用matlab编写拉格朗日插值算法的程序
matlab实现拉格朗日插值,多项式插值,邻近插值,线性插值 程序
题 7:一维函数插值算法课题内容:课题 7:一维函数插值算法课题内容:对函数||e-y x=,取[-5,5]之间步长为 1 的值*10作为粗值,以步长0.1 作为细值,编写程序实现插值算法:最邻近插值算法,线性插值算法和三次多项式函数插值算法,并对比插值效果。
课题要求:1、设计良好的人机交互 GUI 界面。
2、自己编写实现插值算法。
3、在同一个图形窗口显示对比最后的插值效果。
附录一、界面设计二、图像结果三、程序设计1、线性插值function pushbutton1_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f1=[];for x1=-5:0.1:5a=(x1-floor(x1));%请读者认真逐一带入推导if x1==floor(x1)f1=[f1,y(floor(x1)+6)];elsef1=[f1,y(floor(x1)+6)+a*(y(floor(x1)+7)-y(floor(x1)+6))]; endendm=-5:0.1:5plot(m,f1,'-r',x,y,'+')axis([-5 5 0 10])legend('liner插值','原函数');xlabel('X');ylabel('Y');title('liner插值与原函数的对比');grid2、多项式插值x0=-5:1:-3;y0=10*exp(-abs(x0));x=-5:0.1:-3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-3:1:-1;y0=10*exp(-abs(x0));x=-3:0.1:-1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-1:1:1;y0=10*exp(-abs(x0));x=-1:0.1:1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=1:1:3;y0=10*exp(-abs(x0));x=1:0.1:3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=3:1:5;y0=10*exp(-abs(x0));x=3:0.1:5;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');grid3、最邻近插值function pushbutton3_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f2=[];for x1=-5:0.1:5if abs(x1-floor(x1))<0.5f2=[f2,y(floor(x1)+6)];elsef2=[f2,y(floor(x1)+7)];endendm=[-5:0.1:5];f4=10*exp(-abs(m));plot(m,f2,'-r',x,y,'+')axis([-5 5 0 10])legend('nearest插值','原函数');xlabel('X');ylabel('Y');title('nearest插值与原函数的对比');grid。
2、拉格朗日插值的matlab实现
2、拉格朗日插值实例:根据下面的数据点求出其拉格朗日插值格式,并计算当x=1.6时y的值。
x 0 0.5 1.0 1.5 2.0 2.5 3.0y 0 0.4794 0.8145 0.9975 0.9093 0.5985 0.1411function[f,f0]=Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量:x%已知数据点的y坐标向量:y%插值点的x坐标:x0%求得的拉格朗日插值多项式:f%x0处的插值:f0symst;if(length(x)==length(y))n=length(x);elsedisp('x和y的维数不相等!');return;end%检错f=0.0;for(i=1:n)l=y(i);for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));%计算拉格朗日基函数end;f=f+l;%计算拉格朗日插值函数simplify(f);%化简endf0=subs(f,'t',x0);%计算插值点的函数值运行程序;x=0:0.5:3;y=[00.47940.84150.99750.90930.59850.1411];[f,f0]=Language(x,y,1.6)%计算输出的拉格朗日插值多项式%计算x=1.6时的插值输出值f0运行结果f=-799/3125*t*(t-1)*(t-3/2)*(t-2)*(t-5/2)*(t-3)+561/500*t*(t-1/2)*(t-3/2)*(t-2)*(t-5/2) *(t-3)-133/75*t*(t-1/2)*(t-1)*(t-2)*(t-5/2)*(t-3)+3031/2500*t*(t-1/2)*(t-1)*(t-3/2)*( t-5/2)*(t-3)-399/1250*t*(t-1/2)*(t-1)*(t-3/2)*(t-2)*(t-3)+1411/112500*t*(t-1/2)*(t-1) *(t-3/2)*(t-2)*(t-5/2)f0=仅供个人学习参考0.9996仅供个人学习参考。
例题matlab拉格朗日插值
例题matlab拉格朗日插值拉格朗日插值是一种常用的数值插值方法,它可以通过已知的数据点来估计未知点的函数值。
在MATLAB中,我们可以使用拉格朗日插值函数polyfit和polyval来实现。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要通过这些数据点来估计一个未知点的函数值。
