SPSS Statistics 19_聚类分析
spss聚类分析方法选择
SPSS聚类分析方法选择引言在数据分析中,聚类分析是一种常用的技术,用于将一组数据点分成不同的类别或群组。
聚类分析有助于揭示数据中的模式和结构,并帮助我们理解数据集中的关联性。
SPSS是一个流行的统计软件,提供了多种聚类分析方法供用户选择。
本文将介绍SPSS中常用的聚类分析方法,并讨论如何选择适合的方法。
聚类分析方法SPSS提供了多种聚类分析方法,包括K-means聚类、层次聚类和模糊聚类。
下面将对这些方法进行简要介绍:K-means聚类K-means聚类是一种基于距离的聚类方法,将数据点分为K个不同的类别。
该方法的主要优点是计算效率高,适用于大规模数据集。
K-means聚类的基本步骤包括选择初始聚类中心、计算每个数据点到聚类中心的距离、将数据点分配到最近的聚类中心,并重新计算聚类中心的位置。
K-means聚类的结果可以用于发现类别之间的差异和相似性。
层次聚类层次聚类是一种自下而上或自上而下的聚类方法,通过构建一个层次化的聚类结构来组织数据。
在层次聚类中,数据点被逐步合并形成更大的聚类,直到所有数据点都被合并为一个聚类或达到预定的停止条件。
层次聚类方法的优点是可以自动确定聚类的个数,并提供了一个可视化的聚类结构。
模糊聚类模糊聚类是一种基于隶属度的聚类方法,将数据点分配到多个不同的聚类中心,并为每个数据点计算其属于不同聚类的隶属度。
与传统的硬聚类方法不同,模糊聚类允许数据点属于多个不同的聚类,反映了数据的不确定性和模糊性。
模糊聚类的结果可以用于描述数据点在不同类别之间的相似性。
方法选择在选择聚类分析方法时,需要考虑以下几个因素:数据类型首先需要考虑数据的类型。
如果数据是连续变量,则可以使用K-means聚类或层次聚类方法。
如果数据是分类变量,则可以使用层次聚类方法。
如果数据既包含连续变量又包含分类变量,则可以使用模糊聚类方法。
聚类个数另一个需要考虑的因素是聚类的个数。
K-means聚类和模糊聚类需要在分析之前确定聚类的个数。
SPSS聚类分析具体操作步骤spss如何聚类
算法步骤:初始 化聚类中心、分 配数据点到最近 的聚类中心、重 新计算聚类中心、 迭代直到聚类中 心不再变化
适用场景:探索 性数据分析、市 场细分、异常值 检测等
注意事项:选择 合适的聚类数目、 处理空值和异常 值、考虑数据的 尺度问题
定义:根据数据点间的距离或相似性,将数据点分为多个类别的过程 常用方法:层次聚类、K-均值聚类、DBSCAN聚类等 适用场景:适用于探索性数据分析,发现数据中的模式和结构 注意事项:选择合适的距离度量方法、确定合适的类别数目等
常见的聚类分析方法包括层次聚类、Kmeans聚类、DBSCAN聚类等。
聚类分析基于数据的相似性或距离度量, 将相似的数据点归为一类,使得同一类 中的数据点尽可能相似,不同类之间的 数据点尽可能不同。
聚类分析广泛应用于数据挖掘、市场细分、 模式识别等领域。
K-means聚类:将数据划分为K个簇,使得每个数据点到所在簇中心的距离之和最小
聚类结果的可视化:通过图表展示聚类结果 聚类质量的评估:使用适当的指标评估聚类效果的好坏 聚类结果的解释:根据实际需求和背景知识,对聚类结果进行合理的解释和解读 聚类结果的应用:探讨聚类结果在各个领域的应用场景和价值
SPSS聚类分析常 用方法
定义:将数据集 划分为K个聚类, 使得每个数据点 属于最近的聚类 中心
聚类结果展示:通过图表或表格展示聚类结果,包括各类别的样本数和占比
聚类质量评估:采用适当的指标评估聚类效果,如轮廓系数、Davies-Bouldin指数等
聚类结果解读:根据业务背景和数据特征,解释各类别的含义和特征 聚类结果应用:说明聚类分析在具体场景中的应用,如市场细分、客户分类等
SPSS聚类分析注 意事项
确定聚类变量:选 择与聚类目标相关 的变量,确保变量 间无高度相关性。
用SPSS进行聚类分析(中文版)
选择聚类方法
根据数据类型和聚类目的选择 合适的聚类方法。常见的聚类 方法有层次聚类、K均值聚类 、DBSCAN聚类等。
层次聚类按照数据点之间的距 离进行层次式的聚类,可以生 成聚类树状图。
K均值聚类将数据点划分为K 个簇,使得每个数据点与其所 在簇的中心点之间的距离之和 最小。
DBSCAN聚类基于密度的聚类 方法,可以发现任意形状的簇 ,并去除噪声点。
03
根据实际需求和应用背景,对聚类结果进行解释和 应用。
03
CATALOGUE
K-means聚类分析
K-means聚类分析的原理
K-means聚类分析是一种无监督学 习方法,通过将数据划分为K个集群 ,使得同一集群内的数据点尽可能相 似,不同集群的数据点尽可能不同。
原理基于距离度量,将数据点分配给 最近的均值(即聚类中心),并不断 迭代更新聚类中心,直到聚类中心收 敛或达到预设的迭代次数。
K-means聚类分析的步骤
选择初始聚类中心
随机选择K个数据点作为初始聚类中心。
分配数据点到最近的聚类中心
根据距离度量,将每个数据点分配给最近的聚类中心。
更新聚类中心
重新计算每个集群的均值,将新的均值作为新的聚类中心。
迭代执行
重复步骤2和3,直到聚类中心收敛或达到预设的迭代次数。
K-means聚类分析的应用实例
系统聚类分析
系统聚类分析的原理
系统聚类分析是一种无监督的统计方法,通过将个体或群体按照其相似性或差异性进行分类,从而揭示数据内在的结构和模 式。
