spss聚类分析结果解释

合集下载

SPSS Statistics 19_聚类分析

SPSS Statistics 19_聚类分析

此外还有中间距离法(Median Clustering)、类内平均法(Within-Groups
Linkage)等
12
2 系统聚类

系统聚类

优点

聚类变量可以是分类或连续型变量; 既可以对变量聚类,也可以对数据点/记录聚类(市场细分一般都是对记录聚类); 一次运行即可得到完整的分类序列;
确定样品间相似的度量

距离度量 相似性度量

确定样本点的聚类数量

实际应用中,一般推荐4-6类(5% < 细分群体占比 < 35%)

对聚类结果进行描述和解释

验证细分方案的可接受性 描述各细分群体(交叉表分析) 市场定位(Positioning)
7
©确定目标消费群体 (Targeting) 2009 SPSS Inc.

分类变量:使用卡方(Chi-square)统计量作为距离指标 连续型变量:一般使用欧式平方距离进行距离度量
© 2009 SPSS Inc.
8
1 聚类分析

使用聚类分析时应关注的一些问题(续):

聚类方法的选择

系统聚类法(Hierarchical Clustering),也称分层聚类法 K-均值聚类法(K-means Clustering),也称快速聚类法 两步聚类法(TwoStep Clustering),一种较智能化的聚类方法
2 系统聚类练习

基本思路:综合考察城市的若干社会、经济发展指标(来源《中国城市统计 年鉴》),譬如

城市化程度 生活质量和收入水平 经济发展水平
采用系统聚类法对城市进行系统、科学的分类

SPSS聚类分析具体操作步骤spss如何聚类

SPSS聚类分析具体操作步骤spss如何聚类

算法步骤:初始 化聚类中心、分 配数据点到最近 的聚类中心、重 新计算聚类中心、 迭代直到聚类中 心不再变化
适用场景:探索 性数据分析、市 场细分、异常值 检测等
注意事项:选择 合适的聚类数目、 处理空值和异常 值、考虑数据的 尺度问题
定义:根据数据点间的距离或相似性,将数据点分为多个类别的过程 常用方法:层次聚类、K-均值聚类、DBSCAN聚类等 适用场景:适用于探索性数据分析,发现数据中的模式和结构 注意事项:选择合适的距离度量方法、确定合适的类别数目等
常见的聚类分析方法包括层次聚类、Kmeans聚类、DBSCAN聚类等。
聚类分析基于数据的相似性或距离度量, 将相似的数据点归为一类,使得同一类 中的数据点尽可能相似,不同类之间的 数据点尽可能不同。
聚类分析广泛应用于数据挖掘、市场细分、 模式识别等领域。
K-means聚类:将数据划分为K个簇,使得每个数据点到所在簇中心的距离之和最小
聚类结果的可视化:通过图表展示聚类结果 聚类质量的评估:使用适当的指标评估聚类效果的好坏 聚类结果的解释:根据实际需求和背景知识,对聚类结果进行合理的解释和解读 聚类结果的应用:探讨聚类结果在各个领域的应用场景和价值
SPSS聚类分析常 用方法
定义:将数据集 划分为K个聚类, 使得每个数据点 属于最近的聚类 中心
聚类结果展示:通过图表或表格展示聚类结果,包括各类别的样本数和占比
聚类质量评估:采用适当的指标评估聚类效果,如轮廓系数、Davies-Bouldin指数等
聚类结果解读:根据业务背景和数据特征,解释各类别的含义和特征 聚类结果应用:说明聚类分析在具体场景中的应用,如市场细分、客户分类等
SPSS聚类分析注 意事项
确定聚类变量:选 择与聚类目标相关 的变量,确保变量 间无高度相关性。

spss使用教程 聚类分析与判别分析

spss使用教程 聚类分析与判别分析

表8-1
学生的数学成绩 姓 名 hxh yaju 数 学 99.00 88.00 入学成绩 98.00 89.00
yu
shizg hah john watet jess wish
79.00
89.00 75.00 60.00 79.00 75.00 60.00

