四年级奥数题:数阵图习题

合集下载

四年级奥数-有趣的数阵

四年级奥数-有趣的数阵

四年级奥数-有趣的数阵
1.在下列各图空着的方格内填上合适的数,使每行、每列及每条对角线上的三数之和都等于27。

2.将下图中的数重新排列,使得每行、每列及两条对角线上的三个数之和都相等。

3.在下图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都相等。

4.在上图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都等于24。

5.下列各图中的九个小方格内各有一个数字,而且每行、每列及每条对角线上的三个数之和都相等,求x。

6.在下图的空格中填入七个自然数,使得每行、每列、每条对角线上的三个数之和都等于48。

小学四年级奥数第10课数阵图试题附答案-精品

小学四年级奥数第10课数阵图试题附答案-精品

小学四年级上册数学奥数知识点讲解第10课《数阵图》试题附答案第十二讲数阵图把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图.为了让同学们学会解数阵图的分析思考方法,我们举例说明.例1将1〜8这八个自然数分别填入下图中的八个。

内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上,应如何填?例2请你把1〜7这七个自然数,分别填在下图Q)的圆圈内,使每条直线上的三个数的和都相等.应怎样填?例3如下图Q)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.例4请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等,应怎样填?例5将1~16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中已填好八个数,请将其余的数填完.答案第十二讲数阵图把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图.为了让同学们学会解数阵图的分析思考方法,我们举例说明.例1将1~8这八个自然数分别填入下图中的八个O内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?分析为了叙述方便,先在各圆圈内填上字母,如上图(2).由条件得出以下四个算式:a+b+c=14(1)c+d+e=14(2)e+f+g=14(3)a+h+g=14(4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h)-(d+h)=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8,又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h与b+f只能有2+6和3+5两种填法.又由对称性,不妨设b=2,f=6,d=3,h=5.a,c,e,g可取到1,4,7,8若a=l,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=l,则a=14-(1+2)=11,不行, 若81,则c=14-(1+3)=10,不行. 若g=l,则a=8,c=4,e=7.填的飘嘉踊畿篇分析思考过程可以看出‘确定各边顶点所应例2请你把1〜7这七个自然数,分别填在下图(1)的圆圈内,使每条直线上的三个数的和都相等.应怎样填?分析为叙述方便,先在圆圈中标上字母,如上图(2)・设a+b+e=a+c+f=a+d+g=k,则(a+b+e)+(a+c+f)+(a+d+g)=3k3a+b+c+d+e+f+3k2a+(a+b+c+d+e+f+g)=3k2a+(1+2+3+4+5+6+7)=3k2a+28=3ka为1、4或7.若a=l,则k=10,直线上另外两个数的和为9.在2、3、4、5、6、7中, 2+7=3+6=44-5=9,因此得到一个解为:a=l,b=2,c=3,d=4,e=7,f=6,g=5.若平4,则k=12,直线上另外两个数的和为8.在1、2、3、5、6、7中,117=2+6=3+5=8,因此得到第二个解为:a=4,b=l,c=2,d=3,e=7,f=6,g=5.若a=7,则k=若,直线上另外两个数的和为7•在1、2、3、4、5、6中,1+6=2+5=3+47,因此得到第三个解为:a=7,b=l,c=2,d=3,e=6,f=5, g=4.解:共得到三个解:如下图.上几霜翳疆胪,填辐射型数阵图的关键在于确定中心数用每条直线例3如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三 个数的和都等于大圆圈上三个数的和.