拉格朗日插值法MATLAB程序

合集下载

matlab拉格朗日插值函数代码

matlab拉格朗日插值函数代码

matlab拉格朗日插值函数代码拉格朗日插值法是一种常用的函数逼近方法,可以用来对给定的一组离散数据进行求值,使得所求函数通过这些离散数据点。

在MATLAB中,可以通过编写函数来实现拉格朗日插值。

先介绍拉格朗日插值的基本原理。

设已知离散点(x0,y0),(x1,y1),...,(xn,yn),要求通过这些点的插值项L(x)作为函数y = f(x)的近似。

插值项L(x)可以表示为:L(x) = y0 * L0(x) + y1 * L1(x) + ... + yn * Ln(x)其中,Lk(x)是基本多项式,表示为:Lk(x) = (x - x0) * (x - x1) * ... * (x - xk-1) * (x - xk+1) ... * (x - xn) / (xk - x0) * (xk - x1) * ... * (xk - xk-1) * (xk - xk+1) ... * (xk - xn)可以看到,Lk(x)的分子为关于x的n次多项式,在点x = xk处取到值1,在其余各点处取值为0。

每个Lk(x)都可以视为基于xk的插值函数,这些插值函数可以线性组合得到整个插值项L(x)。

在MATLAB中,可以编写一个基于拉格朗日插值法的函数,输入为已知的离散数据点,输出为插值函数在给定点处的值。

具体步骤如下。

1. 定义输入参数。

需要输入已知的离散数据点,以及给定的点的位置。

function result = lagrange_interpolation(data, x)其中,data为matrix型,第一列为x值,第二列为y值;x为scalar型,表示给定点的位置。

2. 计算插值项L(x)。

对于每个k,计算其相应的基本多项式Lk(x),并将所有基本多项式与相应的y值线性组合得到插值项L(x)。

n = size(data,1);L = ones(n, 1);for k=1:nfor j=1:nif j ~=kL(k) = L(k) * (x - data(j,1)) / (data(k,1) - data(j,1));endendendresult = sum(data(:,2) .* L);3. 输出结果。

matlab实现拉格朗日插值,多项式插值,邻近插值,线性插值 程序

matlab实现拉格朗日插值,多项式插值,邻近插值,线性插值 程序

题 7:一维函数插值算法课题内容:课题 7:一维函数插值算法课题内容:对函数||e-y x=,取[-5,5]之间步长为 1 的值*10作为粗值,以步长0.1 作为细值,编写程序实现插值算法:最邻近插值算法,线性插值算法和三次多项式函数插值算法,并对比插值效果。

课题要求:1、设计良好的人机交互 GUI 界面。

2、自己编写实现插值算法。

3、在同一个图形窗口显示对比最后的插值效果。

附录一、界面设计二、图像结果三、程序设计1、线性插值function pushbutton1_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f1=[];for x1=-5:0.1:5a=(x1-floor(x1));%请读者认真逐一带入推导if x1==floor(x1)f1=[f1,y(floor(x1)+6)];elsef1=[f1,y(floor(x1)+6)+a*(y(floor(x1)+7)-y(floor(x1)+6))]; endendm=-5:0.1:5plot(m,f1,'-r',x,y,'+')axis([-5 5 0 10])legend('liner插值','原函数');xlabel('X');ylabel('Y');title('liner插值与原函数的对比');grid2、多项式插值x0=-5:1:-3;y0=10*exp(-abs(x0));x=-5:0.1:-3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-3:1:-1;y0=10*exp(-abs(x0));x=-3:0.1:-1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-1:1:1;y0=10*exp(-abs(x0));x=-1:0.1:1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=1:1:3;y0=10*exp(-abs(x0));x=1:0.1:3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=3:1:5;y0=10*exp(-abs(x0));x=3:0.1:5;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');grid3、最邻近插值function pushbutton3_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f2=[];for x1=-5:0.1:5if abs(x1-floor(x1))<0.5f2=[f2,y(floor(x1)+6)];elsef2=[f2,y(floor(x1)+7)];endendm=[-5:0.1:5];f4=10*exp(-abs(m));plot(m,f2,'-r',x,y,'+')axis([-5 5 0 10])legend('nearest插值','原函数');xlabel('X');ylabel('Y');title('nearest插值与原函数的对比');grid。