首先,我们需要使用polyfit函数来计算拉格朗日插值多项式的系数。
```matlabx = [x1, x2, ..., xn];y = [y1, y2, ..., yn];n = length(x) - 1; % 多项式的次数coefficients = polyfit(x, y, n);```polyfit函数返回的coefficients是一个包含多项式系数的向量,从高次到低次排列。
接下来,我们可以使用polyval函数来计算未知点的函数值。
```matlabunknown_x = ...; % 未知点的x坐标unknown_y = polyval(coefficients, unknown_x);```polyval函数接受一个多项式系数向量和一个x值作为输入,返回对应的函数值。
通过这种方式,我们可以使用拉格朗日插值来估计未知点的函数值。
下面我们来看一个具体的例子。
假设我们有一组已知的数据点(0, 1), (1, 2), (2, 3),我们想要通过这些数据点来估计未知点(1.5, ?)的函数值。
```matlabx = [0, 1, 2];y = [1, 2, 3];n = length(x) - 1;coefficients = polyfit(x, y, n);unknown_x = 1.5;unknown_y = polyval(coefficients, unknown_x);```在这个例子中,我们得到的未知点的函数值为2.5。
这意味着在x坐标为1.5的位置,我们估计的函数值为2.5。
拉格朗日插值多项式matlab
实验报告:拉格朗日插值多项式实验目的与要求:熟练掌握拉格朗日插值的基本思想与插值公式实验内容:对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。
试用Lagrange 公式求其插值多项式Lagrange 插值多项式。
数据如下: (1)求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。
(试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。
实验环境与器材:Matlab7.0实验过程(步骤)或程序代码: (1)fid=fopen('l3.txt','wt');fprintf(fid,'试用Lagrange 公式求其插值多项式Lagrange 插值多项式,求f(0.596),f(0.99)\n');A=[0.4,0.55,0.65,0.80,0.95,1.05];B=[0.41075,0.57815,0.69675,0.9,1,1.25382]; For p=1:2x=input('输入x=') a=1; for i=1:6a=a*(x-A(i));endl=0;for i=1:6b=1;for j=1:6if i~=jb=b*(A(i)-A(j));endendl=l+B(i)*a/((x-A(i))*b);endfprintf(fid,'x f(x)\n');fprintf(fid,'%2f %f\n',x,L);end(2)fid=fopen('l3.txt','wt');fprintf(fid,'试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(1.8),f(6.15)\n');for p=1:2x=input('输入x=')A=[1,2,3,4,5,6,7];B=[0.368,0.135,0.050,0.018,0.007,0.002,0.001];a=1;for i=1:7a=a*(x-A(i));endl=0;for i=1:7b=1;for j=1:7if i~=jb=b*(A(i)-A(j));endendl=l+B(i)*a/((x-A(i))*b);endfprintf(fid,'x f(x)\n');fprintf(fid,'%2f %f\n',x,L);end实验结果与分析:(1)试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(0.596),f(0.99) x f(x)0.596000 0.625732x f(x)0.990000 1.054230(2)试用Lagrange公式求其插值多项式Lagrange插值多项式,求f(1.8),f(6.15) x f(x)1.800000 0.165093x f(x)6.150000 0.001231成绩:教师签名:月日。
用matlab编写拉格朗日插值算法的程序
用matlab编写拉格朗日插值算法的程序10[ 标签:matlab,插值算法,程序 ]用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果x -2.15 -1.00 0.01 1.02 2.03 3.25y 17.03 7.24 1.05 2.03 17.06 23.05匿名回答:1 人气:6 解决时间:2011-05-24 19:58满意答案好评率:83%做了一个测试,希望有所帮助。
代码:% 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果% x -2.15 -1.00 0.01 1.02 2.03 3.25% y 17.03 7.24 1.05 2.03 17.06 23.05function main()clc;x = [-2.15 -1.00 0.01 1.02 2.03 3.25]; y = [17.03 7.24 1.05 2.03 17.06 23.05 ]; x0 = 0.6;f = Language(x,y,x0)function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: f syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end结果:f =0.0201>>如何用MATLAB编写的拉格朗日插值算法的程序、二阶龙格-库塔方法的程序和SOR迭代法的程序,要能运行的∮初夏戀雨¢回答:2 人气:29 解决时间:2009-12-08 19:04满意答案好评率:100%拉格朗日function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endSOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i); endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