80.00
78.00 78.00 65.00 87.00 76.00 56.00
4.样本数据与小类、小类与小类之间的 亲疏程度测量方法
SPSS默认的变量为Var00001、Var00002 等,用户也可以根据自己的需要来命名变量。 SPSS变量的命名和一般的编程语言一样,有一 定的命名规则,具体内容如下。
所谓小类,是在聚类过程中根据样本之间 亲疏程度形成的中间类,小类和样本、小类与 小类继续聚合,最终将所有样本都包括在一个 大类中。 在SPSS聚类运算过程中,需要计算样本与 小类、小类与小类之间的亲疏程度。SPSS提供 了多种计算方法(计算规则)。
本节讲述Q型聚类的原理和SPSS的实现过 程,下一节将讲述R型聚类的实现过程。
8.2.1 统计学上的定义和计算公式
定义:层次聚类分析中的Q型聚类,它使 具有共同特点的样本聚齐在一起,以便对不同 类的样本进行分析。
层次聚类分析中,测量样本之间的亲疏程 度是关键。聚类的时候会涉及到两种类型亲疏 程度的计算:一种是样本数据之间的亲疏程度, 一种是样本数据与小类、小类与小类之间的亲 疏程度。下面讲述这两种类型亲疏程度的计算 方法和公式。
图8-4 “Hierarchical Cluster Analysis:Plots” 对话框(一)
图8-5 “Hierarchical Cluster Analysis:Statistics”对话框(一)

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。

二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。

2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。

3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。

4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。

三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。

下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。

2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。

-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。

-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。

3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。

这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。

五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。

第九章SPSS的聚类分析PPT课件

第九章SPSS的聚类分析PPT课件
–达到指定迭代次数(maximum iteration),默认10次。 –收敛标准(convergence),默认0.02,即:本次迭代产生的任意新类,各
中心位置变化较小.其中最大的变化率小于2%.
29
K-means快速聚类
(三)基本操作步骤
A.菜单选项:analyze->classify->k means cluster B.选定参加快速聚类分析的变量到variables框 C.确定快速聚类的类数(number of clusters).类数应小
第九章 SPSS的聚类分析
1
聚类分析概述
• 概念:
– 聚类分析是统计学中研究“物以类聚”的一种方法,属多元统计分析方法. – 例如:细分市场、消费行为划分
• 聚类分析是建立一种分类,是将一批样本(或变量)按照在性质上的“亲疏” 程度,在没有先验知识的情况下自动进行分类的方法.其中:类内个体具有 较高的相似性,类间的差异性较大.
•(张三,李四) 2: a=0 b=0 c=1 d=2 J(x,y)=1/1=1 (不相同)
11
聚类分析概述
• 品质型个体间的距离
– Jaccard系数举例:根据临床表现研究病人是否有类似的病
•姓名 性别 发烧 咳嗽 检查1 检查2 检查3 检查4
•张三 男 1 0 1 0 0
0
•李四 女 1 0 1 0 1
•姓名 授课方式 上机时间 选某门课程
•张三
1
1
1
•李四
1
1
0
•王五
0
0
1
•(张三,李四):a=2 b=1 c=0 d=0 d(x,y)=1/(1+2)=1/3
•(张三,王五):a=1 b=2 c=0 d=0 d(x,y)=2/(1+2)=2/3

SPSS第11章聚类分析

SPSS第11章聚类分析
•e.“Number of Cluster”选项区提供了两种确定分类组数的方法,一种是由 SPSS自动提供,这里需要给出最大的分类组数;另一种是人为确定分类组 数,这里需要给出最终的分类组数。
• ③在图11.2中单击“Plots”按钮,进入对话框,如图11.2示。
• 选择“Variable Importance Plot”中“Rank Variable”的“by variable”,以便显示在两步聚类中各个变量重要性的图形, 再选择“Continue”按钮,回到原来菜单。
学习目标
解释聚类分析的基本概念
熟悉系统聚类分析方法 分析“Classify”菜单,阐述聚类分析与判别分析的基本原理和基本操作。用 实例说明5种方法的具体实现过程,解释其主要功能、背景知识及其主要选择 项。
第11章 聚类分析和判别分析
• 11.1 聚类分析和判别分析过程综述 • 11.2 两步聚类
11.4 分层聚类分析 11.6 判别分析
• ⑤单击“OK”按钮,在Output窗口和“Data View”中显示计算 结果。
2)基本输出结果与解释
•①首先,给出了最终的聚类结果(3类),并且给出了各类的 每个变量的均值与标准差(图略)。
•②其次,给出了3个分类中男女性、经济收入、教育水平变量 的分布状况图11.4。 •③给出了变量均值的95%置信区间在3类中的对比图图11.5。 •④图11.6所示,给出了一系列图形(本例中有6张图)表示给 个变量在聚类中的重要性。
预先并不知道类的特征,甚至不知道类的数目,因此要选择聚类的基 础变量、距离测量标准以及聚类标准。
11.1.3 Classify的功能
•SPSS的“Classify”菜单中提供了5种分类分析。 •① 两步聚类(TwoStep Cluster)提供了可以同时 根据连续变量和分类变量进行聚类的功能。

