初中八年级上册数学《探索勾股定理
探索勾股定理(19张PPT)数学八年级上册
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
北师大版八年级数学上册第一章勾股定理第1课探索勾股定理课件
2. 如图,正方形ABCD的面积为25 cm2,△ABP为直角三角形, ∠APB=90°,且PB=3 cm,那么AP的长为( C )
A. 5 cm
B. 3 cm
C. 4 cm
D. 不能确定
3. 在Rt△ABC中,斜边BC=4,则BC2+AB2+AC2= 32 . 4. 如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和 为 49 cm2.
第一章 勾股定理
1 探索勾股定理 第1课时
1. 直角三角形三边存在的关系:在直角三角形中,任意两条边确定了,另 外一条边也就随之 确定 ,三边之间存在着一种特定的 数量 关系.
2. 我国古代把直角三角形中较短的直角边称为 勾 ,较长的直角边称为 股 , 斜边称为 弦 .
3. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a, b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
4. 如图,在△ABC中,∠C=90°. (1)若已知a,b,则c2= a2+b2 ; (2)若已知a,c,则b2= c2-a2 ; (3)若已知b,c,则a2=长分别为3和4,下列说法中正确的是( C )
A. 斜边长为25
B. 三角形的周长为25
C. 斜边长为5
D. 三角形的面积为20
2. 三个正方形的面积如图所示,则S的值为( C )
A. 3
B. 4
C. 9
D. 12
3. 在Rt△ABC中,∠C=90°,AB=25,AC=7,则△ABC的面积为84 . 4. 如图,为了测得湖两岸点A和点B之间的距离,一个观测者在点C设桩, 使∠ABC=90°,并测得AC=20m,BC=16m,则点A和点B之间的距离是 12 m.
初中八年级上册数学《探索勾股定理》
3、从图1一l、1一2、1一3中你发现了什么?
4、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗?
小结:以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。
三、议一议,归纳定理
5、你能发现直角三角形三边长度之间的关系吗?
注意引导学生发现数字间的倍数关系
引导学生进一步发现勾股定理还可以用来解决其他图形的问题
以问题串的形式引导学生总结本节课的学习内容
检测与反馈
激发学生的探索欲望和学习热情
阅读,小组合作,获取有用信息,归纳
动手操作,数方格,并小组合作
引导学生从中发现不同的解题方法
计算并说明依据
观察前三组数据,小组合作发现规律
小组交流,解决问题
根据提供问题总结
独立完成
课题
1.1探索勾股定理
课型
新授
教学目标
知识目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。
能力目标:让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力
(2)查阅与勾股定理与关的资料,了解勾股定理的其他证明方法。
出示投影,创设问题的情境,揭示课题。
引导学生了解勾股定理的内容和相关背景,
引导学生数格子,并交流不同的的解题方法
引导学生发现A + B=C
引导学生归纳勾股定理
北师大版八年级数学上册1.1《探索勾股定理》课件
c=
。
2.在△ABC中,∠C=90°,若c=13,ቤተ መጻሕፍቲ ባይዱ=12,则
a=
。
3.若直角三角形中,有两边长是3和4,则第三
边长的平方为( )
A 25 B 14 C 7 D 7或25
二、提高训练
4.一个长为10 m为梯子斜靠在墙上,梯子的顶端距
地面的垂直高度为8m,梯子的顶端下滑2 m后,底端
滑动
m.
5.已知Rt△ABC中,∠C=90°,若 a+b=14cm, c=10cm,则Rt△ABC的面积为( )
视察这三 个正方形
你发现图中三个正方形的面积之间 存在什么关系吗?
换个角度来看呢?
你发现了什么?
结论1 以等腰直角三角形两直角边为边长 的小正方形的面积的和,等于以斜边为边长的正 方形的面积.