分析为叙述方便,先在每个圆圈内标上字母,如图(2)则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3)⑴+(2)+(3) (a+b+c )+56=3(a+b+c )a+b+c=28贝Ua=28-(4+9)=15 b=28-(8+9)=11 c=28-(17+9)=2解:见图. H 892例4请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等,应怎样填?分析为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G-A+D+E=B+D+F=C+E+G=k(A+B+C)+(A+F+G)+(A+D+E)+(B+D+F)+(C+E+G)=5k,3A+2B+2c+2D+2E+2F+2G=5k,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.因为56+A为5的倍数,得A=4,进而推出k=12.因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=l,F=5,D=6,则012-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.解:得到一个基本解为:(见图)例5将1―16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中己填好八个数,请将其余的数填完.分析为了叙述方便,将圆圈内先填上字母,如图(2)所示.9+15+a+c=34,5+10+e+g=34,7+14+b+d=34,ll+8+f+h=34,c+d+e+f=34,化简得:a+c=104+6=10.e+g=193+16=19,6+13=19b+d=131+12=13,f+h=152+13=15,3+12=15.a,b,c,d,e,f,g,啦分别从1,2,3,4,6,12,13,16中选取.因为a+c=10,所以只能选a+c=4+6;b+d=13,只能选b+d=13;e+g=19,只能选e+g=3+16;f+h=15,只能选£+11=2+13若d=l,c=4,则e+f=34-1-4=29,有巳=16,f=13.若#1,c=6,则e+f=34-1-6=27,那么e、f无值可取,使其和为27.若d=12,c=4,则e+f=34-12-4=18,有巳=16,f=2.若#12,c=6,则e+若34-12-6=16,有『3,f=13.解:共有三个解(见图).习题十二L如果把例1的条件改为“使四边形每条边上的三个数之和都等于121其他条件不变,又应如何填?2.请在下图(1)中圆圈内填入1〜9这九个数,其中6,8已填好,要求A、B、C、D四个小三角形边上各数字之和全都相等.3,将1-10这十个数填入如上图(2)的圆圈内,使每个正方形的四个数字之和都等于23,应怎样填?和四个正方形.若想打电话,必须首先将1〜12这十二个数填入其中,使四个椭圆、四个圆形、四个正方形以及四条直线上的四个数之和都为26,假如你要打电话,那么你将怎样填数?5 .请在下图的空格内填入1〜46这四十六个自然数,使每一笔直线上各数之 和都等于93.应怎样填?6 .把1〜8这八个数字分别填入下图Q )中的圆圈内,使每个圆周上与每条 直线上四个数之和都相等,给出一种具体的填法.,下图(2)中,内部四个交点上已填好数,请你在四周方格里填上适当的 数,使交点上的数恰好等于四周四个方格内的数的和.应怎样填?四年级奥数上册:第十二讲数阵图习题中间的十二个键分别为四个圆形、四个椭圆形4.右图是一部古怪的电话, 0管/§习题十二1.如果把例1的条件改为“使四边形每条边上的三个数之和都等于12”,其 他条件不变,又应如何填?2,请在下图Q )中圆圈内填入1~9这九个数,其中6,8已填好,要求A 、B 、C 、D 四个小三角形边上各数字之和全都相等.3,将1~10这十个数填入如上图(2)的圆圈内,使每个正方形的四个数字 之和都等于23,应怎样填?和四个正方形.若想打电话,必须首先将1〜12这十二个数填入其中,使四个椭圆、四个圆形、四个正方形以及四条直线上的四个数之和都为26,假如你要打 电话,那么你将怎样填数?5.请在下图的空格内填入1〜46这四十六个自然数,使每一笔直线上各数之 和都等于93.应怎样填? 中间的十二个键分别为四个圆形、四个椭圆形 4.右图是一部古怪的电话, Q4率由(1)6.把1〜8这八个数字分别填入下图Q)中的圆圈内,使每个圆周上与每条直线上四个数之和都相等,给出一种具体的填法.7,下图(2)中,内部四个交点上已填好数,请你在四周方格里填上适当的数,使交点上的数恰好等于四周四个方格内的数的和.应怎样填?附:奥数技巧分享分享四个奥数小技巧。

小学数学 《数阵图》练习题(含答案)

小学数学 《数阵图》练习题(含答案)