它基于个体间的距离或相似度进行分类,通过不断迭代和合并,最终形成若干个聚类,使得同一聚类内的个体尽可能相似, 不同聚类间的个体尽可能不同。
系统聚类分析的步骤
spss聚类分析
spss聚类分析SPSS是一款广泛使用的统计分析软件,其中包含了聚类分析的功能。
聚类分析是通过对数据进行归类,将数据划分为不同的样本组,并通过比较不同样本组之间的差别,来发现样本之间的联系和规律。
因此,在社会科学研究、医学研究、市场调研等领域都有广泛的应用。
聚类分析的主要目的是通过样本之间的相似性,将样本划分为不同的组别。
这些组别应当具有高度的内聚性和低度的外在性。
通常情况下,聚类分析主要分为两类:基于距离的聚类和基于密度的聚类。
在基于距离的聚类中,样本之间的相似性是通过计算它们之间距离的度量来确定的,而在基于密度的聚类中,相似性是通过样本之间的密度来定义的。
SPSS中的聚类分析可以按照样本之间的相似性和可分性来进行分析。
在分析之前需要确定聚类的样本数量和采用的距离度量。
距离度量可以是欧氏距离、曼哈顿距离、皮尔森相关系数等。
样本数量的确定可以采用层次聚类或K均值聚类等方法。
层次聚类分析将样本逐步合并成越来越大的组别,直到形成一个大的聚类。
这种方法是基于距离的聚类方法,通常使用最短距离法、最长距离法、中间距离法、重心距离法等来确定样本之间的距离。
聚类的结果可以用树状图或热图来进行展示。
另一种方法是K均值聚类,它将样本分成K个组别,使得组内样本之间的距离最小,而组间的距离最大。
该方法采用欧氏距离来衡量样本之间的距离。
在进行K均值聚类分析时,需要确定聚类的数量,可采用手动设置和基于统计指标的自动调整方法等进行确定。
聚类分析的结果可以用样本聚类图、热图和Dendrogram 等方式进行展示。
聚类分析的结果可用来确定样本之间的相似性,进而探究变量之间的关系。
同时,聚类分析也可用于分类问题的解决,对于预测和分类都有重要的应用。
总之,SPSS聚类分析是现代研究中经常采用的一种分析技术,它能够发现数据背后的内在结构,帮助我们更好地理解和处理研究问题。
使用SPSS软件进行因子分析和聚类分析的方法
使用SPSS软件进行因子分析和聚类分析的方法一、方法原理1.因子分析(FactorAnalysis)因子分析是从多个变量指标中选择出少数几个综合变量指标的一种降维的多元统计方法。
我们在多元分析中处理的是多指标的问题,观察指标的增加是为了使研究过程趋于完整,但由于指标太多,使得分析的复杂性增加;同时在实际工作中,指标间经常具备一定的相关性,使得观测数据所放映的信息有重叠,故人们希望用较少的指标代替原来较多的指标,但依然能放映原有的全部信息,于是就产生了因子分析方法。
2.聚类分析(ClusterAnlysis)聚类分析是根据事物本身特性来研究个体分类的统计方法,是按照物以类聚的原则来研究的事物分类。
3.市场细分方法的流程图二、实证分析已调查35个城市的总人口、生产总值、消费总额、人均年工资、年度储蓄总额、年度财政总收入等数据,试对上述城市进行分类研究。
1.因子分析:·选用Analyze→DataReduction→Factor……·引入因子分析的6个变量(总人口、生产总值、消费总额、人均年工资、年度总储蓄额、年度财政总收入)·提取公因子的方法(Method):主成分分析法·提取(Extract)可选:提取特征值大于1的因子·旋转(Rotation)的方法:方差最大正交旋转·因子得分(FactorScores):作为新变量存入表 1 方差解释表(Total Variance Explained)表 2 旋转后的因子负荷矩阵(Rotated Component Matrix)2.聚类分析:·选用Analyze→Classify→K-MeansCluster……·引入聚类分析的2个变量(即上面的2个公因子)·聚类的数目(NumberofClusters):3类·聚类方法(Method):仅分类·储存新变量(SaveNewVariables):聚类成员表 3 各类数量分布表(Number of Cases in each Cluster)3.均值多重比较:·选用Analyze→CompareMeans→One-WayANOVA……·将2个因子移入因变量,3个类移入“Factor”·多重比较方法(MultipleComparisons):邓肯法Duncan 表 4 3个类对于因子1的重视程度比较表 5 3个类对于因子2的重视程度比较4.综合。
SPSS聚类分析实验报告
SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。
二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。
2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。
3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。
4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。
三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。