2、拉格朗日插值的matlab实现

2、拉格朗日插值的matlab实现

2、拉格朗日插值实例:根据下面的数据点求出其拉格朗日插值格式,并计算当x=1.6时y的值。

x 0 0.5 1.0 1.5 2.0 2.5 3.0y 0 0.4794 0.8145 0.9975 0.9093 0.5985 0.1411function[f,f0]=Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量:x%已知数据点的y坐标向量:y%插值点的x坐标:x0%求得的拉格朗日插值多项式:f%x0处的插值:f0symst;if(length(x)==length(y))n=length(x);elsedisp('x和y的维数不相等!');return;end%检错f=0.0;for(i=1:n)l=y(i);for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));%计算拉格朗日基函数end;f=f+l;%计算拉格朗日插值函数simplify(f);%化简endf0=subs(f,'t',x0);%计算插值点的函数值运行程序;x=0:0.5:3;y=[00.47940.84150.99750.90930.59850.1411];[f,f0]=Language(x,y,1.6)%计算输出的拉格朗日插值多项式%计算x=1.6时的插值输出值f0运行结果f=-799/3125*t*(t-1)*(t-3/2)*(t-2)*(t-5/2)*(t-3)+561/500*t*(t-1/2)*(t-3/2)*(t-2)*(t-5/2) *(t-3)-133/75*t*(t-1/2)*(t-1)*(t-2)*(t-5/2)*(t-3)+3031/2500*t*(t-1/2)*(t-1)*(t-3/2)*( t-5/2)*(t-3)-399/1250*t*(t-1/2)*(t-1)*(t-3/2)*(t-2)*(t-3)+1411/112500*t*(t-1/2)*(t-1) *(t-3/2)*(t-2)*(t-5/2)f0=仅供个人学习参考0.9996仅供个人学习参考。

例题matlab拉格朗日插值

例题matlab拉格朗日插值

例题matlab拉格朗日插值拉格朗日插值是一种常用的数值插值方法,它可以通过已知的数据点来估计未知点的函数值。

在MATLAB中,我们可以使用拉格朗日插值函数polyfit和polyval来实现。

假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要通过这些数据点来估计一个未知点的函数值。

首先,我们需要使用polyfit函数来计算拉格朗日插值多项式的系数。

```matlabx = [x1, x2, ..., xn];y = [y1, y2, ..., yn];n = length(x) - 1; % 多项式的次数coefficients = polyfit(x, y, n);```polyfit函数返回的coefficients是一个包含多项式系数的向量,从高次到低次排列。

接下来,我们可以使用polyval函数来计算未知点的函数值。

```matlabunknown_x = ...; % 未知点的x坐标unknown_y = polyval(coefficients, unknown_x);```polyval函数接受一个多项式系数向量和一个x值作为输入,返回对应的函数值。