Lagrange插值程序1
在Matlab中,可以编写如下程序来利用Lagrange插值公式进行计算:function f=Lagrange(x,fx,inx)n=length(x);m=length(inx);for i=1:m;z=inx(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x(j))/(x(k)-x(j));endends=p*fx(k)+s;endf(i)=s;endplot(x,fx,'O',inx,f)x=[1:12]fx=[12 234 34 -1 34 2 5 23 34 9 45 23]xi=[1:0.2:12]Lagrange(x,fx,xi)得出结果:12.0000 -60.5937 18.2765 124.9778 202.5952 234.0000 223.3757 184.1249 131.4738 78.4253 34.0000 2.9467 -13.6885 -17.5810 -12.0379 -1.0000 11.7556 23.1624 31.1611 34.7730 34.0000 29.6054 22.8332 15.1153 7.8099 2.0000 -1.6307 -2.8397 -1.7907 1.0404 5.0000 9.4024 13.6643 17.4033 20.4834 23.0000 25.2037 27.3769 29.6858 32.0400 34.0000 34.7742 33.3426 28.7320 20.4439 9.0000 -3.4848 -12.8605 -12.88734.0592 45.0000 112.3788 197.1817 267.9699 254.3439 23.0000拉格朗日插值法理论介绍对于给定的若n+1个点,对应于它们的次数不超过n的拉格朗日多项式只有一个。
拉格朗日插值法matlab
2.五次拉格朗日
clc
x=[-3.15-1 0.01 1.02 2.03 3.25];
y=[37.037.24 1.05 2.03 17.06 23.05];二次拉格朗日插值的误差为:R
L0=poly([x(2) x(3) x(4) x(5)
x(5)
x(5)
x(5)
x(4)
x(4) x(6)])/((x(1)-x(2))*(x(1)-x(3))*(x(1)-x(4))*(x(1)-x(5))*(x(1)-x(6)));
L1=poly([x(1) x(3) x(4) x(6)])/((x(2)-x(1))*(x(2)-x(3))*(x(2)-x(4))*(x(2)- x(5))*(x(2)-x(6))); L2=poly([x(1) x(2) x(4) x(6)])/((x(3)-x(1))*(x(3)- x(2))*(x(3)-x(4))*(x(3)-x(5))*(x(3)-x(6))); L3=poly([x(1) x(2) x(3) x(6)])/((x(4)-x(1))*(x(4)-x(2))*(x(4)-x(3))*(x(4)-x(5))*(x(4)-x(6)));
拉格朗日插值法
实验题目 拉格朗日插值法
一、实验目的及要求
利用Matlab学习拉格朗日插值法
二、研究、解答以下问题
问题:1、已知一‘⑪4;CUM辺汕,_'仏环0.爪以1字,「丄幻0. 510H26,
分别用线性插值法和二次拉格朗日插值法分别计算f(0.54),并且说明哪个结果误差更小。
2、给出节点,「:LOU.;「到,L〔)•皿,
b = -0.6153
误差:
function [R]=wucha(M,x,X) n=length(X);
拉格朗日插值法matlab程序代码
拉格朗日插值法matlab程序代码
使用拉格朗日插值法进行数据拟合是一种常见的数值计算方法。
在matlab中,我们可以使用polyfit函数来实现拉格朗日插值法。
下面是一个简单的matlab程序代码示例:
```matlab
% 定义原始数据
x = [1, 2, 3, 4, 5];
y = [2, 4, 6, 8, 10];
% 定义插值点
xi = 2.5;
% 使用拉格朗日插值法进行拟合
p = polyfit(x, y, length(x)-1);
yi = polyval(p, xi);
% 输出结果
fprintf('插值点 %f 的函数值为 %f\n', xi, yi);
```
在这个示例中,我们首先定义了原始数据x和y,然后定义了插值点xi。
接着,我们使用polyfit函数进行拉格朗日插值法拟合,其中length(x)-1表示使用n-1次多项式进行拟合,n为原始数据的长度。
最后,我们使用polyval函数计算插值点的函数值yi,并输出结果。
需要注意的是,拉格朗日插值法虽然可以很好地拟合数据,但在插值点附近的函数值可能会出现较大误差。
因此,在实际应用中,我们需要根据具体情况选择合适的插值方法。
MATLAB实现拉格朗日插值