小学数学《数阵图》练习题(含答案)数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?24273028262218 1720x【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?【例4】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?【例5】(★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.【例7】 (★★★)把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.【例8】 (★★★)左图中有三个正三角形,将1~9填入它们顶点处的九个○中,要求每个正三角形顶点的三数之和都相等,并且通过四个○的每条直线上的四数之和也相等.【例9】 (★★★)在下图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x 是多少?(三)其它类型的数阵图【例10】 (★★★)在下图中的10个○内填入0~9这10个数字,使得按顺时针循环式成立:【例11】 (★★★★)将1~8这八个自然数填入左下图的空格内,使四边形组成的四个等式都成立:【例12】 (★★★★)下图包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?+=====----===×÷+=-+=+=1.请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15.2.把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等.3.把1至6分别填入下图的各方格中,使得横行3个数的和与竖列4个数的和相等.4.将1~7七个数字填入左下图的七个○内,使每个圆周和每条直线上的三个数之和都相等.5.将1~8八个数分别填入右上图的八个○内,使得图中的六个等式都成立.△代表几?37 5=== =+++++(一)封闭型数阵问题【例13】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k ,请指出k 的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例14】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例15】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a和b被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s,当a+b=1,4,7……时,65+a+b可以被3整除,因为要取最小值,所以a+b的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例16】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形5619372481528763049分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例17】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例18】 (★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.635412762534175243716(1) (2) (3)分析:设中心○内填a ,由于三条线上的数字和相加应是3的倍数,其中a 一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a 一定是3的倍数.而28÷3—9余1,那么2a ÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1) (2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。

四年级高思奥数之数阵图初步含答案

四年级高思奥数之数阵图初步含答案

第4讲数阵图初步内容概述各种较为基本的数阵图问题,了解重数的概念,并以此进行分析;学会分析特殊位置上的数值;某些情况下还需要考虑对称性。

典型问题兴趣篇1. 在图4-1中的三个圆圈内填入三个不同的自然数,使得三角形每条边上的三个数之和都等于11.2. 请分别将1,2,4,6这四个数填在图4-2中的各空白区域内,使得每个圆圈里四个数之和都等于15.3. 如图4-3所示,请在三个空白圆圈内填入三个数,使得每条直线上三个数之和都相等。

4. 把1至8分别填入图4-4的八个方格内,使得各列上两个数之和都相等,各行四个数之和也相等。

5. 把1至12分别填入图4-5的圆圈内,使图中三个小三角形三条边上的六个数之和相等。

6. 在如图4-6所示的3×3方格表内填入1、2、3这三个数字各三次,使得每行每列以及两条对角线上的三个数字之和都相等。

7. 把1至6分别填入图4-7的六个圆圈内,使得每个正方形四个顶点的数之和都为13.8. 把1至6分别填入图4-8的六个方格内,使得横行三个数之和与竖列四个数之和相等. 这个和最大是多少?最小是多少?9. 把1至7这七个数分别填入图4-9中各圆圈内,使每条直线上三个圆圈内所填数之和都相等,如果中心圆内填入数相等,那么就视为同一种填法,请写出所有可能的填法。

10.在图4-10的6个圆圈内分别填入不同的自然数,使得每一个数都是与它相连的上面两个数之和,那么最下面那个数最小是几?拓展篇1. 将1至9分别填入图4-11中的圆圈内,可以使得图中所有三角形(共七个)的三个顶点上的数之和都等于15. 现在已经填好了其中三个,请你在图中填出剩下的数.2. 在图4-12中的八个圆圈内分别填入八个不同的自然数,使得正方形每条边上三个数的和相等. 现在如果已经填好了五个数,那么每条边上各数之和应该是多少?并将其补充完整。

3. 图4-13是由四个交叠的长方形组成的,在交点处有八个小圆圈. 请你把1、2、3、4、5、6、7、8这八个自然数分别填入这些小圆圈内,使得每个长方形上的四个数之和都相等。

四年级下数学奥数-有趣的数阵图 全国通用( 17 张)

