SPSS软件聚类分析过程的图文解释及结果的全面分析
spss聚类分析结果解释-聚类表怎么解读
14.3 分层聚类(Hierarchical Cluster)
分层聚类方法:
分解法:先视为一大类,再分成几类 凝聚法:先视每个为一类,再合并为几大类
可用于观测量(样本)聚类(Q型)和变量聚类(R型) 一般分为两步(自动,可从Paste的语句知道,P359): Proximities:先对数据进行的预处理(标准化和计算距离等) Cluster:然后进行聚类分析 两种统计图:树形图(Dendrogram)和冰柱图(Icicle) 各类型数据的标准化、距离和相似性计算P348-354
14.1.2 判别分析
判别分析是根据表明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进行分类的一种分析方法。
在自然科学和社会科学的各个领域经常遇到需 要对某个个体属于哪一类进行判断。如动物学 家对动物如何分类的研究和某个动物属于哪一 类、目、纲的判断。
不同:判别分析和聚类分析不同的在于判别分 析要求已知一系列反映事物特征的数值变量的 值,并且已知各个体的分类(训练样本)。
Agglomeration Schedule 凝聚状态表 Proximity matrix:距离矩阵 Cluster membership:Single solution:4 显示分为4类时,各观测
量所属的类
Method: Cluster (Furthest Neighbor), Measure-Interval (Squared Euclidean distance), Transform Value (Range 01/By variable (值-最小值)/极差)
14.1.3 聚类分析与判别分析的SPSS过程
在AnalyzeClassify下:
1. K-Means Cluster: 观测量快速聚类分 析过程
(汇总)spss聚类分析结果解释.ppt
数据同上〔data14-01a〕:以四个四类成绩突出者的数据为初始 聚类中心(种子)进展聚类。类中心数据文件data14-01b〔但缺一 列Cluster_,不能直接使用,要修改〕。对运发动的分类〔还是分 为4类〕
Analyze Classify K-Means Cluster
Variables: x1,x2,x3
三维或者更高维的情况也是类似;只不过三 维以上的图形无法直观地画出来而已。在饮 料数据中,每种饮料都有四个变量值。这就 是四维空间点的问题了。
..分割..
19
两个距离概念
按照远近程度来聚类需要明确两个概念:一个是点和点
之间的距离,一个是类和类之间的距离。
点间距离有很多定义方式。最简单的是歐氏距离,还有
..分割..
17
饮料数据〔drink.sav 〕
16种饮料的热量、咖啡因、钠及价格四种变量
..分割..
18
如何度量远近?
如果想要对100个学生进展分类,如果仅仅知 道他们的数学成绩,那么只好按照数学成绩 来分类;这些成绩在直线上形成100个点。这 样就可以把接近的点放到一类。
如果还知道他们的物理成绩,这样数学和物 理成绩就形成二维平面上的100个点,也可以 按照距离远近来分类。
产成为可能。
..分割..