数值分析上机报告题目:插值法学号:201014924姓名:靳会有一、调用MATLAB内带函数插值1、MATLAB内带插值函数列举如下:2、取其中的一维数据内插函数(interp1)为例,程序如下:其调用格式为:yi=interp1(x, y, xi)yi=interp1(x, y, xi, method)举例如下:x=0:10:100y=[40 44 46 52 65 76 80 82 88 92 110];xi=0:1:100yi=interp1(x,y,xi,'spline')3、其他内带函数调用格式为:Interpft函数:y=interpft(x,n)y=interpft(x,n,dim)interp2函数:ZI=interp2(X, Y, Z, XI, YI),ZI=imerp2(Z, ntimes)ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数:VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes)VI=interp3(V,XI,YI,ZI) VI=interp3(…, method)Interpn函数:VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …)VI=interpn(V, ntimes)VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method)Spline函数:yi=spline(x,y,xi)pp=spline(x,y)meshgrid函数:[X,Y]=meshgrid(x,y)[X,Y]=meshgrid(x)[X,Y,Z]=meshgrid(x,y,z)Ndgrid函数:[X1, X2, X3, …]=ndgrid(x1, x2, x3, …)[X1, X2, X3, …]=ndgrid(x)Griddata函数:ZI=griddata(x, y, z, XI, YI)[XI, YI, ZI]=griddata(x, y, z, xi, yi)[…]=griddata(…method)二、自编函数插值1、拉格朗日插值法:建立M 文件:function f = Language(x,y,x0)syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end在MATLAB中输入:x=[18 31 66 68 70 72 70;]y=[23 33 52 51 43 40 46];f=Language(x,y)plot(x,y)结果为:f =Inf + (-t)*Inf - 54329.8*t^2 + 1503.75*t^3 - 22.2065*t^4 + 0.16789*t^5 - 0.000512106*t^6图形如下:MATLAB实现拉格朗日插值建立如下拉格朗日插值函数:function y=lagrange(x0,y0,x);n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;end画图程序如下:x=[-5:1:5];y=1./(1+x.^2);x0=[-5:0.001:5];y0=lagrange(x,y,x0);y1=1./(1+x0.^2);plot(x0,y0,'r')hold onplot(x0,y1,'g')注:画出的图形为n =10的图形得到图形如下:n=10的图像牛顿K次插值多项式一、实验目的:1、掌握牛顿插值法的基本思路和步骤。
matlab程序与数值实验
MATLAB程序与数值实验一、插值法(课本第二章)1、拉格朗日插值方法function s=lag(x,y,t)%拉格朗日插值方法,可以同时对多点插值,t可以为向量syms p;n=length(x);%读取x向量的维数s=0;for(k=1:n)la=y(k);%构造基函数for(j=1:k-1)la=la*(p-x(j))/(x(k)-x(j));end;for(j=k+1:n)la=la*(p-x(j))/(x(k)-x(j));end;s=s+la;simplify(s);endif(nargin==2)s=subs(s,'p','x');s=collect(s);%展开多项式s=vpa(s,6);elsem=length(t);for i=1:mtemp(i)=subs(s,'p',t(i));ends=temp;End%for example% x=[pi/4 pi/6 pi/3 pi/2];%y=[cos(pi/4) cos(pi/6) cos(pi/3) cos(pi/2)];%t=[-40*pi/180 40*pi/180 50*pi/180 70*pi/180 170*pi/180]; %yt=lag(x,y,t)2、牛顿插值法function s=niudun(x,y,t)%,可以同时对多点插值,即t可以为向量syms p;s=y(1);xishu=0;dxs=1;n=length(x);%读取x向量的维数%构造牛顿插值方法for (i=1:n-1)for(j=i+1:n)xishu(j)=(y(j)-y(i))/(x(j)-x(i));endtemp1(i)=xishu(i+1);dxs=dxs*(p-x(i));s=s+temp1(i)*dxs;y=xishu;endsimplify(s)if (nargin==2)s=subs(s,'p','x');s=collect(s);s=vpa(s,4);else%读取要插值点的向量长度%可以直接对多点插值机算m=length(t);for i=1:mtemp(i)=subs(s,'p',t(i));end%得到的是系列插值点的插值结果,即得到的是向量,赋值给ss=temp;end%for example%1、已知零阶Bessel函数f(x)在若干点处的函数值为:计算x在1.5处的近似值%x=[1.0 1.3 1.6 1.9 2.2];%y=[0.7651977 0.6200860 0.4554022 0.2818186 0.1103623];%yt=niudun(x,y,1.5)3、插值中的Runge现象syms