的一切性质。
除此而外,矩形还有哪些特殊性质呢??1、对照所提问题,前后桌同学一对一提问。
?2、在学生互相检查知识掌握情况之时,教师巡回视察学生检查的认真情况,并及时给予指导。
1、学生根据提问举手回答问题。
有一个角是直角的平行四边形是矩形。
(教师明确指出:矩形的定义具有两重性,既是矩形的性质,又可以作为矩形的一种判定方法)2、教师在学生回答的基础上,进行梳理总结。
?3、矩形的性质梳理边:两组对边平行且相等。
角:四个角都是直角。
对角线:两条对角线互相平分且相等。
对称性:既是中心对称图形,又是轴对称图形。
??通过课前检查学生对知识的掌握情况,达到梳理已学过知识的目的。
同时也为本节课的顺利进行做好铺垫工作。
让学生与学生展开对话。
教师强调矩形定义中的两个条件,并让学生明白自己已经学过一种矩形的判定方法,为学习另外两种判定方法做准备。
?教师着重强调注意事项,并用框图帮助学生理解平行四边形与矩形的一般与特殊的关系。
情境引课 ? ? 问题1:李芳同学用画“边---直角、边---直角、边---直角、边”这样四步画出了一个四边形,她说这就是一个矩形,她的判断对吗?教师出示图形,并标出直角,供学生观察、思考。
矩形的判定
矩形的判定篇一:矩形的判定教案20.2矩形的判定教案荆紫关一中李俊一、教学目标:1. 知识与技能:经历并了解矩形判定方法的探索过程,使学生逐步掌握说理的基本方法;掌握矩形的判定方法,能根据判定方法进行初步运用。
2. 过程与方法:在探索判定方法的过程中发展学生的合理推理意识、主动探究的习惯,在画矩形的过程中,培养学生动手实践能力,积累数学活动经验。
3. 情感态度与价值观:激发学生学习数学的热情,培养学生勇于探索的精神和独立思考合作交流的良好习惯,体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
通过与他人的合作,培养学生的合作意识和团队精神。
二、教学重点与难点:教学重点:探索矩形的判定方法、突破方法:为了突出重点,以学生自主探索、合作交流为主,提出问题,让学生动眼观察,动脑猜想,动手验证,进而掌握矩形的判定方法。
教学难点:判定方法的理解和初步运用,突破方法采用教师引导和学生合作的教学方法,及化归的数学思想。
三、教具准备:教师:三角板、圆规学生:三角板、圆规、白纸四、教学过程(一)自学导纲1、创设情境导入新课师:请同学们观察教室的门窗是什么形状?工人师傅在制作这些门窗时,是怎样验证它们是矩形的?大家想不想知道?本节老师将带领大家一起探讨这一问题。
(板书课题20.2 矩形的判定)2、出示导纲,学生自学师:请同学们自学教材P107,独立完成下列问题导纲知识性问题1~4。
(二)合作互动探究新知1、师:哪们同学愿意将你自学的成果展示给大家,其他同学注意倾,看有没有与自己不同的在方。
生、汇报师:大家完成的很好,请猜想它是真命题还是假命题?你能证明一下你的猜想吗?请同学们用圆规和直尺画对角线相等的平行四边形,并与同桌交流一下,这是个什么图形?生:汇报师:这像个矩形,如何用逻辑推理的方法验证,请同学们小组合作,讨论验证。
生:小组合作交流师:请同学们说说你的证明过程(学生回答)你们为什么想到用这种方法?通过动手操作和逻辑推理明白它是个真命题,我们把它做为矩形的判定定理1(板书定理1)判定定理1对角线相等的平行四边形是矩形。
矩形的判定教案
矩形的判定教案教案:矩形的判定一、教学内容本节课的教学内容来自人教版九年级上册的数学教材,第20章第三节“矩形”。
本节课的主要内容有:1. 了解矩形的定义和性质;2. 掌握矩形的判定方法;3. 能够运用矩形的性质和判定方法解决实际问题。
二、教学目标1. 学生能够理解矩形的定义和性质,掌握矩形的判定方法;2. 学生能够运用矩形的性质和判定方法解决实际问题;3. 学生能够培养逻辑思维能力和空间想象能力。
三、教学难点与重点重点:矩形的定义和性质,矩形的判定方法;难点:矩形的判定方法的灵活运用。