2
14.1.2 判别分析
判别分析是根据说明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进展分类的一种分析方法。
在自然科学和社会科学的各个领域经常遇到需 要对某个个体属于哪一类进展判断。如动物学 家对动物如何分类的研究和某个动物属于哪一 类、目、纲的判断。
中最远点之间的距离作为这两类之间的距离;当然也可
第10章-SPSS的聚类分析
编号
购物环境 服务质量
A商场
73
68
B商场
66
64
C商场
84
82
D商场
91
88
E商场
94
90
2019/11/22
第10章 SPSS的聚类分析
5
1、定距型变量个体间距离的计算方式
欧式距离(Euclidean distance)
k
(xi yi )2 (73 66)2 (68 64)2 i1
(4 4.5)2 ) (8 8.5)2
(6 6)2
(5 4.5)2
)
4.12
8.5
6
4.5
8.5
6
4.5
Phi方(Phi-Square measure)距离
2019/11/22
第10章 SPSS的聚类分析
7
3、二值(Binary)变量个体间距离的计 算方式
– 简单匹配系数(Simple Matching) – 雅科比系数(Jaccard)
2019/11/22
第10章 SPSS的聚类分析
21
• 10.2.3 层次聚类的基本操作
1、选择菜单Analyze-Classify-Hierarchical Cluster,出现窗口:
2019/11/22
第10章 SPSS的聚类分析
22
2、把参与层次聚类分析的变量选到Variable(s) 框中。
• 为定义个体间的距离应先将每个样本数据看成k 维空间的一个点,通常,点与点之间的距离越 小,意味着他们越“亲密”,越有可能聚成一 类,点与点之间的距离越大,意味着他们越 “疏远”,越有可能分别属于不同的类。
IBM SPSS MODELER 实验一、聚类分析
IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。
聚类分析的目标就是在相似的基础上对数据进行分类。
IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。
1、K-Means聚类分析实验首先进行K-Means聚类实验。
(1)启动SPSS Modeler 14.2。
选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。
图1 启动SPSS Modeler程序(2)打开数据文件。
首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。
右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。
点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。
单击“应用”,并点击“确定”按钮关闭编辑窗口。
图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。
选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。
运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。
该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。
SPSS聚类分析(PPT)
第8章聚类分析在自然与社会科学研究中,存在着大量分类研究的问题,如病虫害种群消长演替规律的研究中,需要从生态系统出发,构造其数量、时间和空间关系的分类模式,以此来研究病虫害的发生规律。
聚类分析就是其分类研究的方法之一。
聚类分析是根据事物本身的特性研究个体分类的方法。
聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大。
根据分类对象的不同可分为样品聚类和变量聚类。
1)样品聚类 样品聚类在统计学中又称为Q型聚类。
用SPSS的术语来说就是对事件(Cases)进行聚类,或是说对观测量进行聚类。
是根据被观测的对象的各种特征,即反映被观测对象的特征的各变量值进行分类。
2)变量聚类 变量聚类在统计学又称为R型聚类。
反映同一事物特点的变量有很多,我们往往根据所研究的问题选择部分变量对事物的某一方面进行研究。
由于人类对客观事物的认识是有限的,往往难以找出彼此独立的有代表性的变量,而影响对问题的进一步认识和研究。
例如在回归分析中,由于自变量的共线性导致偏回归系数不能真正反映自变量对因变量的影响等。
因此往往先要进行变量聚类,找出彼此独立且有代表性的自变量,而又不丢失大部分信息。
8.1快速聚类过程(K-Means Cluster ) 调用此过程可完成由用户指定类别数的大样本资料的逐步聚类分析。