xf=1/(1+x^2);x=-5:5;y=subs(f,x);chazhi=niudun(x,y);v=[-5,5,-0.5,2];ezplot(chazhi),axis(v),gridhold ont=-5:0.05:5;yt=subs(f,t);plot(t,yt,’:’)4、Hermite插值function f=Hermite(x,y,dy,t)%Hermite插值,x为插值节点,y为插值节点的函数值,dy为插值节点的一阶导数值,t为被插数据,可以为向量n=length(x);m=length(t);for k=1:mg(k)=0.0;for i=1:nla=1;lp=0.0;for j=1:nif(j~=i)la=la*(t(k)-x(j))/(x(i)-x(j));lp=lp+1/(x(i)-x(j));endendtemp1=1-2*(t(k)-x(i))*lp;temp2=y(i)*temp1*la^2;temp3=dy(i)*(t(k)-x(i))*la^2;g(k)=g(k)+temp2+temp3;endendf=g;%for example%syms x%y=x^2;%t=[1 3 -8 6-4];%yt=subs(y,t);%dy=subs('2*x',t)%x0=[-5.3 2.4 -4.2 -1.8 3.4];%z=Hermit(t,yt,dy,x0)5、三次样条插值三次样条插值方法可以选择MATLAB中内置函数spline。
matlab实现拉格朗日函数,拉格朗日插值多项式
matlab实 现 拉 格 朗 日 函 数 , 拉 格 朗 日 插 值 多 项 式
%拉格朗日插值多项式 利用矩阵求解 x=1:0.2:3;%已知数据点x坐标向量:x y=sin(x);%已知数据点x坐标向量:y x1=1.1:0.2:3.1;%插值点的x坐标:x1 L=zeros(11,11);%另L矩阵为0
for i=1:11 A=ones(10,1);%另A矩阵为10行1列的矩阵 x2=x; x2(i)=[]; x2';%10行一列 B=ones(1,11);%另B矩阵为1行11列的矩阵 A*x1;%10行11列 (x2')*B;%10行11列 A*x1-(x2')*B;%11行11列 ones(10,11); x(i);%提取x的第i个元素 ones(10,11)*x(i);%10行11列的矩阵 prod(A*x1-(x2')*B);%基函数的分子 ones(10,11)*(x(i))-(x2')*B;%基函数的分母 C=prod(A*x1-(x2')*B)./prod(ones(10,11)*(x(i))-(x2')*B);%对x2进行转置%C矩阵是一个1行11列的矩阵 L(i,:)=C; %将A的第一行元素全部变为10 %将得到的矩阵赋值基函数的1,2,3。。。。11行
end L;%11行11列 y;%1行11列 y1=y*L
结.9636 0.9975 0.9917 0.9463 0.8632 0.7457
8 至 11 列
0.5985 0.4274 0.2392 0.0416
用拉格朗日插值法求解函数值 matlab
**使用拉格朗日插值法求解函数值的MATLAB实现**拉格朗日插值法是一种常用的插值方法,通过已知的若干点构造一个多项式来近似一个未知的函数。
下面我们将详细介绍如何在MATLAB中使用拉格朗日插值法来求解函数值。
**1. 拉格朗日插值法的基本原理**给定n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值多项式L(x)可以表示为:L(x) = Σ[yi * li(x)] (i从0到n)其中,li(x) 是拉格朗日基函数,定义为:li(x) = Π[(x - xj) / (xi - xj)] (j从0到n,且j≠i)**2. MATLAB实现**以下是一个简单的MATLAB脚本,用于计算给定点的拉格朗日插值多项式及其值。
```matlab% 假设我们有一些点的数据:xi, yi(其中i = 0,1,2,...,n)xi = [1, 2, 3, 4]; % 自变量数据点yi = [1, 4, 9, 16]; % 因变量数据点% 要计算插值的点x = 2.5;n = length(xi); % 点的数量L = 0; % 初始化插值多项式% 计算拉格朗日插值多项式在点x处的值for i = 1:nli = 1; % 初始化基函数for j = 1:nif i ~= jli = li * (x - xi(j)) / (xi(i) - xi(j)); % 计算基函数endendL = L + yi(i) * li; % 更新插值多项式enddisp(['拉格朗日插值结果:', num2str(L)]); % 显示结果```在此脚本中,我们首先定义了已知的数据点`xi`和`yi`,并选择一个特定的`x`来计算对应的函数近似值。
然后,我们使用两个嵌套的循环来计算拉格朗日插值多项式在所选点`x`处的值。
外部循环遍历每个数据点,而内部循环计算相应的基函数。
最后,我们显示计算得到的插值结果。
拉格朗日插值matlab程序例题
拉格朗日插值是一种常用的数据拟合方法,它可以通过已知数据点来估计出未知数据点的值。
在数学和工程领域中,拉格朗日插值经常被用来进行数据的近似和预测。
在本文中,我们将深入探讨拉格朗日插值的原理和应用,并以Matlab程序例题来展示其实际运用。
1. 拉格朗日插值的原理拉格朗日插值是利用已知数据点来构造一个多项式,通过这个多项式来拟合数据并进行预测。
它的原理基于拉格朗日多项式的概念,即通过已知的n个点来构造一个n-1次的拉格朗日多项式,利用这个多项式来估计其他点的数值。