通过这种方式,我们可以使用拉格朗日插值来估计未知点的函数值。

下面我们来看一个具体的例子。

假设我们有一组已知的数据点(0, 1), (1, 2), (2, 3),我们想要通过这些数据点来估计未知点(1.5, ?)的函数值。

```matlabx = [0, 1, 2];y = [1, 2, 3];n = length(x) - 1;coefficients = polyfit(x, y, n);unknown_x = 1.5;unknown_y = polyval(coefficients, unknown_x);```在这个例子中,我们得到的未知点的函数值为2.5。

这意味着在x坐标为1.5的位置,我们估计的函数值为2.5。

拉格朗日插值多项式matlab

拉格朗日插值多项式matlab

实验报告:拉格朗日插值多项式实验目的与要求:熟练掌握拉格朗日插值的基本思想与插值公式实验内容:对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。

试用Lagrange 公式求其插值多项式Lagrange 插值多项式。

数据如下: (1)求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。

(试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。

实验环境与器材:Matlab7.0实验过程(步骤)或程序代码: (1)fid=fopen('l3.txt','wt');fprintf(fid,'试用Lagrange 公式求其插值多项式Lagrange 插值多项式,求f(0.596),f(0.99)\n');A=[0.4,0.55,0.65,0.80,0.95,1.05];B=[0.41075,0.57815,0.69675,0.9,1,1.25382]; For p=1:2x=input('输入x=') a=1; for i=1:6a=a*(x-A(i));endl=0;for i=1:6b=1;for j=1:6if i~=jb=b*(A(i)-A(j));endendl=l+B(i)*a/((x-A(i))*b);endfprintf(fid,'x f(x)\n');fprintf(fid,'%2f %f\n',x,L);end(2)fid=fopen('l3.txt','wt');fprintf(fid,'试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(1.8),f(6.15)\n');for p=1:2x=input('输入x=')A=[1,2,3,4,5,6,7];B=[0.368,0.135,0.050,0.018,0.007,0.002,0.001];a=1;for i=1:7a=a*(x-A(i));endl=0;for i=1:7b=1;for j=1:7if i~=jb=b*(A(i)-A(j));endendl=l+B(i)*a/((x-A(i))*b);endfprintf(fid,'x f(x)\n');fprintf(fid,'%2f %f\n',x,L);end实验结果与分析:(1)试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(0.596),f(0.99) x f(x)0.596000 0.625732x f(x)0.990000 1.054230(2)试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(1.8),f(6.15) x f(x)1.800000 0.165093x f(x)6.150000 0.001231成绩:教师签名:月日。

用matlab编写拉格朗日插值算法的程序

用matlab编写拉格朗日插值算法的程序

用matlab编写拉格朗日插值算法的程序10[ 标签:matlab,插值算法,程序 ]用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果x -2.15 -1.00 0.01 1.02 2.03 3.25y 17.03 7.24 1.05 2.03 17.06 23.05匿名回答:1 人气:6 解决时间:2011-05-24 19:58满意答案好评率:83%做了一个测试,希望有所帮助。

代码:% 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果% x -2.15 -1.00 0.01 1.02 2.03 3.25% y 17.03 7.24 1.05 2.03 17.06 23.05function main()clc;x = [-2.15 -1.00 0.01 1.02 2.03 3.25]; y = [17.03 7.24 1.05 2.03 17.06 23.05 ]; x0 = 0.6;f = Language(x,y,x0)function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: f syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end结果:f =0.0201>>如何用MATLAB编写的拉格朗日插值算法的程序、二阶龙格-库塔方法的程序和SOR迭代法的程序,要能运行的∮初夏戀雨¢回答:2 人气:29 解决时间:2009-12-08 19:04满意答案好评率:100%拉格朗日function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endSOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i); endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。