分小组动手操作实践
用四张全等的等腰直角三角形纸片,拼成一个 正方形。(不能重叠,不能有间隙)
∵c2= 4×12 a2 ∴c2=2a2
(1)如果三角形的三边长分别为a,b,c,则 a2+b2=c2
( ×)
(2)如果直角三角形的三边长分别为a,b,c,则a2+b2=c2
( ×)
( 3) 如果直角三角形的三边长分别为a,b,c,且c为斜边,
则 a+b=c
( ×)
(4) 如果直角三角形的三边长分别为a,b,c,且c为斜边,
则 b2=c2-a2
2002年国际数 学家大会会标 ——弦图.
四、课堂小结 定理内容
重要的 思想方 法及数 学思想
勾股 定理
从特殊 到一般、 数形结 合思想
定理运用
五、布置作业
1.习题1.1. 2.阅读《读一读》——勾股世界.
1.1.1探索勾股定理 北师大版数学八年级上册
121.52 + 68.52 ≈ 139.72
售货员没有搞错.
课堂小结
内容
直角三角形两直角边的平方和等于斜边的平方
勾
股
定
理
如果直角三角形两直角边分别为a,b,斜边为c,
字母表示
那么 a2 b2 c2
第一章 勾股定理
课程结束
北师大版八年级(初中)数学上册 授课老师:孙老师
C A
B
C Aa c
b B
(3)如果直角 三角形的两直角边 分别为 1.6 个单位 长度和 2.4 个单位 长度,上面所猜想 的数量关系还成立 吗?说明你的理由.
(每个小正方形的面积为单位 1)
1.6 2.4
直角三角形两直角边的平方和等于斜边的平
方,这就是著名的“勾股定理”.
如果用a,b和c分别表示直角三角形的两直角
第一章 勾股定理
1 探索勾股定理(1)
北师大版八年级(初中)数学上册 授课老师:孙老师
复习回顾 三角形
定义
由不在同一条直线上的三条线段首尾顺次 相接组成的平面图形.
角 三角形的内角和是 180°.
边 两边之和大于第三边,两边之差小于第三边.
直角 三角形
定义 有一个角是 90°的三角形是直角三角形.
角
直角三角形的两个锐角互余;两个锐角互余 的三角形是直角三角形.
边?
新课导入 我们知道,任意三角形的三条边必须满足定理:三角形 的两边之和大于第三边.
对于一些特殊的三角形,是否还存在其他特殊的关 系?
新知探究
(1)在纸上画若干个直角三角形,分别测量 它们的三条边,看看三边长的平方之间有怎样的 关系. 与同伴进行交流.
B
左图
北师大版八年级数学上册《探索勾股定理》课件(24张PPT)
勾是6, 62=36, 勾是5,
股是8, 82=64, 股是12,
弦一定是10;
102=100
62+82=102
弦一定是13,
52=25, 122=144, 132=169 52+122=132 等等. 是不是所有的直角三角形都有这个性质呢?世界上许
多数学家,先后用不同方法证明了这个结论. 我国把它称 为勾股定理.
正方形C的面积是__1_8__ 个单位面积.
(图中每个小方格代表1个单位面积)
C A
B
S正方形C 4 1 33 2
=18个单位面积
把正方形C分割成若干 个直角边为整数的三角 形来求
(图中每个小方格代表1个单位面积)
C A
B
S正方形C
1 2
62
=18个单位面积
把正方形C看成边长为 6的正方形面积的一半
第一章 勾股定理
1 探索勾股定理
1.经历探索勾股定理及验证勾股定理的过程,了解勾股 定理的探究方法及其内在联系. 2.掌握勾股定理,并能运用勾股定理解决一些实际问题.
这是1955年希腊为纪念一个数学学派发行的邮票.
P
C
A
Q
R B
如图,小方格的边长为1.