SPSS19.0之聚类分析

SPSS19.0之聚类分析

1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。

1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。

开始每个样品自成一类。

2.选择对称矩阵中的最小非零元素。

将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。

3.计算G1与其他样品距离。

重复以上过程直到所有样品合并为一类。

我们在SPSS中实现最短距离分析非常简单。

单击“”-->“”-->“”。

将弹出如图1-1所示的对话框,设置相应的参数即可。

图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。

在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。

在绘制中选择绘制“树状图”。

单击确定,得到以下结果。

聚类表阶群集组合系数首次出现阶群集下一阶群集1 群集 2 群集 1 群集 21 21 28 .211 0 0 102 12 24 .465 0 0 63 2 27 .491 0 0 54 13 20 .585 0 0 95 2 14 .645 3 0 66 2 12 .678 5 2 77 2 7 .702 6 0 88 2 25 .773 7 0 99 2 13 .916 8 4 1110 21 29 1.085 1 0 1211 2 18 1.106 9 0 12表1-2 聚类过程我们可以通过更加形象直观的树状图来观察整个聚类过程和聚类效果。

如图1-2所示,最短距离法组内距离小,但组间距离也较小。

分类特征不够明显,无法凸显各个省份的能源消耗的特点。

但是我们可以看到广东省能源消耗组成和其他省份特别不同,在其他方法中也显现出来。

12 2 21 1.115 11 10 13 13 2 17 1.360 12 0 14 14 2 26 1.564 13 0 15 15 2 22 1.627 14 0 16 16 2 5 1.649 15 0 17 17 2 8 1.877 16 0 18 18 2 16 3.027 17 0 19 19 2 30 3.543 18 0 20 20 2 11 4.930 19 0 21 21 2 4 5.024 20 0 22 22 2 10 6.445 21 0 24 23 1 9 8.262 0 0 26 24 2 15 10.093 22 0 25 25 2 23 10.096 24 0 26 26 1 2 10.189 23 25 27 27 1 6 11.387 26 0 28 28 1 3 13.153 27 0 29 2911932.36728图1-2 最短距离法聚类图1.1.2 组间联接聚类组间联接聚类法定义为两类之间的平均平方距离,即。

聚类分析结果解读_SPSS数据处理与分析_[共7页]

聚类分析结果解读_SPSS数据处理与分析_[共7页]