下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。
2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。
-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。
-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。
3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。
这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。
五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。
spss聚类分析方法选择
SPSS聚类分析方法选择一、导言SPSS(Statistical Package for the Social Sciences)是一款被广泛使用的统计分析软件,其功能强大且易于操作。
聚类分析是SPSS中常用的一种数据分析方法,可以将相似的个体归为一类,帮助我们理解数据的结构和特征。
在进行聚类分析时,我们首先需要选择适合的聚类方法。
本文将介绍SPSS中常用的聚类方法,并讨论如何选择最适合的方法。
二、常见的SPSS聚类分析方法1. K均值聚类K均值聚类是SPSS中最常见的聚类方法之一。
该方法将样本分为K个簇,使簇内的样本相似度最大化,簇间的相似度最小化。
K均值聚类需要预先确定簇的个数K,并且聚类结果对初始点的选取敏感。
该方法适用于样本数较大、特征数较少的数据。
2. 密度聚类密度聚类是一种基于密度的聚类方法,常用的有DBSCAN和OPTICS。
这些方法将样本集合中的数据点组成的簇定义为密度相连的点的最大集合。
密度聚类能够有效地处理一些非球形分布的数据,对噪声数据也有较好的鲁棒性。
3. 层次聚类层次聚类使用一种树状结构来组织数据,常用的有凝聚层次聚类和分裂层次聚类。
凝聚层次聚类从单个样本开始,逐步合并最相似的簇,直到形成一个包含所有样本的簇。
分裂层次聚类则从整个样本集开始,逐步将样本分割成小的、不相交的簇。
层次聚类可用于确定最佳的簇的个数,但在处理大型数据集时计算复杂度较高。
4. 二分K均值聚类二分K均值聚类将样本集合分为两个簇,并且分别对每个子簇进行迭代划分,直到满足预定的停止条件。
该方法适用于样本数较大、特征数较多的数据。
三、选择合适的聚类方法在选择SPSS聚类分析方法时,需要根据具体的数据集特点和分析目的进行考虑:1.数据集特点:数据集的样本数、特征数和分布形态对聚类方法的选择有很大影响。
如果样本数较大、特征数较少,并且数据呈现相对均匀的分布,可以选择K均值聚类。
如果数据集存在非球形分布、噪声数据等问题,可以考虑使用密度聚类方法。
spss聚类分析步骤
spss聚类分析步骤什么是聚类分析聚类分析是一种通过将相似的样本数据进行分组的方法,以便于研究者可以更好地理解数据中的模式和结构。
在聚类分析中,研究者希望将数据样本划分为若干个互不重叠的群体,每个群体内的样本相似度较高,而不同群体之间的样本相似度较低。
spss的聚类分析功能spss是一种功能强大的统计分析软件,它提供了丰富的数据分析功能。
在spss中,可以使用聚类分析功能来进行数据样本的分组和分类。
聚类分析功能可以帮助研究者发现数据中的模式、规律和群体。
使用spss的聚类分析功能,可以根据变量之间的相似性将样本分成若干个组,从而更好地理解数据。
spss聚类分析步骤以下是使用spss进行聚类分析的基本步骤:1.打开数据文件:首先,需要打开包含要进行聚类分析的数据的spss数据文件。
可以通过点击菜单栏的“文件”选项打开数据文件,或者通过键盘快捷键“Ctrl + O”。
2.转换变量类型:在进行聚类分析之前,需要将数据中的所有变量转换为合适的类型。
例如,如果有一些分类变量,需要将其转换为因子变量。
可以通过点击菜单栏的“数据”选项,然后选择“转换变量类型”来进行变量类型的转换。
3.选择变量:在进行聚类分析之前,需要确定要使用的变量。
可以选择所有的变量,也可以只选择特定的变量。
选择变量可以通过点击菜单栏的“数据”选项,然后选择“选择变量”来进行。
4.进行聚类分析:选择好变量之后,可以进行聚类分析。
可以通过点击菜单栏的“分析”选项,然后选择“聚类”来进行聚类分析。
5.配置聚类分析参数:在进行聚类分析之前,需要配置一些参数。
例如,确定要使用的聚类方法和相似性测度。
可以根据具体的研究目的和数据特点来选择合适的参数。
6.运行聚类分析:配置好参数之后,可以点击“确定”按钮来运行聚类分析。
spss会根据选择的变量和参数,对样本数据进行聚类,并生成相应的结果。
7.分析聚类结果:在进行聚类分析之后,可以对聚类结果进行进一步的分析。
使用SPSS软件进行因子分析和聚类分析的方法
使用SPSS软件进行因子分析和聚类分析的方法使用SPSS软件进行因子分析和聚类分析的方法随着统计分析软件的发展,SPSS(Statistical Package for the Social Sciences)软件作为一款功能强大、易于使用的统计分析工具受到广泛欢迎。
它能帮助研究人员进行各种统计分析,其中包括因子分析和聚类分析。