正方形P 正方形Q 正方形R 的面积 的面积 的面积
2
通过本课时的学习,需要我们掌握: 勾股定理: 直角三角形两直角边的平方和等于斜边的平方,即
a2 b2 c2
没有智慧的头脑,就像没有蜡烛的灯笼.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
八年级数学上册《探索勾股定理》教案、教学设计
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示勾股定理的历史背景,如古希腊数学家毕达哥拉斯发现勾股定理的故事,以及我国古代对勾股定理的研究成果,引发学生对勾股定理的好奇心。
2.提问学生:“同学们,你们知道直角三角形有什么特征吗?”让学生回忆直角三角形的定义和性质,为新课的学习做好铺垫。
3.教师提出问题:“在直角三角形中,斜边与直角边之间是否存在某种特殊的数量关系?今天我们就一起来探讨这个问题。”
(二)讲授新知
1.教师通过动画演示,引导学生观察直角三角形中斜边与直角边的关系,并提出勾股定理的猜想。
2.教师逐步引导学生,利用数学归纳法证明勾股定理,强调数学逻辑性和严谨性。
-首先,验证直角边长度为1的直角三角形,斜边长度是否满足勾股定理;
4.多元评价:采用口头提问、课堂练习、课后作业等多种形式,全面评价学生的学习效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探索数学知识的热情;
2.培养学生严谨、细心的学习态度,提高他们的数学素养;
3.培养学生的团队协作意识,让他们在合作探究中学会倾听、交流、分享;
4.使学生认识到勾股定理在数学发展中的重要地位,以及数学在人类文明进步中的价值。
此外,学生在解决问题的过程中,可能存在以下问题:对勾股定理的理解不够深入,难以灵活运用;在解决实际问题时,容易忽略细节,导致计算错误。因此,在教学过程中,教师应关注学生的这些薄弱环节,有针对性地进行教学设计和指导。
在此基础上,教师要关注学生的兴趣和动机,通过生动有趣的教学手段,激发学生的学习兴趣,使他们愿意主动参与到勾股定理的探究过程中。同时,注重培养学生的团队合作精神,让他们在互动交流中共同提高,为学生的全面发展奠定基础。
2.7 探索勾股定理八年级上册数学浙教版
2.7 探索勾股定理
学习目标
1.掌握勾股定理,了解勾股定理的证明过程.
2.会用勾股定理解决简单的几何问题和实际问题.
3.掌握勾股定理的逆定理.
4.会应用勾股定理的逆定理来判定直角三角形.
知识点1 勾股定理 重点
勾股定理
几何语言
变式
应用Βιβλιοθήκη 图示直角三角形两条直角边的平方和等于斜边的平方.
考点2 利用勾股定理的逆定理解决实际问题
典例5 (2021·玉林中考)如图,某港口 位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点 , 处,且相距20海里,如果知道甲船沿北偏西 方向航行,则乙船沿____________方向航行.
典例1 在 中, , , 的对边长分别为 , , .
(1) 若 , , ,求 ;
解:(1) , , ,由勾股定理,得 . , .
, , .由勾股定理,得 ,解得 ( 舍去). .
(2) 若 , , ,求 ;
(3) 若 , ,求 .
(3)当 是斜边长时,由勾股定理,得 . , .当 是直角边长时,由勾股定理,得 . , .综上, 或 .
由图(1)得大正方形的面积 ,由图(2)得大正方形的面积 ,联立两式易得 .
续表
古印度的“无字证明”,单靠移动几个图形就直观地验证了勾股定理
典例2 一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种验证方法.如图所示,火柴盒倒下后,它的一个侧面 到了四边形 的位置,连结 , , ,设 , , .请利用四边形 的面积验证勾股定理: .
北偏东
解析:由题意可知, 海里, 海里, 海里. , 是直角三角形,且 .由题意知 , ,即乙船沿北偏东 方向航行.