四、教具与学具准备教具:黑板、粉笔、直尺、圆规;学具:每人一本教材,一张白纸,一支笔。
五、教学过程1. 实践情景引入:教师展示一个生活中常见的场景,如教室里的窗户,门等,让学生观察并思考这些物体是否是矩形。
引导学生发现矩形在生活中的应用。
2. 矩形的定义与性质:(2)教师引导学生探索矩形的性质,如对角线互相平分,对边相等等。
3. 矩形的判定方法:(2)教师通过例题,让学生理解和掌握矩形的判定方法。
4. 随堂练习:教师给出一些练习题,让学生运用矩形的性质和判定方法进行解答。
教师及时给予指导和反馈。
5. 矩形在实际问题中的应用:教师通过一些实际问题,让学生运用矩形的性质和判定方法进行解决。
如计算矩形的面积,周长等。
六、板书设计板书设计如下:矩形的定义与性质:四边形,所有角都是直角对边平行且相等对角线互相平分矩形的判定方法:所有角都是直角对边平行且相等四边形是矩形七、作业设计作业题目:1. 判断下列图形是否是矩形,并说明理由。
图形1:……图形2:……图形3:……答案:1. 图形1:是矩形,因为……图形2:不是矩形,因为……图形3:是矩形,因为……八、课后反思及拓展延伸课后反思:本节课通过实践情景引入,让学生对矩形有了直观的认识。
通过探究矩形的定义与性质,判定方法,使学生掌握了矩形的基本知识。
通过随堂练习和实际问题解决,让学生灵活运用了矩形的性质和判定方法。
矩形的判定新人教版教案
矩形的判定新人教版教案第一章:矩形的定义与性质1.1 矩形的定义1.1.1 引入:通过生活中的实例,如门、窗、箱子等,让学生感受矩形的形状。
1.1.2 讲解:矩形是一个四边形,其中所有角都是直角,对边相等。
1.1.3 练习:让学生画出几个矩形,并测量其角度和边长。
1.2 矩形的性质1.2.1 引入:通过观察矩形的特征,探讨矩形的性质。
1.2.2 讲解:矩形的对边平行且相等,对角相等,对边角相等。
1.2.3 练习:让学生运用直尺和量角器,验证矩形的性质。
第二章:矩形的判定方法2.1 判定方法一:四边形是矩形2.1.1 引入:探讨如何根据四边形的性质判定一个四边形是矩形。
2.1.2 讲解:如果一个四边形的对边平行且相等,它是矩形。
2.1.3 练习:让学生判断几个四边形是否为矩形,并说明理由。
2.2 判定方法二:三角形是直角三角形2.2.1 引入:探讨如何根据三角形的性质判定一个三角形是直角三角形。
2.2.2 讲解:如果一个三角形的三个角都是直角,它是直角三角形。
2.2.3 练习:让学生判断几个三角形是否为直角三角形,并说明理由。
第三章:矩形的应用3.1 矩形的长和宽3.1.1 引入:探讨如何求矩形的长和宽。
3.1.2 讲解:矩形的长和宽可以通过测量对边的长度得到。
3.1.3 练习:让学生测量几个矩形的长和宽,并记录数据。
3.2 矩形的面积和周长3.2.1 引入:探讨如何计算矩形的面积和周长。
3.2.2 讲解:矩形的面积等于长乘以宽,周长等于长加上宽的两倍。
3.2.3 练习:让学生计算几个矩形的面积和周长,并记录数据。
第四章:矩形的进一步探究4.1 特殊矩形:正方形4.1.1 引入:探讨正方形与矩形的关系。
4.1.2 讲解:正方形是矩形的一种特殊情况,其对边相等且角度都是直角。
4.1.3 练习:让学生判断几个正方形是否为矩形,并说明理由。
4.2 矩形的对角线4.2.1 引入:探讨矩形的对角线的性质。
4.2.2 讲解:矩形的对角线相等,且互相平分。
矩形的判定教案
矩形的判定教案矩形的判定教案一、教学目标:1. 理解矩形的定义和性质。
2. 学会判断一个四边形是否为矩形。
3. 能够根据图形的性质来解决一些与矩形相关的问题。
二、教学内容:1. 矩形的定义和性质。
2. 矩形的判定方法。
三、教学过程:1. 导入新知识:引导学生回忆并说明矩形的特点:四条边相等,四个角都是直角。
解释矩形的性质:平行四边形且为菱形。