第十一章数据的聚类分析化处理。

五、聚类分析的应用聚类分析在企业经营管理中的应用主要表现在以下几方面。

(1)细分市场。

可以根据顾客购买产品时追求的利益对顾客进行细分,使每个类别的顾客都是由追求利益相似的人组成,从而了解各个细分市场的特点,实施目标市场营销。

(2)研究顾客行为。

通过聚类分析确定同质的顾客群体,分别研究不同顾客群体的购买行为差异,并有针对性地实施不同的营销策略。

(3)研究市场竞争。

通过对产品和品牌的聚类,可以识别市场中相互竞争的产品和品牌。

往往同类型品牌之间比不同类型品牌之间的竞争更加激烈,企业通过自身产品与竞争产品的分析比较,以便有效地捕捉市场机会。

(4)选择试销市场。

通过将城市分为同质的组,选择可比的城市对不同营销策略进行市场测试的反应。

(5)压缩数据。

聚类分析是一种通用的数据压缩技术,可用来生成比单个观测值更容易识别的数据类别。

例如,为了描述顾客对产品使用方面的差异,可以先用聚类分析将顾客进行分组,然后用判别分析研究不同组别之间的差异。

调研实例11-1产品的类同感[4]449不同国家的消费者对不同品类中的品牌是如何认知的?出人意料的是,产品认知的类同率相当高。

产品类同指的是消费者觉得同一品类中的不同品牌彼此相似。

BBDO的最新研究显示,在28个国家调查的消费者中有2/3的人认为13个产品类别中的品牌是美国的。

调查的产品类别涵盖从航空公司到信用卡,再到咖啡。

所有国家全部品类总感知类同率为63%;日本最高,达99%;哥伦比亚最低,仅28%。

从品类来看,信用卡的感知类同率最高,为76%;香烟最低,为52%。

BBDO根据感知类同率对国家进行了聚类,得到了类同感水平和模式相似的群组。

最高的类同感数字来自法国和亚洲(83%),后者包括澳大利亚、日本、马来西亚和韩国。

法国属于这一组并不奇怪,因为法国的多数产品采用感觉导向的视觉性广告。

另一群是受美国影响的市场(65%),包括奥地利、比利时、丹麦、意大利、荷兰、南非、西班牙、英国和德国。

SPSS聚类的分析详解

SPSS聚类的分析详解

二、聚类统计量
首先定义一些分类统计指标 —— 刻画样或指标之 间的相似程度(这些统计指标称为聚类统计量) 在市场研究中,样品 —— 用作分类的事物 指标 —— 用来作为分类依据的变量。 (如:年龄、收入、销售量) (一)相似系数(夹角余弦) 一般式:假定每个样品包含有P项指标,若有几个样品 的调查数据
3、步骤:1)首先给出度量“相似”或“关系密切”的 统计指标
指标:(1)统计指标是相似系数。 根据相似性归为一类,否则为另一类。 (2)统计指标是样品(空间的点)之间的距离 将距离近的点归成一类,否则为另一类。 (3)相关系数
(4)关联系数 2)形成一个由小到大的分析系统。
3)把整个分类系统画成一张分类图
CLUSTER过程 开始每个观测值自成一类,然后求两两之间的距离, 将距离最近的两个观测值合成一类。这个过程一直 进行下去,每次减少一类,直到合成一类为止。 聚类方法有11种,可根据问题的性质选用,它们的 区别在于怎样计算两类之间的距离。
METHOD=指定方法
AVERAGE(平均法)、CENTROID(重心法)、 COMPLETE(最大距离法)、DENSITY(密度 法)、MEDIAM(中位数法)等
1
按就近原则将每个观测量选入一个类中,然后计算各个类的中 心位置,即均值,作为新的聚心。 3、使用计算出来的新聚心重新进行分类,分类完毕后继续计 算各类的中心位置,作为新的聚心,如此反复操作,直到两次 迭代计算的聚心之间距离的最大改变量小于初始聚类心间最小 距离的倍数时,或者到达迭代次数的上限时,停止迭代。
观测量概述表
聚类步骤,与图结合看!
4、5
聚类方法有系统聚类和逐步聚类,输入数据集可以是普 通数据集、相关矩阵(CORR过程产生)或协方差矩阵 (FACTOR等过程产生)。SAS提供的聚类过程有:

IBM SPSS MODELER 实验一、聚类分析

IBM SPSS MODELER 实验一、聚类分析

IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。

聚类分析的目标就是在相似的基础上对数据进行分类。

IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。

1、K-Means聚类分析实验首先进行K-Means聚类实验。

(1)启动SPSS Modeler 14.2。

选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。

图1 启动SPSS Modeler程序(2)打开数据文件。

首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。

右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。

点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。

单击“应用”,并点击“确定”按钮关闭编辑窗口。

图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。

选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。

运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。

该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。

使用SPSS软件进行因子分析报告和聚类分析报告的方法

使用SPSS软件进行因子分析报告和聚类分析报告的方法

使用SPSS软件进行因子分析和聚类分析的方法一、方法原理1.因子分析(FactorAnalysis)因子分析是从多个变量指标中选择出少数几个综合变量指标的一种降维的多元统计方法。

我们在多元分析中处理的是多指标的问题,观察指标的增加是为了使研究过程趋于完整,但由于指标太多,使得分析的复杂性增加;同时在实际工作中,指标间经常具备一定的相关性,使得观测数据所放映的信息有重叠,故人们希望用较少的指标代替原来较多的指标,但依然能放映原有的全部信息,于是就产生了因子分析方法。

2.聚类分析(ClusterAnlysis)聚类分析是根据事物本身特性来研究个体分类的统计方法,是按照物以类聚的原则来研究的事物分类。

3.市场细分方法的流程图二、实证分析已调查35个城市的总人口、生产总值、消费总额、人均年工资、年度储蓄总额、年度财政总收入等数据,试对上述城市进行分类研究。

1.因子分析:·选用Analyze→DataReduction→Factor……·引入因子分析的6个变量(总人口、生产总值、消费总额、人均年工资、年度总储蓄额、年度财政总收入)·提取公因子的方法(Method):主成分分析法·提取(Extract)可选:提取特征值大于1的因子·旋转(Rotation)的方法:方差最大正交旋转·因子得分(FactorScores):作为新变量存入表 1 方差解释表(Total Variance Explained)表 2 旋转后的因子负荷矩阵(Rotated Component Matrix)2.聚类分析:·选用Analyze→Classify→K-MeansCluster……·引入聚类分析的2个变量(即上面的2个公因子)·聚类的数目(NumberofClusters):3类·聚类方法(Method):仅分类·储存新变量(SaveNewVariables):聚类成员表 3 各类数量分布表(Number of Cases in each Cluster)3.均值多重比较:·选用Analyze→CompareMeans→One-WayANOVA……·将2个因子移入因变量,3个类移入“Factor”·多重比较方法(MultipleComparisons):邓肯法Duncan 表 4 3个类对于因子1的重视程度比较表 5 3个类对于因子2的重视程度比较4.综合。