所谓逐步聚类分析就是先把被聚对象进行初始分类,然后逐步调整,得到最终分类。
[例子8-1]根据1962年至1988年积累的三化螟有关资料进行聚类分析,研究三化螟种群消长规律。
数据见表8-1,其中发生期是指卵盛孵高峰期(2代以5月31日和3代7月20日为零计算天数),F2-F3为2代至3代的增殖系数,F3-F4为3代至4代的增殖系数。
对幼虫发生量和发生期数据进行快速聚类,分析各年的发生程度。
109表8-1幼虫发生量发生期增殖系数年份第2代第3代第2代第3代F2-F3 F3-F4 1962 344 3333 29 9 9.69 1.911963 121 1497 27 19 12.37 1.341964 187 1813 32 18 9.70 1.061965 500 4000 34 14 8.00 1.821966 441 3750 36 14 8.50 1.871967 404 4600 33 16 11.39 1.521968 328 986 35 18 3.01 1.261969 806 1790 32 15 2.22 2.141970 730 1970 36 20 2.70 2.641971 263 333 29 15 1.27 1.071972 486 600 32 19 1.23 1.471973 248 585 33 20 2.36 1.081974 2100 2700 22 14 1.28 1.331975 333 287 38 19 .86 .701976 90 77 40 24 .86 1.871977 19 25 40 27 1.32 2.881978 230 2525 39 20 10.96 .551979 1392 1041 33 18 .75 4.171980 308 41 31 28 .13 3.341981 415 916 36 18 2.21 1.091982 34 401 38 29 11.79 .991983 267 803 37 26 3.01 .091984 1043 3500 39 26 3.36 .071985 2243 7452 31 20 3.32 .121986 236 599 35 26 2.54 .001987 558 1061 33 24 1.90 .001988 162 2817 34 21 2.64 .008.1.1 操作方法1)数据准备在数据管理窗口,定义变量名:年份、幼虫2、幼虫3、发生期2、发生期3、增殖23、增殖34,分别代表年份、第2代幼虫发生量、第3代幼虫发生量、第2代发生期、第3代发生期、F2-F3增殖系数、F3-F4增殖系数。
spss聚类分析PPT课件
G7
G3
G4
G8
G7
0
G3
3
0
G4
5
2
0
G8
7
4
2
0
30
10/16/2024
(3)在D(1)中最小值是D34=D48=2,由于G4与G3合并, 又与G8合并,因此G3、G4、G8合并成一个新类G9,其与其 它类的距离D(2)
G7
G9
G7
0
G9
3
0
31
10/16/2024
(4)最后将G7和G9合并成G10,这时所有的六个样品聚为一 类,其过程终止。 上述聚类的可视化过程如下:
1
2
3
4
5
1
0
8.062 17.804 26.907 30.414
2
8.062 0
25.456 34.655 38.21
3
17.804 25.456 0
9.22 12.806
4
26.907 34.655 9.22 0
3.606
5
30.414 38.21 12.806 3.606 0
26
10/16/2024
系统聚类过程是:假设总共有n个样品(或变量)
第一步:将每个样品(或变量)独自聚成一类,共有 n类;
第二步:根据所确定的样品(或变量)“距离”公式, 把距离较近的两个样品(或变量)聚合为一类,其 它的样品(或变量)仍各自聚为一类,共聚成n 1 类;
第三步:将“距离”最近的两个类进一步聚成一类, 共聚成n 2类;……,以上步骤一直进行下去,最后17 将所有的样品(或变量)全聚成一类。
(1)选择样品距离公式,绝对距离最简单,形成D(0)
第九章SPSS的聚类分析PPT课件
中心位置变化较小.其中最大的变化率小于2%.
29
K-means快速聚类
(三)基本操作步骤
A.菜单选项:analyze->classify->k means cluster B.选定参加快速聚类分析的变量到variables框 C.确定快速聚类的类数(number of clusters).类数应小
第九章 SPSS的聚类分析
1
聚类分析概述
• 概念:
– 聚类分析是统计学中研究“物以类聚”的一种方法,属多元统计分析方法. – 例如:细分市场、消费行为划分
• 聚类分析是建立一种分类,是将一批样本(或变量)按照在性质上的“亲疏” 程度,在没有先验知识的情况下自动进行分类的方法.其中:类内个体具有 较高的相似性,类间的差异性较大.