四年级下数学奥数-有趣的数阵图 全国通用( 17 张)
A2
4
6
B3
5
C1
2~9填入左下图的八个○中,使得每条边上的三个数之和都等 于18。
4 A
5
9 B
四条边数字总和: 4×18=72
2-9九数之和:
6
2 2+3+4+5+6+7+8+9=44
A+B+C+D=72-44=28
C
3
D 故只能选,
8
7
4+9+8+7=28
将1~8这八个数分别填入右图的○里,使每条边上的三个数之 和都等于15。
6 31 5 4 72
将1-6这六个数字填入下图的圆圈中,使每个大 圆圈上4个数字之和为14。
3
1
2
4
6
5
把2~7这六个数填入右上图的○里,使每个圆 圈上的四个数之和都等于18。
将1、2、3、4、5、6填在下图中,使每条边上三个数之和等于9。
A:(48-45)÷3=1
练 1-9一数练之:和将:11~+27+入3+下4图+5的+6○+7内=,28使得每条边上的三个数字之6和都等于12。 4
横行、竖行五数和:24+24=48
7
8
9
四条线数之和: 12×4=48 1-9数之和:
1+2+3+4+5+6+7+8+9=45 A:(48-45)÷3=1 剩下的数字平均分成四组, 每组数字之和12-1=11 所以应为: 2+9、3+8、4+7、5+6。
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.

四年级奥数题:数阵图习题

四年级奥数题:数阵图习题

四年级奥数题:数阵图习题四、数阵图(A卷)_____ 年级______班姓名_____ 得分______将1~6分别填在图中,使每条边上的三个O内的数的和相等把1~8个数分别填入O中,使每条边上三个数的和相等3. 把1~9个数分别填入O中,使每条边上四个数的和相等4. 把1~10填入图中,使五条边上三个O内的数的和相等5. 将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.6. 把1~7填入下图中,使每条线段上三个。

内的数的和相等1.2.-O27. 把1~16填入下图中,使每条边上4个数的和相等,两个八边形上8个数的和也相等.8. 把4~9填入下图中,使每条线上三个数的和相等,都是18.A9. 把1~8这8个数填入下图,使每边上的加、减、乘、除成立10. 把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等•11. 把1~11填入图中,使每条线上三个数的和相等12. 把1~8,填入图中,使每条线及正方形四个顶点上的数的和相等13. 把1~9,填入下图中,使每条线段三个数和及四个顶点的和也相等14. 把17,23,25,31,46,53,58,66,72,88,94,100 十二个数填入下图,使任意三个相邻的数相加的和除以7的余数相等.—答案一137144. 24 15 637167831 2746. a . b.7 ' 7 2 1 1 4 3 34 65 98 5 1521 46 18.9. 6 ,-5 =13+ 7;2X4=81 10.。

奥数题及参考答案 数阵图问题

奥数题及参考答案 数阵图问题

奥数题及参考答案数阵图问题
1.这个表中100在哪两行行?前两行的和是多少?前三行呢?
解答:看最右侧一列,第一行是1 ,第二行是2 ,所以100在第99 行和第100行.前两行和为1+2+3=6 ,前三行和为
1+2+3+3+4+5=18
2.自然数按从小到大的顺序排成螺旋形.在2处拐第-个弯,在3处拐第二个弯,在5处拐第三个弯…问拐第二十个弯的地方是哪-个数?
解答:这是一个十分经典的题目,法1是参考书上的解答,其解答固然巧妙,帮助孩子拓宽眼界,但却没头绪去找到这样一个方法,法2将给大家介绍一个"通用"的思路,它能帮助你解决更多的问题.
(法1):过1画-条横线,拐弯,画竖线;再拐弯,画横线;….到第二十个拐弯处,共有11条竖线, 10条横线.其中的数共
11×10+1=111 ,即拐第二十个弯的地方是 111.
(法2):先把拐角处数字找出来,观察规律,我们发现(利用画图法分析差值,发现此规律):。