2. 拉格朗日插值的公式假设有n个已知的数据点(x1, y1), (x2, y2), …, (xn, yn),则拉格朗日插值多项式可以表示为:L(x) = Σ(yi * li(x)), i=1 to n其中li(x)是拉格朗日基函数,定义为:li(x) = Π((x - xj) / (xi - xj)), j=1 to n, j≠i利用这个公式,我们可以得到拉格朗日插值多项式,进而进行数据的拟合和预测。
3. 拉格朗日插值的Matlab程序实现下面我们将以一个具体的例题来展示如何使用Matlab来实现拉格朗日插值。
假设有如下数据点:y = [10, 5, 8, 3, 6];我们希望利用这些数据点来构造拉格朗日插值多项式,并使用这个多项式来估计x=3.5处的数值。
我们可以编写Matlab程序来实现拉格朗日插值。
代码如下:```matlabfunction result = lagrange_interpolation(x, y, xx)n = length(x);result = 0;for i = 1:ntemp = y(i);for j = 1:nif i ~= jtemp = temp * (xx - x(j)) / (x(i) - x(j));endendresult = result + temp;endend```我们可以调用这个函数来进行插值计算:```matlaby = [10, 5, 8, 3, 6];xx = 3.5;result = lagrange_interpolation(x, y, xx)disp(result);```通过这段程序,我们可以得到x=3.5处的插值结果为6.75。
matlab插值法
MATLAB插值法引言MATLAB是一种高级编程语言和环境,特别适用于数值计算和数据可视化。
插值法是一种在给定有限的数据点的情况下,通过构造插值函数来估计其他数据点的方法。
在MATLAB中,有多种插值方法可供选择,例如拉格朗日插值、牛顿插值和样条插值等。
本文将详细介绍MATLAB中常用的插值方法及其应用。
一、拉格朗日插值法拉格朗日插值法是一种多项式插值方法,通过构造一个满足给定数据点要求的多项式函数,来估计其他数据点的函数值。
其基本思想是通过一个多项式函数对已知数据点进行拟合,以实现函数值的估计。
以下是使用MATLAB实现拉格朗日插值法的步骤:1.确定待插值的数据点集合,假设有n个数据点。
2.构造拉格朗日插值多项式。
拉格朗日插值多项式的表达式为:其中,为拉格朗日基函数,其表达式为:3.利用构造的拉格朗日插值多项式求解其他点的函数值。
二、牛顿插值法牛顿插值法是一种基于差商的插值方法,通过构造一个n次多项式函数来拟合已知数据点,并利用差商的性质来求解其他点的函数值。
使用MATLAB实现牛顿插值法的步骤如下:1.确定待插值的数据点集合,假设有n个数据点。
2.计算差商表。
差商表的计算公式为:3.构造牛顿插值多项式。
牛顿插值多项式的表达式为:4.利用构造的牛顿插值多项式求解其他点的函数值。
三、样条插值法样条插值法是一种通过多段低次多项式来逼近原始数据,以实现光滑插值的方法。
它在相邻数据点处保持一定的连续性,并通过边界条件来确定插值函数的特性。
以下是使用MATLAB实现样条插值法的步骤:1.确定待插值的数据点集合,假设有n个数据点。
2.根据数据点的个数确定样条插值的次数。
一般情况下,插值多项式的次数小于或等于n-1。
3.利用边界条件构造样条插值函数。
常用的边界条件有:自然边界、固定边界和周期边界。
4.利用MATLAB中的插值函数csape或interp1等进行样条插值。
5.利用样条插值函数求解其他点的函数值。
如何用Matlab写拉格朗日函数?
如何用Matlab写拉格朗日函数?
谢邀。
首先拉格朗日函数具体公式如下:
编写一个名为lagrange.m的M文件,然后设n个节点数据以数组x0, y0输入(注意Matlab的数组下标从1开始),m个插值点以数组x输入,输出数组y 为m个插值。
图片内容如下:
纯文本内容如下(可直接复制使用):
function y=lagrange(x0,y0,x)
n=length(x0);m=length(x);
for i=1:m
z=x(i);
s=0.0;
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end
保存后调用编写的程序,并运行。
在Matlab的命令窗口输入【lagrange (x,y,xh)】按【Enter】键即可得到拉格朗日插值函数计算的插值。
如果你对科学和科技内容感兴趣,欢迎订阅我的头条号。
我会在这里发布所有与科技、科学有关的有趣文章。
偶尔也回答有趣的问题,
有问题可随时在评论区回复和讨论,看到即回。
(码字不易,若文章对你帮助可点赞支持~)。
用MATLAB实现拉格朗日插值和分段线性插值欧阳文创编
用MATLAB实现拉格朗日插值和分段线性插值1、实验内容:用MATLAB实现拉格朗日插值和分段线性插值。
2、实验目的:1)学会使用MATLAB软件;2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法;3、实验原理:利用拉格朗日插值方法进行多项式插值,并将图形显式出来。
4、实验步骤及运行结果(1)实现lagrange插值1)定义函数: f = 1/(x^2+1) 将其保存在f.m 文件中,具体程序如下:function y = f1(x)y = 1./(x.^2+1);2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x)m = length(x); /区间长度/n = length(x0);for i = 1:nl(i) = 1;endfor i = 1:mfor j = 1:nfor k = 1:nif j == kcontinue;endl(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j);endendendy = 0;for i = 1:ny = y0(i) * l(i) + y;end3)建立测试程序,保存在text.m文件中,实现画图:x=-5:0.001:5;y=(1+x.^2).^-1;p=polyfit(x,y,n);py=vpa(poly2sym(p),10)plot_x=-5:0.001:5;f1=polyval(p,plot_x);figureplot(x,y,‘r',plot_x,f1)输入n=6,出现下面的图形:通过上图可以看到当n=6是没有很好的模拟。