2. 矩形的判定方法:(1) 按照定义判断:例如:给出一个四边形ABCD,如果AB=BC=CD=DA,并且∠BAD=∠DCB=∠CDA=∠ABC=90°,那么这个四边形就是矩形。
(2) 利用矩形的性质判断:例如:如果四边形的对角线相等且互相平分,那么这个四边形就是矩形。
3. 练习与巩固:给学生几个实例,要求学生根据给出的条件判断四边形是否为矩形,并解释原因。
4. 拓展应用:通过一些与矩形相关的问题,引导学生应用矩形的性质进行解答,如矩形的面积、周长等问题。
5. 总结与归纳:总结矩形的定义和性质,并让学生用自己的话进行描述。
四、教学方法:1. 情境教学法:通过给学生提供现实生活中的例子,引导学生理解和掌握矩形的定义和性质。
2. 合作学习法:让学生分组进行小组讨论,互相交流和比较对矩形的判定方法的理解和应用。
3. 探究式学习法:通过让学生解决一些与矩形有关的问题,培养学生的独立思考和解决问题的能力。
五、教学评价:1. 在小组讨论环节,教师可以观察学生的表现,评价其讨论的深度和广度。
2. 在解答问题环节,教师可以评价学生的解答是否合理和准确。
六、板书设计:矩形的定义和性质- 四条边相等- 四个角都是直角矩形的判定方法- 按照定义判断- 利用矩形的性质判断七、教学反思:本节课通过引导学生回忆矩形的特点,以及利用情景和实例让学生体验矩形的定义和性质,达到了使学生理解和掌握矩形的定义和性质的目标。
通过拓展应用和探究式学习,培养了学生的解决问题的能力。
但是在教学过程中,可能会遇到一些学生理解困难的情况,需要教师关注并及时给予帮助。
20 2 矩形的判定教案
20 2 矩形的判定教案
一、教学目标:
1.能够正确理解矩形的定义;
2.能够根据四条边长判断矩形;
3.能够利用特征判断图形类型。
三、教学难点:
1.掌握利用四条边长判断矩形的方法;
2.清楚地理解四边形和矩形的区别。
四、教学过程:
1.引入:(2分钟)
向学生出示一个矩形和一个长方形,请学生说出它们的相同点和不同点,引导学生思考矩形和长方形的区别。
2.讲解:(10分钟)
(1)矩形的定义:一种拥有四边的四边形,其边两两平行,且相邻两边长度相等,对角线相等。
(2)判断矩形方法:根据四条边长,四条边两两相等,且对角线交于一点,如此则为矩形。
3.练习:(8分钟)
(1)请学生手绘一个矩形,并求出其对角线长度。
(2)请学生判断以下图形是否为矩形,并说明理由。
四边形是否为矩形理由
ABCDE 是
ADEFB 否左边竖直边和右边竖直边长度不同。
PQRSP 否对角线长度不相等。
ABCDE 否两个角度不是90度。
ABCDE 是
五、板书设计:
矩形定义:一种拥有四边的四边形,其边两两平行,且相邻两边长度相等,对角线相等。
判断矩形方法:根据四条边长,四条边两两相等,且对角线交于一点。
六、作业安排:
1.编写自己发明的四边形,并画图标示;
2.复习矩形的定义和判断方法;
3.作业本上分析解决问题中为什么要知道矩形及利用矩形的知识解决问题。
九年级数学上册《矩形的判定》教案、教学设计
2.培养学生严谨、认真的学习态度,使他们认识到矩形的判定在实际生活中的重要性。
3.培养学生的合作意识和团队精神,使他们学会与他人共同解决问题,互相学习,共同进步。
-利用多媒体手段,如几何画板,动态展示矩形的性质和判定过程,帮助学生形象理解。
-设计具有挑战性的问题,激发学生的思维,培养他们分析问题和解决问题的能力。
-结合实际例子,让学生感受数学与现实生活的联系,增强学习的实践性。
2.教学过程:
-导入新课:通过复习平行四边形的性质和判定,自然过渡到矩形的判定。
-新课展开:分别介绍矩形的三个判定定理,引导学生通过操作、观察、讨论等形式,理解并掌握定理。
2.学生在解决实际问题时,可能缺乏将矩形判定方法与问题联系起来的能力,需要教师在教学中引导学生运用所学知识。
3.学生的逻辑思维能力和空间想象能力发展不均衡,部分学生对几何问题的理解存在困难,需要针对不同学生进行个性化指导。