本文将介绍如何使用SPSS软件进行因子分析和聚类分析,并针对每个分析方法提供详细步骤和操作示例。
一、因子分析因子分析是一种常用的统计方法,在数据维度缩减和相关变量结构分析方面具有广泛的应用。
以下是使用SPSS软件进行因子分析的步骤:1. 数据准备首先,需要将原始数据导入SPSS软件中。
可以通过选择“文件”>“打开”>“数据”,然后选择合适的数据文件进行导入。
确保数据是以矩阵的形式存储,每个变量占据一列,每个观察单位占据一行。
2. 因子分析设置在SPSS软件中,选择“分析”>“数据准备”>“特殊分析”>“因子”。
在弹出的对话框中,选择需要进行因子分析的变量,将它们移动到“因子”框中。
然后,选择所需的因子提取方法(如主成分分析或因子分析),并指定所需的因子个数。
可以选择默认值,也可以根据实际需求进行调整。
3. 统计输出完成因子分析设置后,点击“确定”按钮开始分析。
SPSS软件将生成一个因子分析结果报告。
报告中将包含因子载荷矩阵、特征值、解释的方差比例等统计指标。
通过这些指标,可以对变量和因子之间的关系、每个因子的解释能力进行分析。
4. 结果解读对于因子载荷矩阵,可以根据因子载荷的大小来判断变量与因子之间的关系。
一般来说,载荷绝对值大于0.3的变量与因子之间具有显著关联。
解释的方差比例表示每个因子能够解释变量总方差的比例,一般来说,越大越好。
在解读结果时,需要综合考虑因子载荷和解释的方差比例。
二、聚类分析聚类分析是一种用于数据分类的统计方法。
它根据观测值之间的相似性将数据对象分组到不同的类别中。
SPSS19.0之聚类分析
1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。
1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。
开始每个样品自成一类。
2.选择对称矩阵中的最小非零元素。
将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。
3.计算G1与其他样品距离。
重复以上过程直到所有样品合并为一类。
我们在SPSS中实现最短距离分析非常简单。
单击“”-->“”-->“”。
将弹出如图1-1所示的对话框,设置相应的参数即可。
图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。
在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。
在绘制中选择绘制“树状图”。
单击确定,得到以下结果。
聚类表阶群集组合系数首次出现阶群集下一阶群集1 群集 2 群集 1 群集 21 21 28 .211 0 0 102 12 24 .465 0 0 63 2 27 .491 0 0 54 13 20 .585 0 0 95 2 14 .645 3 0 66 2 12 .678 5 2 77 2 7 .702 6 0 88 2 25 .773 7 0 99 2 13 .916 8 4 1110 21 29 1.085 1 0 1211 2 18 1.106 9 0 12表1-2 聚类过程我们可以通过更加形象直观的树状图来观察整个聚类过程和聚类效果。
如图1-2所示,最短距离法组内距离小,但组间距离也较小。
分类特征不够明显,无法凸显各个省份的能源消耗的特点。
但是我们可以看到广东省能源消耗组成和其他省份特别不同,在其他方法中也显现出来。
12 2 21 1.115 11 10 13 13 2 17 1.360 12 0 14 14 2 26 1.564 13 0 15 15 2 22 1.627 14 0 16 16 2 5 1.649 15 0 17 17 2 8 1.877 16 0 18 18 2 16 3.027 17 0 19 19 2 30 3.543 18 0 20 20 2 11 4.930 19 0 21 21 2 4 5.024 20 0 22 22 2 10 6.445 21 0 24 23 1 9 8.262 0 0 26 24 2 15 10.093 22 0 25 25 2 23 10.096 24 0 26 26 1 2 10.189 23 25 27 27 1 6 11.387 26 0 28 28 1 3 13.153 27 0 29 2911932.36728图1-2 最短距离法聚类图1.1.2 组间联接聚类组间联接聚类法定义为两类之间的平均平方距离,即。
SPSS_Statistics_19_聚类分析
自然条件:降水、土地、日照、湿度等 经济指标:收入水平、教育程度、医疗条件、基础设施等
平均的方法?
容易忽视相对重要程度的问题
要进行多元分类-聚类分析
3
1 聚类分析
聚类分析基本目标
一种探索性的数据分析技术
是根据数据本身结构特征对数据点进行分类的方法 基本目标:在数据中寻找某种“自然的”分组结构
确定样品间相似的度量
距离度量 相似性度量
确定样本点的聚类数量
实际应用中,一般推荐4-6类(5% < 细分群体占比 < 35%)
对聚类结果进行描述和解释
验证细分方案的可接受性 描述各细分群体(交叉表分析) 市场定位(Positioning)
7
©确定目标消费群体 (Targeting) 2009 SPSS Inc.