于是重新运行text.M并选择n=11由此可见n=11时的图像是可以很好的实现模拟(2)分段线性插值:建立div_linear.m文件。
具体编程如下/*分段线性插值函数:div_linear.m 文件*/function y = div_linear(x0,y0,x,n)%for j = 1:length(x)for i = 1:n-1if (x >= x0(i)) && (x <= x0(i+1))y = (x - x0(i+1))/(x0(i) -x0(i+1))*y0(i) + ( x - x0(i))/(x0(i+1) - x0(i))*y0(i+1);elsecontinue;endend%end测试程序(text2.m):n = input(‘输入n =:’);x0 = linspace( -5,5,n);for x = -5:0.01:5y = div_linear(x0,f(x0),x,n);hold on;plot(x,y,'r');plot(x,f(x),'b');end2)运行测试程序,这是会出现:输入n=:2)输入n=6,并按Enter键,出现:4)关掉图形界面后,重新运行程序,输入n=11,并按enter键后出现:5)再次关掉图形界面,输入n=100,并按enter键,出现:此时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用matlab编写拉格朗日插值算法的程序10[ 标签:matlab,插值算法,程序]用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果x -2.15 -1.00 0.01 1.02 2.03 3.25y 17.03 7.24 1.05 2.03 17.06 23.05 匿名回答:1 人气:6 解决时间:2011-05-24 19:58满意答案好评率:83%做了一个测试,希望有所帮助。
代码:% 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果%x -2.15 -1.00 0.01 1.02 2.03 3.25%y 17.03 7.24 1.05 2.03 17.06 23.05 function main()clc;x =[-2.15 -1.00 0.01 1.02 2.03 3.25]; y = [17.03 7.24 1.05 2.03 17.06 23.05 ]; x0 = 0.6;f = Language(x,y,x0)function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: fsyms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end结果:f =0.0201>>如何用MATLAB编写的拉格朗日插值算法的程序、二阶龙格-库塔方法的程序和SOR迭代法的程序,要能运行的∮初夏戀雨¢回答:2 人气:29 解决时间:2009-12-08 19:04满意答案好评率:100%拉格朗日function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endSOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/ A(i,i);endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。
该算法是构建在数学支持的基础之上的。
龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。
如果预先求两个点的斜率就是二阶龙格库塔法,如果预先取四个点就是四阶龙格库塔法。
一阶常微分方程可以写作:y'=f(x,y),使用差分概念。
(Yn+1-Yn)/h= f(Xn,Yn)推出(近似等于,极限为Yn')Yn+1=Yn+h*f(Xn,Yn)另外根据微分中值定理,存在0<t<1,使得Yn+1=Yn+h*f(Xn+th,Y(Xn+th))这里K=f(Xn+th,Y(Xn+th))称为平均斜率,龙格库塔方法就是求得K的一种算法。
利用这样的原理,经过复杂的数学推导(过于繁琐省略),可以得出截断误差为O(h^5)的四阶龙格库塔公式:K1=f(Xn,Yn);K2=f(Xn+h/2,Yn+(h/2)*K1);K3=f(Xn+h/2,Yn+(h/2)*K2);K4=f(Xn+h,Yn+h*K3);Yn+1=Yn+h*(K1+2K2+2K3+K4)*(1/6);所以,为了更好更准确地把握时间关系,应自己在理解龙格库塔原理的基础上,编写定步长的龙格库塔函数,经过学习其原理,已经完成了一维的龙格库塔函数。
仔细思考之后,发现其实如果是需要解多个微分方程组,可以想象成多个微分方程并行进行求解,时间,步长都是共同的,首先把预定的初始值给每个微分方程的第一步,然后每走一步,对多个微分方程共同求解。
想通之后发现,整个过程其实很直观,只是不停的逼近计算罢了。