4.学生在小组合作学习中,沟通与协作能力有待提高,教师应关注学生之间的交流,促进共同进步。
九年级数学上册《矩形的判定》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握矩形的定义,即四边形中,有一对对边平行且相等的图形是矩形。
2.学会运用矩形的判定定理,包括:①对角线互相平分且相等的四边形是矩形;②有一个角是直角的平行四边形是矩形;③对边平行且相等的四边形是矩形。
4.能够运用矩形性质解决实际问题,如计算矩形的面积、周长等。
5.九年级学生面临升学压力,学习动力和兴趣有所减弱,教师应注重激发学生的学习兴趣,提高他们的学习积极性。
三、教学重难点和教学设想
矩形的判定教学设计
《矩形的判定》教学设计一、教学内容分析《矩形的判定》选自人教版八年级数学下册第十八章平行四边形。
在此之前,学生们已经学习了平行四边形的性质、判定,以及矩形的性质,这为过渡到本课题的学习起到了铺垫的作用,也为后面菱形、正方形的学习打下了基础。
二、教学目标1.知识与技能目标(能推导、归纳判定一个四边形是矩形的几种方法,会选取适当的判定方法判定一个四边形是矩形)2.过程与方法目标(在自主探究、合作交流的过程中,体会数学定理的生成过程)3.情感态度与价值观目标(激发数学学习兴趣,培养运用数学的意识与能力)三、教学重难点教学重点:能推导、归纳判定一个四边形是矩形的几种方法教学难点:会选取适当的判定方法判定一个四边形是矩形四、学情分析在上一节课学习的基础上,学生对特殊的平行四边形--矩形有了初步的认识,这就为本节课的学习打下了良好的基础。
对本堂课的内容,学生迫切想知道怎样去判定一个四边形为矩形,但是,判定方法的生成较为抽象、多面,学生归纳起来有一定的难度,这就需要教师的积极引导,只有让学生融入课堂、积极探究,才能学好知识,感受到知识的魅力。
五、教学过程1、情境导入,初步认识工人师傅在做门窗或矩形零件时,怎样确保图形是矩形?引发学生的思考。
2、思考探究,获取新知由定义,有一个角是直角的平行四边形是矩形.这是判别一个平行四边形是矩形的最基本的方法.我们知道,矩形的对角线相等.反过来,对角线相等的四边形是矩形吗?如果是,请说明理由;如果不是,请举一反例,并说说什么样的四边形对角线相等时是矩形呢?【教学说明】教师提出问题,让学生思考,在相互交流中加深认识.同时,教师可根据学生的探讨结论进行适当评析,帮助学生获取正确认知.请观察图(1),在四边形ABCD中,尽管AC=BD,但它不是矩形,图(2)中,在平行四边形ABCD中,若有AC=BD,则此四边形ABCD是一个矩形.你能说明理由吗?【教学说明】教师引导学生对图(2)进行论证,此时只要证明△ABC≌△DCB 即可得到∠ABC=∠DCB,又AB∥CD,∴∠ABC=∠DCB=90°,由定义知,四边形ABCD是矩形.【归纳结论】对角线相等的平行四边形是矩形.也可以说:对角线相等且互相平分的四边形是矩形.练一练求证:有三个角是直角的四边形是矩形.【教学说明】这一结论的证明不难,可由学生自己完成.教师应关注学生是否能规范地画图,写已知,求证,并给予证明.【归纳结论】有三个角是直角的四边形是矩形.3、典例精析,掌握新知例1 如图,在平行四边形ABCD中,对角线AC、BD相交于O,且AC=8cm,若△AOB是等边三角形,求此平行四边形的面积.解:在平行四边形ABCD中,对角线AC、BD相交于O,∴OA=OC,OB=OD.又∵△AOB是等边三角形,∴OA=OB,∴OA=OB=OC=OD,∴四边形ABCD是矩形.又∵AC=8cm,∴OA=OB=AB=4cm.在Rt△ABC中,AC=8cm,AB=4cm,∴BC=4√3cm.∴四边形ABCD的面积=AB×BC=4×4√3=16√3cm2.例2 如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH为矩形.