24
3 K-均值聚类
非系统聚类
K均值聚类
优点
K均值聚类的速度快于系统聚类,是处理大型数据集聚类的常用方法
内存占用小
不足
只适用于连续型变量; 只能对记录进行聚类,而不能对变量聚类; 对初始聚类中心有一定的依赖性; 由于要事先选定聚类数,所以要尝试多次,以找出最佳聚类
25
此外还有中间距离法(Median Clustering)、类内平均法(Within-Groups
Linkage)等
ቤተ መጻሕፍቲ ባይዱ12
2 系统聚类
系统聚类
优点
聚类变量可以是分类或连续型变量; 既可以对变量聚类,也可以对数据点/记录聚类(市场细分一般都是对记录聚类); 一次运行即可得到完整的分类序列;
SPSS聚类的分析详解
二、聚类统计量
首先定义一些分类统计指标 —— 刻画样或指标之 间的相似程度(这些统计指标称为聚类统计量) 在市场研究中,样品 —— 用作分类的事物 指标 —— 用来作为分类依据的变量。 (如:年龄、收入、销售量) (一)相似系数(夹角余弦) 一般式:假定每个样品包含有P项指标,若有几个样品 的调查数据
3、步骤:1)首先给出度量“相似”或“关系密切”的 统计指标
指标:(1)统计指标是相似系数。 根据相似性归为一类,否则为另一类。 (2)统计指标是样品(空间的点)之间的距离 将距离近的点归成一类,否则为另一类。 (3)相关系数
(4)关联系数 2)形成一个由小到大的分析系统。
3)把整个分类系统画成一张分类图
CLUSTER过程 开始每个观测值自成一类,然后求两两之间的距离, 将距离最近的两个观测值合成一类。这个过程一直 进行下去,每次减少一类,直到合成一类为止。 聚类方法有11种,可根据问题的性质选用,它们的 区别在于怎样计算两类之间的距离。
METHOD=指定方法
AVERAGE(平均法)、CENTROID(重心法)、 COMPLETE(最大距离法)、DENSITY(密度 法)、MEDIAM(中位数法)等
1
按就近原则将每个观测量选入一个类中,然后计算各个类的中 心位置,即均值,作为新的聚心。 3、使用计算出来的新聚心重新进行分类,分类完毕后继续计 算各类的中心位置,作为新的聚心,如此反复操作,直到两次 迭代计算的聚心之间距离的最大改变量小于初始聚类心间最小 距离的倍数时,或者到达迭代次数的上限时,停止迭代。
观测量概述表
聚类步骤,与图结合看!
4、5
聚类方法有系统聚类和逐步聚类,输入数据集可以是普 通数据集、相关矩阵(CORR过程产生)或协方差矩阵 (FACTOR等过程产生)。SAS提供的聚类过程有:
SPSS数据分析—聚类分析
多元分析的主要思想之一就是降维,我们已经讲过了很多降维的方法,例如因子分析、主成分分析,多维尺度分析等,还有一种重要的降维方法,就是聚类分析。
聚类分析实质上就是按照距离远近将数据分成若干个类别,使得类别内的差异尽可能小,类别间的差异尽可能大,它也是一种描述统计方法,并没有涉及假设检验。
由于聚类是根据数据间的距离来进行分类的,因此如何定义距离就成为聚类分析首先要确定的内容,统计学中定义距离的方法有几十种,最常用的是欧氏距离。
聚类的方法体系主要有三种1.非层次聚类代表方法有K-均值聚类法,基本思路是首先定义一个初始分类,然后通过迭代把数据在不同的类别间移动,直到达到一定标准,该方法计算速度较快,因此也称为快速聚类法,通常需要在分析前就确定具体的类别个数。
2.层次聚类层次聚类首先定义距离算法,然后按照该算法计算数据间的距离,按照距离远近进行聚类,该方程计算速度不如非层次聚类,树状图是层次聚类的重要输出和解释结果3.智能聚类是随着海量数据的产生而形成的聚类方法,主要面向海量数据、数据类型复杂的情况,以实现自动判断聚类数、计算速度快等要求,比较常见的是两步聚类法下面我们分别来看这几类方法1.K-均值聚类我们来看一个例子,收集了一些客户电话使用情况的数据,共有6个变量,现在希望对客户进行细分,根据调研,认为可以被分为5个群体,现在对此进行聚类分析,数据如下由于事先已决定分为几类,并且变量数据都为连续型数据,根据要求也是对客户也就是个案进行聚类,这些都符合K-均值聚类的要求,因此我们使用k-均值聚类进行处理从变量的定义可以看出,6个变量都是描述通话时长的,因此单位一致,接下来进行描述性统计,进一步查看数据分析—分类—K-均值聚类2.层次聚类法根据运算的方向,层次聚类法可以分为合并法和分解法,这两种方法原理完全相同,只是方向相反。
相比较K-均值聚类等非层次聚类,层次聚类法的优点很明显:既可以对个案聚类也可以对变量聚类,并且变量的数据类型也没有过多要求,对距离的测量方法也非常多样,即使运算速度较慢,但是借助于计算机,也可以弥补。
使用SPSS软件进行因子分析和聚类分析的方法
使用SPSS软件进行因子分析和聚类分析的方法因子分析和聚类分析是一种常用的数据分析方法,可以用于数据降维和分组。
SPSS是一款常用的统计软件,提供了丰富的分析工具和函数,可以方便地进行因子分析和聚类分析。
一、因子分析:因子分析是一种多变量分析方法,可以将一组相关的变量转化为少数几个互相独立的综合变量,称为因子。
因子分析可以用于降低数据的维度,提取主要的因素,并分析因素之间的关系。
以下是使用SPSS软件进行因子分析的步骤:1.打开SPSS软件,并导入要进行因子分析的数据集。
2.菜单栏选择“分析”-“降维”-“因子”。
3.在弹出的因子分析对话框中,选择要进行因子分析的变量,将其添加到“因子”框中。
4.在“提取”选项中,选择提取的因子个数。
可以根据实际需求和经验进行选择。
5. 在“旋转”选项中,选择旋转方法。
常用的旋转方法有方差最大旋转(Varimax),斜交旋转(Oblique)等。
6.点击“确定”按钮,进行因子分析。