八年级数学探索勾股定理
100%
解决物理问题
勾股定理在解决物理问题中也有 着广泛的应用,如求物体的速度 、加速度等。
80%
建立物理模型
勾股定理可以用来建立物理模型 ,如建立质点运动模型、弹性碰 撞模型等。
在日常生活中的应用
建筑测量
在建筑测量中,勾股定理可以 用来确定建筑物的角度和长度 ,以确保建筑物的稳定性和安 全性。
航海定位
八年级数学探索勾股定理
目
CONTENCT
录
• 引言 • 勾股定理的证明 • 勾股定理的应用 • 勾股定理的扩展 • 勾股定理的探索与发现
01
引言
勾股定理的背景
勾股定理是数学中一个基本而重要的定理,它揭示 了直角三角形三边之间的数量关系。这个定理在古 代文明中就已经被发现和应用,如古希腊、古中国 和古巴比伦等。
勾股定理的推广在几何学中有着广泛的应用,它可以用来判 断一个三角形是否为直角三角形,也可以用来证明一些与三 角形相关的定理和性质。
勾股定理在复数域中的应用
勾股定理在复数域中的应用是指将勾股定理应用到复数领域 中。在复数域中,勾股定理仍然成立,即对于任意两个复数a 和b,有a^2 + b^2 = c^2,其中c是a和b的模长。
在西方,勾股定理最早可以追溯到公元前6世纪,古 希腊数学家毕达哥拉斯学派发现了直角三角形三边 之间的数量关系,并给出了证明。
在中国,勾股定理也被称为商高定理,最早的记载 可以追溯到周朝时期的《周髀算经》。
勾股定理的重要性
勾股定理是几何学中的基石之 一,它不仅在数学领域有着广 泛的应用,而且在物理学、工 程学、天文学等领域也有着重 要的应用。
勾股定理在三角函数、解析几 何、微积分等数学分支中也有 着广泛的应用,是数学学习中 不可或缺的一部分。
北师大版数学 八年级上册 探索勾股定理(第1课时)
导入新知
同学们,在我们美丽的 地球王国上,原始森林,参 天古树带给我们神秘的遐想; 绿树成荫,微风习习,给我 们以美的享受.你知道吗? 在古老的数学王国,有一种 树木它很奇妙,生长速度大 的惊人,它是什么呢?下面 让我们带着这个疑问一同到 数学王国去欣赏吧!
勾股树
探究新知
补成大正方形, 用大正方形的面 积减去四个直角 三角形的面积
“割”
分割为四个直角 三角形和一个小 正方形
“补”
“拼”
将几个小块拼成一个正 方形,如图中两块红色 (或绿色)可拼成一个 小正方形
探究新知 (4)分析填表数据
A的面积
图3
4
图4
16
C A
B
图3
B的面积 9 9
C A
B
图4
C的面积 13 25
a
b
c
a2,b2,c2之间关系
探究新知 问题1 你能发现下图中三个正方形面积之间有怎样的关系?
C A
B
图1 (图中每个小方格代表一个单位面积)
探究新知
思考1 用什么办法能求出图1中A, B的面积? 数格子
C A
B
图1
正方形A中含有 9 个小方格,即 A的面积是 9 个单位面积.
同理:正方形B的面积是 9 个单 位面积.
探究新知
2.求非直角三角形的面积
例3 如图,在△ABC中,AB=AC=13,BC=10,求△ABC的面
积. 解:作AD⊥BC于D,
在等腰△ABC中,因为AB=AC=13,BC=10,
所以BD=CD=5, 所以AD2=AB2-BD2 =132-52 =144,AD=12
所以S△ABC=12 BC•AD= 12×10×12=60.