Lagrange插值程序1

Lagrange插值程序1

在Matlab中,可以编写如下程序来利用Lagrange插值公式进行计算:function f=Lagrange(x,fx,inx)n=length(x);m=length(inx);for i=1:m;z=inx(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x(j))/(x(k)-x(j));endends=p*fx(k)+s;endf(i)=s;endplot(x,fx,'O',inx,f)x=[1:12]fx=[12 234 34 -1 34 2 5 23 34 9 45 23]xi=[1:0.2:12]Lagrange(x,fx,xi)得出结果:12.0000 -60.5937 18.2765 124.9778 202.5952 234.0000 223.3757 184.1249 131.4738 78.4253 34.0000 2.9467 -13.6885 -17.5810 -12.0379 -1.0000 11.7556 23.1624 31.1611 34.7730 34.0000 29.6054 22.8332 15.1153 7.8099 2.0000 -1.6307 -2.8397 -1.7907 1.0404 5.0000 9.4024 13.6643 17.4033 20.4834 23.0000 25.2037 27.3769 29.6858 32.0400 34.0000 34.7742 33.3426 28.7320 20.4439 9.0000 -3.4848 -12.8605 -12.88734.0592 45.0000 112.3788 197.1817 267.9699 254.3439 23.0000拉格朗日插值法理论介绍对于给定的若n+1个点,对应于它们的次数不超过n的拉格朗日多项式只有一个。

拉格朗日插值、牛顿插值的matlab代码

拉格朗日插值、牛顿插值的matlab代码

实验五多项式插值逼近信息与计算科学金融崔振威201002034031一、实验目的:拉格朗日插值和牛顿插值的数值实现二、实验内容:p171.1、p178.1、龙格现象数值实现三、实验要求:1、根据所给题目构造相应的插值多项式,2、编程实现两类插值多项式的计算3、试分析多项式插值造成龙格现象的原因主程序1、拉格朗日function [c,l]=lagran(x,y)%c为多项式函数输出的系数%l为矩阵的系数多项式%x为横坐标上的坐标向量%y为纵坐标上的坐标向量w=length(x);n=w-1;l=zeros(w,w);for k=1:n+1v=1;for j=1:n+1if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算endendl(k,:)=v;endc=y*l;牛顿插值多项式主程序function [p2,z]=newTon(x,y,t)%输入参数中x,y为元素个数相等的向量%t为插入的定点%p2为所求得的牛顿插值多项式%z为利用多项式所得的t的函数值。

n=length(x);chaS(1)=y(1);for i=2:nx1=x;y1=y;x1(i+1:n)=[];y1(i+1:n)=[];n1=length(x1);s1=0;for j=1:n1t1=1;for k=1:n1if k==j %如果相等则跳出循环continue;elset1=t1*(x1(j)-x1(k));endends1=s1+y1(j)/t1;endchaS(i)=s1;endb(1,:)=[zeros(1,n-1) chaS(1)];cl=cell(1,n-1); %cell定义了一个矩阵for i=2:nu1=1;for j=1:i-1u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法cl{i-1}=u1;endcl{i-1}=chaS(i)*cl{i-1};b(i,:)=[zeros(1,n-i),cl{i-1}];endp2=b(1,:);for j=2:np2=p2+b(j,:);endif length(t)==1rm=0;for i=1:nrm=rm+p2(i)*t^(n-i);endz=rm;elsek1=length(t);rm=zeros(1,k1);for j=1:k1for i=1:nrm(j)=rm(j)+p2(i)*t(j)^(n-i);endz=rm;endendplot(t,z,'y',x,y,'*r') %输出牛顿插值多项式的函数图p171.1(a)、f(x)=e x解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[exp(0) exp(0.2) exp(0.4) exp(0.6) exp(0.8) exp(1)]y =1.0000 1.2214 1.4918 1.82212.2255 2.7183>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0139 0.0349 0.1704 0.4991 1.0001 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0139 a1=0.0349 a2=0.1704 a3=0.4991 a4=1.0001 a5=1.0000(b)、f(x)=sin(x)解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[sin(0) sin(0.2) sin(0.4) sin(0.6) sin(0.8) sin(1)];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0073 0.0016 -0.1676 0.0002 1.0000 0l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0073 a1=0.0016 a2=-0.1676 a3=0.0002 a4=1.0000 a5=0(c)、f(x)=(x+1)x+1解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[1 1.2^1.2 1.4^1.4 1.6^1.6 1.8^1.8 2^2];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.3945 -0.0717 0.7304 0.9415 1.0052 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.3945 a1=-0.0717 a2=0.7304 a3=0.9415 a4=1.0052 a5=1.0000P178.12、a0=5 a1=-2 a2=0.5 a3=-0.1 a4=0.003x0=0 x1=1 x2=2 x3=3 c=2.5解:在matlab窗口中输入:>> x=[5 -2 0.5 -0.1];>> y=[0 1 2 3];>> t=0:0.1:2.5;>> [u,v]=newTon(x,y,t)可得出输出结果:u =0.1896 -0.7843 -1.3928 2.8688v =2.8688 2.7218 2.5603 2.3855 2.1983 2.0000 1.7917 1.5745 1.3497 1.1182 0.8813 0.6401 0.3957 0.1493 -0.0980 -0.3451 -0.5908 -0.8340 -1.0735 -1.3082 -1.5370 -1.7588 -1.9723 -2.1765 -2.3702 -2.5523由此可以求出牛顿多项式为:f(x)=0.1896x^3--0.7843^x2--1.3928x+2.8688输出的图为:结果分析:利用牛顿插值多项式的函数,通过调用函数可以求得牛顿多项式与给定的点的值,并通过matlab做出函数图像。

拉格朗日插值法matlab程序代码

拉格朗日插值法matlab程序代码

拉格朗日插值法matlab程序代码
使用拉格朗日插值法进行数据拟合是一种常见的数值计算方法。

在matlab中,我们可以使用polyfit函数来实现拉格朗日插值法。

下面是一个简单的matlab程序代码示例:
```matlab
% 定义原始数据
x = [1, 2, 3, 4, 5];
y = [2, 4, 6, 8, 10];
% 定义插值点
xi = 2.5;
% 使用拉格朗日插值法进行拟合
p = polyfit(x, y, length(x)-1);
yi = polyval(p, xi);
% 输出结果
fprintf('插值点 %f 的函数值为 %f\n', xi, yi);
```
在这个示例中,我们首先定义了原始数据x和y,然后定义了插值点xi。

接着,我们使用polyfit函数进行拉格朗日插值法拟合,其中length(x)-1表示使用n-1次多项式进行拟合,n为原始数据的长度。

最后,我们使用polyval函数计算插值点的函数值yi,并输出结果。

需要注意的是,拉格朗日插值法虽然可以很好地拟合数据,但在插值点附近的函数值可能会出现较大误差。

因此,在实际应用中,我们需要根据具体情况选择合适的插值方法。

MATLAB实现拉格朗日插值

MATLAB实现拉格朗日插值