•(张三,李四) 2: a=0 b=0 c=1 d=2 J(x,y)=1/1=1 (不相同)
11
聚类分析概述
• 品质型个体间的距离
– Jaccard系数举例:根据临床表现研究病人是否有类似的病
•姓名 性别 发烧 咳嗽 检查1 检查2 检查3 检查4
•张三 男 1 0 1 0 0
0
•李四 女 1 0 1 0 1
•姓名 授课方式 上机时间 选某门课程
•张三
1
1
1
•李四
1
1
0
•王五
0
0
1
•(张三,李四):a=2 b=1 c=0 d=0 d(x,y)=1/(1+2)=1/3
•(张三,王五):a=1 b=2 c=0 d=0 d(x,y)=2/(1+2)=2/3
SPSS数据分析教程-10_聚类分析PPT课件
10.7.1 两步法简介 10.7.2 两步法案例分析
10.8 聚类分析注意事项
可编辑课件
3
本章学习目标
理解聚类分析的基本概念; 了解个案之间距离的定义方式; 了解类之间距离的定义方式; 掌握系统聚类方法; 掌握两步法聚类方法; 掌握K均值聚类方法。
可编辑课件
聚类分析不必事先知道分类对象的结构从一批样品的多个观测指标中找出能度量样品之间或指标变量之间相似程度或亲疏关系的统计量构成一个对称相似性矩阵并按相似程度的大小把样品或变量逐一归类
SPSS数据分析教程
—《SPSS数据分析教程》
可编辑课件
1
第10章 聚类分析
可编辑课件
2
目录
10.1 聚类分析简介 10.2 个案间的距离
(2)它能自动确定出类的个数。 (3)能够有效地分析大数据集。
可编辑课件
35
两阶段聚类算法的两个阶段
第1步:建立一个聚类特性树。 第2步:应用凝聚算法对聚类特性树的叶节点
进行分类。
可编辑课件
36
两步法的距离度量
两步法的距离度量有两种 (1)对数似然(SPSS 翻译为对数相似值):
这里由于聚类指标中含有分类变量,所以只能 选择该项。 (2)欧式距离(Euclidean):当聚类指标不 含有分类变量时可以选择该距离。
可编辑课件
5
可编辑课件
6
聚类分析不必事先知道分类对象的结构,从一 批样品的多个观测指标中,找出能度量样品之 间或指标(变量)之间相似程度或亲疏关系的 统计量,构成一个对称相似性矩阵,并按相似 程度的大小,把样品或变量逐一归类。
根据对样品聚类还是对变量聚类,聚类分析分 Q型聚类和R型聚类。对变量的聚类称为R型聚 类,而对样品(即观测值)聚类称为Q型聚类。 通俗讲,R型聚类是对数据中的列分类,Q型 聚类是对数据中的行分类。
SPSS聚类以及各种聚类分析详解PPT课件
7
0.24
0.41
0.20
0.30
0.16
0.24
1
按矩阵中的数值对7个样品(按四个原则)进行聚类
.
28
1 23 4567
1 2
1 0.51
1
3 0.94 0.83 1
Q = 4 0.81 0.91 0.86 1
5 0.97 0.01 0.54 0.74 1
6 0.20 0.67 0.92 0.15 0.52 1 7 0.24 0.41 0.20 0.30 0.16 0.24 1
一种探索性的聚类方法,是随着人工智能的发展起来的智能聚 类方法中的一种。用于解决海量数据或具有复杂类别结构的聚类分 析问题。
两步聚类法特点:
1、同时处理离散变量和连续变量的能力 2、自动选择聚类数 3、通过预先选取样本中的部分数据构建聚类模型 4、可以处理超大样本量的数据
15
系统聚类法
Hierarchical Cluster
系统聚类法优点: 既可以对观测量(样品)也可对变量进行
聚类,既可以连续变量也可以是分类变量,提 供的距离计算方法和结果显示方法也很丰富。
.