解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵BG平分∠ABC,CG平分∠BCD,∠GFE=90°.∴四边形EFGH为矩形.【教学说明】以上两例也可先让学生探究,然后教师予以评讲,加深学生对矩形判定定理的理解和应用.4、运用新知,深化理解如图,在平行四边形ABCD中,点E、F为BC边上的点,且BE=CF,AF=DE,求证:平行四边行ABCD是矩形.如图,O是直线MN上一点,C是射线OP上一点,OA、OB分别平分∠MOP,∠NOP,F为CO的中点,过F作DE∥MN,交OA、OB于点D、E.求证:四边形CDOE为矩形.【教学说明】让学生自主探究,独立完成,然后相互交流,探寻结论,教师巡视,发现问题及时予以点拨.5、师生互动,课堂小结通过这节课的学习你有哪些收获?与同伴交流.【教学说明】学生在反思学习的过程中,巩固矩形的判定定理的理解,系统地掌握本节知识.6、作业布置必做:课本60页复习巩固1,2选做:课本61页第12题(1)。
《矩形的判定》教学设计
《矩形的判定》教学设计教案题目:矩形的判定教学目标:1.了解矩形的定义;2.能够根据给定的图形判断是否为矩形;3.能够根据给定的矩形的特征,确定矩形的性质。
教学重点:1.矩形的定义;2.判断图形是否为矩形。
教学难点:1.确定矩形的特征。
教学准备:1.PPT;2.矩形模型(纸板切割);3.实物矩形图形。
教学过程:一、导入(10分钟)1.引入矩形的概念:教师向学生展示一张矩形的图片,让学生观察并描述这张图片。
2.引导学生思考矩形的特征,然后由学生讲述自己的观察结果。
3.教师总结学生的观察结果,给出矩形的定义并用PPT展示。
二、学习矩形的特征(20分钟)1.通过PPT向学生展示一些不同形状的图形,让学生思考并回答:哪些图形是矩形?为什么?2.引导学生讨论矩形的特征,如角都为直角、边相等等,并总结出矩形的特点。
3.让学生用纸和铅笔绘制一些形状,并判断这些形状是否为矩形。
三、判断图形是否为矩形(30分钟)1.给学生分发一些图形卡片,让学生根据矩形的特征判断这些图形是否为矩形。
2.学生互相交换卡片并互相检查对方的判断是否正确。
3.选几位学生上台展示自己的判断过程,并与全班讨论判断的正确与否。
四、确定矩形的性质(30分钟)1.引导学生观察实物矩形图形,并与之前总结的矩形的特征进行对比。
2.让学生讨论矩形的性质:对角线相等、对角线互相垂直等。
3.通过教师演示,让学生观察和验证矩形的性质,并举例说明。
五、总结与评价(10分钟)1.教师对学生的学习情况进行总结和评价。
2.学生回顾所学的内容,总结矩形的定义和特征。
教学延伸:1.学生自行选择一些有趣的实物图形,用PPT展示并判断这些图形是否为矩形。
2.学生可以在家中或课堂上,观察身边的物体并判断是否为矩形。
矩形的判定(教学设计)
“矩形的判定”教学设计(1)1、教材的地位和作用《矩形的判定》是人教版教科书《数学》八年级(下)第18章第二节的内容,本课为第1课时。
矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。
2、教学目标(1)、知识与技能✧在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;✧规范推理的书写格式;✧应用矩形定义、判定等知识,解决简单的实际问题。
(2)、过程与方法通过对逆命题的猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。
(3)、情感、态度与价值观能积极参加数学学习活动,能体验数学活动充满着探索,并从中获得成功的体验,充满对数学学习的好奇心和求知欲。
3、教学重难点1、重点:三个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形。