2024-2025学年北师版初中数学八年级(上)教案第一章勾股定理1.1探索勾股定理(第2课时)
第一章勾股定理1探索勾股定理第2课时勾股定理的证明及应用教学目标教学反思1.经历运用拼图的方法说明勾股定理是正确的过程,在教学活动中发展学生的探究意识和合作交流的习惯.2.通过对勾股定理的探索,在探索实践中理解并掌握勾股定理并且会运用勾股定理.教学重难点重点:会验证勾股定理,并能应用勾股定理解决一些实际问题.难点:经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.教学过程导入新课教师提出问题:1.勾股定理的内容是什么?(指名学生回答)2.上节课我们仅仅是通过测量和数格子,对具体的直角三角形进行探索发现了勾股定理,对一般的直角三角形勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?教师:事实上,现在已经有数百种勾股定理的验证方法,这节课我们就来验证一下勾股定理.设计意图:回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度,介绍世界上一些验证方法,激发学生的学习兴趣.探究新知一、预习新知让学生自主预习课本第5页.提出问题:如下图,分别以直角三角形的三条边为边向外作正方形,你能利用这幅图说明勾股定理的正确性吗?验证,并让学生发表自己的见解,再小组讨论勾股定理是否正确.设计意图:通过让学生自己动手作图、验证不仅能锻炼学生的动手能力,还能加深对勾股定理的理解.二、合作探究验证勾股定理为了计算上图中大正方形的面积,小明对这个大正方形进行了适当割补后得到了下面两个图.问题1:你可以利用两种方法来表示图1中的大正方形的面积吗? 学生先独立思考,再小组交流得到答案(a +b )2和2ab +c 2. 问题2:你可以得到怎样的等式?从而能得到什么? 学生:(a +b )2 = 2ab +c 2,化简后得到a 2+b 2 = c 2. 从而利用图1验证了勾股定理,此方法称为毕达哥拉斯法.教师:我们利用拼图的方法,将形的问题与数的问题结合起来,利用整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?问题3:图2中小正方形的边长是多少?问题4:你可以利用两种方法来表示图2中的大正方形的面积吗? 问题5:你可以得到怎样的等式?从而能得到什么? 提出几个问题让学生根据问题独立探究,再小组交流,最后请一位同学上台讲解利用图2验证勾股定理.图2中小正方形边长是b -a ,(b -a)2和c 2-2ab 都可以表示图2中小正方形的面积,根据同一图形面积相等得到(b -a)2= c 2-2ab ,化简后得到a 2+b 2 = c 2.从而利用图2也验证了勾股定理,图2我们又称为赵爽弦图. 设计意图:教师层层设问引导学生来完成勾股定理的验证,通过两个图形让学生体会数形结合的思想并体会成功的快乐,学生先拼图从形上感知,再利用面积验证,比较容易掌握本节课的重点内容.前面已经讨论了直角三角形的三边长满足的关系,那么锐角三角形和钝角三角形是否也满足这一关系呢?观察下图,利用数格子的方法判断图中三角形的三边长是否满足a 2+b 2 2如果一个三角形不是直角三角形,那么它的三边长a ,b ,c 不满足a 2+b 2 = c 2,通过这个结论,学生将对直角三角形的三边关系有进一步认识.巩固练习证明:∵ S 梯形ABCD = S △ABE +S △BCE +S △EDA ,教学反思又∵ S 梯形ABCD =12(a +b )2,S △BCE = S △EDA = 12ab ,S △ABE = 12c 2,∴ 12(a +b )2 = 2×12ab +12c 2,∴ a 2+b 2= c 2,即勾股定理得证. 典型例题 【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a ,b ,斜边长为c ,再作三个边长分别为a ,b ,c 的正方形,将它们如下图所示拼成两个正方形.222.a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b , ∴ 它们的面积相等.左边大正方形面积可表示为a 2+b 2+12ab ×4, 右边大正方形面积可表示为c 2+12ab ×4. ∵ a 2+b 2+12ab ×4 = c 2+12ab ×4,∴ a 2+b 2 = c 2.【总结】根据拼图,通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.典型例题【例2】如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M ,O ,Q 三城市的沿江高速公路,已知沿江高速公路的建设成本为5 000万元/km ,该沿江高速公路的造价预计是多少?【问题探索】总造价计算公式是解决此题目的关键,总造价 = 每千米造价×千米数.