7.SPSS会生成因子载荷矩阵、解释方差表、因子得分等结果。
可以根据因子载荷矩阵和解释方差表来解释因子的含义和解释度。
8.根据具体需求和分析目的,可以进行因子得分的计算和因子分组的分析。
二、聚类分析:聚类分析是一种无监督学习方法,可以将一组样本数据自动分成若干互不相交的群组,称为簇。
聚类分析可以用于数据的分组和群体特征的分析。
以下是使用SPSS软件进行聚类分析的步骤:1.打开SPSS软件,并导入要进行聚类分析的数据集。
2.菜单栏选择“分析”-“分类”-“聚类”。
3.在弹出的聚类分析对话框中,选择要进行聚类分析的变量,将其添加到“变量”框中。
可以选择多个变量进行分析。
4.在“距离”选项中,选择计算样本间距离的方法。
常用的方法有欧几里得距离、曼哈顿距离等。
5. 在“聚类方法”选项中,选择聚类算法的方法。
常用的方法有层次聚类(Hierarchical Clustering)、K均值聚类(K-means)等。
SPSS聚类分析具体操作步骤-spss如何聚类
单击“方法”按钮弹出对话框
• 下拉框指定的是小类之间的距离计算方法7种供用 户选择
13
• 度量标准 计算样本距离的方法
14
点击“继续”接下来指定SPSS分析图形输出
属性图以树的形式展现 聚类分析的每一次合并 过程。冰柱图通过表格 中的冰柱显示。 可以指定并主图的输出 方向,纵向和横向
15
显示凝聚状态表,单击“统计量”
• 点间距离有很多定义方式。最简单的是欧式距离,还有其 他的距离。
• 当然还有一些和距离相反但起同样作用的概念,比如相似 性等,两点越相似度越大,就相当于距离越短。
• 由一个点组成的类是最基本的类;如果每一类都由一个点 组成,那么点间的距离就是类间距离。但是如果某一类包 含不止一个点,那么就要确定类间距离,
4
SPSS中聚类分析分类
(一)按分类对象 对变量的聚类称为R型聚类 对观测值聚类称为Q型聚类 这两种聚类在数学上是对称的,没有什么不同。
(二)按聚类的方法分类 分层聚类或系统聚类分析 快速聚类分析 两步聚类分析:新型的
5
事先不用确定分多少类:分层聚类
分层聚类或系统聚类(hierarchical cluster)。开始 时,有多少点就是多少类。
1
聚类分析概述
(一)概念 • (1)聚类分析是统计学中研究“物以类聚”的一种
方法,属多元统计分析方法.
– 例如:细分市场、消费行为划分
• 聚类分析是建立一种分类,是将一批样本(或变量) 按照在性质上的“亲疏”程度,在没有先验知识的 情况下自动进行分类的方法.其中:类内个体具有 较高的相似性,类间的差异性较大.
• 比如学生成绩数据就可以对学生按照理科或文科 成绩(或者综合考虑各科成绩)分类,
SPSS19实战之聚类分析
SPSS19.0实战之聚类分析这篇文章与上一篇的回归分析是一次实习作业整理出来的。
所以参考文献一并放在该文最后。
CNBlOG网页排版太困难了,又不喜欢live writer……聚类分析是将物理或者抽象对象的集合分成相似的对象类的过程。
本次实验我将对同一批数据做两种不同的类型的聚类;它们分别是系统聚类和K-mean聚类。
其中系统聚类的聚类方法也采用3种不同方法,来考察对比它们之间的优劣。
由于没有样本数据,因此不能根据其数据做判别分析。
评价标准主要是观察各聚类方法的所得到的类组间距离和组内聚类的大小。
分析数据依然采用线性回归所使用的标准化后的能源消费数据。
1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。
1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。
开始每个样品自成一类。
2.选择对称矩阵中的最小非零元素。
将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。
3.计算G1与其他样品距离。
重复以上过程直到所有样品合并为一类。
我们在SPSS中实现最短距离分析非常简单。
单击“”-->“”-->“”。
将弹出如图1-1所示的对话框,设置相应的参数即可。
图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。
在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。
在绘制中选择绘制“树状图”。
单击确定,得到以下结果。
1.表表1-1 数据汇总我们的数据经过预处理,所以缺失值个数为0.2. 由于相关矩阵过于庞大,无法在文档中贴出,得到的是一个非相似矩阵。
表1-2是样品聚类过程。
样品21和28在第一步合并为一类,它们之间的非相关系数最小,为0.211。
在下一次合并是第十步。
在第五步的时候,样品2、27、14组成一类,出现群集,样品个数为3。
第十讲聚类分析SPSS操作
第十讲聚类分析SPSS操作聚类分析是一种数据挖掘的方法,用于将样本数据按照相似性进行分组。
SPSS是一款功能强大的数据分析软件,提供了丰富的聚类分析功能,下面将介绍如何使用SPSS进行聚类分析。
首先,打开SPSS软件,并导入要进行聚类分析的数据文件。
可以通过点击“文件”菜单中的“打开”选项,选择相应的数据文件进行导入,或者直接将数据拖拽到SPSS软件界面上。
导入数据之后,在SPSS软件的数据视图中,可以查看数据的各个变量和观察值(样本)。
接下来,点击“分析”菜单中的“分类”选项,然后选择“聚类”。
在聚类分析对话框中,首先需要选择要进行聚类分析的变量。
可以将所有要分析的变量移动到“变量”列表中,或者点击“添加全部”按钮,将所有变量添加到“变量”列表中。