四年级奥数题数阵图习题及答案B

四年级奥数题数阵图习题及答案B

四、数阵图(B 卷)_____年级 _____班 姓名_____ 得分_____1. 把1~8这8个数,分别填入图中的方格内(每个数必须用一次),使“十一”三笔中每三个方格内数的和都相等.2. 把1~11这11个数分别填入如下图11个○内,使每条虚线上三个○内数的和相等,一共有几种不同的和3. 在下图中的几个圈内各填一个数,使每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么 x ( ).4.(不得重复),使每条直线上三个数的和相等, 5. 图有五个圆,它们相交相互分成9个区域,现在两个区域里已经填上10与6,请在另外七个区域里分别填进2七个数,使每圆内的和都等于15.6. 109,把这10个数填入图中的10个方格内,每格填一个数,要求图中3个2×2的正方形中4个数之和相等,那么这个和最小值是______.7. 将1~10这十个数分别填入下图中的十个○内,使每条线段上四个○内数的和相等,每个三角形三个顶点上○内数的和也相等.8. 把1~16这16个数,填入图中的16个○内,使五个正方形的四个顶点上○内数的和相等.9. 将1-12这十二个数分别填入图中的十二个小圆圈里,使每条直线上的四个小圆圈中的数字之和26.10.,使每个横行,每个竖行的三个数的积都相等.11. 在图中分别填入3,51,52,53和151,152,154,157,158,使每横行,每竖列,每斜行的三个分数之和都相等.12. 把1~12这十二个数,填入下图中的12个○内,使每条线段上四个数的和相等,两个同心圆上的数的和也相等.13. 将1~5这五个数填入下图中,使每行和每列的3个数的和相等.14. 将1~9这九个数分别填入图中○内,使每条线段三个数相等.———————————————答案——————————————————————1.2.3.4.5.:8.9.10.11.12.14.。

小学奥数:数阵图(一).专项练习及答案解析

小学奥数:数阵图(一).专项练习及答案解析

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图【答案】【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1) c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行.若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A、B、C的和为18,则三个顶点上的三个数的和是。

四年级奥数题:数阵图习题及答案

四年级奥数题:数阵图习题及答案

奥数试卷四、数阵图 (A 卷 )_____年级 _____班姓名_____得分_____1.将 1~6 分别填在图中 , 使每条边上的三个○内的数的和相等 .2.把 1~8 个数分别填入○中 , 使每条边上三个数的和相等 .3.把 1~9 个数分别填入○中 , 使每条边上四个数的和相等 .4.把1~10填入图中,使五条边上三个○内的数的和相等.5.将 1~8 个数分别填入图中 , 使每个圆圈上五个数和分别为20,21,22.6.把1~7填入下图中,使每条线段上三个○内的数的和相等.7.把 1~16 填入下图中 , 使每条边上 4 个数的和相等 , 两个八边形上 8 个数的和也相等 .8.把 4~9 填入下图中 , 使每条线上三个数的和相等 , 都是 18.9.把 1~8 这 8 个数填入下图 , 使每边上的加、减、乘、除成立 .-=÷+==×=10.把 0~9 填入 10 个小三角形中 , 使每 4 个小三角形组成的大三角形的和相等 .11.把1~11填入图中,使每条线上三个数的和相等.12.把 1~8, 填入图中 , 使每条线及正方形四个顶点上的数的和相等.13.把 1~9, 填入下图中 , 使每条线段三个数和及四个顶点的和也相等 .14.把17,23,25,31,46,53,58,66,72,88,94,100十二个数填入下图,使任意三个相邻的数相加的和除以7 的余数相等 .———————————————答案——————————————————————1. a . b . c .112655664243342153d .e .f.2334654453511622612.183573.642b .a .239696 5424381775184.64589131027 5.a .b .21416563878 6. a . b .727.1433515691216581521341011376c .2381352547476c .7611472326458.14678 5949.6-5=1÷+37==2×4 =8 10.8169 40572311.78 12.13.311110 526439613 825748 6 194714.59488 2321001753256658724631。