【解】在Rt △OMN 中,根据勾股定理得 MN 2+ON 2 = OM 2, ∴ 302+402 = OM 2, ∴ OM = 50 km. 同理O Q = 130 km ,∴ 造价为(50+130)×5 000 = 900 000(万元). 答:造价预计是900 000万元. 【总结】解答本题的关键是先利用勾股定理求出高速公路的长度,再求总造价.教学反思课堂练习1.若等腰三角形的腰长为13 cm,底边长为10 cm,则它的面积为()A.30 cm2B.130 cm2C.120 cm2D.60 cm22.放学以后,小丽和小红从学校出发,分别沿东南方向和西南方向回家.若小丽和小红行走的速度都是40 m/min,小丽走了15 min回到家,小红走了20 min回到家,则小丽家和小红家间的距离为()A.600 m B.800 mC.1 000 m D.不确定3.直角三角形两直角边长分别为8 cm,15cm,则斜边上的高为______.4.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现在需要在相对的顶点间用一块木板加固,则这块木板的长为______.5.如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1 = 2 km,BB1 = 4 km,A1B1 = 8 km.现要在高速公路上A1,B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离之和.参考答案1.D2.C3.12017cm 4.2.5 m5.解:如图作点B关于MN的对称点B′,连接AB′交A1B1于点P,连接BP.则AP+BP = AP+PB′ = AB′,易知点P即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE = A1B1 = 8 km,B′E = AA1+BB1 = 2+4 = 6( km).由勾股定理,得B′A2 = AE 2+B′E 2 = 82+62,∴AB′ = 10 km,即AP+BP = AB′ = 10 km.故出口P到A,B两村庄的最短距离之和是10 km.课堂小结(学生总结,老师点评)勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方.验证方法:两种证法.布置作业1.(必做题)习题1.2第1,3题2.(选做题)第4题板书设计1 探索勾股定理教学反思第2课时勾股定理的证明及应用1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.两种证明方法.。
探索勾股定理---同步课件浙教版数学八年级上册
(2)若a=15,c=17,求b;
解 (1)∵a∶b=2∶1,∴a=2b. 又∵∠C=90°,c=5,
b
c
∴由勾股定理,得(2b)2+b2=52,解得b= 5.
C
a
B
例2 如图是长方形零件图,根据所给的尺寸(单位:mm), 求两孔中心A,B之间的距离.
解 过A作铅垂线,过B作水平线,两线交于点C,
a b-a
证明
S大正方形=c2
S小正方形=(b-a)2
S大正方形=4·S三角形+S小正方形
即 c2=4×12 ab+(b-a)2, c2=2ab+a2-2ab+b2
所以 a2+b2=c2
直角三角形两条直角边的平方和等于斜边的平方
用四个全等的直角三角形,还可以拼成如图所示
的图形,你能否根据这一图形,证明勾股定理.
3.如图,以△ABC的每一条边为边作三个正方形。已知这三 个正方形构成的图形中,灰色部分的面积与蓝色部分的面积 相等,则△ABC是直角三角形吗?请说明理由。
C
A
B
2.5
6
6.5 6.25,36,42.25 6.25+36=42.25
a
b
c a2, b2, c2来自a2 b2 c25.猜想: 如果三角形中有两边的平方和等于第三边的平方, 那么这个三角形是直角三角形 .
Rt
获取新知
如果三角形中 较有短两两边边的的平平方方和和 等于第最三长边边的的平平方方, 那么这个三角形是直角三角形. 最长边所对的角是直角
大正方形的面积可以表示为(a+b)2 ; 也可以表示为c2 +4•ab/.2 ∵ (a+b)2 = c2 + 4•ab/2
1.1探索勾股定理课件北师大版初中数学八年级上册
为“驴桥定理”,
埃及称它为“埃及三角形”等。 但他们发现的时间都比我国要
迟得多。
美国总統的证明 伽菲尔德
1881 年成为美国第 20 任总统 1876 年提出有关证明, 证法称为“总统”证法
二、新课讲授
1、自主探究 (1)视察图1-1
正方形A中含有 9 个
B
C
三角形三边长度之 间存在什么关系吗? 与同伴进行交流。
图1-3
A
B
图1-4
(3)分别以5厘米、12厘米为直角边作出一
个直角三角形,并测量斜边的长度。(2)中
的规律对这个三角形仍然成立吗?