在聚类分析对话框中,还有一些其他的配置选项,如“距离测度”、“规范化方法”、“分散度”等,可以根据实际需求进行设置。
其中,距离测度指的是计算样本间相似性的方法,常用的有欧几里得距离、曼哈顿距离等;规范化方法用于对变量进行标准化;分散度用于定义聚类的紧密度。
配置好相关选项之后,可以点击“聚类”按钮开始进行聚类分析。
SPSS会根据所选的变量和配置选项,对样本进行聚类,并在输出视图中呈现聚类结果。
聚类分析的输出结果包括聚类分布表、聚类变量表、聚类映射表等。
聚类分布表显示了每个聚类中的样本数量;聚类变量表显示了每个聚类中各个变量的均值;聚类映射表显示了每个观察值所属的聚类。
分析完毕后,可以根据聚类的结果对样本进行分类。
可以基于聚类分布表和聚类映射表,将样本分为不同的类别,并对每个类别进行描述和解释。
此外,可以对每个类别的特点进行进一步的分析,比如对不同类别的平均值进行比较,以了解不同类别之间的差异。
聚类分析还可以进行一些其他的操作,比如对聚类结果进行可视化展示。
可以使用SPSS的图形功能,绘制散点图或热力图,将样本点按照聚类分组进行呈现,以便更直观地了解聚类结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此外还有中间距离法(Median Clustering)、类内平均法(Within-Groups
Linkage)等
12
2 系统聚类
系统聚类
优点
聚类变量可以是分类或连续型变量; 既可以对变量聚类,也可以对数据点/记录聚类(市场细分一般都是对记录聚类); 一次运行即可得到完整的分类序列;
确定样品间相似的度量
距离度量 相似性度量
确定样本点的聚类数量
实际应用中,一般推荐4-6类(5% < 细分群体占比 < 35%)
对聚类结果进行描述和解释
验证细分方案的可接受性 描述各细分群体(交叉表分析) 市场定位(Positioning)
7
©确定目标消费群体 (Targeting) 2009 SPSS Inc.
分类变量:使用卡方(Chi-square)统计量作为距离指标 连续型变量:一般使用欧式平方距离进行距离度量
© 2009 SPSS Inc.
8
1 聚类分析
使用聚类分析时应关注的一些问题(续):
聚类方法的选择
系统聚类法(Hierarchical Clustering),也称分层聚类法 K-均值聚类法(K-means Clustering),也称快速聚类法 两步聚类法(TwoStep Clustering),一种较智能化的聚类方法
2 系统聚类练习
基本思路:综合考察城市的若干社会、经济发展指标(来源《中国城市统计 年鉴》),譬如
城市化程度 生活质量和收入水平 经济发展水平
采用系统聚类法对城市进行系统、科学的分类
示例:针对金融类研究,我们可选的聚类变量可以是
城镇居民人口总量(Total urban population) 人均国内生产总值(per capita GDP)
SPSS Statistics 之聚类分析
SPSS China
内容
1. 聚类分析概述 2. 系统聚类 3. K-均值聚类 4. 两步聚类
2
1 聚类分析
为什么聚类?
俗语说,物以类聚、人以群分
当有一个分类指标时,分类比较容易 但是多个指标时,进行分类就不是很容易了!
例如,对中国的区县进行分类:
职工平均工资(Average annual wages of urban working population)
人均年末储蓄余额(Per capita savings deposit)
城市选择原则:尽量在不同类间选择城市(如果某类包含较多城市,可以从 中抽取多个城市),以使在预算下抽取的“少量”样本具有尽可能大的代表 性。
© 2009 SPSS Inc.
10
2 系统聚类
系统聚类
可选择适当的距离,计算距离 把每个样品看成一类,构成N个类 合并最近的两类为一新类 计算新类与当前各类的距离 不是仅有一个类
采用系统聚类法
判断
仅有一个类
画聚类图 根据实际情况,确定类和类的个数
11
2 系统聚类
系统聚类方法可应用多种距离衡量个体/变量的相似性 利用哪种距离聚类取决于:
16
2 系统聚类
11.系统聚类分析结果:(类别的决定)垂直冰柱图
全部20个啤酒最终 行成1个群集的过 程图表
12.系统聚类分析结果:(聚类个数的确定)树状图
13.系统聚类分析结果:所属群集
*此图表示全部20个啤酒最终行成1个群集的过程。
*横轴表示观测或群集之间的距离,纵轴表示啤酒,随着距 离的增加,行成一个树形结构 *图表中的1号啤酒和9号啤酒由于距离太大,不聚成一个群, 所以最终聚成4个群是最合适的。
7. 系统聚类分析:方法子对话框
8. 系统聚类:保存子对话框
15
2 系统聚类
9. 系统聚类分析结果:相似性矩阵
*表示每种啤酒之间的距离 “hamms”和“coors”之间距离最短(0.115) “kronenbourg”和“pabst extra light”之间距离最长(33.33)
编号
11 17 4 16
不足
由于反复计算距离,在样本量太大或变量较多时,分层聚类的运算速度明显较慢(通常, 建议样本量不超过200)
13
2 系统聚类
1.分析概要 方法:系统聚类 SPSS实现:分析->分类->系统聚类 数据:聚类分析01_beer.sav 从1983年美国的消费者对啤酒的报告中抽取的数据 包含20种啤酒的卡路里含量、盐分、酒精浓度、生产成 本等数据 3. 分析数据集 4. SPSS Statistics 分析过程选择
应用举例
细分市场
消费行为划分 设计抽样方案
4
1 聚类分析
方法原理
聚类分析就是要找出具有相似程度的点或类聚为一类
如何衡量这个“相似程度”?