四年级奥数之《数阵图》 教参+配套练习 覆盖面广,类型全面,针对性强,可直接下载

四年级奥数之《数阵图》 教参+配套练习 覆盖面广,类型全面,针对性强,可直接下载

数阵图
数阵图,就是把一些数按照一定的规则,填在某一特定图形的规定位置上,这种图形,我们称它为数阵图。

数阵图的种类繁多、绚丽多彩,这里我们将主要介绍两种数阵图,即封闭型数阵图和开放型数阵图。

解答这类问题时,常用以下知识:
等差数列的求和公式:总和﹦(首项+末项)x项数÷2
计算中的奇偶问题:
奇数±奇数﹦偶数
偶数±偶数﹦偶数
奇数±偶数﹦奇数
10以内数字有如下关系:
(1)1+9=2+8=3+7=4+6
(2)1+8=2+7=3+6=4+5
(3)2+9=3+8=4+7=5+6
在解答这类问题时,要善于确定所求的和与关键数字间的关系式,用试验的方法,找到相等的和与关键数字;要会对基本解中的数进行适当调整,得到其他的解,从而培养自己的观察能力、思维的灵活性和严密性。

例1:
把1,2,3,4,5,6这六个数填在下图的6个○中,使每条边上的三个数之和都等于9。

例2:
把1—12这十二个数,分别填在下图中正方形四条边上的十二个○内,使每条边上四个○内数的和都等于22,试求出一个基本解。

随堂练习1
1、(1)将5—10这六个数字分别填入左下图中三角形三条边的六个○内,使每条边上三个○内数的和都是24。

四年级下册奥数试题数阵图全国通用

四年级下册奥数试题数阵图全国通用

第8讲数阵图
知识点、重点、难点
数阵图是我们经常接触到的一类数学趣题,需要我们用智慧去解决,也能锻炼和培养我们的思维能力.一般在解题时需要注意以下几点:
1.每个数阵图,总有一个或几个圆圈里所要填的数是重复运用的,这样的数是重叠数,所以填数阵图,必须先求出重叠的数是多少.
2.如果重叠数有1个,数阵图的填法一般是唯一的;如果重叠数有2个时,数阵图的填法可能是不唯一的;如果重叠数有3个或4个时,重叠数的确定还需要用尝试法进行确定,然后再来填完数阵图.
例题精讲
例1把1、2、3、4、5这五个数分别填入下图的五个圆圈内,使每条直线上的三个圆圈内各数之和都相等?不同的和共有多少个?
例2把1、3、5、7、9、11这六个正整数分别填入下图的六个圆圈内,使每条边上的三个数的和都相等.
例3将从8开始的11个连续的自然数填入下图的圆圈内,要使每边上的三个数之和都相等,中间数共有__________种填法.
例4将1-9这九个数分别填入下图的小方格里,使横行和竖列上五个数之和都等于24(至少找出两种本质上不同的填法).
例5五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表51—的数字,不同的汉字代表不同的数字,每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是________或_________.
精选习题1.将95—这五个数填入下图中,使得横行三数之和等于竖列三数之和.
例2将81—这八个数分别填入下图中,使得每条边上三个数的和相等,那么这个和可以等于哪些数?华罗

金杯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、数阵图(A卷)
_____年级_____班姓名_____ 得分_____
1. 将1~6分别填在图中,使每条边上的三个○内的数的和相等.
2. 把1~8.
3. 把1~9.
4. 把1~10填入图中,使五条边上三个○内的数的和相等.
5. 将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.
6. 把1~
7.
7. 把1~16填入下图中,使每条边上4个数的和相等,两个八边形上8个数的和也相等.
8. 把4~9填入下图中,使每条线上三个数的和相等,都是18.
9. 把1~8这8个数填入下图,使每边上的加、减、乘、除成立.
10. 把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.
11. 把1~11填入图中,使每条线上三个数的和相等.
12. 把1~8,填入图中,使每条线及正方形四个顶点上的数的和相等.
13. 把1~9,填入下图中,使每条线段三个数和及四个顶点的和也相等.
14. 把17,23,25,31,46,53,58,66,72,88,94,100十二个数填入下图,使任意三个相邻的数相加的和除以7的余数相等.
———————————————答 案——————————————————————
1. a . b . c .
d .
e .
f .
2. 3.
b
4.
5.
6. a. b. c.
8.
9.
10.。

相关文档
最新文档