16
应用实例
某电冰箱厂开发某一新产品,在投放市场前希望对以往经销 的国内6个地区征集对新产品的评价,若对新产品的评价指 标有三项:式样、性能、颜色,评价的调整表采用10分制, 调查结果的数据如下表
顺序
连结样品
相似系数
1
X1
2 X1 X5
3
X2
X5 行
0.97
X3
0.94
X4
0.91
4 X2 X4
X6
0.67
5 X1 X5 X3 X2 X4 X6
SPSS软件聚类分析过程的图文解释及结果的全面分析
SPSS聚类分析过程聚类的主要过程一般可分为如下四个步骤:1.数据预处理(标准化)2.构造关系矩阵(亲疏关系的描述)3.聚类(根据不同方法进行分类)4.确定最佳分类(类别数)SPSS软件聚类步骤1. 数据预处理(标准化)→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可:标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores:标准化变换;Range –1 to 1:极差标准化变换(作用:变换后的数据均值为0,极差为1,且|x ij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。
);Range 0 to 1(极差正规化变换/ 规格化变换);2. 构造关系矩阵在SPSS中如何选择测度(相似性统计量):→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择常用测度(选项说明):Euclidean distance:欧氏距离(二阶Minkowski距离),用途:聚类分析中用得最广泛的距离;Squared Eucidean distance:平方欧氏距离;Cosine:夹角余弦(相似性测度;Pearson correlation:皮尔逊相关系数;3. 选择聚类方法SPSS中如何选择系统聚类法常用系统聚类方法a)Between-groups linkage 组间平均距离连接法方法简述:合并两类的结果使所有的两两项对之间的平均距离最小。
(项对的两成员分属不同类)特点:非最大距离,也非最小距离b)Within-groups linkage 组内平均连接法方法简述:两类合并为一类后,合并后的类中所有项之间的平均距离最小C)Nearest neighbor 最近邻法(最短距离法)方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法d)Furthest neighbor 最远邻法(最长距离法)方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法e)Centroid clustering 重心聚类法方法简述:两类间的距离定义为两类重心之间的距离,对样品分类而言,每一类中心就是属于该类样品的均值特点:该距离随聚类地进行不断缩小。
spss聚类分析结果解释
第14章 聚类分析与判别分析
介绍: 1、聚类分析 2、判别分析
分类学是人类认识世界的基础科学。聚类分析 和判别分析是研究事物分类的基本方法,广泛地应 用于自然科学、社会科学、工农业生产的各个领域。
14.3.6 变量聚类实例2 P368
有10个测试项目,分别用变量X1-X10表示, 50名学生参加测试。想从10个变量中选择几 个典型指标。data14-03
Analyze→Classify →Hierarchical Cluster:
Variables: X1-X10 Cluster:Variable, R聚类 Method:
14.3.5 用分层聚类法进行变量聚类
变量聚类,是一种降维的方法,用于在 变量众多时寻找有代表性的变量,以便 在用少量、有代表性的变量代替大变量 集时,损失信息很少。 与进行观测量聚类雷同,不同点在于:
选择Variable而非Case Save选项失效,不建立的新变量
14.3.6 变量聚类实例1 P366
14.4 判别分析P374
判别分析的概念:是根据观测到的若干变量值,判断 研究对象如何分类的方法。 要先建立判别函数 Y=a1x1+a2x2+...anxn,其中:Y为 判别分数(判别值),x1 x2...xn为反映研究对象特征的变 量,a1 a2...an为系数 SPSS对于分为m类的研究对象,建立m个线性判别函 数。对于每个个体进行判别时,把观测量的各变量值 代入判别函数,得出判别分数,从而确定该个体属于 哪一类,或计算属于各类的概率,从而判别该个体属 于哪一类。还建立标准化和未标准化的典则判别函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS聚类分析过程
聚类的主要过程一般可分为如下四个步骤:
1.数据预处理(标准化)
2.构造关系矩阵(亲疏关系的描述)
3.聚类(根据不同方法进行分类)
4.确定最佳分类(类别数)
SPSS软件聚类步骤
1. 数据预处理(标准化)
→Analyze(分析) →Classify (分类,归类)→Hierachical Cluster Analysis(层序聚类分析)→Method(方法,条理,)然后从对话框中进行如下选择
从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可:
标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores(Z-Scores, 英文名又叫Standardized Population Data, 是以标准差单位来表现的一组观察值):标准化变换;Range –1 to 1:极差标准化变换(作用:变换后的数据均值为0,极差为1,且|x ij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。
);Range 0 to 1(极差正规化变换 / 规格化变换);
2. 构造关系矩阵
在SPSS中如何选择测度(相似性统计量):
→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择
常用测度(选项说明):Euclidean distance:欧氏距离(二阶Minkowski距离),用途:聚类分析中用得最广泛的距离;Squared Eucidean distance:平方欧氏距离;Cosine:夹角余弦(相似性测度;Pearson correlation:皮尔逊相关系数;
3. 选择聚类方法
SPSS中如何选择系统聚类法
常用系统聚类方法
a)Between-groups linkage 组间平均距离连接法
方法简述:合并两类的结果使所有的两两项对之间的平均距离最小。
(项对的两成员分属不同类)特点:非最大距离,也非最小距离
b)Within-groups linkage 组内平均连接法
方法简述:两类合并为一类后,合并后的类中所有项之间的平均距离最小
C)Nearest neighbor 最近邻法(最短距离法)
方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法
d)Furthest neighbor 最远邻法(最长距离法)
方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法
e)Centroid clustering 重心聚类法
方法简述:两类间的距离定义为两类重心之间的距离,对样品分类而言,每一类中心就是属于该类样品的均值
特点:该距离随聚类地进行不断缩小。
该法的谱系树状图很难跟踪,且符号改变频繁,计算较烦。
f)Median clustering 中位数法
方法简述:两类间的距离既不采用两类间的最近距离,也不采用最远距离,而采用介于两者间的距离
特点:图形将出现递转,谱系树状图很难跟踪,因而这个方法几乎不被人们采用。
g)Ward’s method 离差平方和法
方法简述:基于方差分析思想,如果分类合理,则同类样品间离差平方和应当较小,类与类
间离差平方和应当较大
特点:实际应用中分类效果较好,应用较广;要求样品间的距离必须是欧氏距离。
谱系分类的确定
经过系统聚类法处理后,得到聚类树状谱系图,Demirmen(1972)提出了应根据研究的目的来确定适当的分类方法,并提出了一些根据谱系图来分类的准则:
A.任何类都必须在临近各类中是突出的,即各类重心间距离必须极大
B.确定的类中,各类所包含的元素都不要过分地多
C.分类的数目必须符合实用目的
D.若采用几种不同的聚类方法处理,则在各自的聚类图中应发现相同的类
实例分析
SPSS19.0分析软件聚类分析
4.2聚类分析——系统聚类法
在数据编辑窗口的主菜单中选择“分析(A)”→“分类(F)”→“系统聚类(H)”(如图-4所示),
弹出“系统聚类分析”对话框,将“地区”变量选入“标注个案(C)”中,将其他变量选入“变量框”中,如图-5所示。
在“分群”单选框中选中“个案”,表示进行的是Q型聚类。
在“输出”复选框中选中“统计量”和“图”,表示要输出的结果包含以上两项。
单击“统计量(S)”按钮,在“系统聚类分析:统计量”对话框中选择“合并进程表”、“相似性矩阵”,如图-6所示,表示输出结果将包括这两项内容。
单击“绘制(T)”按钮,在“系统聚类分析:图”对话框中选择“树状图”、“冰柱”,如图-7所示,表示输出的结果将包括谱系聚类图(树状)以及冰柱图(垂直)。
单击“方法(M)”按钮,弹出“系统聚类分析:方法”对话框,如下图-8所示。
“聚类方法(M)”选项条中可选项包括如图-9所示的几种方法,本例中选择“组间联接”:
“度量标准-区间(N)”选项条中可选项包括如图-10所示的几种度量方法,本例中选择“平方Euclidean距离”:
“转换值-标准化(S)”选项条中可选项包括如图-11所示的几种将原始数据标准化的方法,本
例中选择“全局从0到1”:
冰柱图解释
聚类分析冰柱图形状类似于屋檐上垂下的冰柱,因此而得名。
横轴:案例(Case)表示被聚类的对象或变量;
纵轴:群集数(Number of clusters)表示被聚成几类;
观察冰柱图应从最后一行开始。
举例如下:
当聚成6类时X4和X8和X6聚成一类,其他个案自成一类,用白板将6类一下挡上可以看出如图;
当聚成5类时X4和X8和X6和X2聚成一类,其他个案自成一类。
冰柱图的优点是不仅可以显示出不同类数时个案所属的分类结果,还能表现出聚类的过程步骤,生动形象;缺点是不能表现出聚类过程中距离的大小。
若生成的树状图如下,看不清楚。
可点击右键导出文件,生成word文件,然后可以看出聚类过程。
导出的word文档中聚类过程如下:
可看出聚类过程为如下表所示:
分类过程统计表。