根据距离来确定 “距离”含义很广:
如欧式距离,马氏距离…,相似系数
5
1 聚类分析
聚类分析分类
根据分析对象:
R型聚类-对变量(指标)进行聚类 Q型聚类-对观测对象(个体、样品)进行聚类
约200个地级以上城市 约600个各级别城市
市场研究的关键课题之一:
更大范围地覆盖不同层次的城市 抽取有全国代表性的城市样本
解决方案:
用系统聚类法对城市进行科学分 类
数据集:
系统聚类练习_HClust
20
© 2009 SPSS Inc.
© 2009 SPSS Inc.
9
1 聚类分析
K-means 聚 类法 仅适用于连续型变量 一次运行只产生一个指定分类数量的聚类结果 每次运行都会重新分配每一个数据点进入其最靠近的那个类别
系统聚类法
适用于分类变量和连续型变量 运行一次可产生一个完整的分类序列 对数据点和子类不断分类合并直至形成一个大类
根据方法:
系统聚类(Hierarchical Clustering)
非系统聚类
K-均值聚类 两步聚类
注:没有什么聚类方法,具有绝对优势 6
1 聚类分析
确定分类变量
最能度量数据点之间“差异”的关键/重要变量 分类变量之间应该相关性较小,如果相关性较大则使用因子分析等进行数据降维
所分析的数据类型 哪种距离对于聚类最具有解释意义 距离包括:
最短距离法-Nearest Neighbor( Single Linkage) 最长距离法-Furthest Neighbor (Complete Linkage) 重心法-Centroid Clustering 类平均法-Between-groups Linkage 最小方差法-Ward’s Method
24
3 K-均值聚类
非系统聚类
K均值聚类
优点
K均值聚类的速度快于系统聚类,是处理大型数据集聚类的常用方法
内存占用小
不足
只适用于连续型变量; 只能对记录进行聚类,而不能对变量聚类; 对初始聚类中心有一定的依赖性; 由于要事先选定聚类数,所以要尝试多次,以找出最佳聚类
25
啤酒名
Coors Hamms Kronenbourg Pabst Extra Light
卡路里含量 盐分含量
140 136 170 68 18 19 7 15
酒精浓度 生产价格
4.6 4.4 5.2 2.3 0.44 0.43 0.73 0.38
10. 系统聚类分析结果:聚类表
*图表上出现的系数为聚类时,被聚在一起的观测/类群之间的距离信息。根 这是关于聚类过程的各 个阶段说明的表。第一 阶段,11号啤酒17号啤 酒组成了一组,第二组 类似。这里系数0.115表 示两个聚类之间的距离。 据距离的大小,我们可以确定聚类的多少 →聚类个数的确定! * 16阶段和17阶段中的系数大幅增加,因此可以在第16阶段划分聚类结果。 *表格中的的1号啤酒和9号啤酒不聚为一类,这样最合适的聚类个数为4个。
所在的类中去 第四,这样每类中可能由若干个样品,计算每个类中各个变量的均值,以此作为第二 次迭代的中心
第五,然后根据这个中心重复第三、第四步,直到中心的迭代标准达到要求时,聚类
过程结束
23
3 K-均值聚类
K-均值聚类
不指定初始聚类中心
程度会自动产生初始聚类中心——原则是:使各聚类中心之间的距离尽可能大; 进行叠代分类(Iterate and classify),即预先规定最高叠代次数(程序默认值为10次)和 收敛标准(程序默认值为初始聚类中心之间的最短距离的2%),利用初始聚类中心进行 叠代;
17
2 系统聚类
14. 群间的均值比较 15. 群间的均值比较对话框
16. 群间的均值比较 选项 子对话框
17. 群间的均值比较报告书
* 第1群集 ; 盐分含量↑ • 第2群集 ; 卡路里含量, 生产成本 ↑ * 第3群集 ; 酒精浓度↓ * 第4群集 ; 酒精浓度↓↓
18
2 系统聚类
18. 群间的均值分析结果:ANOVA表
两步聚类法
Step 1 – 预聚类:构建和修改聚类特征树(cluster feature tree),遍历每 一个数据点进入聚类特征树,即生成许多的子类 Step 2 – 正式聚类:以第一步完成的预聚类作为输入,然后使用合并型 层次聚类法(Agglomerative hierarchical clustering)将预聚类分为指定的 几类 特别适用于海量数据(大型数据库) 适用于各种类型数据,分类或连续型变量 聚类数量可由算法自动指定(理论上最优)