编写的定步长的龙格库塔计算函数:function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数)n=floor((b-a)/h);%求步数x(1)=a;%时间起点y(:,1)=y0;%赋初值,可以是向量,但是要注意维数for ii=1:nx(ii+1)=x(ii)+h;k1=ufunc(x(ii),y(:,ii));k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2);k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2);k4=ufunc(x(ii)+h,y(:,ii)+h*k3);y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6;%按照龙格库塔方法进行数值求解end调用的子函数以及其调用语句:function dy=test_fun(x,y)dy = zeros(3,1);%初始化列向量dy(1) = y(2) * y(3);dy(2) = -y(1) + y(3);dy(3) = -0.51 * y(1) * y(2);对该微分方程组用ode45和自编的龙格库塔函数进行比较,调用如下:[T,F] = ode45(@test_fun,[0 15],[1 1 3]);subplot(121)plot(T,F)%Matlab自带的ode45函数效果title('ode45函数效果')[T1,F1]=runge_kutta1(@test_fun,[1 1 3],0.25,0,15);%测试时改变test_fun 的函数维数,别忘记改变初始值的维数subplot(122)plot(T1,F1)%自编的龙格库塔函数效果title('自编的龙格库塔函数')用Runge-Kutta方法求一阶微分方程组初值问题的matlab通用程序2007-11-11 11:43题目:用经典Runge-Kutta方法求下列一阶微分方程组的近似解:y1' = 3y1 + 2y2 −(2x2 + 1)e2x, y1(0) = 1 e2x表示exp(2*x)y2 '= 4y1 + y2 + (x2 + 2x − 4)e2x, y2(0) = 1y3 '= 2y1 − y2 − xe3x, y3(0) = 1y4 '= y1 + x2ex, y4(0) = 1y5 '= y2 − e2x, y5(0) = 1其中初值条件y0为一个五维数组,包含了这五个方程在区间[0,1]左端点0的值,并假设N =10为区间等分数程序:function rk(A,x,h,y0)%A为字符串函数的元胞数组%x为x轴上的各点%h为点距%y0为初值i=1;y(i,:)=y0;m=length(A);b=x(length(x));while x(i)<ba=[x(i),y(i,:)];for l=1:mk1(l)=eval(A{l},a);enda=[x(i)+h/2,y(i,:)+h/2*k1];for l=1:lk2(l)=eval(A{l},a);enda=[x(i)+h/2,y(i,:)+h/2*k2];for l=1:mk3(l)=eval(A{l},a);enda=[x(i)+h,y(i,:)+h*k3];for l=1:mk4(l)=eval(A{l},a);endy(i+1,:)=y(i,:)+h/6*(k1+2*k2+2*k3+k4);i=i+1;endy输入及结果:>> y1='3*a(2)+2*a(3)-(2*a(1)^2+1)*exp(2*a(1))'; 解释:a(1)为x,a(2)、a(3)……为y1,y2……>> y2='4*a(2)+a(3)+(a(1)^2+2*a(1)-4)*exp(2*a(1))';>> y3='2*a(2)-a(3)-a(1)*exp(3*a(1))';>> y4='a(2)+a(1)^2*exp(a(1))';>> y5='a(3)-exp(2*a(1))';>> A=[{y1},{y2},{y3},{y4},{y5}]A =[1x38 char] [1x41 char] [1x28 char] [1x21 char] 'a(3)-exp(2*a(1))'>> rk(A,0:0.1:1,0.1,ones(1,5))y =1.0000 1.0000 1.0000 1.0000 1.00001.4692 1.1649 1.1312 1.1226 0.99632.1246 1.5112 1.3309 1.3031 0.99303.0680 2.1507 1.6105 1.5679 1.00784.4629 3.2638 1.9873 1.9573 1.07186.5725 5.1403 2.4884 2.5335 1.23769.8237 8.2476 3.1587 3.3940 1.593014.9117 13.3402 4.0745 4.6925 2.283722.9721 21.6384 5.3681 6.6746 3.549735.8640 35.1212 7.2699 9.7346 5.784356.6365 57.0045 10.1818 14.5095 9.6315matlab 解微分方程组dx/dt=x+y dy/dt=x-y2010-10-6 15:56提问者:刘の鱼|浏览次数:409次推荐答案2010-10-6 20:50不知道解得对不对程序:dsolve('Dx=x+y','Dy=x-y','t')解得:x=C1*exp(2^(1/2)*t)+C2*exp(-2^(1/2)*t)y=C1*2^(1/2)*exp(2^(1/2)*t)-C2*2^(1/2)*exp(-2^(1/2)*t)-C1*exp(2^(1/2)*t)-C2* exp(-2^(1/2)*t) >> dsolve('Dx=x+y','Dy=x-y')ans =y: [1x1 sym]x: [1x1 sym]>> disp(ans.x)C1/exp(2^(1/2)*t) + C2*exp(2^(1/2)*t) - (2^(1/2)*C1)/exp(2^(1/2)*t) +2^(1/2)*C2*exp(2^(1/2)*t)>> disp(ans.y)C1/exp(2^(1/2)*t) + C2*exp(2^(1/2)*t)参考资料:.cn/pc/index.php?id=hangdao。