2、难点:矩形的判定及性质的灵活运用二、教法设计在教学的过程中利用情景向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、培养能力、获得经验,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。
及时上交课堂练习,便于促进学生养成认真的习惯。
三、学法设计本课主要学习方式是学生在自主探索和合作交流的过程中,利用组长帮助个别学困组员的方法,使更大面积的同学真正理解和掌握基本的数学知识与技能、培养能力。
在作业的处理上,进行分层练习,让不同的学生得到不同的发展,树立学生学习数学的信心,让学生在学习活动中获得成功的喜悦,从而激发学生学习数学的兴趣。
四、教学过程(一)情景设置母亲节快到了,妮妮想做一个矩形的精美礼物送给妈妈,于是找来了直尺和三角板,你有什么办法可以帮她检测吗?看看谁的方法多?设计意图:利用班级同学的手工艺品,通过设疑式导入,来源于实际生活中的问题,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知,由知到用,为后面的问题解决埋下伏笔。
《矩形的判定》教案
《矩形的判定》教案标题:矩形的判定教案教案目标:1.了解矩形的定义和特征;2.掌握判断一个形状是否为矩形的方法;3.训练学生的逻辑思维和推理能力;4.培养学生观察、分析和解决问题的能力。
教学内容:1.矩形的定义和特征:四边相等、对角线相等、四个角都是直角;2.判断一个形状是否为矩形的方法;3.练习题和课堂互动。
教学步骤:第一步:导入新知引用教师提供的图片,展示不同的形状,包括矩形、正方形、长方形、菱形和其他形状,并让学生观察并说出每个形状的名称。
第二步:引入矩形的定义和特征1.提问:什么是矩形?让学生回答并描述矩形的特征。
2.教师解释:矩形是一种特殊的四边形,它的四边相等,对角线相等,四个角都是直角。
3.展示教师提供的图片,并强调矩形的特征。
第三步:讲解判断矩形的方法1.教师列出判断矩形的方法:a)判断四条边是否相等;b)判断对角线是否相等;c)判断四个角是否都是直角。
2.逐个解释并提供示例。
在每个示例中,教师和学生一同判断该图形是否为矩形。
第四步:练习题和课堂互动教师提出一系列练习题,让学生应用所学知识判断形状是否为矩形。
学生可以在黑板上画出图形,并用判断矩形的方法进行推理和判断。
同时,教师鼓励学生积极参与讨论和互动,提高学生的思维能力和解决问题的能力。
课堂互动问题示例:1.下面的形状是矩形吗?请说明理由。
a)一张纸的形状;b)一个电视机的形状;c)一块巧克力的形状。
2.如果一个形状有四条边相等,但是没有直角,它还可以被称为矩形吗?为什么?3.如果一个形状有四个角都是直角,但是对角线不相等,它是矩形吗?为什么?第五步:总结课堂所学教师总结矩形的定义和特征,并强调判断矩形的方法。
鼓励学生在日常生活中观察形状,运用所学知识判断矩形。
教学延伸:教师可以邀请学生自愿带来一些矩形的物品,如书、手机、文件夹等,并让学生展示并解释为什么这些物品是矩形。
教学评估:教师可以通过练习题和课堂表现来评估学生的掌握程度。
矩形的判定-华东师大版八年级数学下册教案
矩形的判定-华东师大版八年级数学下册教案一、教学目标1.了解矩形的定义及其特点;2.掌握矩形的判定方法;3.学会应用矩形的特点解决实际问题。
二、教学内容1. 矩形的定义及其特点矩形是对边平行的四边形,其中所有内角均为直角的四边形,具有以下特点:1.四条边相等;2.对角线互相垂直且相等;3.对边平行。
2. 矩形的判定方法矩形的判定方法有以下两种:方法一:平行四边形判定法如果一个四边形的对边相等且平行,那么它就是矩形。
方法二:直角判定法如果一个四边形的两组对边互相垂直,那么它就是矩形。
3. 矩形的应用矩形在现实生活中应用广泛,例如:1.棋盘、电视屏幕、平面图等大部分方形均可视为矩形;2.围栏、墙壁等建筑物常规使用矩形;3.电脑屏幕、窗户等可旋转的平面使用矩形的旋转可解决屏幕转动不正常的问题。