数值分析上机报告题目:插值法学号:201014924姓名:靳会有一、调用MATLAB内带函数插值1、MATLAB内带插值函数列举如下:2、取其中的一维数据内插函数(interp1)为例,程序如下:其调用格式为:yi=interp1(x, y, xi)yi=interp1(x, y, xi, method)举例如下:x=0:10:100y=[40 44 46 52 65 76 80 82 88 92 110];xi=0:1:100yi=interp1(x,y,xi,'spline')3、其他内带函数调用格式为:Interpft函数:y=interpft(x,n)y=interpft(x,n,dim)interp2函数:ZI=interp2(X, Y, Z, XI, YI),ZI=imerp2(Z, ntimes)ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数:VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes)VI=interp3(V,XI,YI,ZI) VI=interp3(…, method)Interpn函数:VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …)VI=interpn(V, ntimes)VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method)Spline函数:yi=spline(x,y,xi)pp=spline(x,y)meshgrid函数:[X,Y]=meshgrid(x,y)[X,Y]=meshgrid(x)[X,Y,Z]=meshgrid(x,y,z)Ndgrid函数:[X1, X2, X3, …]=ndgrid(x1, x2, x3, …)[X1, X2, X3, …]=ndgrid(x)Griddata函数:ZI=griddata(x, y, z, XI, YI)[XI, YI, ZI]=griddata(x, y, z, xi, yi)[…]=griddata(…method)二、自编函数插值1、拉格朗日插值法:建立M 文件:function f = Language(x,y,x0)syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end在MATLAB中输入:x=[18 31 66 68 70 72 70;]y=[23 33 52 51 43 40 46];f=Language(x,y)plot(x,y)结果为:f =Inf + (-t)*Inf - 54329.8*t^2 + 1503.75*t^3 - 22.2065*t^4 + 0.16789*t^5 - 0.000512106*t^6图形如下:MATLAB实现拉格朗日插值建立如下拉格朗日插值函数:function y=lagrange(x0,y0,x);n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;end画图程序如下:x=[-5:1:5];y=1./(1+x.^2);x0=[-5:0.001:5];y0=lagrange(x,y,x0);y1=1./(1+x0.^2);plot(x0,y0,'r')hold onplot(x0,y1,'g')注:画出的图形为n =10的图形得到图形如下:n=10的图像牛顿K次插值多项式一、实验目的:1、掌握牛顿插值法的基本思路和步骤。

matlab实现拉格朗日函数,拉格朗日插值多项式

matlab实现拉格朗日函数,拉格朗日插值多项式
请求出错错误代码503请尝试刷新页面重试
matlab实 现 拉 格 朗 日 函 数 , 拉 格 朗 日 插 值 多 项 式
%拉格朗日插值多项式 利用矩阵求解 x=1:0.2:3;%已知数据点x坐标向量:x y=sin(x);%已知数据点x坐标向量:y x1=1.1:0.2:3.1;%插值点的x坐标:x1 L=zeros(11,11);%另L矩阵为0
for i=1:11 A=ones(10,1);%另A矩阵为10行1列的矩阵 x2=x; x2(i)=[]; x2';%10行一列 B=ones(1,11);%另B矩阵为1行11列的矩阵 A*x1;%10行11列 (x2')*B;%10行11列 A*x1-(x2')*B;%11行11列 ones(10,11); x(i);%提取x的第i个元素 ones(10,11)*x(i);%10行11列的矩阵 prod(A*x1-(x2')*B);%基函数的分子 ones(10,11)*(x(i))-(x2')*B;%基函数的分母 C=prod(A*x1-(x2')*B)./prod(ones(10,11)*(x(i))-(x2')*B);%对x2进行转置%C矩阵是一个1行11列的矩阵 L(i,:)=C; %将A的第一行元素全部变为10 %将得到的矩阵赋值基函数的1,2,3。。。。11行
end L;%11行11列 y;%1行11列 y1=y*L
结.9636 0.9975 0.9917 0.9463 0.8632 0.7457
8 至 11 列
0.5985 0.4274 0.2392 0.0416

用拉格朗日插值法求解函数值 matlab

用拉格朗日插值法求解函数值 matlab

**使用拉格朗日插值法求解函数值的MATLAB实现**拉格朗日插值法是一种常用的插值方法,通过已知的若干点构造一个多项式来近似一个未知的函数。

下面我们将详细介绍如何在MATLAB中使用拉格朗日插值法来求解函数值。

**1. 拉格朗日插值法的基本原理**给定n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值多项式L(x)可以表示为:L(x) = Σ[yi * li(x)] (i从0到n)其中,li(x) 是拉格朗日基函数,定义为:li(x) = Π[(x - xj) / (xi - xj)] (j从0到n,且j≠i)**2. MATLAB实现**以下是一个简单的MATLAB脚本,用于计算给定点的拉格朗日插值多项式及其值。