归纳结论
勾股定理
如果直角三角形两直角边分别为a、b,
斜边为c,那么
B
a2 b2 c2
a
C
c
A
b
即:直角三角形两直角边的 勾 弦 平方和等于斜边的平方。
5、练一练
1、在△ABC中,∠C=90°。若a=6,b=8,则 c= _1_0__ 。
2、在△ABC中,∠C=90°。若c=13,b=12,则 a= __5__ 。
3、若直角三角形中,有两边长是3和4,则第三 边长的平方为( D )
A 25 B 14 C 7 D 7或25
三、小结
1、你这节课的主要收获是什么? 2、该定理揭示了哪一类三角形中的什么元
B 图1-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
2、做一做
你是怎样得 到表中的结 果的?与同 伴交流交流。
(1)视察图 1-3、图1-4, 并填写右表:
八年级数学上册第1章勾股定理1探索勾股定理第2课时勾股定理的验证及简单应用预学新版北师大版
长分别是 a , b , c ,将它们拼成如图②的大正方形.
1
2
3
4
(1)观察:图②中,大正方形的面积可以用( a + b )2表示,也
可以用含 a , b , c 的代数式表示为 2 ab + c2 ,那么可
以得到等式: ( a + b )2=2 ab + c2 .整理后,得到 a ,
解: (2)如图.(答案不唯一)
1
2
3
4
知识点1
验证勾股定理
如图是边长为1的正方形网格,下面是勾股定理的探索与
验证过程,请补充完整:
因为 S1=
4
=
S3.
)2+(
BC
所以 S1+ S2
即(
笔记:
AC
, S2=
9
, S3= 13
)2=(
AB
)2.
,
变式1【教材P7读一读变式】意大利著名画家达·芬奇用如图
的面积.
解: 根据勾股定理得,斜边长为10 cm,
所以圆的半径为5 cm.所以 S圆=π×52=25π(cm2).
1
2
1. 勾股定理的验证方法很多,有测量法、数格子法、割补法
面积
(拼图法)、面积法(通过
的不同表示方法得到验
证,也叫等面积法或等积法)等.
1
2
3
4
直角
2. 勾股定理的适用范围仅限于
所示的方法证明了勾股定理.图①中的空白部分是由两个正
方形和两个全等的直角三角形组成的.若设图①中空白部分
的面积为 S1,图③中空白部分的面积为 S2,则下列表示 S1,
S2的等式成立的是( B )
北师大版八年级数学上册 (探索勾股定理)勾股定理教育教学课件
“弦高公式”,它常与勾股定理联合使用.
C
4
B
3.阴影部分是一个正方形,则此正方形的面积为
常用数据: 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361
15 cm 17 cm
64.cm²
4.求出图中直角三角形第三边的长度.
a2 b2 c2
三、得出结论:勾股定理
直角三角形两直角边的平方和等于斜边的平方,如果用a,b,c 分别表示直角三角形的两直角边和斜边,那么
a2 b2 c2
B
几何语言:
c
a
∵在Rt △ABC,∠C=90°
C
b
A
∴a2+b2=c2
说明:勾股定理的应用条件是在直角三角形中;勾股定理是刻画 直角三角形三边平方的关系.
趣味小常识
直角三角形中 较短的直角边称为 勾 ,
较长的直角边称为 股 ,
在中国古代,
斜边称为 弦 .
人们把弯曲成直角
的手臂的上半部分 勾
弦
称为“勾”,下半
部分称为“股”.
(在西方称为毕达
股
勾2 + 股2 = 弦2
哥拉斯定理)
a2 b2 c2
四、探究活动
观察图片,分别求出正方形A,B,C的面积。
2. 思考:任意一个的直角三角形都满足你 所猜测的规律吗?用网格纸中画的直角三角 形尝试证明一下吧?