聚类分析、对应分析、因子分析、主成分分析spss操作入门

聚类分析、对应分析、因子分析、主成分分析spss操作入门
25
软件操作
Scores为计算因子的方法
Save as variables:将因子得分保存在 SPSS变量中,method表示计算因子得分的 方法,Regression—回归法 Display factor score coefficient matix: 输出因子得分系数矩阵
采用聚类方法:系统聚类 K均值聚类
3
系统聚类

参与系统聚类的变量选到Variables(s)中 字符型变量作为标记变量选到Lable Cases by中 Cluster中确定聚类类型,是Q型聚类还是R型聚类

Agglomeration schedule:输出聚类过程表 Proximity matrix:输出个体之间的距离矩阵 Cluster Membership 中 None 表示不输出样本 所属类,Single solution表示当分成n类时各样 本所属类,Range of solutions表示当分成m-n 4 类时各样本属性所属类
基本思想:根据所研究的样本或变量在观测数据上表现的不 同亲疏程度,采用不同的聚类方法将亲疏程度较大的样本/ 变量聚合为一类,把另外一些亲疏程度较大的样本/变量聚 合为一类,直到把所有的样本/变量都聚合完毕,形成一个 由小到大的分类系统 。
聚类方法不同: 聚类对象不同时的聚类类型: 亲疏程度的判定 hierarchical cluster),聚类过程是按 系统聚类:又称为层次聚类( 样本之间的聚类:即Q型聚类分析,常用距离来测度样本之间的亲疏程 照一定层次进行的; 距离:将每一个样本看作p维空间的一个点,并用某种度量测量点与点 度; 之间的距离,距离较近的归为一类,距离较远的点应属于不同的类; 均值聚类( K-means Cluster ); K 变量之间的聚类:即 R型聚类分析,常用相似系数来测度变量之间的亲 相似系数:性质越接近的变量或样本,它们的相似系数越接近于1或一l, 疏程度; 而彼此无关的变量或样本它们的相似系数则越接近于0,相似的为一类,不 相似的为不同类;

SPSS软件聚类分析过程的图文解释及结果的全面分析

SPSS软件聚类分析过程的图文解释及结果的全面分析

SPSS聚类分析过程聚类的主要过程一般可分为如下四个步骤:1.数据预处理〔标准化〕2.构造关系矩阵〔亲疏关系的描述〕3.聚类〔根据不同方法进行分类〕4.确定最正确分类〔类别数〕SPSS软件聚类步骤1. 数据预处理〔标准化〕→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可:标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores:标准化变换;Range –1 to 1:极差标准化变换〔作用:变换后的数据均值为0,极差为1,且|x ij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。

〕;Range 0 to 1〔极差正规化变换/ 规格化变换〕;2. 构造关系矩阵在SPSS中如何选择测度〔相似性统计量〕:→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择常用测度〔选项说明〕:Euclidean distance:欧氏距离〔二阶Minkowski距离〕,用途:聚类分析中用得最广泛的距离;Squared Eucidean distance:平方欧氏距离;Cosine:夹角余弦(相似性测度;Pearson correlation:皮尔逊相关系数;3. 选择聚类方法SPSS中如何选择系统聚类法常用系统聚类方法a〕Between-groups linkage 组间平均距离连接法方法简述:合并两类的结果使所有的两两项对之间的平均距离最小。

〔项对的两成员分属不同类〕特点:非最大距离,也非最小距离b〕Within-groups linkage 组内平均连接法方法简述:两类合并为一类后,合并后的类中所有项之间的平均距离最小C〕Nearest neighbor 最近邻法〔最短距离法〕方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法d〕Furthest neighbor 最远邻法〔最长距离法〕方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法e〕Centroid clustering 重心聚类法方法简述:两类间的距离定义为两类重心之间的距离,对样品分类而言,每一类中心就是属于该类样品的均值特点:该距离随聚类地进行不断缩小。