```matlab% 假设我们有一些点的数据:xi, yi(其中i = 0,1,2,...,n)xi = [1, 2, 3, 4]; % 自变量数据点yi = [1, 4, 9, 16]; % 因变量数据点% 要计算插值的点x = 2.5;n = length(xi); % 点的数量L = 0; % 初始化插值多项式% 计算拉格朗日插值多项式在点x处的值for i = 1:nli = 1; % 初始化基函数for j = 1:nif i ~= jli = li * (x - xi(j)) / (xi(i) - xi(j)); % 计算基函数endendL = L + yi(i) * li; % 更新插值多项式enddisp(['拉格朗日插值结果:', num2str(L)]); % 显示结果```在此脚本中,我们首先定义了已知的数据点`xi`和`yi`,并选择一个特定的`x`来计算对应的函数近似值。

然后,我们使用两个嵌套的循环来计算拉格朗日插值多项式在所选点`x`处的值。

外部循环遍历每个数据点,而内部循环计算相应的基函数。

最后,我们显示计算得到的插值结果。

matlab计算拉格朗日牛顿及分段线性插值的程序

matlab计算拉格朗日牛顿及分段线性插值的程序

end %检错 for k=1:n-1 if (x(k)<=x0&x0<=x(k+1)) temp=x(k)-x(k+1); f=(x0-x(k+1))/temp*y(k)+(x0x(k))/(-temp)*y(k+1); end; end
return;
四.程序运行结果 1.拉格朗日插值法 >> x=[0 3 5 7 9 11 12 13 14 15]; >> y=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6]; >> xi=0.5:0.5:14.5; >> yi=lang(x,y,xi) yi = Columns 1 through 8 -15.4117 -15.9238 -10.9898 -5.4272 -1.2253 1.2000 2.1765 2.2666 Columns 9 through 16 1.9894 1.7000 1.5703 1.6249 1.7995 2.0000 2.1477 2.2040 Columns 17 through 24 2.1752 2.1000 2.0269 1.9904 1.9928 2.0000 1.9537 1.8000 Columns 25 through 29 1.5272 1.2000 0.9656 1.0000 1.3480 >> plot(x,y,'b:',xi,yi) 2.牛顿插值法 >> yi=newdun(x,y,xi) yi = Columns 1 through 8 -15.4117 -15.9238 -10.9898 -1.2253 1.2000 2.1765 Columns 9 through 16 1.9894 1.7000 1.5703 1.7995 2.0000 2.1477 Columns 17 through 24 2.1752 2.1000 2.0269 1.9928 2.0000 1.9537 Columns 25 through 29 1.5272 1.2000 0.9656 1.3480 >> plot(x,y,xi,yi,'g+')

matlab 拉格朗日插值法和牛顿插值法 -回复

matlab 拉格朗日插值法和牛顿插值法 -回复

matlab 拉格朗日插值法和牛顿插值法-回复Matlab 拉格朗日插值法和牛顿插值法引言:在数值分析中,插值法是一种通过已知数据点来估计介于这些数据点之间的未知数值的方法。

拉格朗日插值法和牛顿插值法是两种常用的插值方法,都有各自的优点和适用场景。

本文将详细介绍这两种方法的原理和实现方式,以及在Matlab 中如何使用它们来进行插值计算。

一、拉格朗日插值法1. 原理:拉格朗日插值法是使用一个N次的多项式来逼近未知函数。

给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过拉格朗日插值法可以得到一个多项式P(x),使得P(xi) = yi。

该多项式表示了数据点间的曲线关系,从而可以通过插值估算未知点的值。

2. 实现步骤:(1)创建一个N次多项式的拉格朗日插值函数;(2)计算每个插值点的权重系数,即拉格朗日插值函数的系数;(3)根据给定的数据点和权重系数,构建多项式;(4)通过多项式计算未知点的值。

3. Matlab 中的使用:在Matlab 中,可以使用"polyfit" 函数来实现拉格朗日插值法。

该函数可以拟合出一个多项式曲线,将给定的数据点映射到曲线上。

二、牛顿插值法1. 原理:牛顿插值法是通过构造一个差商表来逼近未知函数。

给定一组数据点(x0, y0), (x1, y1), …, (xi, yi), …, (xn, yn),通过牛顿插值法可以得到一个N次多项式P(x),满足P(xi) = yi。

该多项式的系数由差商构成,利用递归的方式逐层求解。

2. 实现步骤:(1)创建一个N次多项式的牛顿插值函数;(2)计算差商表,其中第一列为给定的数据点y值;(3)递归计算差商表中的其他列,直到得到最后的差商值;(4)根据差商表构建多项式;(5)通过多项式计算未知点的值。

3. Matlab 中的使用:在Matlab 中,可以使用"interp1" 函数结合牛顿插值法来进行插值计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档