三、教学过程1. 矩形的定义及其特点在黑板上画出一个矩形,引导学生观察,发现矩形的三个特点。
2. 矩形的判定方法(1)了解平行四边形的概念并画出几个不同类型的平行四边形。
(2)通过研究平行四边形的特点,引出平行四边形判定法。
(3)通过几个实例演示平行四边形判定法的具体运用。
(4)引入直角概念,并在黑板上画出一个直角三角形。
(5)通过研究直角三角形的特点,引出直角判定法。
(6)通过几个实例演示直角判定法的具体运用。
3. 矩形的应用掌握矩形的特点后,引导学生思考矩形在现实生活中的应用,并进行讨论。
四、教学方法1.以实例为引导,引导学生主动探索矩形的特点与判定方法;2.结合现实生活和图形举例,帮助学生深入理解和应用矩形。
五、板书设计矩形的定义及其特点:1. 四条边相等;2. 对角线互相垂直且相等;3. 对边平行。
矩形的判定方法:1. 平行四边形判定法;2. 直角判定法。
矩形的应用:1. 棋盘、电视屏幕、平面图等大部分方形均可视为矩形;2. 围栏、墙壁等建筑物常规使用矩形;3. 电脑屏幕、窗户等可旋转的平面使用矩形的旋转可解决屏幕转动不正常的问题。
《矩形的判定》教案1
矩形的判定教案教师学科数学年级、班八年级课题矩形的判定时间年月日教学目标1、知识与技能:理解并掌握矩形的判定方法.2、过程与方法:使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力3、情感态度和价值观:在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
教学重点矩形的判定.教学难点矩形的判定及性质的综合应用.教具准备课件教学过程一、知识回顾;1、四边形、平行四边形、矩形的关系2、课前热身(矩形的性质)边:矩形的对边平行且相等角:矩形的四个角都是直角对角线;矩形的对角线相等对称性:中心对称和轴对图形。
二、情境导入木工朋友在制作窗框后,需要检测所制作的窗框是否是矩形,那么他需要测量哪些数据,其根据又是什么呢?你现在有办法帮他吗?(一)、由矩形的定义:有一个角是直角的平行四边形叫做矩形(定义判定)几何语言:∵平行四边形ABCD 中∠B=90°(已知)∴四边形ABCD是矩形(矩形的定义)(二)、新知探究:探究11、除了定义判定之外,你还有其它的判定方法吗?有一个角是直角一、1、矩形的定义是矩形最原始的判定,也是证明其它判定得出的基础。
2、性质与判定互为逆定理,复习性质对判定的猜想有所帮助。
二、改变教材判定定理的顺序的想法有1、定义判定为:“有一个角是直角的平行四边形叫做矩形”接着学习“三个直角的任意四边形”的判定衔接较好;2、按照性质定理的顺序学B、四个角都相等的四边形C、一组对边平行且对角相等的四边形D、对角线相等且互相平分的四边形2、如果E、F、G、H是四边形ABCD四条边的中点,要使四边形EFGH 是矩形,那么四边形ABCD应具备的条件是()A、一组对边平行而另一组对边不平行B、对角线相等C、对角线互相垂直D、对角线相等互相平分3、已知:如图,平行四边形 ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形.4、已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)平行四边形是矩形吗?说明你的理由.(2)求这个平行四边形的面积.四、小结:(课件)矩形的三种判定方法方法1:有一个角是直角的平行四边形是矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.1 矩形(二)
一、教学目标:
1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、重点、难点
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、课堂
(一)、复习引入
1.什么叫做矩形?