聚类分析spss

聚类分析spss

聚类分析spss
SPSS聚类分析是对数据集进行分类和分析的一种统计过程。

通过SPSS聚类分析,可以将数据集中的观察值划分为较小的簇,并了解每一簇的特点。

SPSS聚类分析的过程主要包括以下几步:
1)定义分类变量:首先,需要确定用于分类的变量类型,例如类别变量,数值变量,以及其他变量。

2)定义聚类目标:根据所选变量的类型,分析者可以自由定义聚类的方法和指标,例如聚类的数量,聚类的最大和最小大小,以及聚类的距离度量标准。

3)数据分析:使用SPSS中提供的聚类算法,根据定义的聚类目标,对数据集进行聚类分析,并计算出聚类的相关结果。

4)结果汇总:聚类分析完成后,SPSS会生成一系列统计图,可以比较不同聚类的结果,以及每组聚类中不同变量的取值情况。

5)结果应用:最后,分析者就可以根据聚类的结果,对数据集进行更有效的分析和解释,从而为业务决策提供合理的依据。

SPSS19实战之聚类分析

SPSS19实战之聚类分析

SPSS19.0实战之聚类分析这篇文章与上一篇的回归分析是一次实习作业整理出来的。

所以参考文献一并放在该文最后。

CNBlOG网页排版太困难了,又不喜欢live writer……聚类分析是将物理或者抽象对象的集合分成相似的对象类的过程。

本次实验我将对同一批数据做两种不同的类型的聚类;它们分别是系统聚类和K-mean聚类。

其中系统聚类的聚类方法也采用3种不同方法,来考察对比它们之间的优劣。

由于没有样本数据,因此不能根据其数据做判别分析。

评价标准主要是观察各聚类方法的所得到的类组间距离和组内聚类的大小。

分析数据依然采用线性回归所使用的标准化后的能源消费数据。

1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。

1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。

开始每个样品自成一类。

2.选择对称矩阵中的最小非零元素。

将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。

3.计算G1与其他样品距离。

重复以上过程直到所有样品合并为一类。

我们在SPSS中实现最短距离分析非常简单。

单击“”-->“”-->“”。

将弹出如图1-1所示的对话框,设置相应的参数即可。

图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。

在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。

在绘制中选择绘制“树状图”。

单击确定,得到以下结果。

1.表表1-1 数据汇总我们的数据经过预处理,所以缺失值个数为0.2. 由于相关矩阵过于庞大,无法在文档中贴出,得到的是一个非相似矩阵。

表1-2是样品聚类过程。

样品21和28在第一步合并为一类,它们之间的非相关系数最小,为0.211。

在下一次合并是第十步。

在第五步的时候,样品2、27、14组成一类,出现群集,样品个数为3。

spss作业,聚类分析

spss作业,聚类分析

聚类分析为了研究全国各地的城镇家庭收支的分布规律,共抽取28个省、市、自治区的农民生活消费支出的6个有关指标的数据资料。

用表中的数据做谱系聚类,画出谱系图,确定消费支出类型。

地区食品支出住房支出衣着支出其他支出北京190 43 60 49天津135 36 44 36河北95 22 22 22山西104 25 9 18内蒙128 27 12 23辽宁145 32 27 39吉林159 33 11 25黑龙江116 29 13 21上海221 38 115 50江苏144 29 42 27浙江169 32 47 34安徽153 23 23 18福建144 21 19 21江西140 21 19 15山东115 30 33 33河南101 23 20 20湖北140 28 18 20湖南164 24 22 18广东182 20 42 36江西139 18 13 20四川137 20 17 16贵州121 21 14 12云南124 19 14 15陕西106 20 10 18甘肃95 16 6 12青海107 16 5 8宁夏113 24 9 22新疆123 38 4 17【结果与分析】一、欧氏距离平方、组间平均距离连接法Case Processing Summary(a)CasesValid Missing Total N Percent N Percent N Percent28 100.0 0 .0 28 100.0a Average Linkage (Between Groups)上表表示进行聚类分析的有效样品是28个,无缺失值。

Agglomeration ScheduleStageCluster CombinedCoefficientsStage Cluster FirstAppearsNext Stage Cluster 1 Cluster 2 Cluster 1 Cluster 21 14 21 15.000 0 0 62 22 23 22.000 0 0 123 4 24 30.000 0 0 104 3 16 45.000 0 0 155 8 27 51.000 0 0 106 14 20 55.500 1 0 87 13 17 67.000 0 0 88 13 14 82.167 7 6 169 12 18 123.000 0 0 1410 4 8 141.000 3 5 1511 25 26 161.000 0 0 1812 5 22 179.000 0 2 1613 2 10 215.000 0 0 1914 7 12 302.500 0 9 2215 3 4 310.750 4 10 1816 5 13 333.600 12 8 2017 11 19 342.000 0 0 2318 3 25 386.000 15 11 2519 2 6 396.500 13 0 2120 5 28 617.250 16 0 2221 2 15 833.667 19 0 2422 5 7 915.222 20 14 2423 1 11 1021.000 0 17 2624 2 5 1225.875 21 22 2525 2 3 1757.844 24 18 2626 1 2 5112.264 23 25 2727 1 9 18396.630 26 0 0上表表示聚类过程,从中可知,聚类共进行27步;第一步首先合并距离最近的14号和21号样品,形成类G1;因为next stage=6,所以在第6步G1和20号进行复聚类,因此,在Stage Cluster First Appears里列的Cluster 1=1,Cluster 2=0;第二步,合并22号和23号样品,形成类G2;因为next stage=12,所以在第12步,G2和第5号样品进行复聚类,且Cluster 1=0,Cluster 2=2;第一次出现类类的合并在第8步,Cluster 1=7,Cluster 2=6,表示第7步和第6步合并形成的类在第8步合并;其余的类似,不再详细叙述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