语言表述: 几何表示:
勾股定理 P3
A c
b
C
a
B
赵爽弦图
2002年国际数学家大会会标
1. 从这个会标中你能证明你的猜想吗?如何证明? 你的思路是什么? 2. 给四个完全一样的直角三角线,你能否把它们 拼成正方形?能同样推导出勾股定理吗?
1探索勾股定理-初中八年级上册数学(教案)(北师大版)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
其次,在教学难点和重点的讲解上,我采用了逐步推导和举例的方法,但仍有部分学生在理解上存在困难。在今后的教学中,我需要更加关注这部分学生,尽量用更简单易懂的方式讲解,多给予他们鼓励和支持,帮助他们克服学习难点。
此外,在实践活动和小组讨论环节,学生们表现得积极主动,课堂氛围良好。但我也注意到,有些小组在讨论过程中,个别成员参与度不高。为了提高学生的参与度,我计划在下次课堂上增加一些互动性更强的小组活动,鼓励每个学生都积极参与其中,共同探讨问题。
4.通过实际操作和探究活动,加深对勾股定理的理解,提高解决问题的能力。
本节课将围绕以上内容展开教学,结合学生的认知水平和实际需求,设计丰富多样的教学活动,以帮助学生更好地掌握勾股定理。
二、核心素养目标
本节课程的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力,通过勾股定理的证明过程,让学生体验由特殊到一般的推理方法,提高他们的逻辑思维水平。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明方法这两个重点。对于难点部分,我会通过举例和逐步推导来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量和计算,演示勾股定理的基本原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
1
a bc
b a
c
c
c
a
a
b c b bc
b
a
a
c
a
c
b
三国时期数学家赵爽在
《周髀b算经》a作注时给出。2002年北京
世界数学家大会会标,既标志着中国古
代的数学成就,又像一只转动风车,欢
迎来自世界的数学家们。
2
a bc
b ca
ac b
cb a
c
a
a
b
c
b bb
c
a
a
c
大正方形面积(a+b)2 大正方形面积 c2
6千米/时 小明
因此 x2 = 122 + 52 = 169
x = 13
答:两队相距13千米。
7
飞机在空中水平飞
行,某一时刻刚好
飞到一个男孩头顶 正上方15千米处, 过了40秒,飞机距 离这个男孩头顶17 千米.飞机每时飞行 多少千米?
?
C
B
15
千 米
17千米
A
8
解:如所画示意图。 BC2=AB2 一AC2
商高就提出了“勾三、股四、弦五
a2 = c2_ b2 b2 = c2_ a2
” 的说法。 两千年前,希腊的毕达 c2 = a2+b2
哥拉斯学派证明了勾股定理,此定
理被世界上称为毕达哥拉斯定理。
4
( 口答):求出图中的x和S值
6x 8
解:X2=62+82=100 x=10
5 6
13 12 面积 S =15
BC2=172—152 =64 BC =8(千米) v=8÷40×3600 =720千米 /时 答:飞机每小时飞行 720千米。
?
C
B
15
千 米
17千米
A
9
与直角三角形有关的:
1、勾股定理:a2+b2=c2
2、角:直角三角形两锐角互余;
3、全等:HL B
a
c
C bA
10
11
12
个人观点供参考,欢迎讨论!
小正方形面积 c2 小正方形面积(b-a)2
4个三角形面积
4个三角形面积
½ ab×4
½ ab×4
这三者有什么关系?这三者有什么关系? 3
勾股定理
a2 + b2 = c2
B
直角三角形两直角边的 a
c
平方和等于斜边的平方 C b A
勾股世界
我国是最早了解勾股定理的国家之 一。早在三千多年前,周朝数学家
5
北 东
放假了,小明团队、小 小强 强团队相约去内蒙古草
?
原。某日早晨7时小明团
队先出发,6千米/时的速 度向东行走;1小时后小
6千米/时 小明
强团队出发,以5千米/时
的速度向北行进。上午9
时他们两队相距多远?
6
北 东
解:设两队相距x米。 小强
小明路程:
?
6 x 2 = 12千米
小强路程: 5 x 1 = 5千米