矩形的定义告诉我们具有什么样特征的平行四边形是矩形
学生:有一个角是直角
如果我们发现有一平行四边形有一个角是直角,那么实际上这个四边形是?? 学生:矩形
2.矩形有哪些性质?从那三方面总结的?
学生:边、角、对角线。
今天我们要面对的问题是:如何判定一个四边形是矩形?
(二)、新课讲解
其实我们刚才在复习上节课内容的时候已经得到了一个可以判定四边形是矩形的方法它是谁那?
定义判定:有一个角是直角的平行四边形是矩形。
关键词:直角 矩形
几何语言:οΘ90=∠A □ABCD 为矩形ABCD ∴
这是我们得到的第一个方法那么还有什么方法可以判定一个四边形为矩形那?带着这样的问题我们走入今天的情景一。
情境一:李芳同学用四步画出了一个四边形,她的画法是“边——直角、边——直角、边——直角、边”这样,她说这就是一个矩形,她的判断对吗?为什么?
李芳的方法对不对?我们不防自己动手试一试。
看看李芳到底是不是正确的。
归纳:有三个角是直角的四边形是矩形 。
几何语言:∵ ∠A=∠B=∠C=90°(已知)
∴四边形ABCD 是矩形(有三个角是直角的四边形是矩形 ) 这是我们得到第二种判定矩形的方法。
在实际的生产生活中工人师傅运用他们的智慧。
也得出了一种可以判定矩形的方法。
让我一起走进工人师傅为我们准本的情境二。
情境二:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?
谁能说说工人师傅的工作原理是什么?同学们认为工人师傅的做法对吗? 归纳:对角线相等的平行四边形是矩形 。
在下面的时间里我们以小组为单位,如果你认为他是对的请你给予它一个证明过程。
如果你认为它是错误的请举出反例。
证明:∵四边形ABCD是平行四边(已知)
在△ABC和△DCB中
∴△ABC≌△DCB(SSS)
∴∠ABC=∠DCB(全等三角形对应边相等)
又∵∠ABC+∠DCB=180°(平行四边形邻角互补)
∴∠ABC=90°(等式的性质)
又∵四边形ABCD是平行四边形(已知)
∴四边形ABCD是矩形(矩形的定义)
几何语言:∵AC=BD,四边形ABCD是平行四边形(已知
∴四边形ABCD是矩形(对角线相等的平行四边形是矩形)
这就是我们上节课所学的三种判定矩形的方法请同学们总结在自己的血案上并完成课堂练习.
(三)、练习
矩形的判定
法一:
几何语言:
法二:
几何语言:
法三:
几何语言:
学以致用
1、下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形;
()
(2)有四个角是直角的四边形是矩形;
()
(3)四个角都相等的四边形是矩形;
()
(4)对角线相等的四边形是矩形;
()
(5)对角线相等且互相垂直的四边形是矩形;
()
(6)对角线互相平分且相等的四边形是矩形;
()
(7)对角线相等,且有一个角是直角的四边形是矩形;
()
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;
()
(9)两组对边分别平行,且对角线相等的四边形是矩
形.()
2.工人师傅做铝合金窗框分下面三个步骤进行:
⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理
是:;
⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条
直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;
(四)、小结
快乐的时光总是短暂转眼间45分钟就这样过去了希望同学们做好课后的复习和对知识的巩固。