样品聚类:对观测量(Case)进行聚类(不同的目的 选用不同的指标作为分类的依据,如选拔运动员与 分课外活动小组) 变量聚类:找出彼此独立且有代表性的自变量,而 又不丢失大部分信息。在生产活动中不乏有变量聚 类的实例,如:衣服号码(身长、胸围、裤长、腰 围)、鞋的号码。变量聚类使批量生产成为可能。
14.2 指定初始类中心的聚类方法例题P343
数据同上(data14-01a):以四个四类成绩突出者的数据为初始 聚类中心(种子)进行聚类。类中心数据文件data14-01b(但缺一 列Cluster_,不能直接使用,要修改)。对运动员的分类(还是分 为4类) AnalyzeClassifyK-Means Cluster Variables: x1,x2,x3 Label Case By: no Number of Cluster: 4

14.2 快速样本聚类过程(Quick Cluster) 中的选项
使用快速聚类的选择项:
类中心数据的输入与输出:Centers选项
输出数据选择项:Save选项
聚类方法选择项:Method选项 聚类何时停止选择项:Iterate选项
输出统计量选择项:Option选项

Center: Read initial from: data14-01b Save: Cluster membership和Distance from Cluster Center

比较有用的结果(可将结果与前面没有初始类中心比较): 聚类结果形成的最后四类中心点(Final Cluster Centers) 每类的观测量数目(Number of Cases in each Cluster) 在数据文件中的两个新变量qc1_1(每个观测量最终被分配 到哪一类)和 qc1_2(观测量与所属类中心点的距离)
饮料数据(drink.sav )
16种饮料的热量、咖啡因、钠及价格四种变量
如何度量远近?
如果想要对100个学生进行分类,如果仅仅知 道他们的数学成绩,则只好按照数学成绩来 分类;这些成绩在直线上形成100个点。这样 就可以把接近的点放到一类。 如果还知道他们的物理成绩,这样数学和物 理成绩就形成二维平面上的100个点,也可以 按照距离远近来分类。 三维或者更高维的情况也是类似;只不过三 维以上的图形无法直观地画出来而已。在饮 料数据中,每种饮料都有四个变量值。这就 是四维空间点的问题了。
聚类分析
对于一个数据,人们既可以对变量(指标)进 行分类(相当于对数据中的列分类),也可以对 观测值(事件,样品)来分类(相当于对数据 中的行分类)。 比如学生成绩数据就可以对学生按照理科或文 科成绩(或者综合考虑各科成绩)分类, 当然,并不一定事先假定有多少类,完全可以 按照数据本身的规律来分类。 本章要介绍的分类的方法称为聚类分析 (cluster analysis)。对变量的聚类称为R 型聚类,而对观测值聚类称为Q型聚类。这两 种聚类在数学上是对称的,没有什么不同。
Analyze→Classify →Hierarchical Cluster:


Variables: X1-X10 Cluster:Variable, R聚类 Method:
Cluster Method :Furthest val:Pearson Correlation
使用 k 均值分类法对观测量进行聚类 可使用系统的默认选项或自己设置选项,如分为几类、 指定初始类中心、是否将聚类结果或中间数据数据存 入数据文件等。 快速聚类实例(P342,data14-01a):使用系统的默认 值进行:对运动员的分类(分为4类) AnalyzeClassifyK-Means Cluster


Plots: Dendrogram 树型图 Statistics:Proximity matrix相关矩阵
比较有用的结果:可以从树型图中看出聚类过程。具体聚为几类最为合理, 根据专业知识来定。而每类中的典型指标的选择,可用p370的相关指数公 式的计算,然后比较类中各个变量间的相关指数,哪个大,就选哪个变量作 为此类的代表变量。
14.3 分层聚类(Hierarchical Cluster)
分层聚类方法:

分解法:先视为一大类,再分成几类 凝聚法:先视每个为一类,再合并为几大类
可用于观测量(样本)聚类(Q型)和变量聚类(R型) 一般分为两步(自动,可从Paste的语句知道,P359): Proximities:先对数据进行的预处理(标准化和计算距离等) Cluster:然后进行聚类分析 两种统计图:树形图(Dendrogram)和冰柱图(Icicle) 各类型数据的标准化、距离和相似性计算P348-354
Analyze→Classify →Hierarchical Cluster:

Variables: calorie,sodium,alcohol, cost 成分和价格 Label Case By: Beername Cluster:Case, Q聚类 Display: 选中Statistics,单击Statistics
14.1.2 判别分析
判别分析是根据表明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进行分类的一种分析方法。 在自然科学和社会科学的各个领域经常遇到需 要对某个个体属于哪一类进行判断。如动物学 家对动物如何分类的研究和某个动物属于哪一 类、目、纲的判断。 不同:判别分析和聚类分析不同的在于判别分 析要求已知一系列反映事物特征的数值变量的 值,并且已知各个体的分类(训练样本)。
14.4 判别分析P374
判别分析的概念:是根据观测到的若干变量值,判断 研究对象如何分类的方法。 要先建立判别函数 Y=a1x1+a2x2+...anxn,其中:Y为 判别分数(判别值),x1 x2...xn为反映研究对象特征的变 量,a1 a2...an为系数 SPSS对于分为m类的研究对象,建立m个线性判别函 数。对于每个个体进行判别时,把观测量的各变量值 代入判别函数,得出判别分数,从而确定该个体属于 哪一类,或计算属于各类的概率,从而判别该个体属 于哪一类。还建立标准化和未标准化的典则判别函数。
14.1.3 聚类分析与判别分析的SPSS过程 在AnalyzeClassify下:
1.
2.
3.
K-Means Cluster: 观测量快速聚类分 析过程 Hierarchical Cluster:分层聚类(进行 观测量聚类和变量聚类的过程 Discriminant:进行判别分析的过程
14.2 快速样本聚类过程(Quick Cluster)
Agglomeration Schedule 凝聚状态表 Proximity matrix:距离矩阵 Cluster membership:Single solution:4 量所属的类
显示分为4类时,各观测


Method: Cluster (Furthest Neighbor), Measure-Interval (Squared Euclidean distance), Transform Value (Range 01/By variable (值-最小值)/极差) Plots: (Dendrogram) Icicle(Specified range of cluster, Start-1,Stop-4, by-1), Orientation (Vertical纵向作图)
具体见下面吴喜之教授有关判别分析的讲义
补充:聚类分析与判别分析
以下的讲义是吴喜之教授有关
聚类分析与判别分析的讲义,
我觉得比书上讲得清楚。
先是聚类分析一章 再是判别分析一章
聚类分析
分类
俗语说,物以类聚、人以群分。 但什么是分类的根据呢? 比如,要想把中国的县分成若干类,就有很 多种分类法; 可以按照自然条件来分, 比如考虑降水、土地、日照、湿度等各方面; 也可以考虑收入、教育水准、医疗条件、基 础设施等指标; 既可以用某一项来分类,也可以同时考虑多 项指标来分类。
第14章 聚类分析与判别分析
介绍: 1、聚类分析 2、判别分析
分类学是人类认识世界的基础科学。聚类分析 和判别分析是研究事物分类的基本方法,广泛地应 用于自然科学、社会科学、工农业生产的各个领域。
14.1.1 聚类分析
根据事物本身的特性研究个体分类的方法,原 则是同一类中的个体有较大的相似性,不同类 中的个体差异很大。 根据分类对象的不同,分为样品(观测量)聚 类和变量聚类两种:
14.3.6
变量聚类实例1 P366
上面啤酒分类问题data14-02。
Analyze→Classify →Hierarchical Cluster:

Variables: calorie,sodium,alcohol, cost 成分和价格 Cluster:Variable, R聚类 Method:

定距变量、分类变量、二值变量 标准化方法p353:Z Scores、Range -1 to 1、 Range 0 to 1等
14.3.4 用分层聚类法进行观测量聚类实例P358
对20种啤酒进行分类(data14-02),变量包括:Beername(啤酒名
称)、calorie(热量)、sodium(钠含量)、alcohol(酒精含量)、 cost(价格)
两个距离概念
按照远近程度来聚类需要明确两个概念:一个是点和点 之间的距离,一个是类和类之间的距离。 点间距离有很多定义方式。最简单的是歐氏距离,还有 其他的距离。 当然还有一些和距离相反但起同样作用的概念,比如相 似性等,两点越相似度越大,就相当于距离越短。 由一个点组成的类是最基本的类;如果每一类都由一个 点组成,那么点间的距离就是类间距离。但是如果某一 类包含不止一个点,那么就要确定类间距离, 类间距离是基于点间距离定义的:比如两类之间最近点 之间的距离可以作为这两类之间的距离,也可以用两类 中最远点之间的距离作为这两类之间的距离;当然也可 以用各类的中心之间的距离来作为类间距离。在计算时, 各种点间距离和类间距离的选择是通过统计软件的选项 实现的。不同的选择的结果会不同,但一般不会差太多。
相关文档
最新文档